

#### **2018 IRP Contemporary Issues Technical Conference**

# **Distribution System Planning**



#### **IA Overview**





# Relevant IA Software Track Record (since 2011)

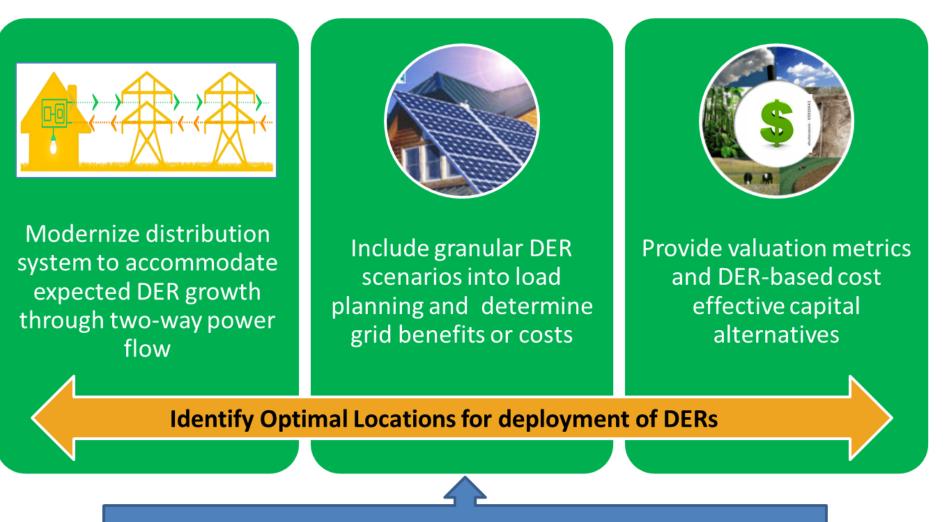
- LoadSEER is a proven, core application serving Integrated Grid Planning, Distribution Planning, Corporate Fcst/DER at:
  - Pacific Gas & Electric
  - San Diego Gas & Electric
  - Seattle City Light
  - Hawaiian Electric
  - Fortis, Nashville Electric, CPS Energy, others.
- LoadSEER for regulatory requirements:
  - <u>Cited by California PUC as benchmark load forecasting application</u> for Distribution Resource Planning, Hosting Capacity Analysis (2016-17)
  - HECO Grid Modernization Strategy to Hawaii PUC (2017/2018) and as forecasting solution for landmark EV strategy (2018)
  - Presented by NV Energy to Nevada PUC as part of Distributed Resource Planning requirement (2018)
- DSMore Cost-Effectiveness Software:
  - 30+ states have approved methods for utilities
  - In use at NiSource, IPL and Duke





# A Brief History of Distribution Planning

#### • Last 50 Years:


- A stand-alone function within the utility (a "spoke")
- Typically an annual process to allocate corporate load forecast to substation/feeder
- Used to prioritize capital projects and support asset management
- Primarily utilized peak load history and weather normal for forecasts (data poor)
- Typically used averaging to allocate load growth below the substation
- Concerned with engineering integrity/reliability, not value/cost

#### • Next 20 Years:

- Evolution to Integrated Grid Planning, linking capital to operations (the "hub")
- o Amidst flat/declining system load growth, distribution-level volatility
- Multi-directional powerflow from DER mandates dynamic scenario forecasting
- o Must leverage significant recent investment in data sources and telemetry
- Hourly resolution load shapes required to understand reliability impacts
- DERs as capital substitutes
- $\circ~$  Avoided distribution costs and value of locational DER required
- o Portfolio Manager role



#### **Next 5 Years in Distribution Planning**

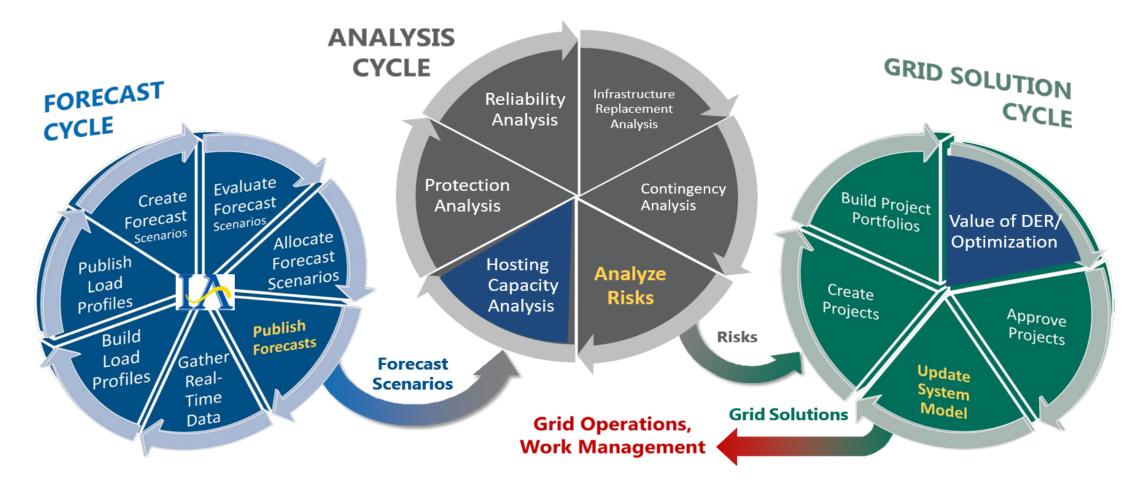


Foundational Layer: Circuit-Level Load Forecasting



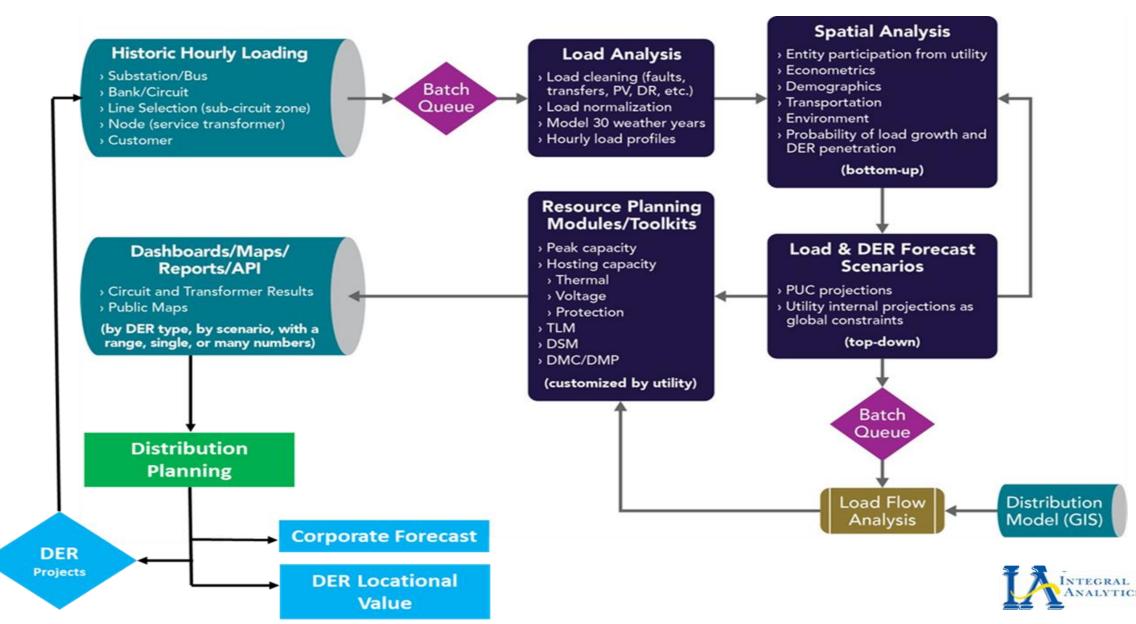
# Attributes of Future-Proof Grid Planning

- 1. Scale Architecture: Expect "Billions of Rows"
- 2. It's an 8760, Meter-Level World
- 3. Scenario Engine at the Core
- 4. Must Support Many Stakeholders:
  - Transmission/Distribution/Ops/Fuels
  - Corporate Forecasting
  - Regulators
  - Market Participants
- 5. Bottom-Up = Top-Down
- 6. Economic Meets Engineering Meets Social
- 7. Locational Value and Risk Metrics




# Integrated Grid Planning: The "Must-Haves"

| Capability                                        | Conventional<br>Wisdom                                    | Status                            | Where?                                                      |  |
|---------------------------------------------------|-----------------------------------------------------------|-----------------------------------|-------------------------------------------------------------|--|
| Nodal, 8760 Load<br>Forecasting with<br>Powerflow | Data transfer and quality prohibitive                     | Commercially<br>available         | PG&E, CPS Energy,<br>SDG&E, Seattle City<br>Light, others   |  |
| Hourly Batch ICA                                  | Too<br>computationally-<br>intensive                      | Commercially<br>available Q3 2018 | PG&E, SDG&E                                                 |  |
| Embedded DER<br>Penetration Impact                | Hard to reconcile<br>corporate fcst to<br>feeder level    | Commercially<br>available         | PG&E, SCE, CPS,<br>Hawaiian Electric                        |  |
| DER Avoided Cost<br>Project<br>Value/Optimization | Locational value measurement                              | Commercially<br>available Q3 2018 | Hawaiian Electric,<br>PG&E, Seattle, CPS                    |  |
| Dynamic Data and<br>Network Topology<br>Refresh   | System Integration<br>and Data<br>Management<br>Challenge | Commercially<br>available         | Nashville Electric,<br>PG&E, FortisBC,<br>Hawaiian Electric |  |




### **Integrated Grid Planning: Dynamic Cycles**





# **Integrated Grid Planning: The Process**



#### **Geospatial Load and DER Forecasting**

C LoadSEER-GIS



Map Coordinates Lat: -158.011732 , Long: 21.444737 Map Scale 1 : 102,426.35

#### Enabling Engineering Expertise: Local Knowledge

C LoadSEER-GIS



- 0

Map Coordinates: -13330777.8298587 , 4426628.86 Map Scale: 1 : 13,930.87

#### Nodal Growth + DER + Powerflow = Holistic

C LoadSEER-GIS

File Settings Reports About



- 0 -X

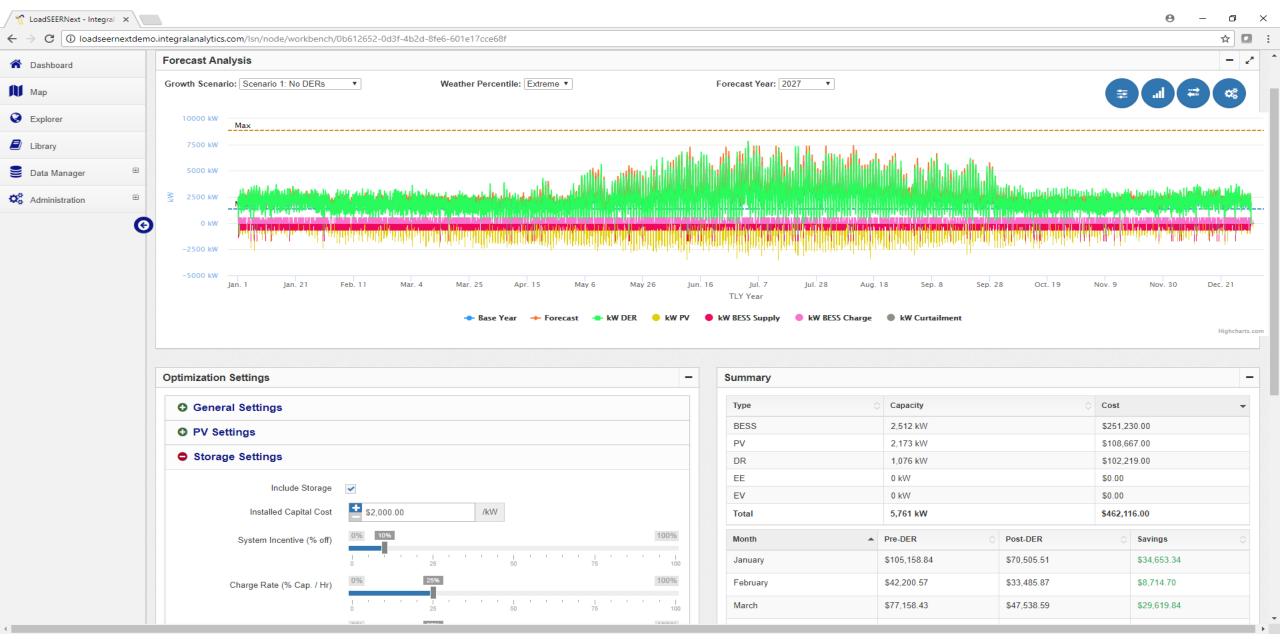
Map Coordinates Lat: -94.827158 , Long: 29.277231 Map Scale 1 : 2,595.19

### Evaluating Premise-Level Solar/Microgrids

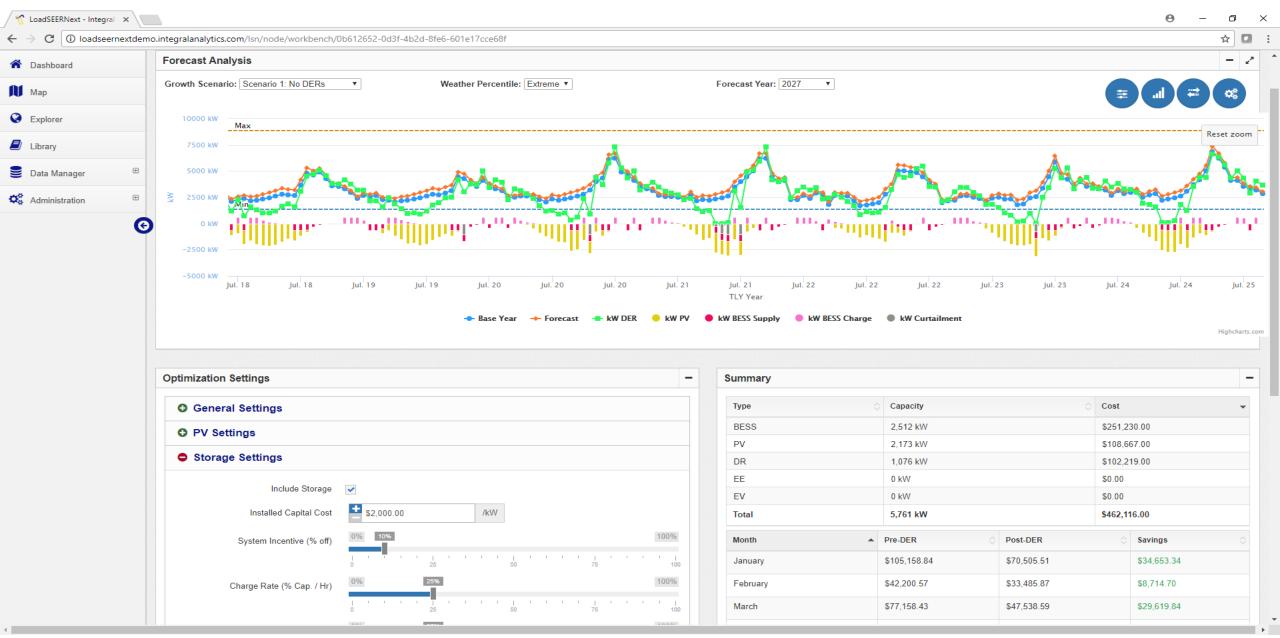
C LoadSEER-GIS

File Settings Reports About




Map Coordinates Lat: -94.805018 , Long: 29.291634 Map Scale 1 : 1,328.74




#### Producing Detailed Load Profiles: Long-Range

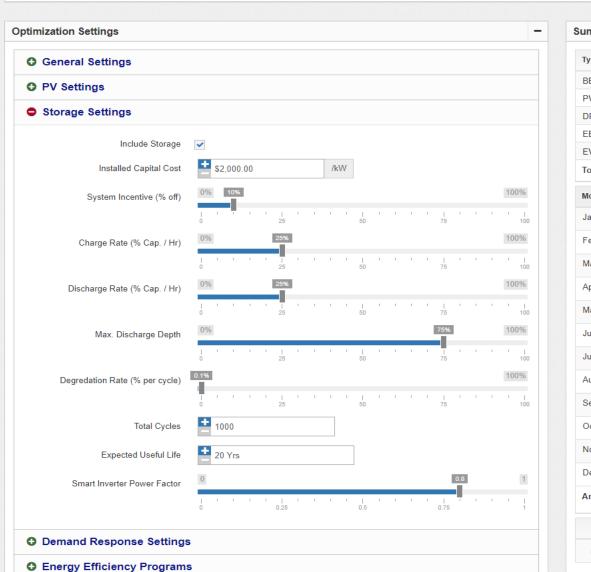


### 8760, Multi-Year Circuit Load Shape and DG Production



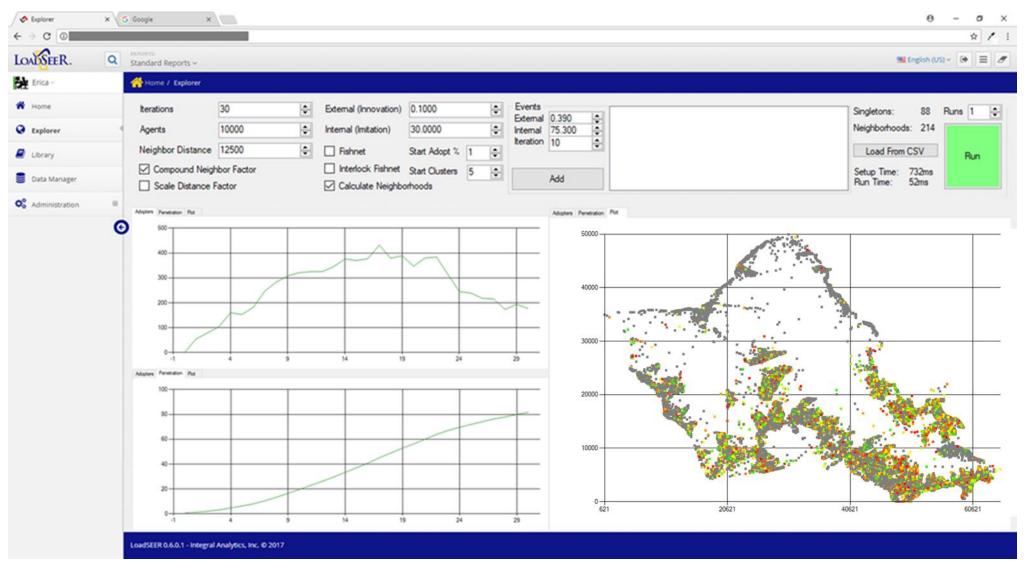
#### **Circuit Risk Evaluation**




#### **Building Optimal Distributed Portfolios**

0 - 0

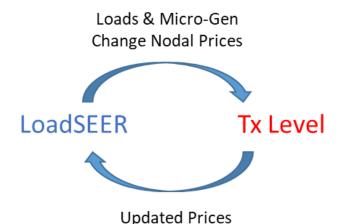
🗲 🔶 🖸 🛭 🖸 loadseernextdemo.integralanalytics.com/lsn/node/workbench/0b612652-0d3f-4b2d-8fe6-601e17cce68f


☆ 🖸 :

×



| ummar         | У               |                |     |                |              |              |             |  |
|---------------|-----------------|----------------|-----|----------------|--------------|--------------|-------------|--|
| Туре          |                 | Capacity       |     | ⇔ Cost         |              |              | •           |  |
| BESS          |                 | 2,512 kW       |     |                | \$251,230.00 |              |             |  |
| PV            |                 | 2,173 kW       |     |                | \$108,667.00 |              |             |  |
| DR            |                 | 1,076 kW       |     |                | \$102,219.00 |              |             |  |
| EE            |                 | 0 kW           |     |                | \$0.00       |              |             |  |
| EV            |                 | 0 kW           |     |                | \$0.00       |              |             |  |
| Total         |                 | 5,761 kW       |     |                |              | \$462,116.00 |             |  |
| Month         | *               | Pre-DER        |     | Post-D         | ER           |              | Savings     |  |
| January       |                 | \$105,158.84   |     | \$70,505.51    |              | \$34,653.34  |             |  |
| February      | (               | \$42,200.57    |     | \$33,485.87    |              | \$8,714.70   |             |  |
| March         |                 | \$77,158.43    |     | \$47,538.59    |              |              | \$29,619.84 |  |
| April         |                 | \$94,289.95    |     | \$48,953.53    |              | \$45,336.42  |             |  |
| May           |                 | \$90,843.32    |     | \$63,969.40    |              | \$26,873.92  |             |  |
| June          |                 | \$215,478.99   |     | \$131,806.53   |              | \$83,672.46  |             |  |
| July          |                 | \$223,802.09   |     | \$139,434.06   |              | \$84,368.04  |             |  |
| August        |                 | \$174,897.80   |     | \$118,466.41   |              | \$56,431.39  |             |  |
| September     |                 | \$140,837.83   |     | \$95,694.12    |              | \$45,143.71  |             |  |
| October       | er \$136,256.52 |                |     | \$73,173.90    |              |              | \$63,082.62 |  |
| November      |                 | \$123,387.68   |     | \$78,586.54    |              | \$44,801.15  |             |  |
| December      |                 | \$277,889.95   |     | \$109,128.45   |              | \$168,761.50 |             |  |
| Annual Supply |                 | \$1,702,194.00 |     | \$1,010,737.00 |              | \$691,453.00 |             |  |
|               | T&D Cost Type   |                | Pre |                | Post         |              | Savings     |  |
| 0             | Annual T&D Cost | \$246,970.50   |     | \$49,199.22    |              | \$197,771.28 |             |  |


#### Electric Vehicles on Oahu: Agent-Based Modeling





# Key Integration Value Points: Bridging to IRP

- Dynamic Distribution Planning integrates with Production Cost, Transmission and Capacity Expansion models similarly to the API interfaces used with distribution powerflow tools.
- Traditional IRP planning tools, such as Aurora, Plexos or System Optimizer, can interact with dynamic planning at the nodal (bus-level) and/or the zonal level (load control area / or congestion zone area), creating a much richer and more granular analysis.
- The IRP tool "area demand" points to this time-series data, referencing the loads which are dynamically aggregated to the desired node, and will adjust the IRP tool load vs. generation mix at the nodal level.



Change DER Forecast



# Key Takeaways

- The days of static studies and Excel are limited
- Dynamic, granular planning is available
- AMI is not required to implement nodal intelligence
- Scale computing is removing barriers
- PV, BESS and especially EV will mandate sophistication
- Planners are now portfolio managers
- Regulators should seek, embrace and de-risk innovation
  - Adopt "DRP" approach to planning (CA, NY, NV, HI)
  - o TDSIC as path to standard deployment
  - o ROE enhancement for capital efficiency

