

Building the Energy Efficiency Power Plant: TVA's 2015 IRP

Tom Rice

Director, Demand Side Pricing & Strategy

TVA's MISSION OF SERVICE

Energy

Delivering affordable, reliable power

Environment

Caring for our region's natural resources

Economic Development

Creating sustainable economic growth

Mission & Business Model Provide Clarity While Identifying Need For Balance

Energy

Environment

Development

Economic

Our Current Portfolio

Hydro	Nuclear	Renewables	EEDR	Gas	Coal
4,200 MW conventional 1,600 MW pumped storage	6,700 MW	1,500 MW wind 120 MW solar/biomass	1,300 MW avoided capacity	5,500 MW CT and diesels 4,500 MW CC	12,400 MW

Approximately 37 percent of TVA's capacity is emission-free

The Role of the IRP at TVA

The IRP Is ...

- A planning study
- Used to identify the least cost power supply mix
- Designed to evaluate future uncertainty

The IRP Is Not ...

- Used to set rates
- Designed to identify sites for new generating units
- Able to provide all the answers we need

Stakeholder & Public Involvement Throughout the Process

Our public engagement includes:

- A stakeholder working group
- Policy advisory groups
- Customers & Valley residents

2015 IRP – A New Approach On EEDR

2011 IRP: Scheduled energy efficiency (EE) and Demand Response (DR) as fixed supply curves into the resource portfolio; tested multiple portfolios

2015 IRP: Goal to model EE and DR as dynamically selectable resources

Why Take A Different Approach This Time?

Both Internally and Externally

Dynamic EEDR Resource Modeling

Advantages:

- Allows full portfolio optimization
- More clearly demonstrates value proposition
- Allows flexible, nimble response to changing business environments

Challenges/Considerations:

- Typical EE modeling approach (as a load modifier) doesn't lend itself to an easy transition to supply side modeling
- How to account for cost changes over time
- ◆ How to account for uncertainty on load shapes
- How to acknowledge TVA's unique structure as (primarily) a wholesale power company

The Simplified Concept

Plant built in 10 MW blocks

Block Characteristics:

- Capacity factor equivalent
- Load Shape
- Cost to build program
- Time to implement
- Lifetime
- Installed Cost / kwh

Modeling Construct

- Developed "block" concept instead of modeling individual programs
- Began with three sectors:
 - Residential
 - ◆ Commercial
 - Industrial
- Divided sectors into pricing tiers
- Divided tiers into 10 MW blocks
- Each block was included in Capacity
 Expansion model as a selectable unit

Unit Characteristics

- Designed to look like thermal resources
- Nameplate capacities
- Book lives
- \$/kW pricing tiers by sector
- Build time, growth rates, and unit availability
- ◆ Hourly Load Shapes

	Res Tier		Res Tier	Com		Com		Ind Tier	Ind Tier	DR
	1	2	3	1	2	3	1	2	3	
Nameplate Capacity (MW)	10	10	10	10	10	10	10	10	10	1
Summer Full Load Heat Rate (Btu/kWh)	-	-	-	-	-	-	-	-	-	10,132
Unit Availability (Yr)	2014	2022	2026	2014	2019	2022	2014	2018	2022	2014
Annual Outage Rate		-	-	-	-	-	-	-	-	-
Book Life (Yrs)	17	13	13	15	13	13	12	10	10	5

Summer Hourly Load Profile

Supply-Side Comparison

- Utilities are used to supply-side resource characteristics
- Demand side
 resources possess
 characteristics that are
 similar to supply side,
 but there are key
 differences
- Talking the same language helps

	SUPPLY SIDE COMPARISON								
	Com EE	Ind EE	Res EE	New CC	New CT	New Coal w/ CCS	AP1000		
Year Available	2014	2014	2014	2019	2018	2028	2026		
Outage Rate				✓	✓	✓	✓		
Heat Rate				✓	\	✓	\		
Fuel Costs				✓	✓	✓	✓		
Fuel CAGR				✓	✓	✓	✓		
CO ₂ Costs				✓	\	✓	\		
CO ₂ CAGR (starts in 2022)				✓	✓	✓			
O&M costs	✓	✓	✓	✓	✓	✓	✓		
O&M Escalation	✓	✓	✓	✓	✓	✓	✓		
Transmission Contingency Cost				\	>	✓	>		
Project Contingency Cost				\	>	✓	>		
Capital Costs				✓	✓	✓	✓		
Escalation of capital				✓	✓	✓	✓		
Capacity Factor	✓	✓	✓	✓	✓	✓	✓		
Technology shifts	✓	✓	✓						

Like Conventional Resources, EE has Risks

- Design Uncertainty because blocks are proxies for programs, some with different measure lives and shapes
- ◆ Delivery Uncertainty due to:
 - Risk around nonperformance (realization rate)
 - Uncertainty around impact of future codes and standards
 - Specific uncertainty sinceTVA is primarily a wholesalepower provider

And, The EE Financial Equation Has Not Changed

Results highlight total cost vs. average cost ("rate" vs. "bill") tradeoffs with increased EE in the portfolio, particularly in later years

Results: IRP Signals Growth in EEDR

ENERGY

EFFICIENCY • Achieve savings between 900 - 1,300 MW by 2023

- Achieve savings between 2,000 2,800 MW by 2033
- Work with our local power company partners to refine delivery mechanisms, program designs, and program efficiencies with the goal of lowering total cost

DEMAND TRESPONSE

 Add between 450 - 575 MW of demand reduction by 2023 and similar amounts by 2033, dependent on availability and cost of this customer-owned resource.

Conclusions

- ◆ Did we change the conversation? We think so.
- ◆ Was it analytically challenging? Quite.
- ◆ Can we improve our approach? Of course.
- Did we get stakeholder support for approach, if not on all particulars? Largely.
- ◆ What did we establish?
 - ◆ EE is a competitive resource that introduces unique uncertainties while mitigating others, and this modeling approach better demonstrates the value EE brings to the portfolio
 - We have additional work to do to leverage this dynamic approach in annual resource planning

"Our tomorrows need new and different solutions today"

