

# Indianapolis Power & Light Company 2014 Integrated Resource Plan

**Public Version** 

October 31, 2014



## **Table of Contents**

| Section 1. EXECUTIVE SUMMARY                                | 1  |
|-------------------------------------------------------------|----|
| Background                                                  | 2  |
| Existing Resources                                          | 3  |
| Thermal Generation                                          | 3  |
| Wind and Solar Generation                                   | 4  |
| Impact of Environmental Regulations on Generation Resources | 5  |
| New Generation                                              | 6  |
| Transmission and Distribution Enhancements                  | 7  |
| IRP Modeling Scenarios                                      | 7  |
| Key Driver #1 - Future Environmental Regulation             | 8  |
| Key Driver #2 – Natural Gas Prices                          | 9  |
| Key Driver #3 – Load Variation                              | 9  |
| Resource Modeling Results                                   | 11 |
| Capacity Purchases                                          | 12 |
| Preferred Portfolio                                         | 13 |
| Research & Development/Technology Applications              | 13 |
| Portfolio 2024 and 2034                                     | 14 |
| Section 2. THE CHANGING BUSINESS LANDSCAPE                  | 16 |
| Changing Regulatory Landscape                               | 16 |
| Contemporary IRP Inputs and Methodology                     | 18 |
| Risk Mitigation                                             | 18 |
| Financing                                                   | 21 |
| Demand Side Management                                      | 22 |
| Forecast                                                    | 22 |
| Fuel Landscape                                              | 23 |
| Environmental Landscape                                     | 24 |
| Transmission Expansion Cost Sharing                         | 26 |
| Battery Energy Storage Systems                              | 26 |
| Section 3 FNVIRONMENTAL RULES and REGULATIONS               | 28 |

| Existing Regulations – Significant Environmental Effects                         | 29 |
|----------------------------------------------------------------------------------|----|
| Air Emissions                                                                    | 29 |
| Water                                                                            | 35 |
| Solid Waste (Solid Waste, Hazardous Waste and Disposal)                          | 36 |
| Pending and Future Regulations – Significant Environmental Effects               | 37 |
| Cross State Air Pollution Rule                                                   | 37 |
| National Ambient Air Quality Standards                                           | 38 |
| Greenhouse Gas Regulation                                                        | 38 |
| Cooling Water Intake Structures – Clean Water Act Section 316(b)                 | 39 |
| Coal Combustion Residuals (CCR)                                                  | 40 |
| Summary of Potential Impacts                                                     | 40 |
| Section 4. INTEGRATION                                                           | 41 |
| Resource Evaluation Process                                                      | 41 |
| Resource Planning Criteria                                                       | 43 |
| Resource Adequacy Requirements                                                   | 44 |
| Planning Reserve Margin Modeling                                                 | 45 |
| Planning Year beginning June 1, 2015 and ending May 31, 2016                     | 45 |
| Determine Resource Needs                                                         | 46 |
| Load Forecast, Incorporation of Demand Side Management, and Application Criteria | _  |
| Supply Resource Modeling                                                         | 47 |
| National Pollutant Discharge Elimination System ("NPDES") Analysis               | 47 |
| Existing Generation                                                              | 48 |
| New Generation Resource Modeling                                                 | 49 |
| Capacity Purchase Modeling                                                       | 50 |
| IRP Modeling Scenarios                                                           | 50 |
| Key Driver #1 – Future Environmental Regulation                                  | 51 |
| Key Driver #2 – Natural Gas Prices                                               | 52 |
| Key Driver #3 - Load Variation                                                   | 52 |
| Supply Resource Evaluation                                                       | 54 |
| Overall Methodology Description                                                  | 54 |

| Capacity Expansion Simulation Methodology       | 54 |
|-------------------------------------------------|----|
| Capacity Expansion Results                      | 56 |
| Evaluation of Scenario Resource Plans           | 58 |
| Plan 1 Expansion                                | 60 |
| Plan 2 Expansion                                | 61 |
| Plan 3 Expansion                                | 62 |
| Plan 4 Expansion                                | 63 |
| Plan 5 Expansion                                | 64 |
| PVRR Scenario Results for the Resource Plans    | 65 |
| Wind Sensitivities                              | 72 |
| Wind Sensitivities Results                      | 73 |
| Scenario Evaluation Results Summary             | 74 |
| Comparative Air Emissions by Resource Plan      | 75 |
| Comparative Annual Costs by Resource Plan       | 76 |
| Results Summary and Resource Selection Overview | 78 |
| IPL's Preferred Portfolio                       | 80 |
| Existing Core Base Load Resources               | 80 |
| Demand Side Management                          | 80 |
| Renewables Generation/Climate Change            | 81 |
| Power/Capacity Purchases                        | 81 |
| Transmission and Distribution                   | 82 |
| Summary                                         | 83 |
| Section 4A. RESOURCE OPTIONS                    | 84 |
| Generation Technology                           | 84 |
| National Resource Mix                           | 84 |
| MISO Resource Mix                               | 85 |
| Supply Side Options                             | 87 |
| Natural Gas                                     | 89 |
| Shale and the New Gas Supply Paradigm           | 90 |
| Simple-Cycle Combustion Turbine                 | 91 |
| Combined Cycle Gas Turbine                      | 91 |

| Nuclear and Renewables                                   |     |
|----------------------------------------------------------|-----|
| Nuclear                                                  | 92  |
| Wind                                                     | 93  |
| Solar                                                    | 94  |
| Hydroelectric Resources                                  | 94  |
| MW Capacity, Performance Attributes, and Installed Costs | 94  |
| Distributed Generation, Net Metering and Feed-In Tariff  | 95  |
| Distributed Generation                                   | 95  |
| Rate REP (Renewable Energy Production)                   | 95  |
| Net Metering                                             | 96  |
| Section 4B. DEMAND SIDE MANAGEMENT                       | 97  |
| Demand Side Management                                   | 97  |
| IPL Historical DSM Programs                              | 98  |
| Online Energy Feedback (PowerView)                       | 100 |
| IPL Current DSM Programs                                 | 101 |
| Current Load Curtailment/Interruptible Programs          | 102 |
| Indiana Developments – The Changing Landscape            | 103 |
| Senate Enrolled Act 340                                  | 103 |
| Cause No. 44441 – Qualifying Customer Opt-Outs           | 104 |
| National Developments – The Changing Landscape           | 105 |
| IPL's DSM Strategy                                       | 106 |
| IPL's Screening Process and Evaluation                   | 107 |
| DSM Cost Effectiveness                                   | 108 |
| Avoided Costs                                            | 109 |
| Evaluation Process                                       | 111 |
| DSM – Benefit/Cost Test Results                          | 112 |
| Market Potential Study - Future DSM Market Analysis      | 113 |
| DSM Plan Forecasted Savings (2015-2017)                  | 114 |
| DSM Plan Proposed Programs (2015-2017)                   | 114 |
| Residential Programs                                     | 115 |
| Commercial and Industrial Programs                       | 119 |

| Other Proposed DSM Programs through Cause No. 444 | 78119 |
|---------------------------------------------------|-------|
| Evaluation, Measurement and Verification ("EM&V") |       |
| DSM Forecast (2018-2034)                          |       |
| Electric Vehicles                                 | 122   |
| Section 4C. TRANSMISSION AND DISTRIBUTION         | 124   |
| Transmission                                      | 124   |
| Assessment Summary                                | 127   |
| Transmission Expansion Cost Sharing               |       |
| FERC Order 1000                                   |       |
| Distribution                                      |       |
| Smart Grid Initiative                             |       |
| Smart Grid Benefits                               |       |
| Distributed Generation Connections                |       |
| Electric Vehicle Projects                         |       |
| Cyber Security and Interoperability Standards     |       |
| Future Smart Grid Expectations                    |       |
| Section 4D. MARKET TRENDS AND FORECASTS           |       |
| Load Forecast Overview Short Term                 |       |
| Load Forecast Overview Long Term                  |       |
| Energy Sales Forecast                             |       |
| Peak Forecast                                     | 147   |
| Model Performance and Analysis                    | 147   |
| IPL Fuel Planning                                 |       |
| Fuel Price Forecasting and Methodology            |       |
| Market Transactions                               |       |
| Section 5. SHORT-TERM ACTION PLAN                 |       |
| Comparison to Last IRP                            |       |
| 2014 Short Term Action Plan                       |       |
| Environmental                                     |       |
| Demand Side Management                            |       |
| Transmission                                      |       |

| Distribi   | utionution                               | 158 |
|------------|------------------------------------------|-----|
| Researc    | ch & Development/Technology Applications | 158 |
| Preferre   | ed Portfolio                             | 159 |
| Existing   | g Generation                             | 159 |
| Capacit    | ty Needs (2015-2017)                     | 160 |
| 2014 SI    | hort Term Action Plan Summary            | 161 |
| Section 6. | ACRONYMS                                 | 164 |
| Section 7. | ATTACHMENTS                              | 169 |
|            |                                          |     |

## **Table of Figures**

| Figure 1.1 – IPL Customer Mix and Energy Use                                    | 2        |
|---------------------------------------------------------------------------------|----------|
| Figure 1.2 – IPL Facilities                                                     |          |
| Figure 1.3 – Projected Generation Resources                                     | 6        |
| Figure 1.4 – IPL's 2014 IRP Modeling Scenarios                                  |          |
| Figure 1.5 – Peak Forecast (Net of DSM)                                         | 10       |
| Figure 1.6 – IPL Resources – 2024 (by Operating Capacity)                       | 14       |
| Figure 1.7 – IPL Resources – 2034 (by Operating Capacity)                       | 15       |
| Figure 2.1 – IPL Risks and Mitigation Methods                                   | 19       |
| Figure 2.2 – EIA and ICF Natural Gas Supply and Affordability                   |          |
| Figure 3.1 – IPL Generating Units: Environmental Controls                       | 34       |
| Figure 3.2 – Estimated Cost of Potential Environmental Regulations              | 40       |
| Figure 4.1 – IPL's Resource Evaluation Process                                  | 42       |
| Figure 4.2 – MISO Zones                                                         |          |
| Figure 4.3 - IPL's Load and Resource Balance Report                             |          |
| Figure 4.4 – IPL's Current Generation Resources with Summer Capacity Ratings (N |          |
| Ti 45 000 0 11 11                                                               |          |
| Figure 4.5- CO2 Sensitivities                                                   |          |
| Figure 4.6- Natural Gas Sensitivities                                           |          |
| Figure 4.7- Load Sensitivities (Demand Net of DSM)                              |          |
| Figure 4.8- IPL's 2014 IRP Modeling Scenarios.                                  |          |
| Confidential Figure 4.9- Supply Resource Options (2013\$)                       |          |
| Figure 4.10 – Capacity Expansion Results                                        |          |
| Figure 4.11 – Scenario Resource Plans (by Operating Capacity)                   |          |
| Figure 4.12 – Capacity Expansion Results for Plan 1                             |          |
| Figure 4.13 – Capacity Expansion Results for Plan 2                             |          |
| Figure 4.14 – Capacity Expansion Results for Plan 3                             |          |
| Figure 4.15 – Capacity Expansion Results for Plan 4                             |          |
| Figure 4.16 – Capacity Expansion Results for Plan 5                             |          |
| Figure 4.17 – Base Case PVRR Plan Ranking (2015-2064)                           | 66       |
| Figure 4.18 – High Gas Case PVRR Plan Ranking (2015-2064)                       |          |
| Figure 4.19 – Low Gas Case PVRR Plan Ranking (2015-2064)                        |          |
| Figure 4.20 – High Environmental Case PVRR Plan Ranking (2015-2064)             |          |
| Figure 4.21 –Environmental Case PVRR Plan Ranking (2015-2064)                   |          |
| Figure 4.22 –Low Environmental Case PVRR Plan Ranking (2015-2064)               |          |
| Figure 4.23 LMP Differential (\$/MWh)                                           |          |
| Figure 4.24 Wind Sensitivity PVRR (2015-2044)                                   |          |
| Figure 4.25 – Incremental PVRRs in Each Scenario                                |          |
| Figure 4.26 – Resource Plan Selection Top Two Summary                           |          |
| Figure 4.27 – NOX Emissions                                                     |          |
| Figure 4.28 – SO2 Emissions.                                                    |          |
| Figure 4.29 – CO2 Emissions                                                     | 76       |
| Figure 4.30 – Comparative Annual Revenue Requirements by Plan (Base Case),      | 77       |
| Incremental Average Annual Revenue Requirements (cents/kWh)                     | 77<br>78 |
| FIGURE 4 31 — Base Case PVKK Plan Ranking (7013-7034)                           | / X      |

| Figure 4A.1 – U.S. Generating Capacity by Fuel Type (2012)                         | 84    |
|------------------------------------------------------------------------------------|-------|
| Figure 4A.2 – U.S. Electric Power – Electricity Production (2012)                  |       |
| Figure 4A.3 – MISO Generating Capacity by Fuel Type (2013)                         |       |
| Figure 4A.4 – MISO Generating – Electricity Production (2013)                      | 86    |
| Figure 4A.5 – MISO Coal Units Affected by MATS                                     | 87    |
| Figure 4A.6 – Projected Domestic Gas Supply                                        | 90    |
| Confidential Figure 4A.7 – IRP Supply Side Resource Options                        | 95    |
| Figure 4B.1 – DSM Program History (2010-2014)                                      | 99    |
| Figure 4B.2 – Qualifying Customer Opt-out Schedule                                 | . 104 |
| Figure 4B.3 – Historical Avoided Capacity and Production Costs                     |       |
| Figure 4B.4 – Total Demand and Energy Impacts of Proposed DSM                      | . 114 |
| Figure 4B.5 – Forecasts of Potential (GWh)                                         | . 121 |
| Figure 4B.6 – Summary of Overall DSM Potential                                     | . 121 |
| Figure 4B.7 – Electric Vehicle Time of Use Rate                                    | . 122 |
| Figure 4D.1 – Year-Over-Year Change in Historical Weather Normalized kWH Sales     | : 139 |
| Figure 4D.2 Energy Forecast Range                                                  |       |
| Figure 4D.3 Peak Forecast Range                                                    | . 141 |
| Figure 4D.4 – Energy Sales and Peak Forecasts Net of Energy Efficiency DSM         | . 142 |
| Figure 4D.5 Electric-Vehicle Assumptions Applied to Load Forecast                  | . 144 |
| Figure 4D.6 DSM Assumptions Applied to Load Forecast                               | . 145 |
| Figure 4D.7 – Forecast Error Analysis: Weather-Adjusted Energy Sales vs. Forecasts | 150   |
| Figure 4D.8 – Forecast Error Analysis: Weather-Adjusted Summer Peak Demands vs     |       |
| Forecasts                                                                          | . 151 |
| Confidential Figure 4D.9 – IPL Average Annual Fuel Forecast per Generating Unit    |       |
| (Nominal \$/MMBtu)                                                                 | . 153 |
| Figure 5.1 – IPL 2011 IRP Objectives and Implementation                            | . 155 |
| Figure 5.2 – DSM Annual Savings Projections                                        | . 157 |
| Figure 5.3 – DSM Programs Proposed in Cause No. 44497                              | . 157 |
| Figure 5.4 – Short Term Action Plan Timeline                                       | . 162 |
| Figure 5.5 – Short Term Action Plan Current Capital and DSM Cost Estimates         | . 163 |

## Rule Reference Table

| 170 IAC 4-7 (Proposed 10/4/12)                  |                                                                          |                        |
|-------------------------------------------------|--------------------------------------------------------------------------|------------------------|
| Regulatory Requirement                          | Section in Indianapolis Power and Light's 2014 IRP Document              | Section Begins on Page |
| 0.1 -Applicability                              | No Response Required                                                     |                        |
| 1 - Definitions                                 | No Response Required                                                     |                        |
| 2 - Procedures and Effects of Filing Integrated | No Response Required                                                     |                        |
| Resource Plans                                  | No Response Required                                                     |                        |
| 2.1 - Public Advisory Process                   | No Response Required                                                     |                        |
| 2.2 - Contemporary Issues Tech Conference       | No Response Required                                                     |                        |
| 3 -Waiver or Variance Requests                  | No Response Required                                                     |                        |
| 4 - Methodology and Documentation               |                                                                          |                        |
| (a) IRP Summary Document                        | Section 7 - Attachment 7 1                                               | 170                    |
| (b)(1) inputs, methods, definitions             | Section 4 - Resource Evaluation Process, Section 4D - Energy Sales       |                        |
| (c)(1) inputs, methods, definitions             | Forecast, Section 4D - Peak Forecast                                     | 41,142,147             |
|                                                 | Section 4D - Energy Sales Forecast, Section 4D - Peak Forecast, Section  |                        |
| (b)(2) forecast datasets                        | 4D - Fuel Price Forecasting and Methodology, Section 7 - Attachment 6 1, |                        |
| (0)(2) 10100451 44445045                        | 6 2, 6 6, 6 7, 6 8, and 6 9 and Confidential Attachment 6 4 and 6 5      |                        |
|                                                 |                                                                          | 142,147,152, 169,170   |
| (b)(3) consumption patterns                     | Section 7 - Attachment 3 1 and 3 2                                       | 169                    |
| (b)(4) customer surveys                         | Section 4D - Energy Sales Forecast                                       | 142                    |
| (b)(5) customer self-generation                 | Section 4A - Distributed Generation, Net Metering and Feed-In Tariff,    |                        |
| (0)(0) Castonier seri generation                | Section 4C - Distributed Generation Connections                          | 95,136                 |
|                                                 | Section 4 - Determine Resource Needs, Section 4- IRP Modeling            |                        |
| (b)(6) alternative forecast scenarios           | Scenarios, Section 4D - Load Forecast Overview Long Term, Section 4D -   |                        |
|                                                 | Energy Sales Forecast, Section 4D - Peak Forecast                        | 46,50,140,142,147      |
| (b)(7) fuel inventory and procurement           | Section 2 - Fuel Landscape, Section 4D - IPL Fuel Planning               | 23,51                  |
| (b)(8) SO2 emissions allowances                 | Section 4 - Comparative Air Emissions by Resource Plan                   | 75                     |
| (b)(9) expansion planning criteria              | Section 4 - Resource Planning Criteria, Section 4 - Capacity Expansion   |                        |
| (b)(9) expansion planning effects               | Simulation Methodology                                                   | 43,54                  |
| (b)(10)(A) power flow study                     | Section 4C - Assement Summary, Section 7 - Confidential Attachment 1 1   |                        |
| (b)(10)(A) power now study                      | Section 4C - Assement Summary, Section 7 - Confidential Attachment 1 1   | 127,169                |
| (h)(10)(B) dynamia stability study              | Section AC Assembnt Summers Section 7 Confidential Attachment 1.1        |                        |
| (b)(10)(B) dynamic stability study              | Section 4C - Assement Summary, Section 7 - Confidential Attachment 1 1   | 127,169                |
| (b)(10)(C) transmission reliability criteria    | Section 4C - Transmission                                                | 124                    |
| (b)(10)(D) joint transmission system            | Section 4C - Key Results                                                 | 129                    |
| (b)(11) contemporary methods                    | Section 2 - Contemporary IRP Inputs and Methodology                      | 18                     |
| (b)(12) avoided cost calculation                | Section 4B - Avoided Costs, Section 7 - Confidential Attachment 4 3      | 109,169                |
| (b)(13) system actual demand                    | Section 7 - Attachment 2 1                                               | 169                    |
| (b)(14) public advisory process                 | Section 2 - Changing Regulatory Landscape                                | 16                     |
| 5 - Energy and Demand Forecasts                 |                                                                          |                        |
| (a)(1) analysis of load shapes                  | Section 7 - Attachment 3 1 and 3 2                                       | 169                    |
| (a)(2) disaggregated load shapes                | Section 7 - Attachment 3 1 and 3 2                                       | 169                    |
| (a)(3) disaggregated data & forecasts           | Section 7- Attachment 6 6, 6 7, and 6 8                                  | 170                    |
| (a)(4) energy and demand levels                 | Section 2 - Forecast, Section 4D - Model Performace and Analysis         | 22,147                 |
| (a)(5) weather normalization methods            | Section 4D - Model Performance and Analysis                              | 147                    |
| (a)(6) energy and demand forecasts              | Section 4D - Load Forecast Overview Long Term                            | 140                    |
| (a)(7) forecast performance                     | Section 4D - Model Performance and Analysis                              | 147                    |
| (a)(8) end-use forecast methodology             | Section 4D - Energy Sales Forecast, Section 4D - Peak Forecast           | 142,147                |
| (a)(9) load shape data directions               | Section 4D - Energy Sales Forecast                                       | 142                    |
| (b) alternative peak/energy forecasts           | Section 4 - Determine Resource Needs, Section 4D - Load Forecast         |                        |
| (a) anomative peak-energy forecasts             | Overview Long Term                                                       | 46,140                 |
| 6 - Resource Assessment                         |                                                                          |                        |
| (a)(1) net dependable capacity                  | Section 4 - Exisiting Generation                                         | 48                     |
| (a)(2) expected capacity changes                | Section 4 - Exisiting Generation                                         | 48                     |
| (a)(3) fuel price forecast                      | Section 4D - Fuel Price Forecasting and Methodology                      | 152                    |
|                                                 | Section 2 - Environmental Landscape, Section 3 - Existing Regulations -  |                        |
| (a)(4) significant environmental effects        | Significant Environmental Effects, Section 3 - Pending and Future        |                        |
|                                                 | Regulations                                                              | 24,29,37               |
|                                                 | Section 4B - Avioded Costs, Section 4C - Transmission, Section 4C -      |                        |
| (a)(5) transmission system analysis             | Assesment Summary, Section 4C - Smart Grid Benefits, Section 4C -        |                        |
|                                                 | Distributed Generation Connections                                       | 109,124,127, 135,136   |
|                                                 | Section 4B - Demand Side Management, Section 4B - IPL Historical         |                        |
| (a)(6) demand-side programs                     | DSM Programs, Section 4B - IPL Current DSM Programs, Section 4B -        |                        |
|                                                 | Avioded Costs                                                            | 97,98,101,109          |
|                                                 | Section 4B - Residential Programs, Section 4B - Commercial and           |                        |
| (b)(1) DSM program description                  | Industrial Programs, Section 4B - Other Proposed DSM Programs through    |                        |
|                                                 | Cause No 44478                                                           | 155,119                |
| (b)(2) DSM avoided cost projections             | Section 4B - Avioded Costs, Section 7 - Confidential Attachment 4 3      | 109,169                |
| (b)(2) DSM austamar along affact-1              | Section 4B - Residential Programs, Section 4B - Commercial and           |                        |
| (b)(3) DSM customer class affected              | Industrial Programs                                                      | 115,119                |
|                                                 | Section 4B - DSM Plan Forecasted Savings (2015-2017), Section 4B -       |                        |
| (b)(4) DSM impact projections                   | DSM Plan Forecasted Savings (2018-2034), Section 7 - Attachment 4 8      |                        |
|                                                 | - · · · · · · · · · · · · · · · · · · ·                                  | 114,120,169            |

| (b)(5) DSM program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Section 4B - DSM Plan Forecasted Savings (2015-2017), Section 4B - DSM Plan Forecasted Savings (2018-2034), Section 7 - Attachment 4 8 and 4 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 114,120,169                                                                                               |
| (b)(6) DSM energy/demand savings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Section 4B - DSM Plan Forecasted Savings (2015-2017), Section 4B - DSM Plan Forecasted Savings (2018-2034), Section 7 - Attachment 4 8 and 4 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 114,120,169                                                                                               |
| (b)(7) DSM program penetration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Section 4B - DSM Plan Forecasted Savings (2015-2017), Section 4B - DSM Plan Forecasted Savings (2018-2034), Section 7 - Attachment 4 8 and 4 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 114,120,169                                                                                               |
| (b)(8) DSM impact on systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Section 4 - Determine Resource Needs, Section 4B - DSM Plan<br>Forecasted Savings (2015-2017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46,114                                                                                                    |
| (c)(1) supply-side resource description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Section 4A - Supply Side Options, Section 4A - Natural Gas, Section 4A - Nuclear and Renewables, Section 4A - Distributed Generation, Net Metering and Feed-In Tariff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 87,89,92,95                                                                                               |
| (c)(2) utility coordinated cost reduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Section 4 - Resource Planning Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 43                                                                                                        |
| (d)(1) transmission expansion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Section 4C - Assesment Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 127                                                                                                       |
| (d)(2) transmission expansion costs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Section 4C - Transmission Short Term Action Plan, Section 7 -<br>Confidential Attachment 1 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 130,169                                                                                                   |
| (d)(3) power transfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Section 4C - Assessment Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 127                                                                                                       |
| (d)(4) RTO planning and implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Section 2 - Transmission Expansion Cost Sharing, Section 4 - Resource<br>Planning Criteria, Section 4C - Assessment Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26,43,127                                                                                                 |
| 7 - Selection of Future Resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                           |
| (a) resource alternative screening                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Section 4- Capacity Expansion Simulation Methodology, Section 4A - Supply Side Options, Section 4A - Natural Gas, Section 4A - Nuclear and Renewables, Section 4A - MW Capacity, Performace Attributes, and Installed Costs, Section 4A - Distributed Generation, Net Metering and Feed-In Tariff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 54, 87,89,92,94,95                                                                                        |
| (a)(1) environmental effects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Section 2 - Environmental Landscape, Section 3, Section 4 - Comparative<br>Air Emissions by Resource Plan, Section 4A - MW Capacity, Performace<br>Attributes, and Installed Costs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24,28,75,94                                                                                               |
| (a)(2) environmental regulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Section 2 - Environmental Landscape, Section 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24,28                                                                                                     |
| (b) DSM tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Section 4B - DSM Cost Effectiveness, Section 4B - Evaluation Process,<br>Section 4B - DSM Benefit/Cost Test Results, Section 7 - Attachment 4 4<br>and 4 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 108,111,112,169                                                                                           |
| (c) life cycle NPV impacts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Section 4B - DSM Benefit/Cost Test Results, Section 7 - Attachment 4 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 112,169                                                                                                   |
| (d)(1) cost/benefit components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Section 4B - Evaluation Process, Section 7 - Attachment 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111,169                                                                                                   |
| (d)(2) cost/benefit equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Section 4B - Evaluation Process, Section 7 - Attachment 4 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111,169                                                                                                   |
| (e) DSM test exception                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No response required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                           |
| (f) load build directions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No response required                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                           |
| 8 - Resource Integration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41                                                                                                        |
| (a) candidate resource portfolios process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Section 4 - Results Summary and Resource Selection Overview, Section 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                           |
| (b)(1) resource plan description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IDI D C 1D (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70.00                                                                                                     |
| * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - IPL's Preferred Portfolio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 78,80                                                                                                     |
| (b)(2) significant factors<br>(b)(3) supply-side and demand side comparable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - IPL's Preferred Portfolio  Section 4 - IRP Modeling Scenarios  Section 4 - Determine Resource Needs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50                                                                                                        |
| (b)(2) significant factors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Section 4 - IRP Modeling Scenarios  Section 4 - Determine Resource Needs  Section 4 - IPL's Preferred Portfolio, Section 4B - Market Potential Study -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50<br>46                                                                                                  |
| (b)(2) significant factors (b)(3) supply-side and demand side comparable treatment (b)(4) utilization of all resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Section 4 - IRP Modeling Scenarios  Section 4 - Determine Resource Needs  Section 4 - IPL's Preferred Portfolio, Section 4B - Market Potential Study - Future DSM Market Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50<br>46<br>80,113                                                                                        |
| (b)(2) significant factors (b)(3) supply-side and demand side comparable treatment (b)(4) utilization of all resources (b)(5) DSM utilization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Section 4 - IRP Modeling Scenarios  Section 4 - Determine Resource Needs  Section 4 - IPL's Preferred Portfolio, Section 4B - Market Potential Study -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50<br>46                                                                                                  |
| (b)(2) significant factors (b)(3) supply-side and demand side comparable treatment (b)(4) utilization of all resources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Section 4 - IRP Modeling Scenarios  Section 4 - Determine Resource Needs  Section 4 - IPL's Preferred Portfolio, Section 4B - Market Potential Study - Future DSM Market Analysis  Section 4B - Avioded Costs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50<br>46<br>80,113<br>109                                                                                 |
| (b)(2) significant factors (b)(3) supply-side and demand side comparable treatment (b)(4) utilization of all resources (b)(5) DSM utilization (b)(6)(A) operating and capital costs of preferred plan                                                                                                                                                                                                                                                                                                                                                                                                                               | Section 4 - IRP Modeling Scenarios  Section 4 - Determine Resource Needs  Section 4 - IPL's Preferred Portfolio, Section 4B - Market Potential Study - Future DSM Market Analysis  Section 4B - Avioded Costs  Section 4 - Scenario Evaluation Results Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50<br>46<br>80,113<br>109<br>74                                                                           |
| (b)(2) significant factors (b)(3) supply-side and demand side comparable treatment (b)(4) utilization of all resources (b)(5) DSM utilization (b)(6)(A) operating and capital costs of preferred plan (b)(6)(B) average cost per kWh                                                                                                                                                                                                                                                                                                                                                                                                | Section 4 - IRP Modeling Scenarios  Section 4 - Determine Resource Needs  Section 4 - IPL's Preferred Portfolio, Section 4B - Market Potential Study - Future DSM Market Analysis  Section 4B - Avioded Costs  Section 4 - Scenario Evaluation Results Summary  Section 4 - Comparative Annual Costs by Resource Plan  Section 4B - Avoided Costs  Section 2 - Financing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50<br>46<br>80,113<br>109<br>74<br>76                                                                     |
| (b)(2) significant factors (b)(3) supply-side and demand side comparable treatment (b)(4) utilization of all resources (b)(5) DSM utilization (b)(6)(A) operating and capital costs of preferred plan (b)(6)(B) average cost per kWh (b)(6)(C) annual avoided cost                                                                                                                                                                                                                                                                                                                                                                  | Section 4 - IRP Modeling Scenarios  Section 4 - Determine Resource Needs  Section 4 - IPL's Preferred Portfolio, Section 4B - Market Potential Study - Future DSM Market Analysis  Section 4B - Avioded Costs  Section 4 - Scenario Evaluation Results Summary  Section 4 - Comparative Annual Costs by Resource Plan  Section 4B - Avoided Costs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50<br>46<br>80,113<br>109<br>74<br>76<br>109                                                              |
| (b)(2) significant factors (b)(3) supply-side and demand side comparable treatment (b)(4) utilization of all resources (b)(5) DSM utilization (b)(6)(A) operating and capital costs of preferred plan (b)(6)(B) average cost per kWh (b)(6)(C) annual avoided cost (b)(6)(D) plan resource financing (b)(7)(A) explanation of assumptions (b)(7)(B) risk management                                                                                                                                                                                                                                                                 | Section 4 - IRP Modeling Scenarios  Section 4 - Determine Resource Needs  Section 4 - IPL's Preferred Portfolio, Section 4B - Market Potential Study - Future DSM Market Analysis  Section 4B - Avioded Costs  Section 4 - Scenario Evaluation Results Summary  Section 4 - Comparative Annual Costs by Resource Plan  Section 4B - Avoided Costs  Section 2 - Financing  Section 2 - Risk Mitigation, Section 3, Section 4 - IRP Modeling Scenarios  Section 2 - Risk Mitigation, Section 4 - IRP Modeling Scenarios                                                                                                                                                                                                                                                                                                                                                                                      | 50<br>46<br>80,113<br>109<br>74<br>76<br>109<br>21<br>18,28,50<br>18,50                                   |
| (b)(2) significant factors (b)(3) supply-side and demand side comparable treatment (b)(4) utilization of all resources (b)(5) DSM utilization (b)(6)(A) operating and capital costs of preferred plan (b)(6)(B) average cost per kWh (b)(6)(C) annual avoided cost (b)(6)(D) plan resource financing (b)(7)(A) explanation of assumptions                                                                                                                                                                                                                                                                                           | Section 4 - IRP Modeling Scenarios  Section 4 - Determine Resource Needs  Section 4 - IPL's Preferred Portfolio, Section 4B - Market Potential Study - Future DSM Market Analysis  Section 4B - Avioded Costs  Section 4 - Scenario Evaluation Results Summary  Section 4 - Comparative Annual Costs by Resource Plan  Section 4B - Avoided Costs  Section 2 - Financing  Section 2 - Risk Mitigation, Section 3, Section 4 - IRP Modeling Scenarios  Section 2 - Risk Mitigation, Section 4 - IRP Modeling Scenarios  Section 2 - Risk Mitigation, Section 4 - IRP Modeling Scenarios  Section 4 - Capacity Expansion Results                                                                                                                                                                                                                                                                             | 50<br>46<br>80,113<br>109<br>74<br>76<br>109<br>21<br>18,28,50                                            |
| (b)(2) significant factors (b)(3) supply-side and demand side comparable treatment (b)(4) utilization of all resources (b)(5) DSM utilization (b)(6)(A) operating and capital costs of preferred plan (b)(6)(B) average cost per kWh (b)(6)(C) annual avoided cost (b)(6)(D) plan resource financing (b)(7)(A) explanation of assumptions (b)(7)(B) risk management                                                                                                                                                                                                                                                                 | Section 4 - IRP Modeling Scenarios  Section 4 - Determine Resource Needs  Section 4 - IPL's Preferred Portfolio, Section 4B - Market Potential Study - Future DSM Market Analysis  Section 4B - Avioded Costs  Section 4 - Scenario Evaluation Results Summary  Section 4 - Comparative Annual Costs by Resource Plan  Section 4B - Avoided Costs  Section 2 - Financing  Section 2 - Risk Mitigation, Section 3, Section 4 - IRP Modeling Scenarios  Section 2 - Risk Mitigation, Section 4 - IRP Modeling Scenarios  Section 4 - Capacity Expansion Results  Section 4 - PVRR Scenario Results for the Resource Plans, Section 4 - Scenario Results Evaluation                                                                                                                                                                                                                                           | 50<br>46<br>80,113<br>109<br>74<br>76<br>109<br>21<br>18,28,50<br>18,50                                   |
| (b)(2) significant factors (b)(3) supply-side and demand side comparable treatment (b)(4) utilization of all resources (b)(5) DSM utilization (b)(6)(A) operating and capital costs of preferred plan (b)(6)(B) average cost per kWh (b)(6)(C) annual avoided cost (b)(6)(D) plan resource financing (b)(7)(A) explanation of assumptions (b)(7)(B) risk management (b)(7)(C) potential futures                                                                                                                                                                                                                                     | Section 4 - IRP Modeling Scenarios  Section 4 - Determine Resource Needs  Section 4 - IPL's Preferred Portfolio, Section 4B - Market Potential Study - Future DSM Market Analysis Section 4B - Avioded Costs Section 4 - Scenario Evaluation Results Summary Section 4 - Comparative Annual Costs by Resource Plan Section 2 - Financing Section 2 - Financing Section 2 - Risk Mitigation, Section 3, Section 4 - IRP Modeling Scenarios Section 2 - Risk Mitigation, Section 4 - IRP Modeling Scenarios Section 4 - Capacity Expansion Results Section 4 - PVRR Scenario Results for the Resource Plans, Section 4 -                                                                                                                                                                                                                                                                                     | 50<br>46<br>80,113<br>109<br>74<br>76<br>109<br>21<br>18,28,50<br>18,50<br>56                             |
| (b)(2) significant factors (b)(3) supply-side and demand side comparable treatment (b)(4) utilization of all resources (b)(5) DSM utilization (b)(6)(A) operating and capital costs of preferred plan (b)(6)(B) average cost per kWh (b)(6)(C) annual avoided cost (b)(6)(D) plan resource financing (b)(7)(A) explanation of assumptions (b)(7)(B) risk management (b)(7)(C) potential futures (b)(7)(D) PVRR of resource plan                                                                                                                                                                                                     | Section 4 - IRP Modeling Scenarios  Section 4 - Determine Resource Needs  Section 4 - IPL's Preferred Portfolio, Section 4B - Market Potential Study - Future DSM Market Analysis  Section 4B - Avioded Costs  Section 4 - Scenario Evaluation Results Summary  Section 4 - Comparative Annual Costs by Resource Plan  Section 2 - Financing  Section 2 - Financing  Section 2 - Risk Mitigation, Section 3, Section 4 - IRP Modeling Scenarios  Section 2 - Risk Mitigation, Section 4 - IRP Modeling Scenarios  Section 4 - Capacity Expansion Results  Section 4 - PVRR Scenario Results for the Resource Plans, Section 4 - Scenario Results Evaluation  Section 4 - IRP Modeling Scenarios, Section 4 - Scenario Results                                                                                                                                                                              | 50<br>46<br>80,113<br>109<br>74<br>76<br>109<br>21<br>18,28,50<br>18,50<br>56<br>65,74                    |
| (b)(2) significant factors (b)(3) supply-side and demand side comparable treatment (b)(4) utilization of all resources (b)(5) DSM utilization (b)(6)(A) operating and capital costs of preferred plan (b)(6)(B) average cost per kWh (b)(6)(C) annual avoided cost (b)(6)(D) plan resource financing (b)(7)(A) explanation of assumptions (b)(7)(B) risk management (b)(7)(C) potential futures (b)(7)(D) PVRR of resource plan (b)(7)(E) assessment of robustness (b)(8) strategy for unexpected changes 9 - Short Term Action Plan                                                                                                | Section 4 - IRP Modeling Scenarios  Section 4 - Determine Resource Needs  Section 4 - IPL's Preferred Portfolio, Section 4B - Market Potential Study - Future DSM Market Analysis  Section 4B - Avioded Costs  Section 4 - Scenario Evaluation Results Summary  Section 4 - Comparative Annual Costs by Resource Plan  Section 4B - Avoided Costs  Section 2 - Financing  Section 2 - Risk Mitigation, Section 3, Section 4 - IRP Modeling Scenarios  Section 2 - Risk Mitigation, Section 4 - IRP Modeling Scenarios  Section 4 - Capacity Expansion Results  Section 4 - PVRR Scenario Results for the Resource Plans, Section 4 - Scenario Results Evaluation  Section 4 - IRP Modeling Scenarios, Section 4 - Scenario Results  Evaluation  Section 4 - IPL's Preferred Portfolio, Section 4C - Distribution                                                                                           | 50<br>46<br>80,113<br>109<br>74<br>76<br>109<br>21<br>18,28,50<br>18,50<br>56<br>65,74<br>50,74<br>80,133 |
| (b)(2) significant factors (b)(3) supply-side and demand side comparable treatment (b)(4) utilization of all resources (b)(5) DSM utilization (b)(6)(A) operating and capital costs of preferred plan (b)(6)(B) average cost per kWh (b)(6)(C) annual avoided cost (b)(6)(D) plan resource financing (b)(7)(A) explanation of assumptions (b)(7)(B) risk management (b)(7)(C) potential futures (b)(7)(D) PVRR of resource plan (b)(7)(E) assessment of robustness (b)(8) strategy for unexpected changes  9 - Short Term Action Plan (1)(A) description/objective                                                                  | Section 4 - IRP Modeling Scenarios  Section 4 - Determine Resource Needs  Section 4 - IPL's Preferred Portfolio, Section 4B - Market Potential Study - Future DSM Market Analysis  Section 4B - Avioded Costs Section 4 - Scenario Evaluation Results Summary  Section 4 - Comparative Annual Costs by Resource Plan  Section 4B - Avoided Costs Section 2 - Financing Section 2 - Risk Mitigation, Section 3, Section 4 - IRP Modeling Scenarios  Section 2 - Risk Mitigation, Section 4 - IRP Modeling Scenarios  Section 4 - Capacity Expansion Results Section 4 - PVRR Scenario Results for the Resource Plans, Section 4 - Scenario Results Evaluation  Section 4 - IRP Modeling Scenarios, Section 4 - Scenario Results  Evaluation  Section 4 - IRP Modeling Scenarios, Section 4 - Scenario Results  Evaluation  Section 5 - 2014 Short Term Action Plan                                          | 50<br>46<br>80,113<br>109<br>74<br>76<br>109<br>21<br>18,28,50<br>18,50<br>56<br>65,74<br>50,74<br>80,133 |
| (b)(2) significant factors (b)(3) supply-side and demand side comparable treatment (b)(4) utilization of all resources (b)(5) DSM utilization (b)(6)(A) operating and capital costs of preferred plan (b)(6)(B) average cost per kWh (b)(6)(C) annual avoided cost (b)(6)(D) plan resource financing (b)(7)(A) explanation of assumptions (b)(7)(B) risk management (b)(7)(C) potential futures (b)(7)(D) PVRR of resource plan (b)(7)(E) assessment of robustness (b)(8) strategy for unexpected changes  9 - Short Term Action Plan (1)(A) description/objective (1)(B) progress measurement criteria                             | Section 4 - IRP Modeling Scenarios  Section 4 - Determine Resource Needs  Section 4 - IPL's Preferred Portfolio, Section 4B - Market Potential Study - Future DSM Market Analysis  Section 4B - Avioded Costs  Section 4 - Scenario Evaluation Results Summary  Section 4 - Comparative Annual Costs by Resource Plan  Section 4B - Avoided Costs  Section 2 - Financing  Section 2 - Risk Mitigation, Section 3, Section 4 - IRP Modeling Scenarios  Section 2 - Risk Mitigation, Section 4 - IRP Modeling Scenarios  Section 4 - Capacity Expansion Results  Section 4 - PVRR Scenario Results for the Resource Plans, Section 4 - Scenario Results Evaluation  Section 4 - IRP Modeling Scenarios, Section 4 - Scenario Results  Evaluation  Section 4 - IPL's Preferred Portfolio, Section 4C - Distribution  Section 5 - 2014 Short Term Action Plan  Section 9 - 2014 Short Term Action Plan Summary | 50<br>46<br>80,113<br>109<br>74<br>76<br>109<br>21<br>18,28,50<br>18,50<br>56<br>65,74<br>50,74<br>80,133 |
| (b)(2) significant factors (b)(3) supply-side and demand side comparable treatment (b)(4) utilization of all resources (b)(5) DSM utilization (b)(6)(A) operating and capital costs of preferred plan (b)(6)(B) average cost per kWh (b)(6)(C) annual avoided cost (b)(6)(D) plan resource financing (b)(7)(A) explanation of assumptions (b)(7)(B) risk management (b)(7)(C) potential futures (b)(7)(D) PVRR of resource plan (b)(7)(E) assessment of robustness (b)(8) strategy for unexpected changes  9 - Short Term Action Plan (1)(A) description/objective (1)(B) progress measurement criteria (2) implementation schedule | Section 4 - IRP Modeling Scenarios  Section 4 - Determine Resource Needs  Section 4 - IPL's Preferred Portfolio, Section 4B - Market Potential Study - Future DSM Market Analysis  Section 4B - Avioded Costs  Section 4 - Scenario Evaluation Results Summary  Section 4 - Comparative Annual Costs by Resource Plan  Section 4B - Avoided Costs  Section 2 - Financing  Section 2 - Risk Mitigation, Section 3, Section 4 - IRP Modeling Scenarios  Section 2 - Risk Mitigation, Section 4 - IRP Modeling Scenarios  Section 4 - Capacity Expansion Results  Section 4 - PVRR Scenario Results for the Resource Plans, Section 4 - Scenario Results Evaluation  Section 4 - IRP Modeling Scenarios, Section 4 - Scenario Results  Evaluation  Section 5 - 2014 Short Term Action Plan  Section 5 - 2014 Short Term Action Plan Summary  Section 5 - 2014 Short Term Action Plan Summary                  | 50<br>46<br>80,113<br>109<br>74<br>76<br>109<br>21<br>18,28,50<br>18,50<br>56<br>65,74<br>50,74<br>80,133 |
| (b)(2) significant factors (b)(3) supply-side and demand side comparable treatment (b)(4) utilization of all resources (b)(5) DSM utilization (b)(6)(A) operating and capital costs of preferred plan (b)(6)(B) average cost per kWh (b)(6)(C) annual avoided cost (b)(6)(D) plan resource financing (b)(7)(A) explanation of assumptions (b)(7)(B) risk management (b)(7)(C) potential futures (b)(7)(D) PVRR of resource plan (b)(7)(E) assessment of robustness (b)(8) strategy for unexpected changes  9 - Short Term Action Plan (1)(A) description/objective (1)(B) progress measurement criteria                             | Section 4 - IRP Modeling Scenarios  Section 4 - Determine Resource Needs  Section 4 - IPL's Preferred Portfolio, Section 4B - Market Potential Study - Future DSM Market Analysis  Section 4B - Avioded Costs  Section 4 - Scenario Evaluation Results Summary  Section 4 - Comparative Annual Costs by Resource Plan  Section 4B - Avoided Costs  Section 2 - Financing  Section 2 - Risk Mitigation, Section 3, Section 4 - IRP Modeling Scenarios  Section 2 - Risk Mitigation, Section 4 - IRP Modeling Scenarios  Section 4 - Capacity Expansion Results  Section 4 - PVRR Scenario Results for the Resource Plans, Section 4 - Scenario Results Evaluation  Section 4 - IRP Modeling Scenarios, Section 4 - Scenario Results  Evaluation  Section 4 - IPL's Preferred Portfolio, Section 4C - Distribution  Section 5 - 2014 Short Term Action Plan  Section 9 - 2014 Short Term Action Plan Summary | 50<br>46<br>80,113<br>109<br>74<br>76<br>109<br>21<br>18,28,50<br>18,50<br>56<br>65,74<br>50,74<br>80,133 |

#### **Section 1. EXECUTIVE SUMMARY**

As part of IPL's integrated resource planning, the Company participates in an Integrated Resource Planning ("IRP") process as required by the Indiana Administrative Code ("IAC") on a biennial basis to identify a resource plan to reliably serve IPL customers for a forward looking twenty (20) year period. For the first time, the Company also participated in a Public Advisory Process as required by the proposed IAC that yielded meaningful stakeholder feedback in the development of the 2014 IRP. The IRP analyzes a combination of projected customer load, existing resources, projected operating costs, anticipated environmental and other regulatory requirements, and potential supply and demand side resources within the context of risks of uncertain future landscapes to plan to provide electricity service in the most cost-effective way possible.

IPL's mission is "Improving lives by providing safe, reliable, affordable energy solution to the communities we serve." As a result of numerous current and future expected environmental requirements, IPL has developed and is executing plans to significantly change its generation portfolio. The Company's strategy includes a combination of activities in order to continue to reliably and affordably meet the future needs of our customers:

- 1. Offer cost-effective energy efficiency programs to help customers reduce their energy usage and help the Company reduce its peak system demand.
- 2. Upgrade its existing generation fleet to reduce air emissions and reduce or treat waste water.
- 3. Convert some existing coal-fired units to natural gas generation.
- 4. Retire several units where it is not economic to comply with future environmental requirements.
- 5. Construct a modern, efficient combined cycle natural gas plant.
- 6. Enhance the Company's transmission and distribution system.
- 7. Explore and implement new technologies, such as solar generation through our renewable feed-in tariff, energy storage, electric transportation and smart grid.

If all components of the strategy are approved, IPL will have a cleaner and more diversified generation portfolio while continuing to provide safe, reliable and affordable energy solutions to the Indianapolis community.

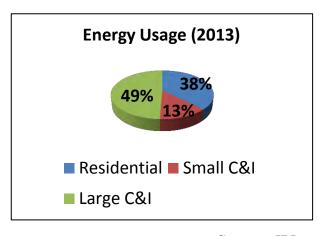
IPL's 2014 IRP modeling results indicate that in the majority of the future scenarios the base case expansion plan yields the lowest present value revenue requirement ("PVRR"). This plan

does not add any new generation resources - other than the projects<sup>1</sup> listed above in IPL's strategy - until 2031 to meet the Company's energy and capacity requirements. Because the base case expansion plan serves customers reliably and cost effectively under multiple future scenarios, IPL considers this plan its Preferred Resource Portfolio.

## Background

IPL serves approximately 470,000 households and businesses in ten counties in Central Indiana, mainly in Marion County and adjoining counties<sup>2</sup>. The service area is compact measuring approximately 528 square miles. The Company, which is headquartered in Indianapolis, is subject to the regulatory authority of the Indiana Utility Regulatory Commission ("IURC") and the Federal Energy Regulatory Commission ("FERC"). IPL fully participates in the electricity markets managed by the Midcontinent Independent System Operating ("MISO"). IPL owns and efficiently operates approximately 3,089 MW³ of generation at four plants, over 800 miles of transmission lines, and over 11,600 miles of distribution lines as a vertically integrated investor owned utility. IPL also has purchase power agreements for approximately 98 MW of solar generation and approximately 300 MW of wind generation. IPL's customer mix and their respective energy usage split between residential and small and large Commercial and Industrial ("C&I") is shown in Figure 1.1. The Large C&I customers class, which is only 1% of the Company's customer count, consumed the largest amount of IPL's 2013 total jurisdictional retail energy.

Customer Count (2013)


11%

88%

Residential Small C&I

Large C&I

Figure 1.1 – IPL Customer Mix and Energy Use



Source: IPL

<sup>1</sup> The projects in IPL's strategy represent projects currently approved and pending before the Indiana Utility Regulatory Commission ("IURC").

<sup>&</sup>lt;sup>2</sup> Although IPL is not the sole service provider in the adjoining counties, IPL does provide service to some customers in Boone, Hamilton, Hancock, Shelby, Johnson, Morgan, Owen, Putnam, and Hendricks counties.

<sup>&</sup>lt;sup>3</sup> This is based on summer ratings for planning purposes at the time of this filing.

## **Existing Resources**

#### **Thermal Generation**

Subsequent to the 2011 IRP, decisions have been made to significantly transform IPL's generating fleet as described below. In 2013, IPL discontinued operation at the following five oil-fired units: HSS Units 3 and 4, HSS Gas Turbine Unit 3, and Eagle Valley Units 1 and 2.

IPL currently owns and operates the following generation:

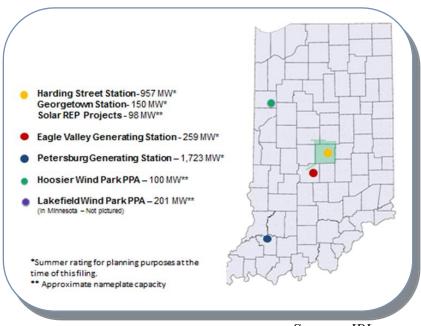

- (1) the four unit, coal-fired Petersburg Generating Station in Petersburg, Indiana. The Petersburg station, located in close proximity to its Indiana fuel supply, provides low cost generation to IPL's customers. This plant is being retrofitted with environmental compliance equipment in accordance with the Commission's order in Cause No. 44242.
- (2) the seven unit, Harding Street Generating Station ("HSS") in Indianapolis, IN, including three coal units and four natural gas fired combustion turbines. Because HSS is directly connected to the IPL load zone, it provides an important capacity resource at the center of IPL's service territory, thus reducing transmission costs and interruption risk. In accordance with the Commission's order in Cause No. 44339, IPL is refueling HSS Units 5 and 6 from coal to natural gas in 2016. Pending Commission approval of Cause No. 44540, IPL will also refuel HSS Unit 7 from coal to natural gas, which will eliminate all coal fired units at this plant in 2016.
- (3) the four unit, coal-fired Eagle Valley Generating Station in Mooresville, IN. Eagle Valley Units 3 through 6 will be retired in 2016 as part of IPL's plan to comply with the EPA's environmental mandates, including the Mercury and Air Toxics Standard ("MATS"). Pursuant to the Order in Cause No. 44339, IPL is adding a 644 to 685 MW<sup>4</sup> natural gas fired combined cycle gas turbine at the Eagle Valley Generating Station in 2017.
- (4) the two unit, natural gas fired Georgetown Generating Station in Indianapolis, IN.

Figure 1.2 shows the relative location and nameplate capacity of IPL's generating stations.

\_

<sup>&</sup>lt;sup>4</sup> IPL is constructing a 671 MW CCGT.

Figure 1.2 - IPL Facilities



Source: IPL

#### Wind and Solar Generation

While no mandatory federal or state renewable energy standard ("RES") currently exists, IPL's resources include approximately 300 MW of wind generation secured under long term Power Purchase Agreements ("PPAs"), which diversifies IPL's generating portfolio. Under the terms of the PPAs, IPL receives all of the energy and Renewable Energy Credits ("RECs") from the two wind farms<sup>5</sup>. Additionally, as of September 1, 2014, IPL purchases the energy and renewable attributes from approximately 66 MW of solar projects through IPL's Rate REP program. IPL's Rate REP is a three-year pilot renewable energy feed-in tariff offering approved by the IURC that went into effect on March 30, 2010 and concluded in 2013. In total, there are currently 98 MWs of solar PV nameplate capacity under long-term contracts through this program; approximately 66 MWs are in-service and the remaining 32 MWs are expected to be in-service in the first half of 2015. IPL has the 5th largest per capita concentration of solar among U.S. cities to date.<sup>6</sup> See Section 7, Attachment 8.1 and 8.2 for a listing and map of the

The null energy of the Wind PPAs is used to supply the load for IPL customers and, in the absence of any RES mandates, IPL is currently selling the associated RECS, but reserves the right to use RECs from the Wind PPAs to meet any future RES requirement. The Wind PPAs were approved by the IURC and if IPL chooses to monetize the RECs that result from the agreements, IPL shall use the revenues to first offset the cost of the Wind PPAs and next to credit IPL customers through its fuel adjustment clause proceedings. The Green-e Dictionary (<a href="http://green-e.org/learn dictionary.shtml">http://green-e.org/learn dictionary.shtml</a>) defines null power as, "Electricity that is stripped of its attributes and undifferentiated. No specific rights to claim fuel source or environmental impacts are allowed for null electricity. Also referred to as commodity or system electricity."

<sup>&</sup>lt;sup>6</sup> http://www.environmentcaliforniacenter.org/reports/cae/shining-cities

Rate REP projects. IPL is currently selling the RECs associated with the Wind PPAs to offset the cost of this energy to customers and anticipates doing the same for the RECs from the solar projects. However, IPL reserves the right to use RECs to meet any future environmental requirement such as RES or the EPA' Clean Power Plan ("CPP").

#### Impact of Environmental Regulations on Generation Resources

As summarized in the Thermal Generation section above, EPA regulations have led to significant generating plant upgrades and generation portfolio changes over the past several years to improve air emissions and water quality as described below.

In response to the Mercury and Air Toxics Standard ("MATS") Rule issued in February 2012, IPL developed a Compliance Plan, which included activated carbon injection and sorbent injection for mercury control and upgraded Flue Gas Desulfurization ("FGD") systems for acid gas control on coal-fired units. The Plan also included upgraded electrostatic precipitators on Petersburg Units 1 and 4 and Harding Street Unit 7, in addition to baghouses on Petersburg Units 2 and 3 for particulate and mercury control. Finally, the Compliance Plan includes continuous emissions monitoring systems ("CEMS") for mercury ("Hg"), hydrochloric acid ("HCl"), and particulate matter ("PM"). The IURC approved IPL's MATS Compliance Plans in August 2013 (Cause No. 44242) and construction of Petersburg controls is currently underway.

IPL's MATS Compliance Plan determined that installation of the compliance controls was not economical for the smaller, less controlled units, Eagle Valley Units 3 through 6 and Harding Street Units 5 and 6. In May 2014, the IURC granted a Certificate of Public Convenience and Necessity ("CPCN") for IPL to construct a new combined cycle natural gas turbine ("CCGT") unit and approved converting Harding Street Units 5 and 6 to natural gas fired units. IPL plans to retire Eagle Valley Units 3 through 6 by the April 2016 MATS compliance deadline. In addition to the MATS Rule, the Indiana Department of Environmental Management ("IDEM") issued National Pollutant Discharge Elimination System ("NPDES") permit renewals to Petersburg and Harding Street in August 2012. The reasonable least cost plan to comply with the estimated costs of NPDES and future environmental regulations is to convert Harding Street Unit 7 to natural gas-fired and to install measures to address wastewater and Stormwater at both Petersburg and Harding Street generation stations. As a result, the MATS controls proposed in Cause No. 44242 were no longer necessary for that unit. IPL is currently proposing to the IURC in Cause No. 44540 to refuel Harding Street Unit 7 to operate on natural gas which reduces cost of compliance with NPDES and the impact on the environment.

The future impacts on IPL's generation resources continue to be uncertain amidst potential legislation and U.S. Environmental Protection Agency ("EPA") regulations.

#### **New Generation**

IPL received approval on May 14, 2014 from the IURC (See IURC Cause No. 44339) to construct a 644 MW to 685 MW<sup>7</sup> natural gas-fired combined-cycle plant. This new CCGT is necessary to replace the generation from the retired Eagle Valley Generating Station, as discussed above, and IPL's previously existing capacity shortage. The approved new construction will furnish IPL with the resources necessary to serve retail load economically and reliably. Additional need for new generation in the short-term has been eliminated due to this recent approval.

IPL has made great strides to diversify its portfolio by changing the fuel mix from 79% coal and 14% natural gas and no renewables in 2007 to the projected mix of 44% coal and 45% natural gas in 2017, subject to IURC approval. The Company has also added 10% wind and solar resources to its portfolio since 2007. The Company's projected resource portfolio in 2017 is expressed in Figure 1.3.

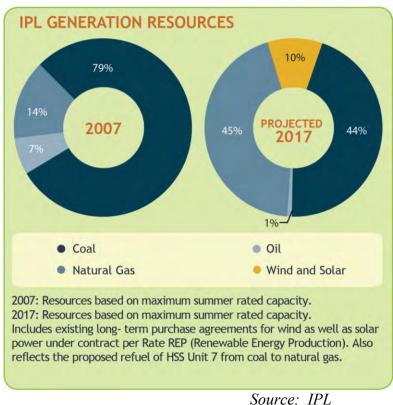



Figure 1.3 – Projected Generation Resources

<sup>&</sup>lt;sup>7</sup> IPL is constructing a 671 MW CCGT.

As a result of HSS refueling to NG, Petersburg MATS Controls, and Eagle Valley CCGT replacement generation, IPL expects to achieve considerable reductions in fleet-wide emission rates by 2017 from current (2013):

- 67% reduction in SO<sub>2</sub> emission rate
- 23% reduction in NO<sub>x</sub> emission rate
- 23% reduction in PM emission rate
- 76% reduction in Hg emission rate
- 7% reduction in CO<sub>2</sub> emission rate

#### **Transmission and Distribution Enhancements**

IPL's has studied the need for transmission and substation projects for retirement of generation connected to the IPL 138 kV system and designed projects to ensure deliverability of power into the IPL load zone. These projects include the installation of new 345 kV breakers, autotransformers, and 138 kV capacitor banks to improve power import capability from the 345 kV system to load centers on the 138 kV system. Several projects associated with the new CCGT will be completed in 2015 and 2016. In addition, IPL plans to install a Static Volt Ampere Reactive ("VAR") System to provide dynamic voltage and reactive power support.

IPL has enhanced its distribution system to incorporate the Rate REP projects. People in multiple areas of IPL worked closely to develop efficient procedures and successfully interconnect the DG sites. Based on the proposed location and feeder interconnection, specific engineering site studies were performed to determine if the distribution system could reliably support the DG resource without impacting the service reliability of existing customers. Line extension projects were engineered and constructed as needed. To date ten (10) projects with capacity of 500 kW to 10 MW have been connected to IPL's smart grid network to enable remote switching for IPL to safely work on distribution lines without any chance of DG backfeed. See Section 4C for more information on IPL's transmission and distribution system.

## **IRP Modeling Scenarios**

IPL identified three key drivers most likely to impact its preferred resource portfolio: (a) CO<sub>2</sub> prices as a proxy for pending environmental legislation related to greenhouse gas ("GHG") emissions, (b) gas/market prices, and (c) load forecast differences due to economic and DSM impacts. Eight (8) scenarios were identified based on combinations of these drivers as shown in Figure 1.4 below. Instead of assuming the four (4) coal-fired units at Petersburg will remain in service through the projected planning life, the modeling software chose unit retirement dates based upon when they would no longer be economic to run in various scenarios. See Section 4 - Integration for a detailed description of these scenarios.

Figure 1.4 – IPL's 2014 IRP Modeling Scenarios

| Scenario<br>No | Scenario Name         | Gas/Market Price        | CO <sub>2</sub> Price                                        | <b>Load Forecast</b> |
|----------------|-----------------------|-------------------------|--------------------------------------------------------------|----------------------|
| 1              | Base                  | Ventyx Base             | IPL-EPA Shadow price starting 2020                           | Base                 |
| 2              | High Load             | Ventyx Base             | IPL-EPA Shadow price starting 2020                           | High                 |
| 3              | Low Load              | Ventyx Base             | IPL-EPA Shadow price starting 2020                           | Low                  |
| 4              | High Gas              | Ventyx High             | IPL-EPA Shadow price starting 2020                           | Base                 |
| 5              | Low Gas               | Ventyx Low              | IPL-EPA Shadow price starting 2020                           | Base                 |
| 6              | High<br>Environmental | Ventyx<br>Environmental | Waxman-Markey proxy Ventyx<br>Fall 2013 prices starting 2025 | Base                 |
| 7              | Environmental         | Ventyx Mass Cap         | Mass Cap ICF Prices beginning in 2020                        | Base                 |
| 8              | Low<br>Environmental  | Ventyx Base             | None                                                         | Base                 |

Source: IPL

## **Key Driver #1 - Future Environmental Regulation**

The environmental challenges facing utilities is unprecedented in terms of the number of rules coming due simultaneously, the compressed timeframe for compliance and the wide array of rules covering all environmental media (air, water, and waste). There are a number of environmental initiatives that the EPA is considering at the federal level that will likely impact coal-fired generation. These include, but are not limited to:

- Cross State Air Pollution Rule ("CSAPR")
- National Ambient Air Quality Standards ("NAAQS")
- Greenhouse Gas ("GHG") Regulation
- Cooling Water Intake Structures, Clean Water Act Section 316(b)
- Coal Combustion Residuals ("CCR")

This IRP addresses GHG Regulation through a CO<sub>2</sub> price. See Section 3 of this IRP for more information on Environmental Rules and Regulations.

#### Key Driver #2 – Natural Gas Prices

As mentioned above in New Generation, IPL expects to increasingly utilize natural gas within its generation fleet. Natural gas ("NG") alternatives are important in the analysis of new supply options for two reasons: First, is the significant pressures felt by U.S. utilities to retire existing coal assets and the difficulty in permitting new coal-fired generation. As important, however, is the emergence of shale gas and the significant increase in available U.S. natural gas resources. Breakthroughs and commercial developments in hydraulic fracturing technologies have economically tapped previously inaccessible reserves and brought huge supplies of shale gas from domestic sources. The advent of shale gas along with increasing levels of storage capacity continues to create an abundant supply of domestic NG, suppressing NG prices.

The increase in shale gas offers long-term NG price stability and substantial growth in use of NG for power production. Because market prices correlate with NG prices, the high and low NG scenarios reflect high and low market prices as well. As experienced during the Polar Vortex in the winter of 2013/2014, pipeline transportation constraints can result in a sudden rise in NG prices within the market zones and therefore electricity prices, unlike the historically relatively stable prices of coal. Instability in NG gas prices represents a key area of concern in the IRP planning period. IPL plans to hold firm transportation to liquid market centers and/or production zones to mitigate the price spikes seen during the Polar Vortex. IPL's gas-fired generation facilities are situated in favorable locations near several gas pipelines which provide the opportunity for multiple sources of NG and competitive procurement. See Section 4A for more discussion on natural gas resource options.

## Key Driver #3 – Load Variation

To capture forecast uncertainty in Ventyx's IRP modeling, IPL selected three peak forecast scenarios: 1) Base load, 2) Low load, and 3) High load, with the Base load being the most probable. The base load forecast is established through econometric modeling using proprietary Moody's forecast economic parameters, such as Marion County household information and Indianapolis Manufacturing and Non-Manufacturing Employment. This forecast is adjusted by incorporating all forecasted energy efficiency DSM and other direct load impacts, such as appliance efficiencies. IPL then adds cost effective load management resources including demand response DSM, such as Air Conditioning Load Management ("ACLM") and interruptible programs plus any other load modifications, such as distribution automation enabled voltage reductions. This adjusted net load forecast, adjusted for MISO resource adequacy requirements, determines the supply resources needed to reliably serve IPL load and meet MISO resource adequacy requirements.

The High and Low load forecasts were derived by applying the low and high ranges of the State Utility Forecasting Group's (SUFG) 2013 IPL-forecast to IPL's internal forecast. Although this range, as modeled by the SUFG, is primarily driven by economics, we interpret the range to represent uncertainties resulting from: economic activity, DSM program impacts and technological and behavioral changes. For reference, IPL's base case with net DSM impacts represents a peak load forecast growth at 0.3% CAGR with 3131 MW of net internal demand ("NID") by 2034. IPL's forecast range, as modeled by Ventyx in the Capacity Expansion module, ranged from 0.2% CAGR (3,033 MW) for the Low Load forecast to 0.5% CAGR (3,242 MW) for the High Load forecast by 2034. Figure 1.5 below is IPL's Base, High, and Low peak forecast net of DSM.

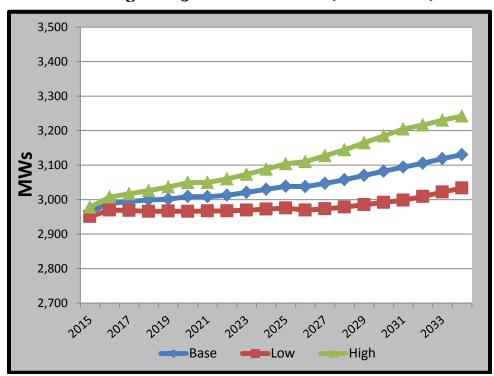



Figure 1.5 – Peak Forecast (Net of DSM)

Source: IPL

#### **Demand Side Management: Load Variation Impact**

IPL's DSM programs are comprised of energy efficiency and load management. Since IPL's 2011 IRP, Senate Enrolled Act 340 ("SEA 340") has been passed resulting in the elimination of IURC established DSM targets and providing the availability for large customers to opt-out of DSM program participation. Hence, the DSM evaluation for this IRP is driven by a traditional analysis that identifies the market potential for cost effective DSM.

Despite the elimination of IURC set DSM targets, IPL filed Cause No. 44497 with the IURC to continue energy efficiency programs that were identified as cost-effective in 2015 and 2016.

Also, to reflect the Company's projected energy efficiency programs and savings, IPL contracted with Applied Energy Group ("AEG") to develop a DSM market potential forecast through 2034 to include in this IRP.

As part of its DSM strategy, IPL offers a number of Demand Response programs. At the end of 2013, IPL accounted for approximately 27 MW of Air Conditioning Load Management, 20 MW of Conservation Voltage Reduction ("CVR") described below, and 36 MW of contracted demand response capability with its C&I customers. In total, that is 83 MW of Demand Response programs. Section 4B fully describes DSM history, current programs and future plans.

#### **Smart Grid: Load Variation Impact**

IPL has enhanced service reliability and field asset operations by deploying Smart Grid assets through its Smart Energy Project. From 2009 to 2013, Distribution Automation ("DA") and Advanced Metering Infrastructure ("AMI") initiatives were completed to produce reliability benefits, reduce peak demand and improve operational efficiency.

Reliability improvements driven by adding distribution Supervisory Control and Data Acquisition ("SCADA") software tools and protective distribution devices throughout the system have resulted in 12.1 % SAIFI improvements to treated circuits by reducing the number of customers who experience a service interruption when a fault occurs on the system and restoring power more quickly through remote switching<sup>8</sup>.

IPL has implemented a conservation voltage reduction ("CVR") program to reduce system peak demand as mentioned above with other demand response programs. IPL worked with MISO and stakeholder forums to allow this to be considered a Load Modifying Resource ("LMR") and count for capacity. In 2014, IPL registered a conservative target of 20 MW in MISO and has included this capacity in the IRP model. See Section 4C for more details about this and other Smart Grid benefits.

## **Resource Modeling Results**

IPL worked with Ventyx to model and evaluate IPL's portfolio of existing generation and new resource options against forecast load requirements to derive its integrated resource plan. The modeling takes a structured multi-step process from load forecast to resource needs to a resource plan.

IPL uses its forecast of existing generation resources, including the planned unit retirements, to identify the resource gap to be met by additional supply resources. The Ventyx Capacity Expansion and Scenario Evaluation modules were used to identify low cost and low risk resources for IPL's resource portfolio. In addition to IPL's base case, which includes base market and gas prices, a base load forecast, and moderate CO<sub>2</sub> costs, the scenarios include

-

<sup>&</sup>lt;sup>8</sup> Based on 2014 experience.

sensitivities related to the three key drivers: potential environmental regulations reflected in CO<sub>2</sub> costs, natural gas price and market price variation, and load variation. In all scenarios, IPL is not expected to build any additional generation until 2031 at the earliest to meet capacity and energy requirements. Additional need for new generation in the short-term has been eliminated due to the recent approval of the new Eagle Valley CCGT and the conversion of HSS Units 5 through 7<sup>9</sup> from coal to natural gas. (See IURC Cause No. 44339.) However, there is still much uncertainty surrounding the EPA Proposed Clean Power Plan. Depending on the construct of the final rule and how Indiana chooses to administer this regulation, additional adjustments to IPL's generation portfolio could be needed to comply with regulations. More information on IPL's load forecast and supply resource planning is available in Section 4D and 4 respectively.

#### **Capacity Purchases**

IPL customers have benefited in recent years from IPL's ability to purchase capacity at prices well below the levelized cost of building new generation. However, due to EPA MATS regulation based retirements, the supply-demand balance of capacity and load continues to come more into equilibrium in the MISO footprint, driving an increase in capacity prices. IPL will be retiring Eagle Valley Units 3 through 6 on April 16, 2016, six weeks before the end of the MISO Planning Year ("PY") 2015-2016. MISO's current resource adequacy requirement states a capacity resource that clears a planning reserve auction must be available during the entire commitment period, otherwise replacement capacity from the same zone must be secured to avoid compliance penalties. On June 20, 2014, IPL submitted a request to FERC to waive the replacement requirement needed during the stated 6 week span. This request was granted by FERC on October 15, 2014, eliminating the need to replace capacity during that time span and avoiding unnecessary costs for IPL customers.

To mitigate the MISO Planning Resource Auction price volatility risk, IPL has bilaterally purchased 100 MWs of Zone 6 Zonal Resource Credits at a fixed and known price for the PY 2015-2016 resulting in a minimal net capacity requirement. For PY 2016-2017, IPL has purchased 100 MWs of Zone 6 Zonal Resource Credits at a fixed and known price and nears completion of an agreement for an additional 200 MW. This results in a net capacity requirement ranging from 50 to 100 MW.

IPL will continue to evaluate the purchase of additional capacity to meet the difference between its actual Planning Reserve Margin Requirement and secured resources with bilateral purchases or sales, auction purchases or sales, additional demand response, or other resources. Starting in Planning Year 2017-2018, with the addition of the Eagle Valley CCGT, IPL projects that its resources will exceed its MISO Planning Reserve Margin Requirement for 2017-2018 by 240 MWs which it plans to optimize in the capacity market.

\_

<sup>&</sup>lt;sup>9</sup> The refuel of HSS Unit 7 from coal to natural gas is pending approval by the IURC in Cause No. 44540.

#### **Preferred Portfolio**

Once the new generation construction and unit refuels, as discussed in the New Generation section above, are complete, IPL will meet its peak demand until future unit retirements are necessary. Therefore, IPL's preferred portfolio is the base case expansion plan. This plan includes no additional generation extending out until 2031, at which point the Company anticipates the retirement of Petersburg 1 along with Harding Street Units 5 through 7. The determination and additional details surrounding IPL's preferred portfolio can be found in Section 4 - Integration.

#### Research & Development/Technology Applications

IPL continually evaluates emerging technologies, new applications of technologies and contemporary methods to improve operational excellence, identify future business opportunities and enhance long-term planning. Specifically, (1) energy storage, (2) enhanced combustion turbine output options, (3) the expansion of electric transportation, and (4) utilizing smart grid assets are included as part of these efforts. Accordingly, IPL is investigating the possibility of installing a Battery Energy Storage System ("BESS") within its grid to provide ancillary services. This could be up to a 20 MW facility located within IPLs 138 kV grid, which will also facilitate local stakeholder education. See Section 2, Changing Business Landscapes, for more information about the potential BESS installation. Turbine enhancements in the form of cooling inlet air to increase output through a process known as "fogging" is under investigation. IPL led transportation electrification efforts through its Electric Vehicle ("EV") program over the past three (3) years. Approximately 160 Electric Vehicle Supply Equipment ("EVSE") units were installed in homes, businesses and public locations to foster support of EV usage. In addition, IPL implemented a time-of-use rate ("EVX") and public EV ("EVP") tariff. This environmentally friendly transportation mode has been well received by its approximate 100 participants 10; however, EV sales and public EVSE usage is lower than originally forecasted in Indianapolis. Additionally, IPL is working with the City of Indianapolis to implement an electric vehicle supply equipment system throughout its service territory. This would create the first total electric vehicle car sharing system in the United States. The program includes up to 1,000 EVSE at 200 locations to support 500 EVs, as outlined in IPL's proceeding filed with the IURC in Cause No. 44478. If approved, the facilities will be installed by June 2016, to modernize IPL's electric distribution infrastructure and decrease the community's dependence on foreign oil. See Section 4B and 4C for more information on IPL's involvement with EVs. Finally, IPL will continue to optimize smart grid assets. Please see Section 5 for more information about these efforts.

<sup>&</sup>lt;sup>10</sup> IPL's 2013 Electric Vehicle Program Report can be found under a link located at: https://www.iplpower.com/Business/Programs and Services/Electric Vehicle Charging and Rates/

#### Portfolio 2024 and 2034

Much of the IRP reporting is appropriately focused on where IPL is, what uncertainties IPL is facing, and how IPL is going to navigate those challenges. The process ultimately results in a preferred resource plan, as identified above, that best serves IPL customers. In addition to defining the preferred resource plan, it is also helpful to focus on what IPL's generation mix consists of after the preferred plan is executed. IPL's selection is based upon a 50 year view to incorporate full plant life and end effects as shown in Section 4. "Portfolio 2024" and "Portfolio 2034" are snapshots of IPL's 10 and 20 year resource mix broken out by base, intermediate, and peaking resources. Of note, the energy efficiency DSM identified is the incremental DSM forecast from 2014 forward, as previous DSM programs are continually incorporated into the net internal demand ("NID") load forecast.

The 10 year look-forward projects about 3,830 MW of base load and intermediate resources, including 1,660 MW of coal-fired generation, 1,704 MW of gas-fired generation, and 43 MW of oil-fired generation. Additionally, IPL's portfolio will include 300 MW of wind generation and 100 MW of solar generation.

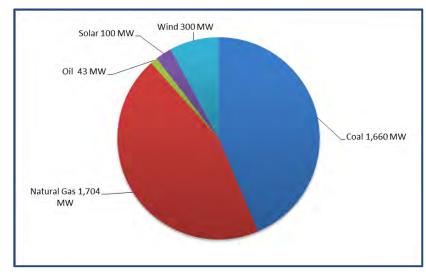



Figure 1.6 – IPL Resources – 2024 (by Operating Capacity)

Source: IPL

The 20 year outlook projects a slightly different outlook, as existing unit retirement dates become a factor. Prior to 2034, it is anticipated that Petersburg Unit 1 along with Harding Street Units 5 through 7 will retire. With CCGT being the least cost option for replacement generation, the shift from a portfolio primarily made up of coal resources to a natural gas intensive mix is expected to continue. The 2034 resource mix includes a total 3,767 MW of base load and intermediate resources, including 1,440 MW of coal-fired generation, 1,884 MW of gas-fired generation, and 43 MW of oil-fired generation. Likewise, the renewable resources are expected to remain at the 2024 levels of 400 MW.

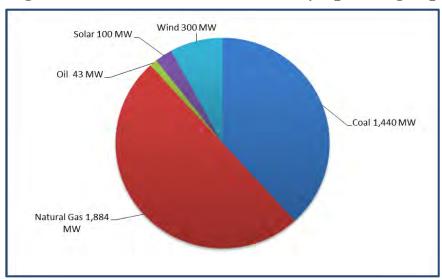



Figure 1.7 – IPL Resources – 2034 (by Operating Capacity)

Source: IPL

Although the model selects new CCGT units in the preferred resource plan based upon current market conditions and what IPL knows today, other cost effective resources may exist in the future. IPL will evaluate these resource options in subsequent IRPs to develop the best Preferred Portfolio based on updates to market and fuel price outlooks, future environmental regulations, relative costs of technologies, and load forecasts.

#### Section 2. THE CHANGING BUSINESS LANDSCAPE

Since the submission of the IPL 2011 IRP, the business landscape for IPL and the electric utility industry has shifted in a number of key areas. Also, this 2014 IRP is being filed under a proposed rule 170 IAC 4-7, which includes different requirements including more transparent descriptions of risk analysis and mitigation, regional transmission organization membership impacts in the IRP, and reasoning for decision making to identify the preferred resource portfolio. The landscape areas described below are key drivers in the development of this IRP and IPL's future resource strategy.

## **Changing Regulatory Landscape**

[170-IAC 4-7-4(b)(14)]

The most current revision of the proposed rule 170 IAC 4-7, which describes the Indiana IRP process and requirements, was issued on October 4, 2012. While this rule has not yet been finalized, IPL and other Indiana electric utilities are voluntarily working to comply with the new requirements as much as possible. In addition to the amended documentation requirements and methodology and risk descriptions, there are two new items within the proposed rule: (1) a public advisory process, and (2) a non-technical summary to be posted on the utility's website. Both of these new requirements aid in stakeholder education and input.

IPL hosted three public advisory meetings to inform its stakeholders and gather feedback. Stakeholders were notified by email and a newspaper public notice at least 30 days in advance of the meetings. Meeting materials in the form of Microsoft PowerPoint slides were posted on the Company's webpage two weeks prior to each meeting. Stakeholders were invited to attend in person or via the Webex option. A summary of the topics discussed are listed below. In addition, the meeting materials are provided as Section 7, Attachment 9.1 of this IRP.

#### 1<sup>st</sup> Public Advisory Meeting - May 16, 2014

- Introduction to IPL and Integrated Resource Planning Process
- Energy and Peak Forecasts
- Demand Side Management: Energy Efficiency and Demand Response
- Planning Reserve Margin
- Generation Overview
- Environmental Overview
- Distributed Energy Resources
- Proposed Modeling Assumptions

#### 2<sup>nd</sup> Public Advisory Meeting - July 18, 2014

• Demand Side Management Update

- Environmental Update
- Incorporating Stakeholder Input
- Presentation of Initial Ventyx Scenario Results

#### 3<sup>rd</sup> Public Advisory Meeting - October 10, 2014

- Waste Water Analysis Results
- Updated Modeling Inputs and Assumptions
- Presentation of Ventyx Scenario Results
- Short Term Action Plan

Approximately 30 stakeholders were present at each of the three meetings including IPL residential, commercial and industrial customers, the Indiana Utility Regulatory Commission ("IURC"), the Office of Utility Consumer Councilor ("OUCC"), the Citizens Action Coalition ("CAC"), the Sierra Club, and other environmental and interest groups. After the first workshop, the Company responded to 112 comments and questions while an additional 29 comments and questions followed the second meeting. Modifications made as a result of stakeholder participation include: reduced the estimated cost of new wind resources, assigned a cost of carbon to every scenario evaluated, and created eight (8) scenarios versus four (4) scenarios to reflect multiple combinations of possible risks. The public advisory process increased transparency in IRP planning and was a conducive environment for discussion.

On October 31, 2014, IPL posted a non-technical summary on its IRP webpage including an overview of the Company and its existing resources, the public advisory process, the Company's current capacity position, and the Company's IRP scenarios, assumptions, and resulting preferred resource portfolio. A short term action plan and accompanying schedule is also described. The non-technical summary provides a simplified explanation of the Company's IRP.

The public advisory process was a productive way to include a variety of points of view and produce a more robust IRP. Stakeholder input drove changes to expand the number of scenarios IPL analyzed from four to eight, spurred the inclusion of additional wind sensitivity analysis, and helped IPL understand how to more effectively explain decision making processes. IPL welcomed suggested improvements for the 2016 process from participants which will be thoughtfully considered.

Meeting materials, stakeholder comments and questions, and meeting summaries are included in Volume II of this IRP and are available at https://www.iplpower.com/irp/.

## **Contemporary IRP Inputs and Methodology**

[170-IAC 4-7-4(b)(11)]

IPL fully supports and employs a continuous improvement process for service reliability and efficient business management. As part of this process, IPL seeks to implement IRP best practices to improve the accuracy of our data, forecasts, risk mitigation and modeling. Since the 2011 IRP, the Company has completed the following activities:

- Included dynamic forecasted market prices in the model as well as market operations simulation whereby market resources or IPL units may be selected to meet IPL's load requirements
- Included a range of possible greenhouse gas regulatory impacts
- Updated data for weather normalization more frequently than was done in the past
- Described its experience with Distributed Generation ("DG") including impacts to transmission and distribution elements
- Implemented a public advisory process in the development of the IRP as described below
- Reviewed 2013 IRP documents filed by Indiana utilities and participated in 2014 IRP public advisory meetings conducted by NIPSCO and Vectren and applied lessons learned

As part of the Company's efforts to stay abreast of new and efficient methods, IPL employees have attended the Commission's annual IRP contemporary issues technical conferences in 2013 and 2014 as well as various industry conferences. IPL employees have also attended resource planning focus area conferences and trainings, such as:

- Association of Edison Illuminating Companies Load Research Conference
- Itron, Inc Forecasting 101Workshop: An Introduction to Forecasting
- Itron, Inc Fundamentals of Sales and Demand Forecasting Workshop
- Itron, Inc 11<sup>th</sup> Annual Energy Forecasting Meeting
- Itron, Inc 12<sup>th</sup> Annual Energy Forecasting Meeting
- Edison Electric Institute Load Forecasting Group Meeting

## **Risk Mitigation**

[170-IAC 4-7-8(b)(7)(A)][170-IAC 4-7-8(b)(7)(B)]

IPL regularly evaluates risks to its business and identifies means to mitigate these risks. As part of our normal business practices and for the IRP process, the risks and mitigation methods in Figure 2.1 are reviewed. The key risks that affect resource planning, as shown in the left-most column, drove the development of IPL's scenarios to analyze potential future impacts: environmental regulation, load variation, and fuel costs. Section 4 (Integration) describes how IPL's preferred resource plan mitigates these risks as best as possible, specifically the three key risks identified above.

Figure 2.1 – IPL Risks and Mitigation Methods

| Risk                        | Description                                                                                                                                                                                                                                                               | Mitigating Measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Environmental<br>Regulation | As described fully in Section 3 of this IRP, a wide variety of regulations related to water, air, and waste continue to impact the electric utility industry and will do so in the near future.                                                                           | To mitigate these risks, IPL carefully evaluates potential impacts and actively participates in the rulemaking processes including work with various industry trade groups and government agencies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Load<br>Variation           | Loads may vary based on consumer usage<br>behavior, demand response program<br>participation, weather as described below,<br>public policy and many economic drivers.                                                                                                     | Planning reserve margins determined by MISO, above annual load forecasts, serve as mitigating measures to address increased load. IPL proactively manages costs regularly to mitigate the impacts of variable costs and revenues.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Fuel Costs                  | Commodity pricing varies based on supply, demand, and source.                                                                                                                                                                                                             | IPL's contracts include fixed costs and market based commodity prices with variable indexbased escalation factors. In addition, increasing generation portfolio fuel diversification will mitigate price increases. (See IHS report. "The Value of US Power Supply Diversity" dated July 2014 for more information.)                                                                                                                                                                                                                                                                                                                                                                   |
| Fuel Supply                 | Commodity availability directly influences IPL's ability to run its generating units efficiently. Shortages may occur during high volume periods including seasonal peaks.                                                                                                | IPL maintains inventory of 35 to 50 days for coal resources. In addition, long-term coal supply contracts that rotate on a three (3) year cycle are negotiated. IPL's existing natural gas units have run intermittently which did not justify the need for contracts with fixed demand charges. For units to be refueled and the new CCGT, IPL contracts for firm delivery and no-notice services for natural gas to mitigate fuel availability risks. IPL maintains firm transportation for the new Eagle Valley CCGT unit which can also serve the Harding Street units. As generating units are refueled to NG, IPL will contract for additional firm transportation as necessary. |
| MISO Market<br>Changes      | As a member of MISO, IPL is subject to changes in FERC approved MISO tariffs and business practices which may impact operations and long-term planning. These may be in the area of capacity credits, transmission expansion policy and costs, or demand response design. | IPL actively participates in MISO stakeholders processes including the Transmission Owners Committee to mitigate risks of changes. If needed, IPL intervenes at FERC to protect the best interests of its customers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Weather                     | Variances in weather directly affect IPL's retail load requirements, costs and revenues.                                                                                                                                                                                  | IPL evaluates 30 year weather patterns as part of the IRP process to forecast loads. In addition, high, low and base load forecasts were evaluated within scenarios to determine possible resource requirement outcomes.                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Workforce<br>Availability   | Labor intensive operations require consistent highly trained staff                                                                                                                                                                                                        | IPL regularly negotiates contracts with<br>bargaining unit employees and contractors to<br>ensure qualified staff are available to perform<br>necessary work. In addition, IPL's total<br>rewards compensation is competitive within                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|                            |                                                                                                                                                                                                                                                                                                                       | the utility industry to retain employees.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reliability                | Outages to distribution and occasionally transmission equipment due to public vehicular accidents, storms or mechanical failures can impact service reliability. In addition, transmission system design limitations affect the amount of power that can be imported to the IPL 138 kV system.                        | IPL's plans to site generation close to its load center and connect it to its 138 kV system. This intentionally mitigates risks of limited import capabilities and fluctuations in voltage and reactive power.                                                                                                                                                                                                                                                                                                                                                             |
| Technology<br>Advancements | Over the past several years, resource technologies continue to evolve to decrease costs and improve efficiencies. These may include gas turbines, distributed generation, solar PV, wind turbines, battery storage, electric vehicles, fuel cells, demand response, energy management systems and other applications. | IPL stays abreast of technology cost trends and uses up to date information in the IRP. For example, the CCGT and wind turbine capital costs in this IRP are lower than the 2011 IRP. IPL continues to connect solar DG facilities from 2 kW to 10 MW through net metering and Rate REP programs and learn from its operational experience in this area. For the first time, IPL has included DG capacity in its IRP. IPL continues to research best practices in this area and monitor developments in terms of innovation and adoption rates to plan for future impacts. |
| Construction<br>Costs      | Construction expenses vary based on commodity costs, scope creep, labor and material expenses.                                                                                                                                                                                                                        | IPL works diligently to schedule and manage its internal and contracted resources. It competitively bids contracts, negotiates fixed fees whenever commercially practical, coordinates changes in scope closely to minimize cost increases, requires transparent regular reporting of progress and costs and open audit rights to verify vendor expenses when negotiating vendor contracts. Cost savings are captured through project management efforts and reflected in fair rates and charges.                                                                          |
| Production<br>Cost Risk    | Variances in production costs are dependent upon electricity demand, fuel supply, market pricing and other factors.                                                                                                                                                                                                   | IPL's diverse portfolio helps to mitigate production cost risks through varying fuels, that is, coal, natural gas, oil, wind and solar, as well as technologies including simple and combined cycle turbines, distributed generation, demand response, etc.                                                                                                                                                                                                                                                                                                                |
| Generation<br>Availability | Generation equipment is subject to electromechanical failures which directly impact the availability of the units to produce electricity.                                                                                                                                                                             | In accordance with asset management best practices, IPL performs planned maintenance on a regular basis and performs root causes analyses when failures occur as means to mitigate these risks.                                                                                                                                                                                                                                                                                                                                                                            |
| Access to<br>Capital       | Adequate funding to finance large capital projects is essential to long-term business success. Varying interest rates and capital access may affect this.                                                                                                                                                             | IPL manages a balanced financial portfolio through a blend of equity, short term and long term debt to mitigate these risks.                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| Regulatory<br>Risk              | There is jurisdictional overlap in several areas where FERC has jurisdiction relative to markets, but the primary responsibility resides with the States. Jurisdiction over Resource Adequacy and Demand Response are two of those overlap areas. | IPL actively engages with MISO, IURC, FERC, and the Organization of MISO States (OMS) to clarify the jurisdiction and maintain appropriate outcomes for its customers. Educating stakeholders and listening to other points of view helps to create collaborative results whenever possible. |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Misc.<br>Catastrophic<br>Events | Major events such as weather catastrophes can occur as part of normal business                                                                                                                                                                    | IPL has concrete plans for business continuity/disaster recovery for each area and the Company as a whole. Annual drills in critical areas such as T&D operations are conducted. Debrief sessions are held to identify lessons learned and identify improvements.                            |

#### **Financing**

[170-IAC 4-7-8(b)(6)(D)]

As identified above, access to capital is a critical component of managing the electric utility business. IPL must secure funding to complete capital projects. IPL expects that existing cash balances, cash generated from operating activities and borrowing capacity on our committed credit facility will be adequate for the foreseeable future to meet anticipated operating expenses, interest expense on outstanding indebtedness and recurring capital expenditures, and to pay dividends to the owners of the business. Sources for principal payments on outstanding indebtedness and nonrecurring capital expenditures are expected to be obtained from: (i) existing cash balances; (ii) cash generated from operating activities; (iii) borrowing capacity on our committed credit facility; and (iv) additional debt financing. In addition, due to current and expected future environmental regulations, it is expected that equity capital will continue to be used as a significant funding source. AES has approved significant equity investments in IPL for its proposed nonrecurring capital expenditures from 2013 through 2017; for example, on June 27, 2014, IPALCO received an equity capital contribution of \$106.4 million from AES for funding needs related to IPL's environmental and replacement generation projects, which IPALCO then made the same investment in IPL.

All of IPL's long-term borrowings must first be approved by the IURC and the aggregate amount of IPL's short-term indebtedness must be approved by the Federal Energy Regulatory Commission (FERC). IPL has received FERC approval to borrow up to \$500 million of short-term indebtedness outstanding at any time through July 28, 2016. In December 2013, IPL received an order from the IURC granting the authority through December 31, 2016 to, among other things, issue up to \$425 million in aggregate principal amount of long-term debt (inclusive of \$130 million of IPL first mortgage bonds issued in June 2014).

## **Demand Side Management**

IPL has continually offered DSM since 1993. But since the last IPL IRP was completed in 2011, the landscape for DSM in Indiana has changed significantly. Prior DSM efforts were influenced by the significant energy efficiency targets established in the IURC Phase II Generic Order. These targets provided the direction for the amount of DSM efforts in the State of Indiana through the end of 2014. The Generic Order also established five Core DSM Programs and identified the mechanism for these Core programs to be delivered by a state-wide third party administrator.

The 2013-2014 Indiana General Assembly passed Senate Enrolled Act 340 ("SEA 340"), which, among other things, (1) effectively terminated the Generic DSM Order's savings goals and (2) provided the industrial customers with demand at a single site greater than one MW the opportunity to opt-out of participation in utility sponsored energy efficiency programs.

- (1) While the IURC's Generic Order was the dominant factor in shaping DSM developments in Indiana, IPL is committed to continue to offer cost effective DSM programs to its customers. A confluence of internal and external influences has prompted IPL, and the electric industry as a whole, to make a concerted effort to increase the levels of DSM offerings to its customers. Increasing fuel costs and volatility, a looming build cycle for new generation and environmental concerns have caused renewed interest in DSM.
- (2) While it is still uncertain to what extent customer opt-outs will reduce the DSM market potential in IPL's service territory, there will be some reduction in potential. However, the reduction in DSM opportunities may be mitigated to the extent that large customers create energy efficiency projects on their own. IPL plans to submit comments to the EPA as part of the CPP rule making process and will suggest that opt-out customers report their energy efficiency savings to the appropriate agency. This information will aid in IPL's ability to comply with the CPP.

#### **Forecast**

[170-IAC 4-7-5(a)(4)]

Economic conditions have improved at a slower than anticipated recovery rate from the financial crisis in 2008-2009. Although Indiana's Gross State Product ("GSP") and other key economic indicators are back to pre-recession levels, future conditions are viewed to not achieve pre-recession growth rates. According to Moody's Analytics, Indiana's economy is expected to experience an uptick in 2014 and 2015 with GSP growth rates of 3.6% and 3.4% respectively. After this improvement, growth in Indiana's economy is expected to slow down to 1.3% in the following two years. The reduced growth expectations results from negative demographic trends such as an aging workforce, lowering the growth of the labor force, accompanied by political uncertainty surrounding the current Federal Budget Crisis and future inflation rates. Indiana's GSP is forecast to level off at a modest 1.6% for the following 6 years. This growth in economic

activity is mainly driven by growth in manufacturing and household income. Sales before any DSM adjustments are expected to grow at a compound annual growth rate of 1.2% over the next three years, and 0.7% over the next 20 years. The growth-rate drops to 0.7% over the next three years after DSM savings are netted out. In other words, DSM is forecasted to address 42% of the estimated load growth.

#### **Fuel Landscape**

[170-IAC 4-7-4(b)(7)]

After 2017, IPL expects to increasingly use natural gas within its generation fleet. The emergence of shale gas into the United States ("U.S.") natural gas ("NG") supply has sparked a renaissance in domestic NG markets. As little as a decade ago, the outlook for U.S. NG production was rather bleak. Reserves in conventional wells had peaked and begun to decline in 2001 with little expectation for a reversal. Tight supplies and expensive and unreliable liquefied natural gas imports were the expected new normal of the U.S. natural gas market. However, developments in hydraulic fracturing technologies and directional drilling brought the massive quantities of shale gas from what was one of the most expensive sources in the market to one of the cheapest. In fact, the United States is now the largest producer of natural gas in the world, having surpassed Russia and Iran (Canada is now in fourth place).

Furthermore, shorter drilling times and front-loaded well yields make shale supplies more flexible to swings in demand and less expensive. This is particularly true of "wet gas plays" where the associated oil and natural-gas liquids drive the drilling and natural-gas is a "by-product" of the effort.

Figure 2.2 below, prepared by the America's Natural Gas Alliance, and based upon EIA and ICF consulting data, puts this information into graphic format. On the left are three interweaved boxes. The smallest, in the left-hand corner, shows current U.S. natural gas consumption. The other two boxes show current U.S. reserves of natural-gas and additional reserves which are technically recoverable. Although current consumption of natural gas is huge in the U.S. (25 TCF), reserves and technically-recoverable reserves are much, much higher.

Likewise, on the right side of Figure 2.2, the price forecast for natural gas is flatter and more stable – as opposed to the area in light blue shading which shows the earlier forecasts of much higher natural-gas prices. The historic numbers for pricing shows high volatility with natural-gas prices swinging from low to high. This volatility was caused both by declining supplies of natural gas, and reliance on one primary natural-gas basin (the gulf coast). Storms in the Gulf of Mexico would cause production to be halted which in turn drove up prices. One of the additional benefits of the shale revolution is to open up many different natural-gas basins in the U.S. For example, Indiana will increasing receive natural gas from Pennsylvania and Ohio.

Supply and Affordability Henry Hub Spot Natural Gas Price U.S. & Canadian Reserves \$14 \$12 Current U.S. Consumption: \$10 \$8 \$6 \$4 \$2 eserves < \$5.00; 2013 echnology: 1,500 TCF Source: EIA ICE Technically Recoverable Reserves 2013 technology; < \$5.00; 4 000 TCF

Figure 2.2 – EIA and ICF Natural Gas Supply and Affordability

Source: EIA, ICF

In addition to plentiful supply in the United States, the Indianapolis region is bisected by five major natural-gas pipelines. These allow natural-gas power plants in Central Indiana to source fuel from the Gulf of Mexico, the Rocky Mountain region and the new shale playes in Pennsylvania and Ohio.

It is now widely expected that the electricity generation sector will significantly grow its natural gas generation fleet to be significant consumers of this plentiful resource. In response to these factors, the price, according to Ventyx, stabilizes over the next 20 years as shown in Section 7, Confidential Attachment 5.1, Ventyx IPL IRP Modeling Summary. More discussion and industry commentary on NG markets can be found in Section 4D, Market Trends and Forecasts, Fuel Forecasts.

Although IPL expects to increasingly use natural gas within its generation fleet, the Company values coal as a stable, low cost and reliable fuel source. Coal is a regional strength, especially for IPL's Petersburg units which are located close to coal mines reducing transportation cost and risk. Coal plays an important role in portfolio diversification as described in the July 2014 IHS report "The Value of US Power Supply Diversity."

## **Environmental Landscape**

[170-IAC 4-7-6(a)(4)] [170-IAC 4-7-7(a)(1)] [170-IAC 4-7-7(a)(2)]

The Environmental Protection Agency ("EPA") is in the process of developing and implementing various regulations that will especially impact coal-fired fleet generation. The environmental challenges facing utilities is unprecedented in terms of the number of rules

coming due simultaneously, the compressed time frame for compliance and the wide array of rules covering all environmental media. There are a number of environmental initiatives that are being considered at the federal level that may impact the cost of electricity derived from the burning of coal. This includes, but is not limited to:

- Cross State Air Pollution Rule ("CSAPR") While IPL cannot predict the outcome of the final Rule, we expect to comply through the successful operation of our existing pollution control equipment. In addition, IPL may purchase NO<sub>x</sub> and/or SO<sub>2</sub> allowances on the open market to supplement our compliance plan.
- National Ambient Air Quality Standards ("NAAQS") The areas in which IPL operates are all currently designated as nonattainment for SO<sub>2</sub>. As a result, IDEM must develop a State Implementation Plan ("SIP") establishing new requirements to ensure that the areas return to attainment. The impact of the SO<sub>2</sub> NAAQS will be dependent upon the final SIP developed by IDEM.
- Greenhouse Gas ("GHG") Regulation At this time, IPL cannot predict the final outcome of the Clean Power Plan as it is currently a proposed rule and the State will have discretion in its implementation. However, based on the proposed rule, the impacts may include decreased dispatch of coal-fired generation, increased dispatch of natural gas and renewable generation, and increased demand side energy efficiency measures.
- Cooling Water Intake Structures, Clean Water Act Section 316(b) The rule could require closed cycle cooling systems. Alternatively, utilities could be faced with installing less costly controls, like modified travelling screens and fish handling and return systems. Three of the five IPL coal-fired units are currently equipped with closed cycle cooling systems. Another is equipped with a cooling tower which dissipates approximately one-half of the waste heat generated by that unit. The impact of this rule will be dependent upon Indiana Department of Environmental Management's ("IDEM") determination for Best Technology Available for the IPL generating stations.
- Coal Combustion Residuals ("CCR") It is currently expected that EPA will issue a final rule in December 2014. The outcome could potentially require closure and capping of existing ponds, additional CCR disposal costs, and the installation of groundwater monitoring.

These Rules may require additional investment for compliance. Planning for compliance is complicated by the significant level of uncertainty surrounding the final outcome of the regulations, including impacts and timing and potential legislative activity. See Section 3 for a more detailed discussion of anticipated environmental impacts.

# **Transmission Expansion Cost Sharing**

[170-IAC 4-7-6(d)(4)]

Since the last IRP, both at the state level and in the MISO tariff, the right of first refusal for transmission projects needed for reliability to be built by the incumbent utility has been preserved. Effective with the 2015 planning cycle, due to the implementation of FERC Order 1000, the right to develop Market Efficiency and Multi-Value transmission projects ("MEPs" and "MVPs") has opened up to third party transmission developers. This event necessitates a process to qualify transmission developers and to select a developer to build the project. This will add up to three years to the process of placing transmission enhancements in service. FERC demands that incumbent utilities who wish to bid on projects not directly connected to their own transmission systems compete with third parties for the right to build and therefore must submit a developer application to MISO for evaluation. If the project is directly connected to the incumbent's transmission system, no application is required; however, the incumbent still must compete for the right to build MEPs or MVPs. To preserve its right to develop transmission projects of all types and locations, IPL has completed the application process dictated by the MISO tariff. As one result of implementation of FERC Order 1000, MISO has proposed numerous changes to the project types that will be vetted through the stakeholder process in the coming months. Additionally, due to the integration of Entergy into the MISO system at the end of 2013, changes to the kV bright lines of MEPs and MVPs are proposed. If those bright lines are lowered as proposed, IPL will be required to pay a greater portion of the shared costs of transmission in the now much larger footprint.

# **Battery Energy Storage Systems**

Ongoing cost reductions and technology improvements driven by consumer electronics (cell phones, laptops) and electric vehicle applications continue to improve opportunities for battery-based energy storage systems ("BESS") as resources on the electricity grid. BESS systems are being installed on power grids around the world in ever larger sizes. Lithium-ion batteries are used in much of recent BESS development, though significant research and development ("R&D") is underway on a wide range of chemistries with the promise of quantum reductions in battery energy density.

Major BESS components are interconnection facilities, power conditioning systems, and batteries. Battery arrays typically operate up to 1000 Volts DC and are connected to Power Conditioning Systems ("PCS") for transformation to AC power. PCSs are most typically bidirectional Insulated-gate bipolar transistor "(IGBT') based inverter systems converting AC power to DC to charge batteries and converting DC to AC power when discharging. PCSs operate typically at 480V on the AC side to 1000V on the DC side. Inverters are bi-directional versions of inverter systems typically used in solar and wind electricity generating applications, and have also been used for many years in motor drives and industrial processes. Interconnection facilities connect PCSs to electricity grid distribution and transmission voltages by way of step-

up/step-down transformers – the same common electrical equipment used in all power system generation and load applications. The permitting profile of a BESS is more benign that traditional power resources. There are no air emissions, no water consumption for cooling, and no fuel supply is needed except for a connection to the power grid. A BESS consists of simple structures containing energy storage equipment and electric transformers with switchgear, similar to a data center.

AES (IPL's parent company) is a worldwide leader in energy storage applications. In fact, the first test units ever deployed by AES were at the IPL Glens Valley Substation.

IPL Battery Storage Project- IPL is in the late-stages of analyzing several options, including up to a 20 MW BESS within Indianapolis and MISO regional transmission area which would likely be located within the IPL 138 kV grid. The immediate benefit that the BESS would provide to customers is fast-response frequency regulation for the grid. To maintain grid stability, load (demand for electricity) and generation (supply of electricity) must be in balance on a real time basis. The grid currently sends AGC (automatic generation control) signals to traditional power plants to either increase or decrease their output to keep the system in balance. Although this is an adequate way to provide frequency regulation, it is inferior to fast-response batteries which can instantaneously add or remove power to the grid. This has been proven within the nearby PJM regional transmission system.

Although frequency regulation of a BESS project is the immediate commercial benefit to IPL customers, IPL will also explore and pilot studies on other applications such as renewables integration focusing on solar, ramping, peak shaving, as a capacity resource in lieu of traditional combustion turbines, black start capability, and VAR support ("Volt Ampere Reactive"). IPL has begun the initial process with MISO for the required studies for a BESS system, as well as continuing in-house engineering and regulatory analysis. IPL is also modeling the current ancillary services pricing within the MISO market which will have a significant impact on whether to deploy a system sooner or later. IPL plans to provide additional information on this project to stakeholders as appropriate. While IPL is investigating the feasibility of installing a Battery Energy Storage System ("BESS") to provide ancillary services, capacity and pilot testing for renewable integration, it was not included as a separate new resource in the Ventyx model for this IRP due to MISO tariff conditions, which are not favorable to energy storage. 11

\_

<sup>&</sup>lt;sup>11</sup> IPL is working with MISO to adapt its tariff and Business Practice Manuals to treat BESS appropriately.

# Section 3. ENVIRONMENTAL RULES and REGULATIONS

[170-IAC 4-7-7(a)(1)] [170-IAC 4-7-7(a)(2)] [170-IAC 4-7-8(b)(7)(A)]

EPA is in the process of developing and implementing a new suite of rules that will impact coalfired fleet generation. The environmental challenges facing utilities is unprecedented in terms of (1) the number of rules coming due simultaneously; (2) the compressed time frame for compliance; and (3) the wide array of rules covering all environmental media. As it relates to air, EPA is regulating for the first time greenhouse gas ("GHG") emissions. As it relates to water, EPA is regulating cooling water intake structures. Finally, as it relates to solid waste, EPA is proposing further restrictions for ash management. The most recent impending EPA rules include, but are not limited to the following:

- In June 2010, EPA proposed revised regulations for Coal Combustion Residuals ("CCRs") with consideration of two primary options: (a) regulate CCRs as a solid waste under Subtitle D of the Resource Conservation and Recovery Act ("RCRA"); or (b) regulate ash as a hazardous waste under Subtitle C of RCRA.
- In January 2013, EPA lowered the National Ambient Air Quality Standard ("NAAQS") for particulate matter.
- In June 2013, EPA proposed revisions to the Clean Water Act's effluent limitation guidelines regulations for the steam electric power generating industry.
- In January 2014, EPA re-proposed the New Source Performance Standard ("NSPS") for GHGs for new sources.
- On April 29, 2014, the Supreme Court upheld EPA's July 2011 Cross State Air Pollution Rule ("CSAPR"), which regulates SO<sub>2</sub> and NO<sub>x</sub> emissions, remanding the Rule to the D.C. Circuit, which lifted the stay on October 23, 2014.
- In June 2014, EPA proposed the Clean Power Plan which would regulate GHGs from existing sources.
- In August 2014, EPA finalized a revised regulation requiring utilities to reduce the adverse impacts to fish and other aquatic life caused by cooling water intake structures.

These rules may require additional investment for compliance. Planning for compliance with these regulations is complicated by the significant level of uncertainty surrounding the final outcome of the regulations, including impacts, timing and potential legislative activity.

In light of these uncertainties, each of the EPA rules will be discussed in detail later in this section following a review of the existing environmental rules and regulations.

# **Existing Regulations – Significant Environmental Effects**

[170-IAC 4-7-6(a)(4)]

#### **Air Emissions**

IPL is subject to regulation on the following air emissions: Sulfur Dioxide, Nitrogen Oxide, Regional Haze, Mercury and Air Toxics Standard ("MATS"), National Ambient Air Quality Standard, and Greenhouse Gas.

#### **Sulfur Dioxide**

Title IV of the Clean Air Act Amendments of 1990 ("CAAA") established a two-phase statutory program to reduce  $SO_2$  emissions. The EPA allocated  $SO_2$  emissions allowances based on a formula that uses historical operating data for specified years multiplied by the allowable limit and then converted to tons of emissions allowed. These tons of emissions are called "allowances" that can then be bought, sold or transferred between units for compliance purposes. Phase I of the program became effective on January 1, 1995, for larger, higher emitting units. In Phase I, the EPA allocated  $SO_2$  emissions allowances based on an emission rate of 2.5 lbs. per MMBtu. Phase II of the program became effective on January 1, 2000, and the EPA lowered the emissions rate used to allocate  $SO_2$  allowances from 2.5 to 1.2 lbs. per MMBtu.

In response to this regulatory program, IPL developed an Acid Rain Compliance Plan that was submitted to the IURC on July 1, 1992, (IURC Cause No. 39437) and subsequently approved on August 18, 1993. This plan called for the installation of two SO<sub>2</sub> retrofit Flue Gas Desulfurization ("FGD") units on Pete Unit 1 and Pete Unit 2. These FGD units were placed inservice in 1996. FGD is the technology used for removing SO<sub>2</sub> from the exhaust flue gases in power plants that burn coal or oil to produce steam for the steam turbines that drive their electricity generators.

The SO<sub>2</sub> regulations remained relatively unchanged as did the IPL compliance plan until March 10, 2005, when the EPA issued Clean Air Interstate Rule ("CAIR") which covered the 28 eastern states and the District of Columbia ("D.C."). The federal CAIR established a two-phase regional cap-and-trade program for SO<sub>2</sub> and NO<sub>x</sub>. Phase I of CAIR for SO<sub>2</sub> had an effective date of January 1, 2010, and reduced SO<sub>2</sub> emissions by 4.3 million tons; 45% lower than 2003 levels. Phase II of CAIR, was scheduled to become effective on January 1, 2015.

In anticipation of this CAIR regulatory program and to help meet the existing CAAA regulatory requirements, IPL developed a Multi-Pollutant Plan ("MPP") that was submitted to the IURC on July 29, 2004, (IURC Cause No. 42700) requesting approval of certain core elements of the plan which were approved on November 30, 2004. In order to reduce SO<sub>2</sub> emissions, IPL completed the Petersburg Generating Station ("Pete") Unit 3 FGD enhancement (May 2006) and the new Harding Street Generating Station ("HSS") Unit 7 FGD (September 2007). IPL also identified the enhancement of the Pete Unit 4 FGD as a core element of its MPP. IPL also completed a

Pete Unit 4 FGD upgrade project (IURC Cause No. 43403 approved April 2, 2008) in 2011 to help meet the additional SO<sub>2</sub> emission reduction requirements. IPL materially meets the Phase I CAIR requirements for SO<sub>2</sub> upon completion of all of these projects. However, IPL supplements its compliance plan with the purchase of emission allowances on the open market as needed.

As IPL was developing and implementing its MPP, the United States ("U.S.") Court of Appeals for the D.C. Circuit vacated the federal CAIR in July 2008 and remanded it to the EPA. Subsequently, in September 2008, the EPA moved for rehearing to the full bench (en banc). In December 2008, the U.S. Court of Appeals for the D.C. Circuit issued an order requiring the EPA to revise the federal CAIR and reinstate the effectiveness of the existing rule until the EPA revises CAIR. Thus, CAIR has remained in effect and will do so until a replacement rule is in place.

In August 2010, the EPA issued a proposed replacement rule, known as CSAPR, which was subsequently finalized in July 2011. The CSAPR mandated additional cuts in SO<sub>2</sub> and NO<sub>x</sub> emissions in two phases: 2012 and 2014. Further, it was a modified cap and trade rule with unlimited trading of allowances within individual states but limited interstate trading. However, prior to CSAPR becoming effective in 2012, several appeals were filed challenging its implementation. On December 31, 2011, the Court granted a request for stay and instructed EPA to implement CAIR during the stay. On August 21, 2012, the Court vacated and remanded back to EPA the CSAPR. As a result, CAIR remains in effect.

On April 29, 2014, the Supreme Court upheld CSAPR, remanding the Rule to the D.C. Circuit Court which lifted the stay on October 23, 2014. Many uncertainties remain related to the potential implementation of CSAPR, including timing, allocation of allowances, and market pricing. As it relates to timing, the D.C. Circuit Court did not specifically address the timeline suggested by EPA, which includes implementation of Phase I in 2015 and implementation of Phase II in 2017. As it relates to allowances, they may be allocated as originally included in the final Rule or EPA may re-evaluate and re-allocate allowances prior to re-instating the Rule. EPA may address new lower standards in the Rule prior to implementation, making the Rule more stringent. As a result of the uncertainty around the timing and allocation of allowances, there is also significant uncertainty around market pricing associated with this final Rule.

While we cannot predict the outcome of the Court decision or the final Rule which will be implemented, we expect that such a Rule would have a similar impact as that of CAIR or the original CSAPR. As such, IPL expects to comply through the successful operation of our existing pollution control equipment. In addition, IPL may be required to purchase  $NO_x$  and/or  $SO_2$  allowances on the open market to supplement its compliance plan.

## Nitrogen Oxide

On September 24, 1998, the EPA issued a final rule, referred to as the NO<sub>x</sub> State Implementation Plan ("SIP") Call. The rule imposed more stringent limits on NO<sub>x</sub> emissions from fossil fuel-fired steam electric generators in 21 states in the eastern third of the U.S., including Indiana. In June 2001, the Indiana Air Pollution Control Board adopted the Federal NO<sub>x</sub> SIP Call rule requiring IPL and other Indiana utilities to meet a system wide NO<sub>x</sub> emissions rate of 0.15 lb. MMBtu during the annual ozone season from May 1 – September 30 each year. In a similar fashion with the CAAA, compliance was demonstrated via an emission allowance trading program. In order to meet these more stringent NO<sub>x</sub> emission reduction requirements which became effective in 2004, IPL installed Selective Catalytic Reduction ("SCR") equipment on Pete Unit 2, Pete Unit 3 and HSS Unit 7 along with several low NO<sub>x</sub> clean coal technology ("CCT") projects on other units. The Pete SCR units commenced operations in May 2004 whereas the HSS Unit 7 SCR came online in May 2005.

As previously discussed, the EPA issued CAIR in May 2005. The federal CAIR not only required additional  $SO_2$  emission reductions but it also required further  $NO_x$  emission reductions. Phase I of CAIR became effective for  $NO_x$  on January 1, 2009, and required  $NO_x$  emission reductions by 1.7 million tons, 53% from 2003 levels. In addition, for the first time,  $NO_x$  compliance was required on a year-round basis in addition to the annual summer ozone requirements. Phase II of CAIR was scheduled to become effective on January 1, 2015.

IPL has already substantially met the Phase I CAIR emission reduction requirements for  $NO_x$  as a result of the installation of the SCR equipment on Pete Unit 2, Pete Unit 3 and HSS Unit 7. The only major impact from CAIR Phase I is IPL must now operate its  $NO_x$  emission reduction equipment on a year-round basis.

As mentioned earlier, EPA issued replacement rule, known as CSAPR, which has faced legal challenges for which the details of the outcome remain unknown.

# **Regional Haze**

A Regional Haze rule established planning and emissions reduction timelines for states to use to improve visibility in national parks throughout the U.S. The rule sets guidelines for states in setting Best Available Retrofit Technology ("BART") at older power plants. The EPA determined that states, such as Indiana, which adopt the federal CAIR cap-and-trade program for  $SO_2$  and  $NO_x$  will be allowed to apply federal CAIR controls to satisfy BART requirements. The Indiana Air Pollution Control Board also approved a final rule implementing BART which provides that sources in compliance with federal CAIR controls are also in compliance with BART requirements for  $SO_2$  and  $NO_x$ . It is anticipated the CSAPR will also meet the BART requirements.

## Mercury and Air Toxics Standard ("MATS")

In February 2012, EPA issued the final MATS Rule. MATS places strict emission standards equivalent to the top twelve percent in the industry for each of the four groups of Hazardous Air Pollutants ("HAPs"), as defined in Section 112 of the Clean Air Act ("CAA"): (1) mercury ("Hg"); (2) non-mercury metal HAPs (e.g., barium, beryllium, cadmium, and chromium, among others); (3) acid gas HAPs (e.g., hydrochloric acid ("HCl"); and (4) organic HAPs (e.g., dioxins and furans).

First, the MATS rule establishes a mercury limit of 1.2 lbs/TBtu on a 30-day rolling average on a single unit basis. The rule also allows for emissions averaging on multiple units. In the case of averaging multiple units, the rule establishes a mercury limit of 1.0 lb/TBtu on a 90-day rolling average. EPA allows emissions to be monitored using either Hg continuous emissions monitoring system ("CEMS") or sorbent trap monitoring. Second, the MATS rule limits acid gas emissions by establishing an emissions limit on HCl of 0.0020 lb/MMBtu with compliance demonstrated by frequent stack testing or HCl CEMS. Third, the MATS rule limits non-mercury metal HAPs. The rule allows compliance to be demonstrated with a filterable particulate matter limit of 0.030 lb/MMBtu, based on PM continuous parametric monitoring system ("CPMS"), PM CEMS, or frequent stack testing.

IPL developed a Compliance Plan, which included activated carbon injection and sorbent injection for mercury control and upgraded FGDs for acid gas control on all coal-fired units. The Plan also included upgraded electrostatic precipitators on Petersburg Units 1 and 2 and Harding Street Unit 7, in addition to baghouses on Petersburg Units 2 and 3 for particulate and mercury control. Finally, the Compliance Plan includes CEMS for Hg, HCl, and PM. In development of IPL's MATS Compliance Plan, it was also determined that installation of the necessary controls was not economical for the smaller, less controlled units, Eagle Valley Units 3-6 and Harding Street Units 5 and 6.

IPL received IURC approval in Cause No. 44242 to proceed with its MATS Compliance Plans and construction of Petersburg controls is currently underway. However, it was later determined that when considering the cost of complying with National Pollutant Discharge Elimination System ("NPDES") requirements and other potential future environmental regulations for HSS Unit 7 that the MATS controls were no longer economical and are no longer being installed for HSS Unit 7. IPL has proposed in Cause No. 44540 to refuel HSS Unit 7 from coal to natural gas. The costs, if approved, are listed in Section 5, Short Term Action Plan, Figure 5.5. See the Water section below for more detail on NPDES requirements.

## **National Ambient Air Quality Standards**

EPA is required under the CAA to set NAAQS for air pollutants that endanger public health or welfare. There are several NAAQS but only three directly impacting coal-fired power plants: SO<sub>2</sub>, ozone, and particulate. NAAQS do not directly limit emissions from utilities, but states

must develop State Implementation Plans ("SIPs") to achieve emissions reductions to address each NAAQS when an area is designated as nonattainment.

Currently, the counties in which IPL operates (Marion, Morgan, and Pike) are designated as attainment or unclassifiable for all pollutants, except SO<sub>2</sub>. The areas in which IPL operates are all currently designated as nonattainment for SO<sub>2</sub>. As a result, IDEM must develop a SIP establishing new requirements to ensure that the areas return to attainment. This is discussed in greater detail in the next section.

#### **Greenhouse Gas**

The only current national regulation for GHG is for existing sources with significant increases in emissions and for new sources. Congress has been unable to implement a national GHG program due to the potential impacts on a struggling economy. Potential future regulation in this area is discussed in the Impending and Future Regulations later in this section.

## **Existing Controls to Reduce Air Emissions**

As shown in Figure 3.1 below, IPL has already installed a myriad of environmental pollution control equipment. IPL has invested over \$600 million in the last ten years which has significantly reduced IPL's NO<sub>x</sub>, SO<sub>2</sub>, and particulate matter emissions as outlined below.

- Pete Unit 2 and Pete Unit 3 SCR in 2004
- HSS Unit 7 SCR in 2005
- Pete Unit 3 FGD upgrade in 2006
- HSS Unit 7 FGD in 2007
- Pete Unit 4 FGD upgrade 2011

Figure 3.1 – IPL Generating Units: Environmental Controls

| Unit                | Fuel     | ICAP<br>Rating<br>(MW) | Environmental Controls |
|---------------------|----------|------------------------|------------------------|
| Pete Unit 1         | Coal     | 230                    | FGD, NN, LNB/OFA       |
| Pete Unit 2         | Coal     | 415                    | FGD, SCR, LNB/OFA      |
| Pete Unit 3         | Coal     | 540                    | FGD, SCR               |
| Pete Unit 4         | Coal     | 530                    | FGD, NN, LNB           |
| Pete DG             | Diesel   | 8                      |                        |
|                     | Subtotal | 1,723                  |                        |
| HSS Unit 5          | Coal     | 100                    | SNCR, NN, LNB/OFA      |
| HSS Unit 6          | Coal     | 100                    | SNCR, NN, LNB/OFA      |
| HSS Unit 7          | Coal     | 410                    | SCR, FGD, NN, LNB/OFA  |
| HSS CTs 1-2         | Oil      | 32                     |                        |
| HSS CT 4            | Oil/Gas  | 79                     | Water Injection        |
| HSS CT 5            | Oil/Gas  | 79                     | Water Injection        |
| HSS CT 6            | Gas      | 154                    | LNB                    |
| HSS DG              | Diesel   | 3                      |                        |
|                     | Subtotal | 957                    |                        |
| Eagle Valley Unit 3 | Coal     | 40                     |                        |
| Eagle Valley Unit 4 | Coal     | 55                     | LNB/OFA                |
| Eagle Valley Unit 5 | Coal     | 61                     | LNB/OFA                |
| Eagle Valley Unit 6 | Coal     | 100                    | NN, LNB/OFA            |
| Eagle Valley DG     | Diesel   | 3                      |                        |
|                     | Subtotal | 259                    |                        |
| Georgetown GT 1     | Gas      | 75                     | LNB                    |
| Georgetown GT 4     | Gas      | 75                     | LNB                    |
|                     | Subtotal | 150                    |                        |
|                     | Total    | 3,089                  |                        |

Source: IPL

Note: Acronyms used in Figure 3.1 – CCOFA (Closed-Coupled Overfire Air), FGD (Flue Gas Desulfurization), LNB (Low NOx Burner), NN (Neural Net), SCR (Selective Catalytic Reduction), SNCR (Selective Non-Catalytic Reduction), SOFA (Separated Overfire Air)

As a result of HSS refueling to NG, Petersburg MATS Controls, and Eagle Valley CCGT replacement generation, IPL expects to achieve considerable reductions in fleet-wide emission rates by 2017 from current (2013):

- 67% reduction in SO<sub>2</sub> emission rate
- 23% reduction in NO<sub>x</sub> emission rate
- 23% reduction in PM emission rate
- 76% reduction in Hg emission rate
- 7% reduction in CO<sub>2</sub> emission rate

#### **Water**

The National Pollution Discharge Elimination System ("NPDES") permit system obtains its authority from Clean Water Act ("CWA"). Section 402 requires permits for the direct discharge of pollutants to the waters of the U.S. These permits, which IPL maintains for each of its power plants, have three main components: technology based and water quality based effluent limitations; monitoring requirements; and reporting requirements.

Effluent limitations identify the nature and amount of specific pollutants that facilities may discharge from regulated outfalls which are identified by unique numbers and internal wastewater streams as defined by 40 CFR Part 423. Currently, the NPDES permits require that the outfalls be monitored regularly for specified parameters.

On August 28, 2012, the IDEM issued NPDES permit renewals to Petersburg and Harding Street. These permits contain new Water Quality Based Effluent Limits ("WQBELs") and Technology-Based Effluent Limits ("TBELs") for the regulated facility NPDES discharges with a compliance date of October 1, 2015 for the new WQBELs. IPL sought and received approval to extend this compliant date to September 29, 2017, through Agreed Orders from IDEM. The NPDES permits limit several pollutants, but the new mercury and selenium limits drive the need for additional wastewater treatment technologies at Petersburg and Harding Street. IPL determined that installation of the necessary wastewater treatment technologies and other potential future environmental requirements in addition to the necessary Mercury and Air Toxic Standard (MATS) controls described in IPL's case-in-chief Cause No. 44242 were no longer the reasonable least cost plan for HSS. Instead, IPL is currently proposing to refuel HSS Unit 7 to operate on natural gas which reduces the cost to comply with environmental regulations and reduces the impact on the environment.

In addition to establishing effluent limits, the NPDES permit also includes compliance requirements with Section 316(a) and Section 316(b) of CWA. Section 316(a) provides thermal effluent limitations for certain facility outfall discharges which IPL must meet. These limits ensure the facility does not harm the fish, shellfish, and wildlife of the receiving waterbody. Section 316(b) provides regulations requiring that facility cooling water intake structures demonstrate the best technology available to minimize adverse environmental impact. In

addition, EPA has recently modified its cooling water intake regulations under Section 316(b) of CWA.

## Solid Waste (Solid Waste, Hazardous Waste and Disposal)

The solid waste generated at IPL's power plants is classified as either non-hazardous or hazardous. IPL generates hazardous and non-hazardous waste with the handling of both waste streams regulated under the Resource Conservation and Recovery Act ("RCRA").

#### **Hazardous Waste**

Hazardous waste is regulated under RCRA Subtitle C. There are three categories of hazardous waste generators for industry with each category having its own scope of regulations that must be met. The more hazardous waste that is generated, the higher the risk to the environment, hence the more regulation and oversight is imposed.

The three categories of hazardous waste are: 1) large quantity generator ("LQG"); 2) small quantity generator ("SQG"); and 3) conditionally exempt small quantity generator ("CESQG"). IPL plants are historically categorized as SQG and CESQG. As such, IPL faces minimal regulations and risk in this area.

#### Non-Hazardous Waste

Solid waste is regulated under Subtitle D of RCRA. IPL generates a large amount of solid waste every year that must be handled in accordance with this regulation. The primary sources of non-hazardous waste in the steam electric industry are fly ash, bottom ash, and scrubber sludge resulting from the FGD process. The fly ash and bottom ash are generated from the combustion of coal. Generally, IPL generates about 10% ash from the burning of coal or approximately 800,000 tons of ash per year, based on a typical coal burn of about 8,000,000 tons of Indiana coal per year. All ash is managed in accordance with federal, state and local laws and permits.

Ash is normally placed in ponds for treatment via sedimentation, to which the effluent is regulated pursuant to NPDES, shipped back to mines, and/or reused in an environmentally sound manner. In addition, fly ash is mixed with dewatered scrubber sludge and lime to make a stabilized product which is disposed of in a permitted, on-site landfill. Further, the Pete Units 1, 2, and 4 and HSS Unit 7 FGD, produce commercial grade gypsum from FGD operations that can be beneficially used for wallboard manufacturing, cement manufacturing, and agricultural use. In general, ash management activities have not changed for several years. However, more stringent ash management rules are anticipated, as discussed in the next section.

# Pending and Future Regulations – Significant Environmental Effects

[170-IAC 4-7-6(a)(4)]

There are a number of environmental initiatives that are being considered at the federal level that may impact the cost of electricity derived from the burning of coal. This includes, but is not limited to more stringent regulations requiring:

- Additional SO<sub>2</sub> emission reductions
- Additional NO<sub>x</sub> emissions reductions
- More stringent water management including 316(a) and 316(b)
- Metal and other various pollutant reductions associated with wastewater effluents
- More stringent ash management handling requirements for both wet and dry ash

#### **Cross State Air Pollution Rule**

The CAIR was promulgated in 2005, but was vacated by the D.C. Circuit Court. On appeal, the Court ruled that CAIR would remain in effect until such time as EPA promulgated a replacement rule. In August 2010, the EPA issued a proposed replacement rule, known as CSAPR, which was subsequently finalized in July 2011. The CSAPR mandated additional cuts in SO<sub>2</sub> and NO<sub>x</sub> emissions in two phases: 2012 and 2014. Further, it was a modified cap and trade rule with unlimited trading of allowances within individual states but limited interstate trading. However, prior to CSAPR becoming effective in 2012, several appeals were filed challenging its implementation. On December 31, 2011, the Court granted a request for stay and instructed EPA to implement CAIR during the stay. On August 21, 2012, the Court vacated and remanded back to EPA the CSAPR. As a result, CAIR remains in effect.

On April 29, 2014, the Supreme Court upheld CSAPR, remanding the Rule to the D.C. Circuit Court which lifted the stay on October 23, 2014. Many uncertainties remain related to the potential implementation of CSAPR, including timing, allocation of allowances, and market pricing. As it relates to timing, the D.C. Circuit Court did not specifically address the timeline suggested by EPA, which includes implementation of Phase I in 2015 nd implementation of Phase II in 2017. As it relates to allowances, they may be allocated as originally included in the final Rule or EPA may re-evaluate and re-allocate allowances prior to re-instating the Rule. EPA may address new lower standards in the Rule prior to implementation, making the Rule more stringent. As a result of the uncertainty around the timing and allocation of allowances, there is also significant uncertainty around market pricing associated with this final Rule.

While we cannot predict the outcome of the Court decision or the final Rule which will be implemented, we expect that such a Rule would have a similar impact as that of CAIR or the original CSAPR. As such, IPL expects to comply through the successful operation of our existing pollution control equipment. In addition, IPL may be required to purchase  $NO_x$  and/or  $SO_2$  allowances on the open market to supplement our compliance plan.

## **National Ambient Air Quality Standards**

EPA is required under the CAA to set NAAQS for air pollutants that endanger public health or welfare. There are several NAAQS but only three directly impacting coal-fired power plants: SO<sub>2</sub>, ozone, and particulate. NAAQS do not directly limit emissions from utilities, but states must develop State Implementation Plans ("SIPs") to achieve emissions reductions to address each NAAQS.

First, as it relates to SO<sub>2</sub>, EPA added a new one hour standard for SO<sub>2</sub> of 75 ppb in June 2010. This short-term standard is more stringent than in prior standards and may require additional SO<sub>2</sub> reductions in any area that is designated as not meeting the standard (known as a non-attainment area). On July 25, 2013, the areas in which IPL's Harding Street, Eagle Valley, and Petersburg Generating Stations operate were designated as non-attainment for this standard. SO<sub>2</sub> reductions for coal-fired units may be required by a SIP developed to meet new SO<sub>2</sub> NAAQS as early as 2017. On September 10, 2014, IDEM published proposed SO<sub>2</sub> SIP limits for IPL facilities. IPL Petersburg will likely require enhanced operation of the existing FGDs to further reduce SO<sub>2</sub> emissions. IPL is currently evaluating the impact of the proposed limits on the Petersburg facility. IPL's Harding Street and Eagle Valley generating stations are expected to comply with the proposed limits because coal-fired operation will cease (pending IURC approval of conversion of HSS 7 to natural gas) prior to the compliance date of the SO<sub>2</sub> SIP, January 2017.

Second, in January 2010, EPA proposed a revision to the NAAQS for ozone. EPA subsequently indicated that it would not propose revisions to the ozone standard until 2013 or later. It is expected that EPA may propose a revision to the NAAQS for ozone in 2014. Although ozone is not directly emitted by power plants, it forms in the atmosphere as a result of chemical reactions involving NO<sub>x</sub> and volatile organic compounds in the presence of sunlight. As such, utilities may be required to reduce emissions of NO<sub>x</sub> as a result of the revised ozone NAAQS and associated SIP. It is expected that NAAQS attainment under a revised standard and compliance with associated SIP would be required by around 2020.

Third, on January 15, 2013, EPA issued a final rule, which lowered the NAAQS for fine particulate matter (" $PM_{2.5}$ "). While designations are not yet final and IDEM has not developed a SIP, EPA has indicated that they expect 99% of counties (including all of Indiana) to meet the standard by 2020, when attainment is required, without any additional controls. In addition, the baghouses currently planned for installation on Petersburg Units 2 and 3 will further reduce  $PM_{2.5}$  emissions.

#### **Greenhouse Gas Regulation**

On June 18, 2014, EPA published its proposed Clean Power Plan, which establishes the proposed Best System of Emissions Reductions available for existing sources in accordance with Section 111(d) of the Clean Air Act. The President has set a target date of June 1, 2015 for a final rule. States will then be expected to submit their implementation plans to EPA by June 30, 2016, with potential for a one to two year extension.

The proposed Clean Power Plan establishes state-specific rate-based (lbs CO<sub>2</sub>/MWh) goals for carbon intensity for which States must develop plans in order to achieve by 2030. States may adopt the rate-based form of the goal of an equivalent mass-based form. EPA based these reductions on "building blocks," or measures of reduction, which include heat rate improvements for existing coal-fired EGUs, substituting generation from carbon-intensive affected EGUs with generation from existing (construction began prior to January 8, 2014) natural gas combined cycle units and renewables, and demand side energy efficiency. States may include some or all of these measures to varying degrees in their State regulations or they may use other measures.

For Indiana, the EPA proposal establishes an interim goal of 1,607 lbs CO<sub>2</sub>/MWh, which must be achieved by the State of Indiana on average over the years 2020-2029, in addition to a final goal of 1,531 lbs CO<sub>2</sub>/MWh which must be achieved by the State of Indiana in 2030. EPA based these standards on the "building blocks" previously mentioned. Specifically, EPA first used a basis of a six percent heat rate improvement of the coal-fired units in Indiana, which would result in a reduction from 2,158 to 2,029 lbs CO<sub>2</sub>/MWh. Second, EPA based the standards on an increase in dispatch of existing natural gas combined cycle units from 53% capacity factor in 2012 to 70% capacity factor in 2020. Third, EPA based the standards on re-dispatch to renewables from a 2012 value of 3% of Indiana's total generation to a value of 6.6% by 2029. Lastly, EPA based the standards on Indiana achieving a 1.5% annual incremental savings as a percentage of retail sales by 2025 and cumulative savings as a percentage of retail sales of 11.66% by 2029.

At this time, we cannot predict the final outcome of the Clean Power Plan as it is currently a proposed rule and the State will have discretion in its implementation. However, based on the proposed rule, the impacts may include decreased dispatch of coal-fired generation, increased dispatch of natural gas and renewable generation, and increase demand side energy efficiency measures.

# <u>Cooling Water Intake Structures – Clean Water Act Section 316(b)</u>

Section 316(b) of the Clean Water Act requires that the location, design, construction and capacity of cooling water intake structures reflect the best technology available for minimizing adverse environmental impact. Specifically, the 316(b) Rule is intended to reduce the impacts to aquatic organisms through impingement and entrainment due to the withdrawal of cooling water by facilities. In April 2011, EPA published a proposed rule which would set requirements that establish the "Best Technology Available" to minimize such impact. EPA released a final rule on May 19, 2014.

The rule could require closed cycle cooling systems. Alternatively, utilities could be faced with installing less costly controls, like modified travelling screens and fish handling and return systems. Three of the five IPL coal-fired units are currently equipped with closed cycle cooling systems. Another is equipped with a cooling tower which dissipates approximately one-half of

the waste heat generated by that unit. The impact of this rule will be dependent upon IDEM's determination for Best Technology Available for the IPL generating stations.

## **Coal Combustion Residuals (CCR)**

Utilities generate ash and other CCRs from the burning of coal and associated activities. Some of the CCRs are beneficially used in products such as concrete and wallboard while some are generally treated in on-site ash ponds or disposed in on-site landfills.

On three separate occasions over the last 20 years, EPA has conducted extensive research on what impacts CCRs have on land and water. Each time, EPA has ruled that CCRs were not hazardous waste. Now, EPA is once again determining how and at what level to regulate CCRs. On June 21, 2010, EPA published regulations for CCRs. EPA indicated that it is considering two primary options: (a) regulate CCRs as a solid waste under Subtitle D of the Resource Conservation and Recovery Act ("RCRA"); or (b) regulate ash as a hazardous waste under Subtitle C of RCRA. It is currently expected that EPA will issue a final rule in December 2014. The outcome could potentially require closure and capping of existing ponds, additional CCR disposal costs, and the installation of groundwater monitoring.

## **Summary of Potential Impacts**

These regulations would potentially require IPL to incur additional expenses for compliance in the future. Figure 3.2 below provides a summary of these potential regulations including potential timing and preliminary cost estimates.

Figure 3.2 – Estimated Cost of Potential Environmental Regulations

| Rule       | Earliest Expected<br>Compliance Date | Preliminary<br>Estimated<br>Capital | Preliminary<br>Estimated<br>Annual O&M |
|------------|--------------------------------------|-------------------------------------|----------------------------------------|
| CSAPR      | January 2015                         | \$0                                 | \$0                                    |
| CCR*       | Late 2019                            | \$21M-\$30M                         | \$3M-\$35M                             |
| CWA 316(b) | 2020                                 | \$6M-\$154M                         | \$0M-\$6M                              |
| ELG        | 2018                                 | \$0M-\$43M                          | \$0M-\$1M                              |
| GHG        | 2020                                 | TBD                                 | TBD                                    |
| NAAQS      | 2017                                 | \$27M-\$174M                        | \$13M-\$15M                            |

\*Includes estimated pond closure costs for the Petersburg Generating Station. It does not include the Eagle Valley Generating Station and HSS pond closure costs because IPL will incur those costs at the time they cease burning coal regardless of CCR outcome.

#### **Section 4. INTEGRATION**

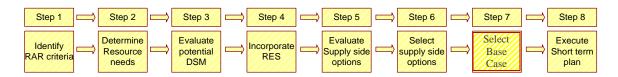
#### **Resource Evaluation Process**

[170-IAC 4-7-4(b) (1)] [170-IAC 4-7-8(a)]

The goal of IPL's integrated resource planning effort is to identify a resource plan that reliably serves IPL customers while meeting all federal, state, and IURC requirements, maintains rates at the reasonable least cost, and remains robust against the risks of uncertain future landscapes. This section describes the process to utilize modeling data inputs, define scenarios, assess capacity expansion plans, identify potential resource plans, analyze modeling results and select IPL's preferred resource portfolio. Subsections 4A through 4D contain detailed information to support the narrative as shown below.

| Subsection | Topic                         |
|------------|-------------------------------|
| 4A         | Resource Options              |
| 4B         | Demand Side Management        |
| 4C         | Transmission and Distribution |
| 4D         | Markets Trends and Forecasts  |

To achieve this, IPL selects and tests resource plans against future landscapes that target the key drivers that may significantly impact the electric industry and IPL customers. IPL combines the outcome of the future landscape analyses with other resource selection requirements and targets to select a robust plan which meets IPL's resource goals and represents IPL's preferred resource portfolio strategy.


As discussed in detail in the Changing Business Landscape and Environmental Rules and Regulations (Sections 2 and 3), the electric industry faces a multitude of environmental challenges and landscape uncertainties, but also some opportunities for change. EPA's existing, pending, and future regulations governing air, water, and solid waste targeting coal-fired generation clearly challenges existing and future generation resources. Significant among the challenges are the recent and pending EPA rules governing mercury ("Hg") and hazardous air pollutants, and new rules and requirements pending around water and solid waste management. Additionally, Greenhouse gas ("GHG") regulation has recently been proposed by EPA through the Clean Power Plan increasing the challenges faced by existing and new generating units' owners and operators.

In addition, the Indiana General Assembly passed legislation eliminating the previously established IURC target levels of energy efficiency DSM. Regardless, future cost-effective DSM will continue to be a resource used by IPL, which will reduce IPL's future load growth and future supply needs. IPL has included significant DSM savings in this IRP as described in Section 4B.

The outlook for natural gas ("NG") supply and prices remains a positive note for utilities. The continued commercial use of hydraulic fracturing ("fracking") technology has opened up abundant reserves of shale gas supplies, driving NG supplies higher and prices lower. Forecasts reflect prolonged low NG prices throughout the 20 year forecasted period. NG supplies have historically been more risky relative to coal, but access to abundant gas created by fracking technology has reduced the volatility in gas markets, pricing, and sourcing reliability. Gas-fired generation remains a more viable resource consideration, especially in light of the proposed EPA Clean Power Plan since gas-fired generation emits significantly less GHG emissions than coal-fired generation.

To assist in modeling these drivers and conducting IPL's resource planning evaluation, IPL engaged Ventyx in a consulting and modeling role for its integrated resource planning. Ventyx's extensive modeling capability with the scenario analyses of future landscapes provides valuable insights into how specific resource plans perform against a range of possible outcomes. This cost-based evaluation is supplemented by additional decision criteria important to the planning process and ultimate resource selection. Inclusion of criteria, such as fuel source reliability and diversity, new technology reliability, demand side resources, and the timing of likely Greenhouse gas ("GHG") regulation, present planning challenges. IPL employs additional consultants with specific expertise in demand side management ("DSM") with multiple test criteria for DSM selection as described in Section 4B. The resource evaluation and planning at IPL follows a robust multi-step process, as shown below in Figure 4.1, which incorporates refining long-term plans based on dynamic challenges in business and regulatory environments. The goal of this process is to propose a preferred resource portfolio to provide IPL customers with long-term low cost, low risk and reliable electricity service.

Figure 4.1 – IPL's Resource Evaluation Process



- Step 1. Identify resource planning criteria including the target reserve margin consistent with MISO resource adequacy requirements ("RAR").
- Step 2. Determine resource needs to meet that criteria based on a gross internal demand ("GID") load forecast.
- Step 3. Evaluate and model potential DSM programs and incorporate cost-effective DSM into the plan and also into a netted load forecast, to determine net internal demand ("NID"). Add demand response resources including Air

- Conditioning Load Management ("ACLM"), interruptible rider programs, and smart grid enabled Conservation Voltage Reduction ("CVR") as resources. <sup>12</sup>
- Step 4. Incorporate required supply resources, such as renewable generation, as appropriate and prudent as projected to be required by state or federal law. Currently, Indiana does not have a mandatory Renewable Energy Standard ("RES").
- Step 5. Determine remaining resource requirements and evaluate needs against an array of viable supply-side generation options based on minimum revenue requirements criteria and the future volatility/risk around those generation options in future scenarios.
- Step 6. Assess supply options against all resource selection objectives, including minimum revenue requirements, risk planning, fuel source reliability, possible future legislation and other pertinent planning criteria.
- Step 7. Select a base case expansion plan that incorporates all the DSM, renewable and supply resources that best meet IPL's long term planning objectives.
- Step 8. Identify and execute the short-term resource plan as appropriate, while continuing to refine, challenge, and update its longer-term resource plan as new information becomes available.

Source: IPL

# **Resource Planning Criteria**

[170-IAC 4-7-4(b)(9)] [170-IAC 4-7-6(c)(2)] [170-IAC 4-7-6(d)(4)]

As a member of the Midcontinent Independent System Operator ("MISO"), IPL is subject to the planning reserve margin requirement calculated by MISO. MISO determines the level of Planning Reserve Margin Requirement ("PRMR") necessary for the footprint and each Local Resource Zone to meet the 1 day in 10 years Loss of Load Expectation ("LOLE") standard. LOLE calculations take into account factors that determine the required level of Planning Reserve Margin necessary to meet the 1 day in 10 years standard required by FERC jurisdictional Reliability Entities. These factors include but are not limited to load shapes, load forecast uncertainty, regional load diversity, existing and planned capacity resources, and planned transmission facilities. IPL participates in MISO's regional, sub-regional and technical planning processes. The MISO methodology for determining the PRMR and specific results are identified below.

In order to determine generator capability, all units are required to annually demonstrate their maximum available capacity, by performing tests conducted in conformance with tariff terms and conditions. These tests establish the unit's MISO Installed Capacity ("ICAP") rating. The ICAP rating for each unit is then adjusted by its specific three (3) year average Equivalent Forced Outage Rate Demand excluding outside management control events ('XEFORd").

<sup>&</sup>lt;sup>12</sup> ACLM is described in Section 4B and CVR is described in Section 4C.

XEFORd is a forced outage rate that includes derate and outage information and is measured only during periods when the resource is in demand. This adjusted value establishes the Unforced Capacity ('UCAP") for the unit. Resources with higher availability contribute more toward resource adequacy. The Unforced Capacity ("UCAP") methodology recognizes the relative contribution toward the MISO-wide resource adequacy goal of each generating unit.

The Zonal Resource Credit ("ZRC") requirements based upon one MW unit of Planning Resource converted from one MW of UCAP, can vary by zone. Figure 4.2 below illustrates the FERC approved zonal boundaries IPL is in Zone 6.

Figure 4.2 - MISO Zones



Source: MISO

# **Resource Adequacy Requirements**

MISO requires market participants to identify capacity resources to meet the PRMR based upon specific load requirements on a planning year basis. Planning years are defined as June 1 of the current year through May 31 of the subsequent year. For the 2014-2015 planning year, LOLE results yielded a Planning Reserve Margin ICAP ("PRMICAP") of 14.8 % and a Planning Reserve Margin UCAP ("PRMUCAP) reserve margin of 7.3 %. The PRMUCAP for the 2015-2016 planning year will be published in November of 2014 and preliminary results show a decrease in the PRMUCAP of 0.2%.

Since MISO began calculating the PRMR for its LSEs, it has made annual adjustments to that calculation as well as to the Resource Adequacy construct. The current annual MISO resource adequacy construct may be modified by the next planning year to either replace the annual

construct with a seasonal construct or to add seasonal capacity products. A Seasonal Construct is favored by utilities with an obligation to serve as aligns better with its obligations to customers, allows utilities to better adapt changing market, business, and regulatory landscapes, and addresses the winter peaking issues of natural gas. IPL is a leader in the resource adequacy related stakeholder process and actively provides substantive comments to MISO to influence change in the best interests of our customers.

## Planning Reserve Margin Modeling

IPL's minimum PRMR established by MISO for 2014 equates to an effective 14.8% reserve margin, representing an increase from 2012 (13.1%) and 2013 (14.2%). As identified above, many factors are used by MISO to establish an LSE's resource adequacy requirement. The LSE's planning reserve margin changes annually as MISO modifies its LOLE analysis and as a result of changes in its EFORd and diversity. IPL's ICAP ratings can also change annually due to the results of unit testing. For Ventyx's long term modeling purposes in this IRP, IPL identified a 14% planning reserve margin to be used consistent with IPL's summer-rated capacity. This long-term modeling number provides for targeted reserves in the range of future expected MISO-determined resource needs and is consistent with the MISO specific calculations shown in Figure 4.3.

## Planning Year beginning June 1, 2015 and ending May 31, 2016

IPL is retiring its Eagle Valley units 3 through 6 by April 16, 2016 to comply with its MATS deadline. However, this retirement date is 6.5 weeks before the end of the 2015-2016 MISO Planning Year. MISO's current resource adequacy requirement states a capacity resource that clears a planning reserve auction must be available during the entire commitment period otherwise replacement capacity from the same zone must be secured to avoid tariff compliance penalties levied by FERC. During this 6.5 week low load period IPL has capacity in excess of its requirement to reliably serve its load. The requirement to buy additional capacity is unjust and unreasonable and would be merely a transfer of wealth with no impact on resource adequacy for IPL or Zone 6. In order to avoid the excess costs associated with this provision, on June 20, 2014, IPL submitted a request to FERC to waive the replacement requirement needed during the stated 6.5 week timeframe. With the support of the IURC comments filed with FERC, this request was granted by FERC on October 15, 2014. As a result of FERC granting the Waiver Request, IPL and its customers will not be forced to bear the costs of unneeded capacity.

#### **Determine Resource Needs**

[170-IAC 4-7-4(b)(6)] [170-IAC 4-7-5(b)] [170-IAC 4-7-6(b)(8)] [170-IAC 4-7-8(b)(3)]

# Load Forecast, Incorporation of Demand Side Management, and Application of Planning Criteria

IPL's load history and forecast of economic drivers are used to derive a base econometric forecast. IPL then overlays any non-economic drivers that are in the landscape, but not in the economic drivers, such as appliance efficiencies, to derive the gross internal demand ("GID"). The GID load forecast includes historical conservation or energy efficiency DSM, but excludes any new energy efficiency DSM initiatives or load management programs.

IPL determines the cost-effective energy efficiency DSM levels to be included in the resource planning throughout the 20 year planning period based on its forecast described in Section 4B. The cost-effectiveness tests of the DSM programs incorporate the avoided supply capacity and energy costs used in the IRP model. The same capacity and energy costs are used to determine the cost-effectiveness of a new generating unit for production cost modeling to evaluate demand-side resources on a consistent and comparable basis with supply side resources. DSM resources include energy efficiency and demand response programs dependent upon customer participation. The demand response programs, including ACLM and loads associated with IPL interruptible tariffs, are included as a "first resource" option in the capacity expansion plan. Since energy efficiency programs do not have significant capacity attributes and are not dispatchable, they are built in next as reductions to load requirements followed by solar DG energy secured through Rate REP.

IPL recognizes the challenge of DSM program benefit cost test evaluation results not directly aligning with PVRR analysis of the production cost model. Using the same cost inputs for both models aligns outcomes. IPL's short term needs to mitigate environmental regulatory risks through generation additions and retrofits results in excess energy production capability in the IRP planning period. Theoretically, a model including DSM as an optional choice would likely not choose DSM in this situation. IPL recognizes the importance of consistency in DSM programs to focus on changing customer behavior though a multi-year approach; therefore, DSM continues to be included as described above.

As further described in Section 4B, IPL's DSM evaluation process includes estimates of future DSM profiles, program measure duration, program free riders, and coincident peak impacts to identify the expected load impacts. Since these long-term DSM programs will be more clearly defined in future filings with the IURC, estimates of their load impacts are used. The GID forecast is then adjusted to incorporate all cost effective energy efficiency and demand response to derive the net internal demand ("NID"). These load forecasts are shown in the supply-demand balance report in Figure 4.3.

IPL's resource planning reserve margin is applied to the NID forecast to determine the additional IPL resource needs, and used by Ventyx in resource scenario modeling. Note, the current MISO resource adequacy methodology is based on short-term targeted IPL resource requirements rather than a long-term targeted IPL reserve margin, which is influenced by both IPL and regional MISO conditions and correlations as discussed previously.

Figure 4.3 - IPL's Load and Resource Balance Report

| PEAK                                     | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | 24-25 |
|------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| IPL's Non-Coincident Peak Forecast       | 2,965 | 2,989 | 2,995 | 2,999 | 3,001 | 3,009 | 3,008 | 3,013 | 3,021 | 3,030 |
| Demand Reduction Programs (MW)           | 15-16 | 16-17 | 17-18 | 18-19 | 19-20 | 20-21 | 21-22 | 22-23 | 23-24 | 24-25 |
| 0 , ,                                    | -     |       |       |       |       |       |       |       |       |       |
| Demand Response                          | 63    | 63    | 63    | 63    | 63    | 63    | 63    | 63    | 63    | 63    |
| Conservation Voltage Reduction (CVR)     | 20    | 20    | 20    | 20    | 20    | 20    | 20    | 20    | 20    | 20    |
| Total                                    | 83    | 83    | 83    | 83    | 83    | 83    | 83    | 83    | 83    | 83    |
| Effective Capacity Reserve Margin        |       |       |       |       |       |       |       |       |       |       |
| Net Internal Demand                      | 2,882 | 2,906 | 2,912 | 2,916 | 2,918 | 2,926 | 2,925 | 2,930 | 2,938 | 2,947 |
| PRM <sub>ICAP</sub>                      | 14.0% | 14.0% | 14.0% | 14.0% | 14.0% | 14.0% | 14.0% | 14.0% | 14.0% | 14.0% |
| IPL ICAP Requirement                     | 3,285 | 3,313 | 3,319 | 3,324 | 3,327 | 3,336 | 3,335 | 3,340 | 3,349 | 3,359 |
| MISO Installed Capacity (ICAP)           | 3,119 | 2,861 | 3,532 | 3,532 | 3,532 | 3,532 | 3,532 | 3,532 | 3,532 | 3,532 |
| Effective Reserve Margin using MISO ICAP | 8%    | -2%   | 21%   | 21%   | 21%   | 21%   | 21%   | 21%   | 20%   | 20%   |

Source: IPL

# **Supply Resource Modeling**

After inclusion of all DSM, IPL plans to satisfy the balance of its resource needs through existing and new supply-side generation and/or capacity purchases. Existing IPL generation resources are undergoing changes as described above. In addition, recent changes in wastewater permit requirements dictated extensive analysis of remaining coal-fired units as described below.

# National Pollutant Discharge Elimination System ("NPDES") Analysis

Concurrent with the 2014 IRP process, IPL conducted an extensive evaluation of IPL's two coal-fired generating plants, surrounding the upcoming costs of NPDES compliance along with other potential environmental regulations. As discussed in Section 3, Environmental, NPDES permit requirements regulate and authorize specific industrial wastewater and Stormwater. On August 28, 2012, the IDEM issued NPDES permit renewals to Petersburg and Harding Street, which contain new Water Quality Based Effluent Limits and Technology-Based Effluent Limits, with a compliance date of September 29, 2017, resulting from an IDEM approved extension as described in Section 3 Environmental Rules and Regulations.

The NPDES wastewater compliance projects are centrally designed systems to treat the wastewater and Stormwater from each generating plant, not unit-specific controls, and are primarily driven by the presence of coal-fired generation. Harding Street Unit 7 will be the sole coal-fired unit at Harding Street following the pending refuel of units 5 and 6, and contribute the majority of the costs associated with NPDES compliance. Contrarily, at Petersburg, all generating units are coal-fired, minimizing the incremental impact that any one unit has on NPDES compliance costs.

Using the unit-specific NPDES compliance costs, IPL estimated the full life cycle cost profile of the Big Five coal units (Petersburg Units 1 through 4 and Harding Street Unit 7) and compared those costs to replacement of the coal units with alternative resource options over the estimated remaining life of the units. In order to assess various risks and uncertainties, this analysis included stress testing resource options by considering future unknown environmental regulations including Greenhouse Gas Regulation, National Ambient Air Quality Standards, Coal Combustion Residuals, and cooling tower water impacts called 316(b), but plausible risks by way of discrete scenario analysis and probabilistic decision tree scenario analysis.

The analysis identified the Petersburg NPDES retrofit, inclusive of all four Petersburg units, as the reasonable least cost plan. Furthermore, the NPDES costs at Petersburg are relatively low on a per-unit basis. A simple payback analysis supported the scenario analysis showing all the Petersburg units as having the low cost PVRR under all future scenarios (except for a low gas price scenario where Pete 1 was near breakeven) through 2019. Conversely, high incremental NPDES capital costs associated with Harding Street 7 along with avoidable MATS costs and potential future environmental regulations do not justify continuing Harding Street 7 on coal. The results identified the conversion of Harding Street Station ("HSS") Unit 7 to gas-fired generation as the reasonable least cost plan. Therefore, in the IRP, HSS Unit 7 is modeled under the assumption that the unit will be refueled in 2016.

The NPDES analysis was a detailed analysis specific to NPDES compliance costs and other pending and future regulations costs on IPL's existing generation. Its primary focus was on the economics of the NPDES retrofit decision. The IRP analysis, discussed below, is a much broader resource planning evaluation focused on future resources needs. Using both scenario analysis and a probabilistic decision tree analysis, the NPDES analysis considered a wide range of scenarios surrounding Greenhouse Gas Regulation, National Ambient Air Quality Standards, Coal Combustion Residuals, and 316(b). Whereas, in the IRP modeling, the more known/probabilistic cost estimates of these regulations discerned from the NPDES analysis were used, with the exception of Greenhouse Gas Regulation where three scenarios were used. Both sets of modeling included high, low, and base natural gas forecasts.

On October 16, 2014, IPL filed its NPDES compliance strategy with the IURC, comprising of retrofitting Petersburg and refueling HSS Unit 7. Additional details on IPL's compliance plan as well as the analysis performed can be found under IURC Cause No. 44540.

# **Existing Generation**

[170-IAC 4-7-6(a)(1)] [170-IAC 4-7-6(a)(2)]

In addition to current wind and solar Power Purchase Agreements ("PPAs") described later in this section, Figure 4.4 shows IPL's current generation resources with projected summer installed capacity ratings used in the model for the next 20 years. These numbers reflect all known and/or planned unit derates, life extensions and retirements. This table includes the

identified planned retirements of Eagle Valley Units 3 through 6 by April 16, 2016. Likewise, the replacement generation for the mentioned retirements, the Eagle Valley CCGT, has been integrated with an expected in-service date of spring 2017. Fuel changes have also been identified and incorporated into this table showing the approved refueling of Harding Street Steam Turbine Unit 5 and 6 and the anticipated refueling of Harding Street Steam Turbine Unit 7.

Figure 4.4 – IPL's Current Generation Resources with Summer Capacity Ratings (MW)

|                 |      |      |      |      |      |      |      | ienerat | ing Res | ource F | Report |      |      |      |      |      |      |      |      |      |
|-----------------|------|------|------|------|------|------|------|---------|---------|---------|--------|------|------|------|------|------|------|------|------|------|
| MISO Installed  |      |      |      |      |      |      |      |         |         |         |        |      |      |      |      |      |      |      |      |      |
| Capacity (MW)   | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022    | 2023    | 2024    | 2025   | 2026 | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 | 2033 | 2034 |
| HS ST5          | 100  | 0    | 0    | 0    | 0    | 0    | 0    | 0       | 0       | 0       | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| HS ST6          | 100  | 0    | 0    | 0    | 0    | 0    | 0    | 0       | 0       | 0       | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| HS ST7          | 410  | 0    | 0    | 0    | 0    | 0    | 0    | 0       | 0       | 0       | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| EV ST3          | 40   | 0    | 0    | 0    | 0    | 0    | 0    | 0       | 0       | 0       | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| EV ST4          | 55   | 0    | 0    | 0    | 0    | 0    | 0    | 0       | 0       | 0       | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| EV ST5          | 61   | 0    | 0    | 0    | 0    | 0    | 0    | 0       | 0       | 0       | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| EV ST6          | 100  | 0    | 0    | 0    | 0    | 0    | 0    | 0       | 0       | 0       | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| PETE ST1        | 230  | 227  | 227  | 227  | 227  | 227  | 227  | 227     | 227     | 227     | 227    | 227  | 227  | 227  | 227  | 227  | 227  | 227  | 0    | 0    |
| PETE ST2        | 415  | 410  | 410  | 410  | 410  | 410  | 410  | 410     | 410     | 410     | 410    | 410  | 410  | 410  | 410  | 410  | 410  | 410  | 410  | 410  |
| PETE ST3        | 540  | 534  | 534  | 534  | 534  | 534  | 534  | 534     | 534     | 534     | 534    | 534  | 534  | 534  | 534  | 534  | 534  | 534  | 534  | 534  |
| PETE ST4        | 530  | 526  | 526  | 526  | 526  | 526  | 526  | 526     | 526     | 526     | 526    | 526  | 526  | 526  | 526  | 526  | 526  | 526  | 526  | 526  |
| HS GT4          | 79   | 79   | 79   | 79   | 79   | 79   | 79   | 79      | 79      | 79      | 79     | 79   | 79   | 79   | 79   | 79   | 79   | 79   | 79   | 79   |
| HS GT5          | 79   | 79   | 79   | 79   | 79   | 79   | 79   | 79      | 79      | 79      | 79     | 79   | 79   | 79   | 79   | 79   | 79   | 79   | 79   | 79   |
| HS GT6          | 154  | 154  | 154  | 154  | 154  | 154  | 154  | 154     | 154     | 154     | 154    | 154  | 154  | 154  | 154  | 154  | 154  | 154  | 154  | 154  |
| GTOWN GT1       | 75   | 75   | 75   | 75   | 75   | 75   | 75   | 75      | 75      | 75      | 75     | 75   | 75   | 75   | 75   | 75   | 75   | 75   | 75   | 75   |
| GTOWN GT4       | 75   | 75   | 75   | 75   | 75   | 75   | 75   | 75      | 75      | 75      | 75     | 75   | 75   | 75   | 75   | 75   | 75   | 75   | 75   | 75   |
| HSS GT1 & GT2   | 32   | 32   | 32   | 32   | 32   | 32   | 32   | 32      | 32      | 32      | 32     | 32   | 32   | 32   | 32   | 32   | 32   | 32   | 32   | 32   |
| PETE IC 1-3     | 8    | 8    | 8    | 8    | 8    | 8    | 8    | 8       | 8       | 8       | 8      | 8    | 8    | 8    | 8    | 8    | 8    | 8    | 8    | 8    |
| EV IC1          | 3    | 0    | 0    | 0    | 0    | 0    | 0    | 0       | 0       | 0       | 0      | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| HSS IC1         | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3       | 3       | 3       | 3      | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    | 3    |
| HS ST5 Gas      | 0    | 100  | 100  | 100  | 100  | 100  | 100  | 100     | 100     | 100     | 100    | 100  | 100  | 100  | 100  | 100  | 100  | 0    | 0    | 0    |
| HS ST6 Gas      | 0    | 100  | 100  | 100  | 100  | 100  | 100  | 100     | 100     | 100     | 100    | 100  | 100  | 100  | 100  | 100  | 100  | 0    | 0    | 0    |
| HS ST7 Gas      | 0    | 430  | 430  | 430  | 430  | 430  | 430  | 430     | 430     | 430     | 430    | 430  | 430  | 430  | 430  | 430  | 430  | 430  | 430  | 0    |
| EV CCGT*        | 0    | 0    | 671  | 671  | 671  | 671  | 671  | 671     | 671     | 671     | 671    | 671  | 671  | 671  | 671  | 671  | 671  | 671  | 671  | 671  |
| Solar           | 30   | 30   | 30   | 30   | 30   | 30   | 30   | 30      | 30      | 30      | 30     | 30   | 30   | 30   | 30   | 30   | 30   | 30   | 30   | 30   |
| Total Resources | 3119 | 2861 | 3532 | 3532 | 3532 | 3532 | 3532 | 3532    | 3532    | 3532    | 3532   | 3532 | 3532 | 3532 | 3532 | 3532 | 3532 | 3332 | 3105 | 2675 |

<sup>\*</sup>Updated Ratings reflect 671 MW of ICAP Capacity resulting from Duct Firing Technology, however 644 MW was used in modeling.

Source: IPL Installed Capacity (Equivalent of MISO ICAP)

# **New Generation Resource Modeling**

Currently, Indiana's voluntary 10% renewable energy standards ("RES") is included in the resource modeling. IPL is well positioned for the future with about 300 MW of associated energy secured under long-term Wind PPAs and an additional 98 MW of solar energy acquired through our Rate REP program. Therefore, absent any pending RES bills, and a solid renewable energy foundation, no specific renewables requirements were used to constrain the generation resource modeling. The supply resource selection process includes consideration of a range of generation resource options, including H-Class CCGT, CT, Nuclear, Wind and Solar. In the IPL 2011 IRP, the Company determined hydroelectric power was not a viable resource. Inputs from this

analysis have maintained constant over the last three years; hence, hydroelectric power has not been included in this IRP. While IPL is investigating the feasibility of installing a Battery Energy Storage System ("BESS") to provide ancillary services, capacity and pilot testing for renewable integration, it was not included as a separate new resource in the Ventyx model for this IRP due to MISO tariff conditions, which are not favorable to energy storage.<sup>13</sup> These technologies are identified in detail in Section 4A. IPL would need to incorporate renewable resources to satisfy any RES during this step.

Once the existing resources were profiled and potential new resources were identified, IPL worked with Ventyx to define and model these new generation resources including IPL's cost definitions and operating profiles. The generation profiles are described in Section 4A and include heat rates, Operation and Maintenance ("O&M") costs, capital costs, and emission rates for each technology.

## **Capacity Purchase Modeling**

IPL customers have benefited in recent years from IPL's ability to purchase capacity at prices below the levelized cost of building new capacity. Although bilateral market capacity prices have remained depressed historically, they are not expected to remain at the current level as the supply-demand balance of capacity comes more into equilibrium in the MISO footprint over the next few years. In 2014, MISO Zone 6 Capacity Auction Clearing Price rose sharply to \$16.75 /MW-Day compared to the previously established clearing price in the 2013-14 Planning Year of \$1.05/MW-Day. Excess capacity supply will likely continue to diminish in the near term as generators are retired in response to EPA rules set to take effect over the next few years, resulting in a continued rise in MISO capacity auction prices. Stemming from the retirements of Eagle Valley Units 3 through 6 in spring 2016, IPL will need to purchase capacity to bridge the gap between the mentioned forced small unit retirements and in-service date of the CCGT. IPL used forecasted rising capacity market prices for IRP modeling Resources are compared to these market prices which influence the timing and/or need of new generation additions.

# **IRP Modeling Scenarios**

[170-IAC 4-7-8(b)(2)] [170-IAC 4-7-8(b)(7)(A)] [170-IAC 4-7-8(b)(7)(B)] [170-IAC 4-7-8(b)(7)(E)] [170-IAC 4-7-4(b)(6)]

With the resource options identified and profiled, IPL worked with Ventyx to help define possible future power industry landscapes. With the assistance from stakeholders in the public meeting process, IPL identified the three drivers that were viewed to have the largest impact on future plans, along with having a great deal of uncertainty linked to them: environmental regulation, natural gas prices, and load variation.

<sup>&</sup>lt;sup>13</sup> IPL is working with MISO to adapt its tariff and Business Practice Manuals to treat BESS appropriately.

## **Key Driver #1 – Future Environmental Regulation**

IPL considered four environmental landscapes around costs and timing of effective dates for proposed CO<sub>2</sub> regulation. The description associated with each landscape is described below.

- EPA Shadow Price (Base) The prices are representative of marginal compliance with the EPA's proposed CPP. The modeling for this case applied EPA's shadow prices to IPL's coal unit emissions above the Indiana target emission rate commencing in 2020 using a fixed (\$/kW) cost based on the CO<sub>2</sub> building block shadow prices.
- ICF Mass Cap (Environmental) IPL engaged the consulting firm ICF to provide its CO<sub>2</sub> projections. The prices are representative of ICF's view of the EPA's proposed CPP with the application of aggregate treatment of a cap on CO<sub>2</sub> emissions ("Mass Cap"). This case assumed a market clearing price and was applied in the modeling as an equivalent CO<sub>2</sub> tax to existing fossil generation. The modeling assumes the EPA rules start in 2020 as proposed in the rule making, although ICF's probabilities suggest a reasonable chance of deferred, post 2020, implementation.
- Waxman-Markey (High Environmental) These prices, developed by Ventyx as part of their 2013 Fall Reference case, are representative of previously proposed federal legislation known as the Waxman-Markey Bill. These prices represent the high range of our CO<sub>2</sub> sensitivities.
- No CO<sub>2</sub> (Low Environmental) A no CO<sub>2</sub> case that could either reflect no near term regulation or no or very low additional costs needed beyond IPL's current projected resource plan. This shows incremental effects of CO<sub>2</sub> compared to the base case.

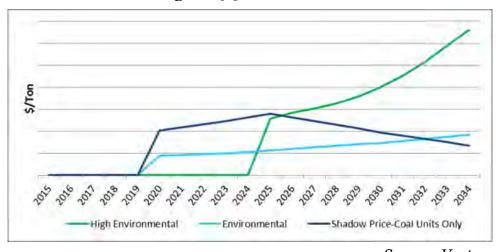



Figure 4.5- CO2 Sensitivities

Source: Ventyx

See Section 7, Confidential Attachment 5.1, Ventyx IPL IRP Modeling Summary for pricing.

-

<sup>&</sup>lt;sup>14</sup> Additional information can be found in IURC Cause No. 44540

## **Key Driver #2 – Natural Gas Prices**

IPL considered five fuel forecasts of NG prices as shown in Figure 4.6. NG pricing has historically been the most volatile, but promising assumptions on shale gas supply and pricing make this fuel source a key resource driver; although, the surge in natural gas plant construction could diminish fuel diversity in the market. See Section 7, Confidential Attachment 5.1, Ventyx IPL IRP Modeling Summary for pricing.

- Base Gas Prices
- High Gas Prices Landscape
- Low Gas Prices Landscape
- Environmental Prices Landscape
- Mass Cap Prices Landscape

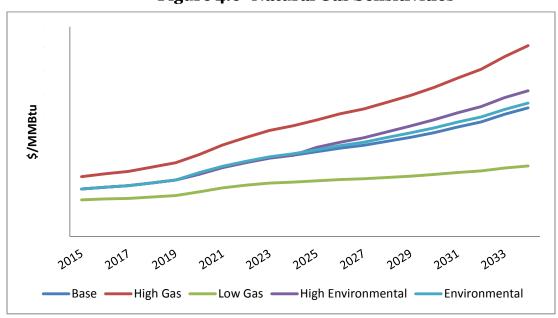



Figure 4.6- Natural Gas Sensitivities

Source: Ventyx

See Section 7, Confidential Attachment 5.1, Ventyx IPL IRP Modeling Summary for pricing.

# **Key Driver #3 - Load Variation**

IPL considered three demand and energy forecasts for load sensitivity. The High and Low Load range was derived from the 2013 IPL-specific State Utility Forecasting Group ("SUFG") forecast. This range was developed primarily based upon economic uncertainty. The forecast scenarios, while based on economic uncertainty, could also be driven by changes in technology,

consumer behavioral changes, and State and Federal energy policies. The forecast scenarios should be viewed broadly as demand driven sensitivity scenarios from all load impact sources. For example, the low load forecast could be driven by high DSM levels, a weak economy, or higher distributed generation adoption. See Section 4D for additional details along with the High and Low energy forecast.

- Base Load Forecast (3,131 MW NID in 2034)
- High Load Forecast(3,242 MW NID in 2034)
- Low Load Forecast (3,033 MW NID in 2034)

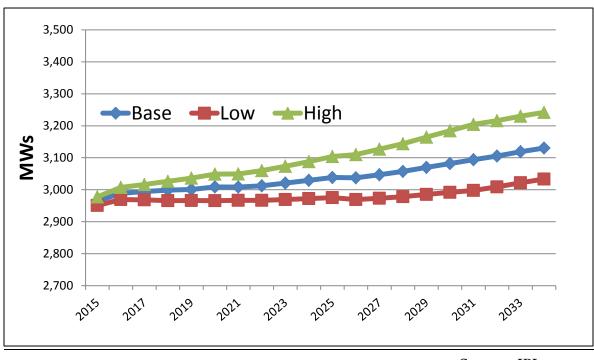



Figure 4.7- Load Sensitivities (Demand Net of DSM)

Source: IPL

Derived from the three key drivers discussed above, IPL created eight scenarios as shown in Figure 4.8 as a way to screen the capacity expansion resources. In addition to the sensitivities themselves, Ventyx created correlated market prices based on the sensitivities supplied. These scenarios help determine the robustness of possible expansion plans. The use of multiple scenarios allows IPL to identify a Preferred Portfolio that will be competitive in a wide range of future landscapes.

Figure 4.8- IPL's 2014 IRP Modeling Scenarios

| Scenario<br>No | Scenario<br>Name      | Gas/Market<br>Price     | CO₂ Price                                                      | Load<br>Forecast |
|----------------|-----------------------|-------------------------|----------------------------------------------------------------|------------------|
| 1              | Base                  | Ventyx Base             | IPL-EPA Shadow price starting 2020                             | Base             |
| 2              | High Load             | Ventyx Base             | IPL-EPA Shadow price starting 2020                             | High             |
| 3              | Low Load              | Ventyx Base             | IPL-EPA Shadow price starting 2020                             | Low              |
| 4              | High Gas              | Ventyx High             | IPL-EPA Shadow price starting 2020                             | Base             |
| 5              | Low Gas               | Ventyx Low              | IPL-EPA Shadow price starting 2020                             | Base             |
| 6              | High<br>Environmental | Ventyx<br>Environmental | Waxman-Markey proxy<br>Ventyx Fall 2013 price<br>starting 2025 | Base             |
| 7              | Environmental         | Ventyx Mass<br>Cap      | Mass Cap ICF price starting 2020                               | Base             |
| 8              | Low<br>Environmental  | Ventyx Base             | None                                                           | Base             |

Source: IPL

# **Supply Resource Evaluation**

# **Overall Methodology Description**

With the generation resource technologies profiled, the future landscapes identified, and supply resource needs established, the next step was to evaluate the generation technologies against the future landscapes. IPL worked with Ventyx to perform a multi-step evaluation process. First, Ventyx performed a capacity expansion evaluation for the profiled supply resources allowing the model's least-cost planning algorithm to select resources based on resource needs and targeting a minimum revenue requirement objective. Modeling using Ventyx's "Capacity Expansion" module was performed for all future landscapes. Next, based on these results, IPL then derived select resource plans for future landscape analysis. This involved identifying the resource and timing and running the resource portfolio against all future landscapes.

# **Capacity Expansion Simulation Methodology**

[170-IAC 4-7-4(b)(9)] [170-IAC 4-7-7(a)]

The Capacity Expansion simulation uses minimum revenue requirements planning criteria to evaluate generation technologies based on a given set of future landscape assumptions. In this simulation, IPL's retail load, current generating fleet, and future additions are dispatched competitively against MISO-IN market prices, replicating the current MISO market. This is performed by calculating the incremental present value of revenue requirements ("PVRR") for multiple resource expansion plans and selecting the resources and timing that result in the lowest present value. The model is a useful tool in generating informative cost-focused planning insights, based on a given set of future assumptions. Different future landscapes will produce a different set of future drivers and could produce different capacity expansion results.

For the modeling, Ventyx and IPL selected a group of generation options that represent proven and commercially available technologies, as shown in Figure 4.9. Ventyx's Capacity Expansion model was then run for the selected generation technologies against the future landscapes. Additionally, Ventyx's Capacity Expansion model was used to determine if and/or the early retirement of the four units at Petersburg was economic in each scenario.

# Confidential Figure 4.9- Supply Resource Options (2013\$)

|                         | CT  | Combined<br>Cycle – H Class | Nuclear | Photovoltaic | Wind Turbine |
|-------------------------|-----|-----------------------------|---------|--------------|--------------|
| Summer (MW)             | 160 | 200**                       | 200**   | 10           | 50           |
| Winter (MW)             | 180 | 212.5**                     | 200**   | 10           | 50           |
| Average Heat<br>Rate    |     |                             |         |              |              |
| VOM* (\$/MWh)           |     |                             |         |              |              |
| FOM* (\$/kW)            |     |                             |         |              |              |
| Capital Cost<br>(\$/kW) |     | 1                           |         | 1            |              |

\*VOM – Variable Operating and Maintenance Costs, FOM – Fixed Operating and Maintenance Costs \*\*Partial Units

Source: Ventyx

The expansion simulation modeling is deterministic – looking at one set of future conditions, and does not consider the variance risk of the inputs or other relevant decision criteria. So in that respect, the model does not necessarily generate the preferred solution, but rather information to

screen resources and support the overall resource decision making process. Descriptions of the capacity expansion analysis modeling and inputs are discussed below.

# **Capacity Expansion Results**

[170-IAC 4-7-8(b)(7)(C)]

The results of the capacity expansion modeling are presented below. In all scenarios, Eagle Valley ("EV") units 3 through 6 were set to retire in 2016 and Harding Street units 5 through 7<sup>15</sup> were set to be refueled in 2016. Also, all scenarios include the addition of the Eagle Valley CCGT in 2017.

\_

<sup>&</sup>lt;sup>15</sup> The Harding Street unit 7 refuel from coal to natural gas is currently pending before the IURC in Cause No. 44540.

Figure 4.10 – Capacity Expansion Results

| YEAR          | Base                                               | High Gas                                                    | Low Gas                                       | High Load                                     | Low Load                                                  | High Environ-<br>mental                                       | Environ-<br>mental                                 | Low Environ-<br>mental                          |
|---------------|----------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------|
| 2015          | Market 200<br>MW                                   | Market 200<br>MW                                            | Market 200<br>MW                              | Market 200<br>MW                              | Market 200<br>MW                                          | Market 200 MW                                                 | Market 200<br>MW                                   | Market 200 MW                                   |
| 2016          | Market 450<br>MW                                   | Market 450<br>MW                                            | Market 450<br>MW                              | Market 500<br>MW                              | Market 450<br>MW                                          | Market 450 MW                                                 | Market 450<br>MW                                   | Market 450 MW                                   |
| 2017          | 671 MW EV<br>CCGT                                  | 671 MW EV<br>CCGT                                           | 671 MW EV<br>CCGT                             | 671 MW EV<br>CCGT                             | 671 MW EV<br>CCGT                                         | 671 MW EV CCGT                                                | 671 MW EV<br>CCGT                                  | 671 MW EV CCGT                                  |
| 2018-<br>2019 |                                                    |                                                             |                                               |                                               |                                                           |                                                               |                                                    |                                                 |
| 2020          |                                                    |                                                             | Retire Pete<br>1,2, and 4<br>CC 200 MW        |                                               |                                                           |                                                               |                                                    |                                                 |
| 2021          |                                                    |                                                             | CC 800 MW<br>Market 100<br>MW                 |                                               |                                                           |                                                               |                                                    |                                                 |
| 2022          |                                                    |                                                             | CC 200 MW                                     |                                               |                                                           |                                                               |                                                    |                                                 |
| 2023          |                                                    |                                                             |                                               |                                               |                                                           |                                                               |                                                    |                                                 |
| 2024          |                                                    |                                                             |                                               | Market 50<br>MW                               |                                                           | Retire Pete 1                                                 |                                                    |                                                 |
| 2025          |                                                    |                                                             |                                               | Market 50<br>MW                               |                                                           | CC 200 MW                                                     |                                                    |                                                 |
| 2026          |                                                    |                                                             |                                               | Market 50<br>MW                               |                                                           |                                                               |                                                    |                                                 |
| 2027          | ·                                                  |                                                             |                                               | CC 200 MW                                     |                                                           |                                                               |                                                    |                                                 |
| 2028          |                                                    |                                                             |                                               |                                               |                                                           | Wind 100 MW                                                   |                                                    |                                                 |
| 2029          |                                                    |                                                             |                                               |                                               |                                                           | Wind 150 MW                                                   |                                                    |                                                 |
| 2030          | Market 50 MW                                       | Wind 100 MW                                                 |                                               |                                               |                                                           | Wind 100 MW                                                   | Market 50 MW                                       | Market 50 MW                                    |
| 2031          | Retire HSS 5<br>and 6<br>CC 200 MW<br>Market 50 MW | Retire HSS 5<br>and 6<br>CC 200 MW<br>Wind 150 MW           | Retire HSS 5<br>and 6<br>CC 200 MW            | Retire HSS 5<br>and 6<br>CC 200 MW            | Retire HSS 5<br>and 6<br>CC 200 MW                        | Retire HSS 5 and 6<br>CC 200 MW<br>Market 50 MW<br>Wind 50 MW | Retire HSS 5<br>and 6<br>CC 200 MW<br>Market 50 MW | Retire HSS 5 and 6<br>CC 200 MW<br>Market 50 MW |
| 2032          | Market 50 MW                                       | Wind 100 MW                                                 |                                               |                                               |                                                           | Market 50 MW                                                  | Market 50 MW                                       | Market 50 MW                                    |
| 2033          | Retire Pete 1<br>CC 200 MW<br>Market 100<br>MW     | Retire Pete 1<br>CC 200 MW<br>Wind 50 MW<br>Market 50<br>MW | Market 50<br>MW                               | Retire Pete 1<br>CC 200 MW<br>Market 50<br>MW | Retire Pete 1<br>CC 200 MW                                | Market 50 MW                                                  | Retire Pete 1<br>CC 200 MW<br>Market 100<br>MW     | Retire Pete 1<br>CC 200 MW<br>Market 100 MW     |
| 2034          | Retire HSS 7<br>CC 400 MW<br>Market 150<br>MW      | Retire HSS 7<br>CC 400 MW<br>Market 100<br>MW               | Retire HSS 7<br>CC 400 MW<br>Market 100<br>MW | Retire HSS 7<br>CC 400 MW<br>Market 50<br>MW  | Retire HSS 7<br>CT 180 MW<br>CC 200 MW<br>Market 50<br>MW | Retire HSS 7<br>CC 400 MW<br>Market 100 MW                    | Retire HSS 7<br>CC 400 MW<br>Market 150<br>MW      | Retire HSS 7<br>CC 400 MW<br>Market 150 MW      |

Source: Ventyx

The Capacity Expansion results demonstrate IPL's existing fleet is economic in a wide-range of scenarios. As shown in Figure 4.10, Petersburg Unit 3 was favored in all eight scenarios, Units 3 and 4 were favored in seven of the eight, and Unit 1 was favored in six of the eight. Due to the economic value of IPL's existing fleet and with the addition of the Eagle Valley CCGT, IPL's resource needs are met for the majority of the planning period in most scenarios. Resource additions are only selected in the modeling in connection with retirements, or in the high load scenario.

#### **Evaluation of Scenario Resource Plans**

The next step incorporated the results of the capacity expansion modeling, along with IPL's view of future drivers and pending legislation, to derive a targeted selection of resource options for landscape scenario evaluation. With no additional build out over the next 15 years in five of the eight scenarios, IPL identified five different resource plans to determine the impact of Petersburg 1 and 2 retiring early, symbolic of the Low Gas and High Environmental results. The five plans were created to represent the results of the capacity expansion model. The build out plans utilize resources that were selected in the capacity expansion results as a way of creating plans that would be competitive across multiple future landscapes, while also considering the impact of diversification. IPL limited the potential of earlier retirements to the two Petersburg units because that is what the capacity expansion results indicated as most economic and in order to maintain a balance in fuel mix and portfolio diversity. The five different resource plans were then tested across the future landscapes in order to evaluate a range of resource options and combinations of resources.

Figure 4.11 shows the five resource plans that were subjected to additional scenario analyses in this IRP. These scenarios were created based on similar resource sizing and consistent resource timing so as to not bias any one technology. Also, in order to isolate the impact of replacing Petersburg 1 and 2, the planning life or age-based retirements of HSS 5 through 7 were replaced with an equivalent capacity CCGT unit, the predominately favored resource in the Capacity Expansion Plan simulation. Plan 1 and 2 also require additional build in 2033, the end of expected life for Petersburg 1, since these plans exclude the early retirement of the unit in 2024.

Figure 4.11 – Scenario Resource Plans (by Operating Capacity)

| YEAR | Plan 1    | Plan 2         | Plan 3            | Plan 4                  | Plan 5                     |
|------|-----------|----------------|-------------------|-------------------------|----------------------------|
| 2024 |           |                | Retire Pete 1 & 2 | Retire Pete 1 & 2       | Retire Pete 1 & 2          |
| 2025 |           | Wind 200<br>MW | CC 600 MW         | CT 550 MW & Wind 500 MW | CC 600 MW &<br>Wind 200 MW |
| 2026 |           |                |                   |                         |                            |
| 2027 |           |                |                   |                         |                            |
| 2028 |           |                |                   |                         |                            |
| 2029 |           |                |                   |                         |                            |
| 2030 |           |                |                   |                         |                            |
| 2031 | CC 200 MW | CC 200 MW      | CC 200 MW         | CC 200 MW               | CC 200 MW                  |
| 2032 |           |                |                   |                         |                            |
| 2033 | CC 200 MW | CC 200 MW      |                   |                         |                            |
| 2034 | CC 400 MW | CC 400 MW      | CC 400 MW         | CC 400 MW               | CC 400 MW                  |

# Plan 1 Expansion

The Plan 1 expansion results, including IPL's existing and proposed generation, are shown in Figure 4.12. For this future landscape, no additional generation is built until the age based retirements of HSS Units 5 and 6 (2031), Petersburg 1 (2033) and HSS Unit 7 (2034). The preferred resource to replace the retired capacity is new CCGT for each retirement.



Figure 4.12 - Capacity Expansion Results for Plan 1

Source: IPL

|         | Plan 1 Expansion by Operating Capacity |      |      |           |      |           |      |      |      |      |      |  |  |  |  |
|---------|----------------------------------------|------|------|-----------|------|-----------|------|------|------|------|------|--|--|--|--|
|         | 2015                                   | 2016 | 2017 | 2018-2024 | 2025 | 2026-2029 | 2030 | 2031 | 2032 | 2033 | 2034 |  |  |  |  |
| Nuclear | -                                      | -    | -    | -         | -    | -         | -    | -    | -    | -    | -    |  |  |  |  |
| СТ      | -                                      | -    | -    | -         | -    | -         | -    | -    | -    | -    | -    |  |  |  |  |
| CCGT    | -                                      | -    | 644  | -         | -    | -         | -    | 200  | -    | 200  | 400  |  |  |  |  |
| PV      | -                                      | -    | -    | -         | -    | -         | -    | -    | -    | -    | -    |  |  |  |  |
| Wind    | -                                      | -    | -    | -         | -    | -         | -    | -    | -    | -    | -    |  |  |  |  |

# **Plan 2 Expansion**

The Plan 2 expansion results, including IPL's existing and proposed generation, are shown in Figure 4.13. For this future landscape, 200 MW of wind generation was built in 2025. Wind was the second most frequent selected resource in the Capacity Expansion simulation. While there is still much uncertainty surrounding Greenhouse Gas Regulation, additional wind resources could be needed for compliance, while also diversifying IPL's generation mix. CCGT has been identified as the preferred resource for the age based retirements of HSS Units 5 and 6 (2031), Petersburg 1 (2032) and HSS Unit 7 (2034).

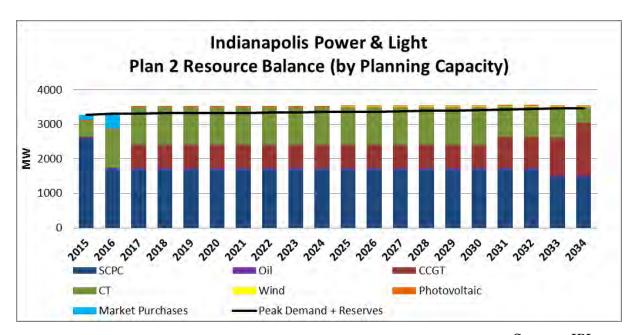



Figure 4.13 - Capacity Expansion Results for Plan 2

Source: IPL

|         | Plan 2 Expansion by Operating Capacity |             |      |           |      |           |             |             |      |      |      |  |  |  |
|---------|----------------------------------------|-------------|------|-----------|------|-----------|-------------|-------------|------|------|------|--|--|--|
|         | <u>2015</u>                            | <u>2016</u> | 2017 | 2018-2024 | 2025 | 2026-2029 | <u>2030</u> | <u>2031</u> | 2032 | 2033 | 2034 |  |  |  |
| Nuclear | -                                      | -           | -    | -         | -    | -         | -           | -           | -    | -    | -    |  |  |  |
| СТ      | -                                      | -           | -    | -         | -    | -         | -           | -           | -    | -    | -    |  |  |  |
| CCGT    | -                                      | -           | 644  | -         | -    | -         | -           | 200         | -    | 200  | 400  |  |  |  |
| PV      | -                                      | -           | -    | -         | -    | -         | -           | -           | -    | -    | -    |  |  |  |
| Wind    | -                                      | -           | -    | -         | 200  | -         | -           | -           | -    | -    | -    |  |  |  |

## **Plan 3 Expansion**

The Plan 3 expansion results, including IPL's existing and proposed generation, are shown in Figure 4.14. For this future landscape, Petersburg units 1 and 2 are retired 10 years prematurely and replaced with an equivalent amount of CCGT. CCGT was the preferred replacement resource in the Capacity Expansion simulation. By replacing Petersburg 1 and 2 with CCGT, IPL's resource mix continues the shift from a predominately coal-fired fleet to the majority being natural gas-fired generation. CCGT has been also identified as the preferred resource for the age based retirements of HSS Units 5 and 6 (2031) and HSS Unit 7 (2034).

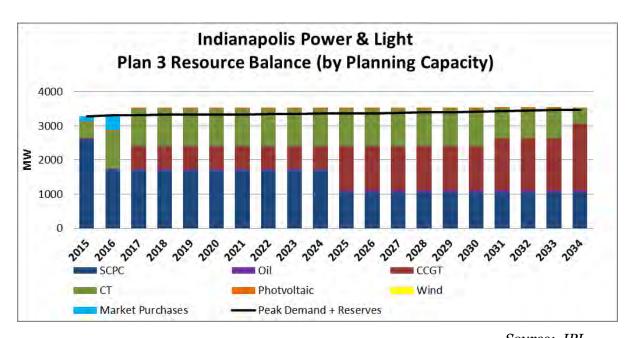



Figure 4.14 - Capacity Expansion Results for Plan 3

Source: IPL

|         | Plan 3 Expansion by Operating Capacity |             |      |           |      |           |      |             |      |      |             |
|---------|----------------------------------------|-------------|------|-----------|------|-----------|------|-------------|------|------|-------------|
|         | <u>2015</u>                            | <u>2016</u> | 2017 | 2018-2024 | 2025 | 2026-2029 | 2030 | <u>2031</u> | 2032 | 2033 | <u>2034</u> |
| Nuclear | -                                      | -           | -    | -         | -    | -         | -    | -           | -    | -    | -           |
| СТ      | -                                      | -           | -    | -         | -    | -         | -    | -           | -    | -    | -           |
| CCGT    | -                                      | -           | 644  | -         | 600  | -         | -    | 200         | -    | 200  | 400         |
| PV      | -                                      | -           | -    | -         | -    | -         | -    | -           | -    | -    | -           |
| Wind    | -                                      | -           | -    | -         | -    | =         | -    | -           | -    | -    | -           |

### **Plan 4 Expansion**

The Plan 4 expansion results, including IPL's existing and proposed generation, are shown in Figure 4.15. For this future landscape, Petersburg units 1 and 2 are retired 10 years prematurely and replaced with an equivalent amount of capacity by a CT and Wind. While the CT was only selected in the Low Load scenario, the CT has the lowest \$/KW cost. The CT provides the necessary capacity; however, the expected energy volume is less than a CCGT. By pairing a CT with wind resources, a balance between meeting capacity requirements and providing energy during non-peak conditions can be achieved. By replacing Petersburg 1 and 2 with a CT and Wind, IPL's resource mix continues the shift from a predominately coal-fired fleet to a fleet comprised of primarily natural gas-fired generation and renewable resources. A CCGT has been also identified as the preferred resource for the age based retirements of HSS Units 5 and 6 (2031) and HSS Unit 7 (2034).

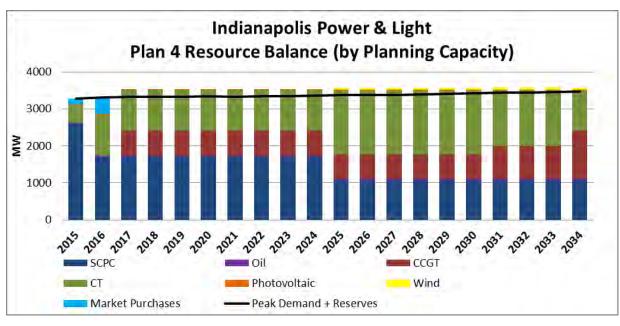



Figure 4.15 – Capacity Expansion Results for Plan 4

Source: IPL

|         | Plan 4 Expansion by Operating Capacity |             |      |           |      |           |      |             |      |      |      |
|---------|----------------------------------------|-------------|------|-----------|------|-----------|------|-------------|------|------|------|
|         | <u>2015</u>                            | <u>2016</u> | 2017 | 2018-2024 | 2025 | 2026-2029 | 2030 | <u>2031</u> | 2032 | 2033 | 2034 |
| Nuclear | -                                      | -           | -    | -         | -    | -         | -    | -           | -    | -    | -    |
| CT      | -                                      | -           | -    | -         | 550  | -         | -    | -           | -    | -    | -    |
| CCGT    | -                                      | -           | 644  | -         | -    | -         | -    | 200         | -    | 200  | 400  |
| PV      | -                                      | -           | -    | -         | -    | -         | -    | -           | -    | -    | -    |
| Wind    | -                                      | -           | -    | -         | 500  | -         | -    | -           | -    | -    | -    |

## Plan 5 Expansion

The Plan 5 expansion results, including IPL's existing and proposed generation, are shown in Figure 4.16. For this future landscape, Petersburg units 1 and 2 are retired 10 years prematurely and replaced with an equivalent amount of CCGT while also adding 200 MW of wind resources. This plan combines the top two preferred resources from the Capacity Expansion simulation. A CCGT was the preferred replacement resource in the Capacity Expansion simulation. By replacing Petersburg 1 and 2 with CCGT, IPL's resource mix continues the shift from a predominately coal-fired fleet to a fleet comprised of primarily natural gas-fired generation and renewable resources. A CCGT has been also identified as the preferred resource for the age based retirements of HSS Units 5 and 6 (2031) and HSS Unit 7 (2034).

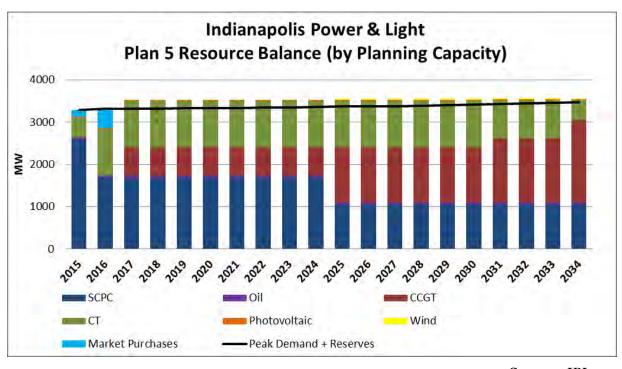
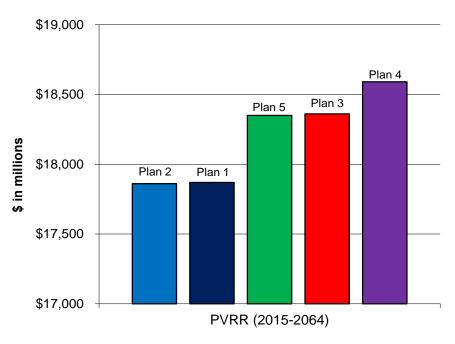



Figure 4.16 - Capacity Expansion Results for Plan 5

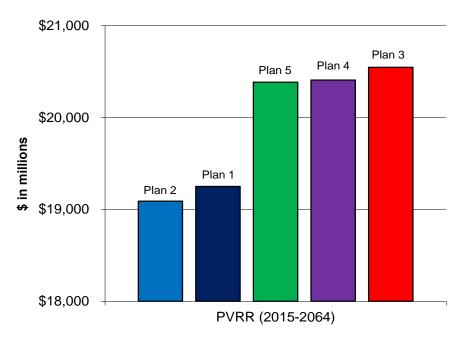
Source: IPL


|         | Plan 5 Expansion by Operating Capacity |             |             |           |      |           |      |             |      |      |             |
|---------|----------------------------------------|-------------|-------------|-----------|------|-----------|------|-------------|------|------|-------------|
|         | <u>2015</u>                            | <u>2016</u> | <u>2017</u> | 2018-2024 | 2025 | 2026-2029 | 2030 | <u>2031</u> | 2032 | 2033 | <u>2034</u> |
| Nuclear | -                                      | -           | -           | -         | -    | -         | -    | -           | -    | -    | -           |
| СТ      | -                                      | -           | -           | -         | 600  | -         | -    | -           | -    | -    | -           |
| CCGT    | -                                      | -           | 644         | -         | -    | -         | -    | 200         | -    | 200  | 400         |
| PV      | -                                      | -           | -           | -         | -    | -         | -    | -           | -    | -    | -           |
| Wind    | -                                      | -           | -           | -         | 200  | -         | -    | -           | -    | -    | -           |

## **PVRR Scenario Results for the Resource Plans**

[170-IAC 4-7-8(b)(7)(D)]

IPL ran each of the resource plans against six of the eight future landscapes to better understand the potential ramifications of significantly divergent futures around natural gas and CO<sub>2</sub> prices. High and Low Load scenarios were not considered in this phase of the evaluation because load variance does not impact the dispatch or costs of resources. The following section describes the results of these runs. Figures 4.17 through 4.22 show the expected PVRR for the resource plans against Ventyx's future landscapes. Note these prices are for resource plan comparative purposes and do not reflect the total revenue requirements of the IPL business, since current rate base, transmission and distribution, along with other factors are not encompassed.


Figure 4.17 – Base Case PVRR Plan Ranking (2015-2064)



The Base Case results are shown in Figure 4.17. This landscape includes the base gas and market prices, the base load forecast, and the IPL-EPA Shadow price starting in 2020 for coal units. Plans representing IPL's current resource portfolio (Plans 1 and 2) were the lowest-cost resource plans for this landscape.

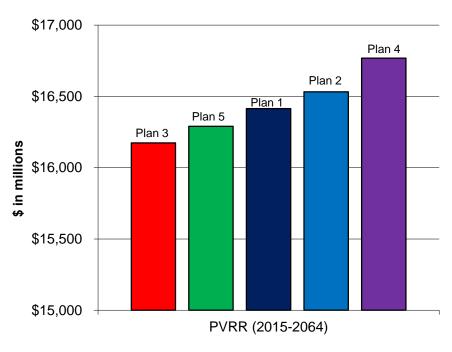

In all landscapes, Eagle Valley units 3 through 6 were set to retire in 2016 and Harding Street units 5 through 7 were set to be refueled in 2016. Also, all plans include the addition of the Eagle Valley CCGT in 2017.

Figure 4.18 – High Gas Case PVRR Plan Ranking (2015-2064)



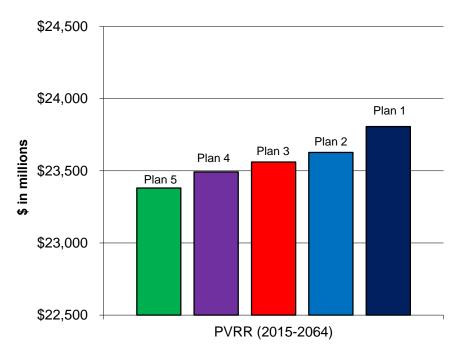

The High Gas Case results are shown in Figure 4.18. This landscape includes the high gas correlated gas and market prices, the base load forecast, and the IPL-EPA Shadow price starting in 2020 for coal units. Plans representing IPL's current resource portfolio (Plans 1 and 2) were the lowest-cost resource plans for this landscape.

Figure 4.19 – Low Gas Case PVRR Plan Ranking (2015-2064)



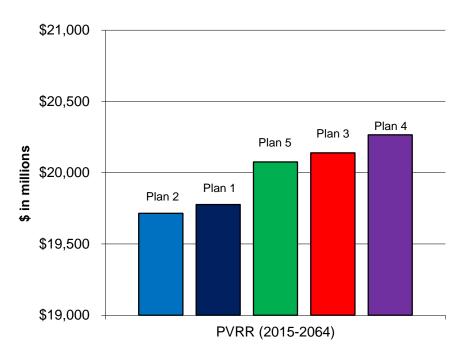

The Low Gas Case results are shown in Figure 4.19. This landscape includes the low gas correlated gas and market prices, the base load forecast, and the IPL-EPA Shadow price starting in 2020 for coal units. Plans with a new 600 MW combined cycle in 2025 (Plan 3 and 5) were the lowest-cost resource plan for this landscape. Note that the PVRR for all plans are lowest in this case.

Figure 4.20 – High Environmental Case PVRR Plan Ranking (2015-2064)



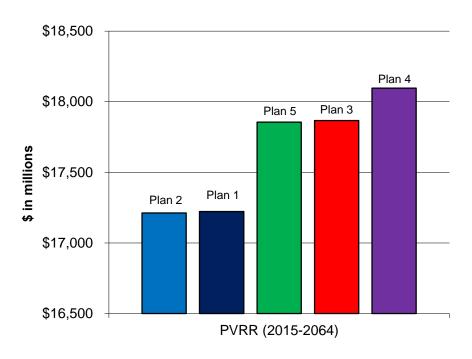

The High Environmental Case results are shown in Figure 4.20. This landscape includes Ventyx Environmental gas and market prices, the base load forecast, and the Waxman-Markey proxy Ventyx Fall 2013 CO<sub>2</sub> price starting in 2025 for all CO<sub>2</sub> emitting generation. Plans with new wind generation in 2025 (Plans 4 and 5) were the lowest-cost resource plans for this landscape. Note that the PVRR for all plans are highest in this case.

Figure 4.21 – Environmental Case PVRR Plan Ranking (2015-2064)



The Environmental Case results are shown in Figure 4.21. This landscape includes the ICF Mass Cap correlated gas and market prices, the base load forecast, and the ICF Mass Cap CO<sub>2</sub> price starting in 2020 for all CO<sub>2</sub> emitting generation units. Plans representing IPL's current resource portfolio (Plans 1 and 2) were the lowest-cost resource plans for this landscape.

Figure 4.22 –Low Environmental Case PVRR Plan Ranking (2015-2064)



The Low Environmental Case results are shown in Figure 4.22. This landscape includes the base gas and market prices, the base load forecast, and no CO<sub>2</sub> price. Plans representing IPL's current resource portfolio (Plans 1 and 2) were the lowest-cost resource plans for this landscape.

#### **Wind Sensitivities**

Under base assumptions, new wind resources are modeled using a 35% capacity factor and their Locational Marginal Price ("LMP") is equivalent to the MISO-IN forecasted market price. However, these modeling assumptions are not consistent with the current actual performance of the wind generation IPL secured under long-term PPAs with Hoosier Wind Farm in Benton County, Indiana and Lakefield Wind Farm in Jackson County, Minnesota. In actuality, these wind generators have yielded capacity factors between 20-25% on an annual basis and receive an LMP significantly lower than the MISO-IN average. The cause of these characteristics is a lack of transmission infrastructure, which causes transmission congestion in the wind corridors and manifests itself by lowering capacity factors as well as LMPs. Sensitivities were then created to reflect and determine the impact of these current characteristics. For Case 1, the historic LMP or market price difference between Lakefield and IPL load was applied, therefore lowering the market price for wind. The LMP differential applied to all planning years in the IRP model is shown below in Figure 4.23.

Figure 4.23 LMP Differential (\$/MWh)

| Month | On-Peak | Off-Peak |
|-------|---------|----------|
| Jan   | 21.9    | 19.1     |
| Feb   | 18.2    | 16.2     |
| Mar   | 19.3    | 17.4     |
| Apr   | 15.6    | 14.3     |
| May   | 12.1    | 8.7      |
| June  | 11.6    | 8.2      |
| July  | 8.7     | 6.2      |
| Aug   | 9.9     | 7.3      |
| Sept  | 12.3    | 9.0      |
| Oct   | 13.6    | 10.9     |
| Nov   | 16.1    | 13.1     |
| Dec   | 12.2    | 10.4     |

Source: IPL

Case 2 reduces the expected capacity factor for new wind resources to 25%, which was based upon Lakefield's historic capacity factor. Furthermore, IPL modeled potential improvements to wind. In response to stakeholder feedback from a representative from Clean Line Energy, IPL was informed about a project that would build DC transmission lines from Kansas to Indiana thus transferring high capacity factor wind. If completed, the project would provide Indiana access to 50% capacity factor wind. The Clean Line Energy representative discussed utilities could purchase this energy via a PPA for \$45/MWH.

The attributes of this project embody Case 3. In attempt to relieve congestion, IPL also considered the impact utility scale batteries could have on wind resources for Case 4. Along with relieving congestion, batteries can minimize intermittency, increase capacity credit, and take advantage of price arbitrage. For this analysis, a 4-hour duration battery equal to 12% of the operating capacity of wind was used. Additional fixed costs of \$197/kw/year (2025\$)<sup>16</sup> were incorporated in this sensitivity to quantify the cost of the battery. The battery charges during lower market prices hours, corresponding with higher wind speeds, and discharges during peak hours; therefore, shifting the generation from off-peak to on-peak hours.

#### **Wind Sensitivities Results**

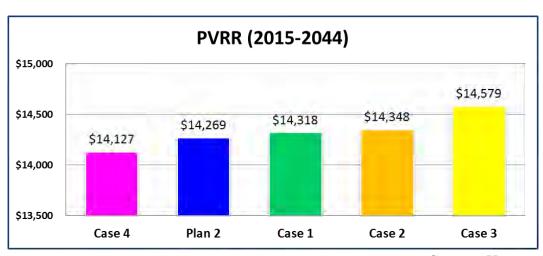



Figure 4.24 Wind Sensitivity PVRR (2015-2044)

Source: Ventyx

The wind sensitivity results are shown above in Figure 4.24. The sensitivities were than imposed on Plan 2, which includes an additional 200 MW of wind in 2025, of the Base results. Case 1 and 2, as anticipated, escalate the revenue requirement, making wind resources less-cost effective. These sensitivities isolate the two characteristics, but as discussed above, suppressed LMPs and reduced capacity factors are typically interrelated. Despite the multitude of benefits batteries offer, the high capital costs of batteries cause this case to be disadvantageous. The case with the lowest PVRR signifies the Clean Line Energy PPA. Despite significant progress, there is still uncertainty surrounding the DC transmission line construction. IPL will continue to analyze and monitor the progression of transmission capability and technology improvements in the wind industry.

<sup>&</sup>lt;sup>16</sup> From the State Utility Forecasting Group report "Utility Scale Energy Storage Systems" published in June 2013

## **Scenario Evaluation Results Summary**

[170-IAC 4-7-8(b)(6)(A)] [170-IAC 4-7-8(b)(7)(D)] [170-IAC 4-7-8(b)(7)(E)]

A summary of the results of the future landscapes are presented in Figures 4.25 and 4.26 which show a summary of the PVRR results and the two lowest-cost (PVRR) plans for each landscape respectively. The scenario evaluation focuses on comparing the results of the build out plans in each of the developed scenarios. Particularly, this evaluation measures the robustness of the performance of each plan in all scenarios.

Figure 4.25 – Incremental PVRRs in Each Scenario

|                |          | Scenarios   |            |                       |               |                      |          |  |  |  |
|----------------|----------|-------------|------------|-----------------------|---------------|----------------------|----------|--|--|--|
| PVRR<br>(MM\$) | Base     | High<br>Gas | Low<br>Gas | High<br>Environmental | Environmental | Low<br>Environmental | Average  |  |  |  |
| Plan 1         | \$17,870 | \$19,249    | \$16,415   | \$23,807              | \$19,776      | \$17,223             | \$19,057 |  |  |  |
| Plan 2         | \$17,861 | \$19,090    | \$16,532   | \$23,628              | \$19,715      | \$17,213             | \$19,006 |  |  |  |
| Plan 3         | \$18,362 | \$20,546    | \$16,174   | \$23,561              | \$20,139      | \$17,867             | \$19,441 |  |  |  |
| Plan 4         | \$18,591 | \$20,408    | \$16,768   | \$23,493              | \$20,266      | \$18,096             | \$19,604 |  |  |  |
| Plan 5         | \$18,351 | \$20,385    | \$16,290   | \$23,381              | \$20,076      | \$17,856             | \$19,390 |  |  |  |

Figure 4.26 – Resource Plan Selection Top Two Summary

| PVRR<br>Rank | Base Case | High Gas<br>Case | Low Gas<br>Case | High<br>Environmental<br>Case | Environmental<br>Case | Low<br>Environmental<br>Case |
|--------------|-----------|------------------|-----------------|-------------------------------|-----------------------|------------------------------|
| 1            | Plan 2    | Plan 2           | Plan 3          | Plan 5                        | Plan 2                | Plan 2                       |
| 2            | Plan 1    | Plan 1           | Plan 5          | Plan 4                        | Plan 1                | Plan 1                       |

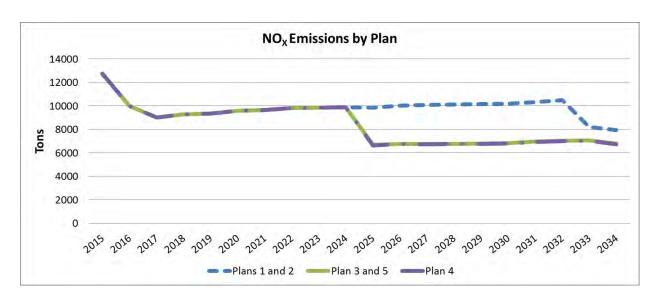
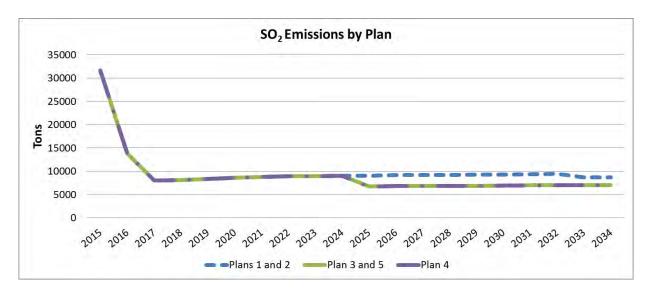
Source: IPL

Plans 1 and 2, which both include IPL's existing fleet with proposed refuel and new construction projects, appeared in the top two resources for the majority of the landscapes. The plans with CCGT, CCGT with wind, or CT with wind replacement performed well in the low gas and high environmental scenarios. Nuclear generation did not appear in any of the top spots in all the scenario evaluations.

### **Comparative Air Emissions by Resource Plan**

[170-IAC 4-7-4(b)(8)] [170-IAC 4-7-7(a)(1)]

Figures 4.27 through 4.29 provide the air emissions for the five resource plans as modeled by Ventyx. As mentioned above, all plans are identical until 2025 were the plans differ by the retirement of Petersburg units 1 and 2 and the replacement generation selected. All plans demonstrate IPL is making significant advancements in reducing the air emissions of its portfolio over the next three years. In the Ventyx modeling, the costs of  $NO_X$ ,  $SO_2$  and in most scenarios  $CO_2$  emissions are considered, impacting the dispatch of the emitting units.

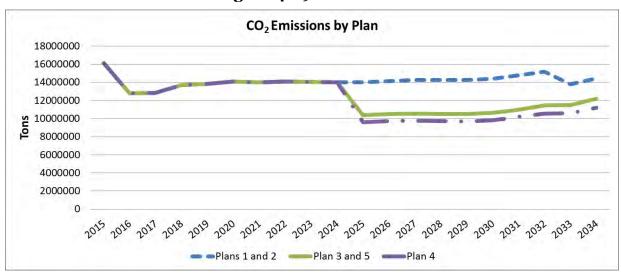


Figure 4.27 – NOX Emissions

Figure 4.28 - SO2 Emissions



Source: IPL

Figure 4.29 - CO<sub>2</sub> Emissions



Source: IPL

## **Comparative Annual Costs by Resource Plan**

[170-IAC 4-7-8(b)(6)(B)]

Figure 4.30 provides representative annual revenue requirements for the Base Case for the five resource plans as modeled by Ventyx. The 20 year PVRR of these plans are shown in Figure 4.31 with Plan 1 showing the lowest 20 year PVRR. These costs include existing generation

production costs, system capacity and power purchase expense, and incremental new resource costs. The annual costs are best used for comparison purposes to access the relative impacts of new resource plans, and are not intended to represent IPL's full revenue requirements.

Figure 4.30 – Comparative Annual Revenue Requirements by Plan (Base Case), Incremental Average Annual Revenue Requirements (cents/kWh)

| Year | Plan 1 | Plan 2 | Plan 3 | Plan 4 | Plan 5 |
|------|--------|--------|--------|--------|--------|
| 2015 | 0.32   | 0.32   | 0.32   | 0.32   | 0.32   |
| 2016 | 1.31   | 1.31   | 1.36   | 1.36   | 1.36   |
| 2017 | 1.46   | 1.46   | 1.49   | 1.49   | 1.49   |
| 2018 | 1.71   | 1.71   | 1.73   | 1.73   | 1.73   |
| 2019 | 1.92   | 1.92   | 1.94   | 1.94   | 1.94   |
| 2020 | 2.30   | 2.30   | 2.32   | 2.31   | 2.32   |
| 2021 | 2.68   | 2.68   | 2.70   | 2.70   | 2.70   |
| 2022 | 3.07   | 3.07   | 3.09   | 3.08   | 3.09   |
| 2023 | 3.57   | 3.57   | 3.59   | 3.58   | 3.59   |
| 2024 | 3.86   | 3.86   | 3.93   | 3.91   | 3.93   |
| 2025 | 4.17   | 4.45   | 4.36   | 5.26   | 4.63   |
| 2026 | 4.35   | 4.72   | 4.91   | 5.89   | 5.27   |
| 2027 | 4.58   | 4.89   | 5.13   | 5.99   | 5.43   |
| 2028 | 4.79   | 5.05   | 5.36   | 6.10   | 5.61   |
| 2029 | 5.04   | 5.26   | 5.62   | 6.24   | 5.82   |
| 2030 | 5.30   | 5.48   | 5.91   | 6.46   | 6.08   |
| 2031 | 5.66   | 5.80   | 6.28   | 6.77   | 6.42   |
| 2032 | 6.10   | 6.21   | 6.76   | 7.17   | 6.87   |
| 2033 | 6.67   | 6.76   | 7.15   | 7.51   | 7.23   |
| 2034 | 7.33   | 7.39   | 7.71   | 8.05   | 7.77   |

Source: Ventyx

\$11,500
\$11,500
Plan 3
Plan 5
Plan 2
Plan 1
Plan 2
Plan 2
Plan 2
Plan 1
Plan 2
Plan 3

Figure 4.31 – Base Case PVRR Plan Ranking (2015-2034)

## **Results Summary and Resource Selection Overview**

[170-IAC 4-7-8(b)(1)]

The supply resource selection at IPL combines information from both the quantitative part of the evaluation, that is the capacity expansion results and future landscape scenario results, and risks associated with resource planning especially environmental, fuel pricing, and load variation, creating a robust evaluation process.

The capacity expansion results which are presented in Figure 4.10 establish IPL's current resource projects (Eagle Valley CCGT and refuel of HSS Units 5 through 7) will be sufficient to satisfy IPL's capacity requirement until 2031. However, in two scenarios, the capacity expansion modeling results determine it would be economic to retire one or multiple units at Petersburg. Over the last five years of the IRP planning period, IPL's fleet is expected to undergo significant changes as Petersburg 1 along with HSS 5 through 7 approach their anticipated retirement dates. To replace these retired units, CCGT, CT, and wind were the selected resources with CCGT appearing in the majority of the capacity expansion scenarios. Nuclear and solar resources did not appear in any of the landscapes. IPL has experienced a large influx of early adoption of DG solar due in large part to its feed-in-tariff, Rate REP as described in Section 4A. Additional DG is not included in the short-term forecast absent further financial incentives. IPL recognizes the installed costs for solar are decreasing, however, modeling limitations do not allow dynamic

costs to be included. Therefore, the 2016 IRP will include updated cost which may find solar to be a cost-effective option.

Since the capacity expansion modeling did not identify an additional need for generation without the early retirement of IPL's coal units, IPL derived build out plans to highlight the potential impact of retiring Petersburg units 1 and 2 early. The build out plans, as shown in Figure 4.11, utilize resources that were selected in the capacity expansion results as a way of creating plans that would be competitive across multiple future landscapes. The plans representing IPL's existing thermal generation, Plans 1 and 2, had the lowest PVRR in the Base, High Gas, Environmental, and Low Environmental that is the plans with moderate or low CO<sub>2</sub> costs. Replacing Petersburg 1 and 2 with CCGT had the lowest PVRR in the Low Gas Scenario while CCGT and wind as the replacement had the lowest PVRR in the High Environmental scenario. The scenario analysis results are shown in Figure 4.17. Wind, firmed by a CT, also performed well the High Environmental case due to the high and imminent CO<sub>2</sub> cost benefits, but generally finished behind the CCGT. The scenario analysis results are shown in Figures 4.17 through 4.22.

The plans representing IPL's existing thermal generation were in the top two selected resources in four (4) of the six (6) future landscapes. These results demonstrate the ability of our current fleet to perform well with and without CO<sub>2</sub> costs, and with low and moderate natural gas prices. From a risk perspective, with the addition of the Eagle Valley CCGT, IPL's generation portfolio will have a balanced fuel mix, limiting its fuel risk exposure.

While the difference in PVRR was unsubstantial in most instances, Plan 2, representing an additional 200 MW of wind resources, typically outperformed Plan 1. However, as further discussed in the wind sensitivity section above, IPL models new wind resources at a capacity factor of 35% and an LMP equal to the MISO-IN price, both of which are improvements from the actual current characteristics of Hoosier and Lakefield Wind Farms. These assumptions are based upon the belief that transmission capabilities will be improved to resolve the current conditions. Also, a great deal of uncertainty surrounds requirements of the proposed EPA Clean Power Plan.

In the upcoming years, IPL will better understand the congestion improvements created from transmission expansion to potentially improve wind capacity factors. Since compliance for the proposed Clean Power Plan could start as early as 2020, IPL will continue to analyze the benefits of adding additional renewables to its portfolio between now and then. Nevertheless, IPL's capacity requirement will be met by the addition of the Eagle Valley CCGT along with existing generation improvements, therefore, IPL's existing resources, or Plan 1, is IPL's Preferred Portfolio. From both a minimum revenue requirements perspective and a risk mitigation perspective, IPL's existing portfolio eliminates the need for new generation in the IRP planning period. This strategic direction is supported by quantitative results and is the basis for IPL's Preferred Resource Portfolio.

#### **IPL's Preferred Portfolio**

[170-IAC 4-7-8(b)(1)] [170-IAC 4-7-8(b)(4)] [170-IAC 4-7-8(b)(8)]

IPL's Preferred Portfolio is focused on deriving a low cost, low risk, reliable plan to serve customer load, while complying with all federal, state, and IURC mandates.

As outlined in Figure 4.1, IPL's resource selection strategy takes a systematic approach including an assessment of existing resources, determination of resource needs, inclusion of all cost-effective and/or required DSM and renewables, and then uses Ventyx Capacity Expansion and scenario analysis modeling of supply options to identify the balance of IPL's resource plan.

The selected IPL Preferred Portfolio includes its four large scrubbed coal-fired units at Petersburg, including all required environmental compliance enhancements, its gas-fired peaking units, including the approved refuel of HSS 5 and 6 along with the proposed refuel of HS7, 300 MW of wind from PPAs, 98 MW of solar Rate REP, forecasted DSM resources, and the addition of the Eagle Valley CCGT. When replacement is needed for the units nearing their anticipated retirement dates (HSS 5 and 6 and Petersburg Unit 1), CCGT has been identified as the preferred resource. The details of the selected Reference Plan are described below.

### **Existing Core Base Load Resources**

IPL and other coal-fired utilities will continue to face new environmental requirements. A number of additional environmental rules – either proposed or final – affect these units. These rules include but are not limited to the Cross State Air Pollution Rule ("CSAPR"), National Ambient Air Quality Standards ("NAAQS"), Cooling Water Intake Structures Rule, Coal Combustion Residuals ("CCR") Rule, and federal Effluent Limitations Guidelines ("ELG") for Steam Electric Generating Stations. Additional requirements could also result from settlement or litigated outcome of the Notice of Violation ("NOV") and Finding of Violation from EPA received in October 2009 related to alleged violations of the New Source Review ("NSR"). These regulations and requirements would potentially require IPL to incur additional expenses for compliance in the future.

## **Demand Side Management**

The IPL short-term action plan (2015-2017 Action Plan) for demand side management ("DSM") was filed and approval is currently pending approval before the IURC in Cause No. 44497. The three year plan in Cause No. 44497 covers the years 2015-2017. Although cost and savings information was developed and presented for 3 years, IPL is only seeking spending approval to deliver the programs for the first 2 years (2015-2016), to facilitate flexibility with expected future DSM legislation. This proceeding specifically seeks approval of DSM programs and budgets for 2015 and 2016. In response to stakeholder input, IPL engaged AEG to update its forecast from 2017 to create a full 20 year projection for this IRP. It accounts for the elimination of IURC annual savings targets and the opt-out provision of large customers, due to Senate

Enrolled Act 340. IPL include the forecasted twenty (20) years of DSM savings in the load forecast. However, Future programs will be developed for the balance of the IRP period and presented in subsequent IURC proceedings. The twenty year forecast is provided in Section 7, Attachment 4.7, DSM Supporting Documents. For more information, please see Section 4B.

### Renewables Generation/Climate Change

Renewables technologies represent a resource that primarily targets potential future requirements for GHG regulation, and specifically any federal or state RES legislation. EPA's Clean Power Plan, which establishes the proposed Best System of Emissions Reductions available for existing sources in accordance with Section 111(d) of the Clean Air Act, includes renewables as a "building blocks," or measures of reduction, for compliance. Specifically, EPA based the standards on re-dispatch to renewables from a 2012 value of 3% of Indiana's total generation to a value of 6.6% by 2029.

IPL's preferred portfolio includes a renewables generation component of about 300 MW of wind secured under two long-term PPAs and 98 MW of solar under Rate REP to meet any future RES requirement. Under the terms of the existing PPAs, IPL receives all of the energy and Renewable Energy Credits ("RECs") from the two wind farms. The null<sup>17</sup> energy is used to supply the load for IPL customers and, in the absence of any mandatory federal or state RES, IPL is currently selling the associated wind RECs and plans to sell solar RECs, but reserves the right to use RECs from the PPAs to meet any future RES requirement. The PPAs were approved by the IURC and if IPL chooses to monetize the RECs that result from the agreements, IPL shall use the revenues to first offset the cost of the PPAs and next to credit IPL customers through its fuel adjustment clause proceedings. When the RECs associated with the production of null energy from the Wind PPAs are sold to a third party, IPL shall not claim that energy as renewable energy on behalf of its retail customers. Absent a clear renewables requirement, no additional renewables resources are planned.

## **Power/Capacity Purchases**

Historically, IPL has relied on short-term capacity markets for up to 300 MW of its capacity requirements. However, for the period 2015 to 2016, IPL will be facing additional challenges as MISO capacity prices continue to rise and retirements increase to comply with new EPA regulations. As discussed above, IPL will be retiring Eagle Valley coal-fired units 3-6 by April 16, 2016, six weeks before the end of the MISO Planning Year ("PY") 2015-2016. With a favorable FERC waiver decision, IPL will not need to purchase replacement capacity for this

The Green-e Dictionary (http://www.green-e.org/learn\_dictionary.shtml) defines null power as, "Electricity that is stripped of its attributes and undifferentiated. No specific rights to claim fuel source or environmental impacts are allowed for null electricity. Also referred to as commodity or system electricity."

timeframe. Along with a bilateral purchase of 100 MW, IPL has effectively minimalized its exposure to the price volatility of the MISO Capacity auction for PY 15-16.

PY 2016-2017 represents a dissimilar story as IPL's capacity position will be short up to 350-400 MW, due to the retirement of the Eagle Valley coal units mentioned above. IPL has mitigated its exposure through a bilateral agreement of 100 MW and is nearing the completion of another 200 MW purchase.

IPL will continue to evaluate the purchase of some or all of its remaining projected volume difference between its actual Planning Reserve Margin Requirement and its own resources plus bilaterally purchased Zone 6 Zonal Resource Credits, with either bilateral purchases or sales, or auction purchases or sales.

With the addition of the Eagle Valley CCGT just prior to the MISO Planning Year 2017-2018, IPL projects that its resources will exceed its MISO Planning Reserve Margin Requirement for 2017-2018 by 250 MWs. IPL will evaluate whether to sell the extra Zonal Resource Credits bilaterally before the auction or to sell the extra Zonal Resource Credits in the 2017-2018 MISO Resource Planning Auction.

### **Transmission and Distribution**

IPL's electric transmission and distribution (T&D) facilities are designed to provide safe, reliable, and low cost service to its customers as described in section 4C. IPL's has studied the need for transmission, substation and distribution enhancements and designed projects to support the preferred resource portfolio. Specifically, accommodating generation additions and retirements while improving operational flexibility is paramount to ensure deliverability of power into the IPL load zone. These projects include the installation of new 345 kV breakers, autotransformers, and 138 kV capacitor banks to improve power import capability from the 345 kV system to load centers on the 138 kV system as well as distribution system improvements to accommodate DG at Rate REP project locations. Several projects associated with the new CCGT will be completed in 2015 and 2016. In addition, IPL plans to install a Static Volt Ampere Reactive ("VAR") System to provide dynamic voltage and reactive power support.

IPL has enhanced its distribution system through smart grid investments that enable demand response through CVR and interconnect its Rate REP projects. People in multiple areas of IPL worked closely to develop efficient procedures and successfully interconnect the DG sites. Based on the proposed location and feeder interconnection, specific engineering site studies were performed to determine if the distribution system could reliably support the DG resource without impacting the service reliability of existing customers. Line extension projects were engineered and constructed as needed. To date, ten (10) projects with capacity of 500 kW to 10 MW have been connected to IPL's smart grid network to enable remote switching for IPL to safely work on distribution lines without any chance of DG backfeed. See Section 4C for more information on these projects and IPL's transmission and distribution planning criteria.

IPL's business practices include regular reviews of transmission and distribution system needs occurs with operations, construction and engineering personnel. If needed, adjustments are made to current or proposed projects to accommodate field or directional changes such as changes in IPL's preferred resource portfolio. Monthly large project coordination meetings facilitate this nimble process and include budget and schedule reviews. T&D will likely continue to play a larger role in resource planning in the future as DR, smart grid and DG become more prevalent. T&D projects typically are deployed more quickly than generation projects as evolution occurs to improve system capabilities incrementally.

### **Summary**

The IRP presented herein and the selected Preferred Portfolio represents IPL's current view on the future electricity landscape and sensitivities around that landscape, and the resources that will reliably and cost-effectively meet customers' future electricity needs within expected legislative, EPA, and IURC requirements. Resource planning is a continuous process with the IRP representing a key snapshot of the planning horizon. In addition to IRP studies, IPL also monitors for special situational opportunities. IPL will pursue improvements to existing programs and assets as well as new, prudent, and advantageous resources as the need and deemed benefits of such resource options are clearly identified.

### Section 4A. RESOURCE OPTIONS

World events and trends play a big role in forecasting future resource possibilities. This is particularly true this year with many new regulations being promulgated by EPA. With this changing landscape, IPL has worked diligently to identify, characterize and evaluate a broad selection of demand side, renewable and supply options.

## **Generation Technology**

## **National Resource Mix**<sup>18</sup>

The U.S. currently maintains a domestic generation mix dominated by coal and natural-gas as Figures 4A.1 and 4A.2 illustrate.

The use of natural gas as a source of capacity and energy is starting to catch up with coal. Between the last IPL IRP in 2011 and the statistics for 2012, natural gas has increased its share of capacity and energy by 3 and 7 percentage points respectively – an increase for natural gas of 18% for capacity and 30% for energy. Most of these gains have come at the expense of coal.

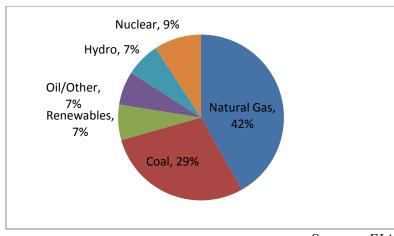
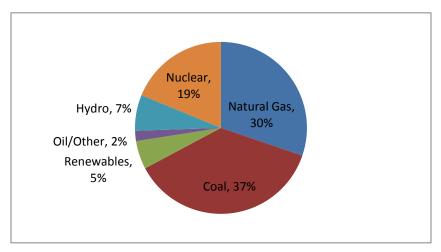
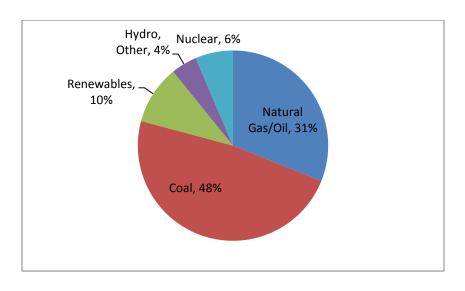




Figure 4A.1 – U.S. Generating Capacity by Fuel Type (2012)

Source: EIA

The source for all resource mix comments in this section is *Electricity & Fuel Price Outlook*, *Midwest Spring 2014*, Ventyx, unless otherwise noted.

Figure 4A.2 – U.S. Electric Power – Electricity Production (2012)




Source: EIA

### **MISO Resource Mix**

As a member of MISO, and a participant in the energy market for this Regional Transmission Organization ("RTO"), IPL has access to the diverse resources of the 13 states and part of the Province of Manitoba in the MISO North/Central Regions (parts of an additional four states make up the MISO South Region). As shown in Figure 4A.3, the MISO North/Central Region relies heavily on coal-fired generating resources for capacity.

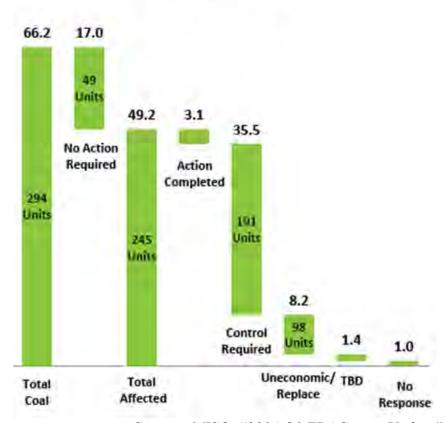
Figure 4A.3 – MISO Generating Capacity by Fuel Type (2013)



Source: MISO, "The Changing Power Generation Fleet," February 6, 2014

As an energy source, coal plays an even larger role in the production of electrical energy, where it dominates with a 71% share. Here too, however, there has been a decline of 5% since 2011 when coal was responsible for 75% of the energy production in MISO.

Hydro, Other, 2% Renewables, 8% Coal, 71%


Figure 4A.4 – MISO Generating – Electricity Production (2013)

Source: MISO, "The Changing Power Generation Fleet," February 6, 2014

The next largest fuel-type is natural-gas fired generation, which accounts for almost 31% of the generating resources in the MISO North/Central Regions. Because these resources are higher-cost than most of the other resources in MISO, they produce less than 7% of the energy in the region (which is up from 5% in 2009). Natural gas capacity frequently sets the price in MISO. Energy production from natural gas is expected to increase within the MISO North/Central Regions. Due to EPA regulations, a significant portion of the coal fleet is forced into retirement. MISO surveys of member generators indicate that at least 8.2 GW of coal resources will retire due to the MATS regulation as noted in Figure 4A.5 below:

Figure 4A.5 – MISO Coal Units Affected by MATS

# Coal Resources Affected 1st Q 2014 Survey Capacity, GW



Source: MISO, "2014 Q1 EPA Survey Update"

The mix of generation is relatively homogeneous across the sub-regions within the MISO North/Central Regions; however, the north and west sub-region hosts most of the wind resources, while the east has the largest quantity of nuclear resources.

## **Supply Side Options**

[170-IAC 4-7-6(c)(1)] [170-IAC 4-7-7(a)]

For planning purposes, IPL selected a group of reference units that represent proven and commercially available technologies, as well as emerging technologies considered viable in the next five to 10 years. In addition to traditional generating units, transmission projects, efficiency improvements and smart grid resources are considered as part of IPL's portfolio. IPL submits transmission expansion and improvement projects to MISO as part of its transmission planning process. MISO determines the benefits of such projects and includes those that are cost effective

in its MISO Transmission Expansion Plan ("MTEP") on an annual basis. IPL will build out two (2) market efficiency projects including the Petersburg to Breed 345 kV line upgrade and a Petersburg 345 to 138 kV autotransformer upgrade as described in the short-term action plan. IPL determines ways to improve system stability and flexibility to improve import capability. IPL does not currently have any Multi Value Projects ("MVP") however, MISO continues to study MVP projects. In addition, IPL considers and implements transmission improvements to support additional or upgraded generating resources. These are both described in Section 4D

IPL considers efficiency improvements that may provide additional generating capacity such as a technique known as "fogging" whereby inlet air is cooled to increase gas turbine outputs. This is described in the short-term action plan (Section 5) as part of technology applications. Analysis is underway, therefore, no specific incremental capacity in terms of MWs are included in the preferred resource portfolio.

Smart grid assets have been included in this IRP and the preferred resource portfolio in the form of 20 MWs through IPL's Conservation Voltage Reduction ("CVR") program. Two-way communicating devices at distribution substations and capacitor bank locations allow IPL to remotely lower the system voltage incrementally to reduce peak demand. The voltage levels on the feeders and at Advanced Metering Infrastructure ("AMI") meters are monitored to ensure service voltage limits are maintained.

For the first time, a significant amount of distributed generation ("DG") resources are also included in this IRP. This DG is comprised of approximately 66 MW of solar facilities located at customer premises as described below and in Section 4C.

The reference units represent two natural gas-fired options, and three nuclear/renewables choices. A Battery Energy Storage System ("BESS") was not included as a separate new resource in the Ventyx model due to the current economics precluding it from being selected by the model as a resource<sup>19.</sup> Unlike previous years, coal options were not considered since Supercritical Pulverized Coal ("SCPC") no longer appears to be a viable option due to EPA 111(b) regulations on greenhouse gas emissions for new sources. Likewise, IPL has not considered Integrated Gasification Combined Cycle ("IGCC") since this technology has yet to become widely adopted.

#### **Natural Gas**

- Simple Cycle Combustion Turbine ("CT")
- Combined Cycle Gas Turbine H-Class ("CCGT")

<sup>&</sup>lt;sup>19</sup> See Section 2 for more information about IPL's plans to research BESS options on its 138 kV grid.

#### **Nuclear and Renewables**

- Nuclear
- Wind
- Solar
- Hydroelectric<sup>20</sup>

The technology and size of units selected for capacity additions will depend on a number of factors including, among others, load and energy demand growth and best available technologies at time of construction. In the write-up on technology below, IPL indicates the size in megawatts of each unit under consideration. So as to not skew the results, IPL is using a "common size" of 200 MW for the CCGT and Nuclear options. This would represent a portion of those plants and not the full output so that IPL can analyze the underlying need and not be overly concerned about minimum unit size. In reality, however, IPL would build or buy the appropriate sized unit, perhaps with partners if the size does not correspond to minimum unit size.

A brief description of each of the technology alternatives currently or potentially available to IPL to meet future capacity needs follows.

Please note that all capital costs provided below are derived from Ventyx assumptions for "overnight costs". As the name implies, overnight costs represent pricing the costs of a unit as if it could be built in one day. Separate assumptions on commodity and labor-price inflation are included in the Ventyx modeling to adjust these costs to the year a unit is brought online. In addition, Allowance for Funds Used During Construction ("AFUDC") costs is also included in the model runs. Note that Figure 4A.7 below does not include either commodity-price and labor-price inflation or AFUDC.

#### **Natural Gas**

[170-IAC 4-7-6(c)(1)] [170-IAC 4-7-7(a)]

IPL has evaluated two types of natural gas-fired generation in the IRP analysis. Natural gas-fired units have historically had low dispatch rates in the Midwest due to a competitive installed coal-fired fleet. However, increasing regulation of coal generation coupled with increased discoveries of natural gas supply may lead to a significant increase in natural-gas fired generation in the Midwest. Please note that all capacity numbers represented below are approximate winter outputs.

\_

<sup>&</sup>lt;sup>20</sup> In the IPL 2011 IRP, the Company determined hydroelectric power was not a viable resource. There have been no significant changes since the analysis performed for the 2011 IRP; hence, hydroelectric power has not been included in this IRP.

## Shale and the New Gas Supply Paradigm

Natural gas alternatives are increasingly important in the analysis of new supply options for two reasons: first is the significant pressures felt by U.S. utilities to retire existing coal assets and the difficulty in permitting new coal-fired generation. As important, however, is the emergence of shale gas and the significant increase in available U.S. natural gas resources.

Geologists have long known that shale formations contained significant amount of natural gas, the formations are not porous and the gas cannot flow freely when wells are drilled. The breakthrough in commercial drilling in shale formations was combining the practice of horizontal drilling coupled with hydraulic fracturing (the process of using high pressure liquids to create cracks in the shale which allow the gas to flow)<sup>21</sup>.

Between 2005 and today, the rate and range of shale gas development expanded in many parts of the county. "In addition to the Barnett, producers began intensively developing plays in the Woodford, north of the Barnett in Texas and Oklahoma; the Fayetteville in Arkansas; and the Haynesville in Louisiana/East Texas. During this time development also began in the Marcellus Shale of the eastern United States." <sup>22</sup> In 2014 the Annual Energy Outlook, the domestic supply picture has changed as noted below in Figure 4A.6:

Shale gas leads growth in total gas production through 2040 to reach half of U.S. output U.S. dry natural gas production trillion cubic feet billion cubic feet per day History 2012 Projections 40 100 90 80 70 25 60 Shale gas 20 50 15 40 Non-associated onshore 30

Associated with oi

2020

10

2035

Figure 4A.6 – Projected Domestic Gas Supply

Source: EIA, Annual Energy Outlook 2014 Early Release

2005

2000

1995

2010

<sup>22</sup> Ibid.

\_

Task Force on Ensuring Stable Natural Gas Markets, 2011 Report, Bipartisan Policy Center and American Clean Skies Foundation, pp. 35-36.

With traditional domestic U.S. gas drilling, most operations are in relatively unpopulated areas. Shale gas operations include more populated areas, leading to more chance of public opposition and possible water pollution. The natural gas industry and environmental officials have begun paying more attention to these issues and must take the steps necessary to avoid any significant environmental degradation.

### **Simple-Cycle Combustion Turbine**

For purposes of the IRP analysis, IPL assumed the incremental addition of a 160 MW CT in its expansion planning. Conventional frame CTs are a mature technology, widely used for peaking applications. The units are characterized by low capital costs, low non-fuel variable Operation and Maintenance Costs ("O&M"), modular designs and short construction lead times. However, one disadvantage of CTs is the relatively high average heat rate, cost of fuel and resulting high operation costs at higher capacity factors.

IPL has substantial experience in both the construction and operation of CTs. IPL unit additions include Georgetown Generating Station ("Georgetown") Unit 1 (100 MW) added in 2000 and Harding Street Generating Station ("HSS") CT 6 (183 MW) added in 2002. IPL also purchased Georgetown Unit 4 in 2007 (100 MW). IPL will continue to consider CTs as a generation option due to their flexibility in adding small increments of capacity within a relatively short time frame. IPL also continues to monitor developments in CT technology and will consider CT alternatives in any decision for future capacity additions.

See environmental characteristics and capital costs assumed for IRP modeling in Figure 4A.7.

## **Combined Cycle Gas Turbine**

For purposes of the IRP analysis, IPL assumed the incremental addition of a 200 MW CCGT. The typical combined cycle installation consists of gas turbines discharging waste heat into a heat recovery steam generator ("HRSG"). The HRSG supplies steam that is expanded through a steam turbine cycle driving an electric generator. Combined cycle units have the distinct advantage of being the most efficient fossil-fueled process available. IPL has recently begun construction on a 671MW F-class CCGT at Eagle Valley. It is anticipated that by the commercial operation date of any new CCGT, that either G- or H-class machines will be widely in-service with other North American utilities and will represent a good choice for IPL. IPL has modeled an H-Class machine in its analysis. In addition, the units have low pollutant emissions, low water consumption levels, reduced space considerations and modular construction. IPL continues to monitor developments in CCGT technology and will consider CCGT alternatives in any decision for future capacity additions.

See environmental characteristics and capital costs assumed for IRP modeling in Figure 4A.7.

#### **Nuclear and Renewables**

[170-IAC 4-7-6(c)(1)] [170-IAC 4-7-7(a)]

#### **Nuclear**

With increasing concern about GHG, there has been a renewed interest in additional investment in nuclear generation. While the debate over nuclear plant siting is controversial and the plants are extremely capital intensive, additional electricity production by nuclear power is promoted on the basis of mitigating increases in GHG emissions. Countervailing views on the "nuclear renaissance" are that the technology is too expensive and the accident at the Fukushima Daiichi plant in Japan should make regulators hesitant to approve new reactors.

A total of 23 new reactors are before the Nuclear Regulatory Commission (NRC) for a combined construction and operating license (COL). These new reactors are all located in the Midwest, Southeast and Texas. Despite this rather large figure, Ventyx notes that the "high uncertainty around construction cost estimates and the ability to obtain financing, Ventyx is assuming that only Vogtle 3&4 and VC Summer 2&3 in the Carolinas will be constructed plus the completion of the TVA's partially constructed Watts Bar 2 reactor, scheduled to be completed in December 2015."

Summary details of the two projects are noted below:

|                        | Vogtle 3&4                  | VC Summer 2&3                 |  |  |
|------------------------|-----------------------------|-------------------------------|--|--|
| <b>Primary Utility</b> | Southern Company            | South Carolina Electric & Gas |  |  |
| Reactor                | Westinghouse AP1000         | Westinghouse AP1000           |  |  |
| Completion             | 2017 (Unit 3) 2018 (Unit 4) | 2017 (Unit 2) 2018 (Unit 3)   |  |  |

Ventyx also notes that in "August 2012, the NRC denied a license for the Calvert Cliffs nuclear power plant in Maryland. The judges said the applicants cannot receive a combined license to build and construct an Areva nuclear plant at Calvert Cliffs since the applicants are owned by a US Corporation that is 100% owned by a foreign corporation."

IPL has chosen to include a nuclear option within this analysis. It is not anticipated that IPL will build a greenfield nuclear plant. Rather, it is assumed that IPL could participate as a minority participant in the development of a new nuclear plant at an existing site if such development could overcome permitting issues. IPL continues to monitor developments in nuclear technology and will consider nuclear alternatives in any decision for future capacity additions.

See environmental characteristics and capital costs assumed for IRP modeling in Figure 4A.7.

#### Wind

Recent introduction of large-scale, utility-grade wind turbine generators ("WTG") has made wind energy a commercially viable technology in Indiana and the U.S. Indiana in particular has benefited from the widespread adoption of increasing wind tower heights. The 80 meter turbine height which is common in Benton County can more readily utilize the increased wind speeds found at higher elevations. Likewise, the Midwest is favored with several very good wind basins, allowing generation to be diversified and take advantage of metrological variances.

Wind speeds are important in determining WTG performance. The power available to drive WTG is proportional to the cube of the speed of the wind. In other words, a doubling in wind speed leads to an eight-fold increase in power output.

Higher wind speeds are not only important for generation; they also tend to lower the cost per kWh of the electricity produced. This is because wind parks generally have very high fixed costs (i.e., most of the cost of operating a wind park is the initial capital and financing costs). Spreading this cost over more hours per year reduces the hourly cost of electricity.

Currently, IPL's resource plan has an available renewables generation component of approximately 300 MW of energy secured under two long-term Wind Power Purchase Agreements ("PPAs"). Under the terms of the Wind PPAs, IPL receives all of the energy and Renewable Energy Credits ("RECs") from the two wind farms. The null<sup>23</sup> energy is used to supply the load for IPL customers and, in the absence of any mandatory federal or state renewable energy standard ("RES"), IPL is currently selling the associated RECs, but reserves the right to use RECs from the Wind PPAs to meet any future RES requirement. The Wind PPAs were approved by the IURC and if IPL chooses to monetize the RECs that result from the agreements, IPL shall use the revenues to first offset the cost of the Wind PPAs and next to credit IPL customers through its fuel adjustment clause proceedings. When the RECs associated with the production of null energy from the Wind PPAs are sold to a third party, IPL shall not claim that energy as renewable energy on behalf of its retail customers.

Good wind sites are usually located far from the main load centers, and therefore transmission system expansion may be required to connect the load centers with the wind-rich sites. IPL continues to monitor developments in wind technology and will consider wind alternatives in any decision for future capacity additions.

The Green-e Dictionary (<a href="http://www.green-e.org/learn\_dictionary.shtml">http://www.green-e.org/learn\_dictionary.shtml</a>) defines null power as, "Electricity that is stripped of its attributes and undifferentiated. No specific rights to claim fuel source or environmental impacts are allowed for null electricity. Also referred to as commodity or system electricity."

See environmental characteristics and capital costs assumed for IRP modeling in Figure 4A.7. The cost is the same for in state or out of state wind, but the capacity factor will vary depending on the location of the resource.

#### **Solar**

The total U.S. solar market grew more than 120% in 2010 – from 349 MW to 782 MW – and included approximately 48,000 photovoltaic ("PV") systems. These were mostly rooftop systems, but there were also a significant number of utility-scale projects, with eight projects greater than 10 MW.<sup>24</sup> As noted in the Rate REP Feed-In Tariff section below, IPL is on pace to have approximately 98 MW of PV systems commissioned by June 2015. IPL continues to monitor developments in PV technology and will consider PV alternatives in any decision for future capacity additions.

IPL's model allowed additional solar to be selected in 10 MW blocks. See environmental characteristics and capital costs assumed for IRP modeling in Figure 4A.7.

### **Hydroelectric Resources**

The use of water-power to generate electricity is one of the oldest generation resources still in use today. In addition, hydroelectric power remains by far the largest source of renewable energy in the world, including North America.<sup>25</sup> In the IPL 2011 IRP, the Company determined hydroelectric power was not a viable resource. There have been no significant changes since the analysis performed for the 2011 IRP; hence, hydroelectric power has not been included in this IRP.

## MW Capacity, Performance Attributes, and Installed Costs

[170-IAC 4-7-7(a)] [170-IAC 4-7-7(a)(1)]

The Supply Side Resources considered in IPL's IRP modeling are listed below in Figure 4A.7 along with their assumed MW capacity, performance attributes, and installed costs.

25

Power Engineering, June 2009 "Hydroelectricity: The Versatile Renewable," page 32.

<sup>24 &</sup>lt;u>http://www.solarelectricpower.org/</u>

**Confidential Figure 4A.7 – IRP Supply Side Resource Options** 

|                                               |                |                              |                          |                          | Emission Rates              |                          |
|-----------------------------------------------|----------------|------------------------------|--------------------------|--------------------------|-----------------------------|--------------------------|
|                                               | MW<br>Capacity | Base/Peaker/<br>Intermittent | Cost per<br>Installed KW | SO <sub>2</sub> (lb/MWh) | No <sub>x</sub><br>(lb/MWh) | CO <sub>2</sub> (lb/MWh) |
| Simple<br>Cycle Gas<br>Turbine                | 160            | Peaker                       |                          |                          |                             |                          |
| Combined<br>Cycle Gas<br>Turbine -<br>H-Class | 200            | Base                         |                          |                          |                             |                          |
| Nuclear                                       | 200            | Base                         |                          |                          |                             |                          |
| Wind                                          | 50             | Intermittent                 |                          |                          |                             |                          |
| Solar                                         | 10             | Intermittent                 |                          |                          |                             |                          |

## Distributed Generation, Net Metering and Feed-In Tariff

[170-IAC 4-7-4(b)(5)] [170-IAC 4-7-6(c)(1)] [170-IAC 4-7-7(a)]

#### **Distributed Generation**

IPL continues to identify and inventory customers who own distributed generation ("DG") (in addition to those already identified and contacted for possible participation in IPL's Standard Contract Rider No. 15, Load Displacement) for inclusion in future distribution planning studies. Transmission and Distribution impacts are discussed in Section 4C. As a Company, we stay connected to our customers in order to gage their interest in DG through public outreach events. IPL recognizes factors in addition to costs may motivate customers to install DG, such as environmental attributes, customer empowerment, energy independence, increased reliability, and social activism. Due to a large occurrence of early adoption from Rate REP and the Indiana climate, IPL believes its service territory will see little growth in DG.

## Rate REP (Renewable Energy Production)

IPL's Rate REP is a three-year pilot renewable energy feed-in tariff approved by the IURC that went into effect on March 30, 2010 and concluded in 2013. Under Rate REP, IPL was authorized to purchase all of the energy produced by customer-sited solar photovoltaic, wind, or

biomass systems and receives all of the Renewable Energy Credits ("RECs). The null<sup>26</sup> energy from the customer-sited systems is used to supply the load for IPL customers and, in the absence of any mandatory federal or state renewable energy standard ("RES"), IPL plans to sell the associated RECs, but reserves the right to use RECs from Rate REP agreements to meet any future RES requirement.<sup>27</sup> When the RECs associated with the production of null energy produced by customer-sited solar photovoltaic, wind, or biomass systems are sold to a third party, IPL shall not claim that energy as renewable energy on behalf of its retail customers.

IPL has executed and the IURC has approved forty (40) agreements for a total nameplate capacity of approximately 98 MW (alternating current ["AC"]). As of September 1, 2014, there were 26 operating projects totaling 66 MW of nameplate capacity; 11 MW are under construction and an additional 21 MW have not started construction. All projects are expected to be completed by June, 2015. See Section 7, Attachment 8.1 and Attachment 8.2, Rate REP for the solar projects and their location in the IPL service territory.

IPL is currently working with MISO to receive capacity credit for these Rate REP projects in future Planning Years. As more historical data is gathered, IPL will have a better understanding of the capacity value, but due to the intermittent nature of these resources, only 30 MW are included in IPL's generation planning reserves.

### **Net Metering**

In 2011, the IURC expanded the Net Metering rules to include all customers and increased the maximum nameplate rating to 1 MW. As of September1, 2014, IPL has 51 net metered customers that include 8 commercial customers and 43 residential customers. Total nameplate capacity of these installations is approximately 240 kW. This increase in residential participation has been influenced by the decline in PV panel costs and IPL's DSM incentives that will expire at the end of 2014. Commercial customers continue to have limited participation. Due to low retail rates and expiring tax credits, it is expected that few, if any, commercial customers will participate in Rider 9 in a tangible manner. Additional residential customers may participate in Rider 9 as a result of lower PV system costs but overall volume will continue to be low and will not impact the IRP.

\_

The Green-e Dictionary (<a href="http://www.green-e.org/learn\_dictionary.shtml">http://www.green-e.org/learn\_dictionary.shtml</a>) defines null power as, "Electricity that is stripped of its attributes and undifferentiated. No specific rights to claim fuel source or environmental impacts are allowed for null electricity. Also referred to as commodity or system electricity."

Rate REP was approved by the IURC and if IPL chooses to monetize the RECs that result from the agreements, the ratemaking treatment of those transactions will be the same as the Wind PPAs to benefit customers (Hoosier Wind Farm - IURC Cause No. 43485, Lakefield Wind Farm – IURC Cause No. 43740, Rate REP – IURC Cause No. 44018).

### Section 4B. DEMAND SIDE MANAGEMENT

## **Demand Side Management**

[170-IAC 4-7-6(a)(6)]

IPL's demand side management ("DSM") program is comprised of load management DSM and energy efficiency. With the passage of Senate Enrolled Act 340 ("SEA 340") and the resulting pause in the efforts to meet the IURC targets for DSM, the DSM evaluation for this IRP is driven by a more traditional analysis that identifies the market potential for cost effective DSM.

In April 2014, IPL engaged the consulting firm Applied Energy Group (formerly EnerNOC) to assist in the development of a short term (2015-2017) DSM action plan and a longer term (2018-2034) DSM forecast. The DSM short term action plan was intended to provide evidence in support of IPL's May 30, 2014 filing to the IURC for approval of DSM programs, while the longer term DSM forecast was intended to support the future of DSM for purposes of IPL's resource planning and in particular this IRP.

While the primary driver in developing the amount of energy efficiency DSM resources in the prior IRP was the IURC's Generic Order (Cause No. 42693-S1)<sup>28</sup>, these targets were suspended with the passage of SEA 340 in March 2014. As IPL has indicated before, other factors such as increasing customer interest, higher supply-side resource costs and federal environmental rules, already had IPL moving in the direction of DSM playing a significantly greater role in IPL's resource strategy. Despite the absence of state DSM targets, IPL believes DSM is a valuable resource and expects to continue offering a broad range of cost-efficient programs to its customers.

The forecast of future DSM (2018-2034) that was completed by Applied Energy Group is discussed and incorporated in IPL's Load Forecast (Section 4D) and modeled by Ventyx in the Integration section (Section 4). The Integration section addresses historical and current DSM initiatives as well as local and national developments that influence IPL's DSM strategy for the future. The development of IPL's proposed 3-Year Demand Side Management Plan ("3-Year DSM Plan")<sup>29</sup>, dated May 30, 2014, including the screening methodologies, cost-benefit analysis and proposed programs, is described in this Section and a copy of the Plan is included in Section 7, Attachment 4.1, DSM Supporting Documents.

The IURC Order in Cause No. 42963-S1 (dated December 9, 2009) – the Generic Phase II Order – established targets for Energy Efficiency achievement that are significantly greater than historical energy efficiency efforts in Indiana.

In Cause No. 44497, IPL has proposed a 3-Year Demand Side Management Plan. While IPL filed a 3 year Action Plan for the years 2015-2017, IPL is only seeking spending authority from the Commission for a 2 year period (2015-2016).

## **IPL Historical DSM Programs**

[170-IAC 4-7-6(a)(6)]

IPL was among the first utilities in Indiana to implement a comprehensive DSM program. IPL has offered DSM on essentially a continuous basis since 1993 with average annual DSM expenditures over the past five (5) years exceeding \$16 million per year. 30

The IPL DSM efforts from 2003 to 2009 focused on low income weatherization, energy efficiency education, and demand response programs including the Air Conditioning Load Management Program, which provides demand savings but limited energy savings. Subsequent to the issuance of the Phase II Generic Order, IPL efforts became primarily focused on the energy efficiency savings to achieve compliance with the Order. IPL forecasts achievement of approximately 456 GWh savings by year end 2014, which is approximately 92% of the cumulative Commission targets through the end of 2014.<sup>31</sup>

A summary of IPL's historical DSM program offerings since 2010 is detailed in Figure 4B.1.

<sup>&</sup>lt;sup>30</sup> As stated in the 2014 IPL annual DSM status report filed under IURC Cause No. 42693.

Figure 4B.1 – DSM Program History (2010-2014)

| Cause<br>No. | Date<br>Approved | Expiration<br>Date | Programs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Authorized<br>Program<br>Expenditures |
|--------------|------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| 43623        | 2/10/2010        | 2/9/2013           | <ul> <li>Residential On-site Audit with Direct Install (Core)</li> <li>Residential Prescriptive Lighting (Core)</li> <li>Energy Efficiency Schools – Kits Program (Core) – extension</li> <li>Income-Qualified Weatherization (Core) - extension</li> <li>Residential ACLM Program (Core Plus) – extension</li> <li>Residential Energy Assessment Program (Core Plus)</li> <li>Residential New Construction ES Plus (Core Plus)</li> <li>Residential 2<sup>nd</sup> Refrigerator Pick-Up (Core Plus)</li> <li>Res &amp; C&amp;I Renewable Energy Incentives (Core Plus)</li> <li>Commercial and Industrial ("C&amp;I") Prescriptive (Core)</li> <li>C&amp;I ACLM (Core Plus)</li> <li>C&amp;I Custom (Core Plus)</li> <li>C&amp;I Retro-Commissioning (Core Plus)</li> <li>C&amp;I New Construction (Core Plus)</li> </ul> | Total budget:<br>\$26.0M              |
| 43911        | 11/4/2010        | 11/4/2013          | Energy Efficiency Schools Program – Audits (Core)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Total budget:<br>\$560,000            |

| Cause<br>No. | Date<br>Approved                                                    | Expiration<br>Date                                                                                | Programs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Authorized<br>Program<br>Expenditures                                              |
|--------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| 43960        | Initial Approval Date 11/22/2011 Amended in 43623- DSM-5 on 6/20/12 | 12/31/2013 While this was initially approved as a 3 year plan, it was compressed to a 2 year plan | CORE PROGRAMS  Residential Home Energy Assessment  Residential Lighting  Energy Efficiency Schools  Education Component  Audit Component  Income-Qualified Weatherization  Commercial and Industrial ("C&I")  Prescriptive  CORE PLUS PROGRAMS  Resident New Construction  Residential On-Line Energy  Assessment with Kit  Residential 2 <sup>nd</sup> Refrigerator Pick-Up  Residential Peer Comparison Report  Residential High Efficiency HVAC  Residential Renewable  Residential ACLM Program (Core Plus)  Residential High Efficiency HVAC  Residential Renewable Energy Incentives  C&I Business Energy Incentives  C&I ACLM  C&I Renewable Energy Incentives | \$63.1 M Initial Authority  \$54.5 M - First Amendment to the Settlement Agreement |
| 44328        | 11/25/13                                                            | 12/31/2014                                                                                        | One Year Extension of Cause No.     43960. Programs offerings remained the same except for IPL ceased to offer High Efficiency HVAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Total budget:<br>\$23.7 M                                                          |
| 44497        | Pending                                                             | Proposed 2<br>Year Plan –<br>Requesting<br>that Term<br>Begins on<br>January 1,<br>2015           | IPL has requested the extension of the current Program offerings with the exception of the Residential New Construction; Renewable Energy Incentives for Residential and Business Customers and the Residential New Construction Programs. IPL has proposed the continuation of all of the other programs. IPL has also proposed one new Program – Small Business Direct Install.                                                                                                                                                                                                                                                                                     | Total budget:<br>\$63.6M                                                           |

Source: IPL

# Online Energy Feedback (PowerView)

IPL's online energy feedback has been available for all IPL customers that create a sign-on since its July 2010 inception. For Residential customers, daily energy consumption along with a

historical view is displayed on a one-day delayed basis through a web-portal. Industrial and Commercial customers can also access similar information at the iplpower.com website.

## **IPL Current DSM Programs**

[170-IAC 4-7-6(a)(6)]

IPL's current portfolio of DSM programs was approved in November 2013 in Cause No. 44328. IPL is currently offering all five of the programs that were designated as Core Programs by the IURC in its Generic Order. This comprehensive set of programs provides energy efficiency opportunities for all IPL customers. Delivery of most of the Core Programs will transition from delivery by the statewide third party administrator ("TPA") to IPL in January, 2015.

The programs approved in Cause No. 44328 are listed in the table above. The residential programs are generally a continuation of the prior program offerings that were initially approved in Cause No. 43623<sup>32</sup>. In some cases, these programs have been successfully offered by IPL for several years (i.e., Air Conditioning Load Management ["ACLM"]).

Note that the Core and Core Plus designations are from the Generic Order and these labels will cease to be relevant as the TPA program delivery concludes at the end of 2014 and IPL moves into the role of having primary responsibility for the delivery of all of these DSM programs.

As is detailed in IPL's Annual Compliance Filings made with the IURC on July 1st of each year, IPL DSM programs in total have generated significant demand and energy savings. The most recent IPL DSM Compliance Filing, as filed on July 1, 2014, is provided in Section 7, Attachment 4.2, DSM Supporting Documents. This compliance filing demonstrates that although the IURC targets were suspended by the passage of SEA 340, IPL expects to be at or near achievement of the prior Commission targets on a cumulative basis at the end of 2014.

IPL's ACLM ("CoolCents®") and Income Qualified Weatherization Programs are IPL's longest continually offered DSM programs. The Residential ACLM program has been offered since 2003 and represents the largest DSM program in terms of customer participation and peak demand reduction. At the end of 2013, IPL had deployed approximately 39,650<sup>33</sup> switches, which is equivalent to about 27 MW of summer peak reduction capability. When the demand savings from IPL's other demand response tariff riders are considered there is approximately 83 MW<sup>34</sup> of total peak demand reduction available to IPL.

Nuclear and solar resources did not appear in any of the landscapes. IPL has experienced a large influx of early adoption of DG solar due in large part to its feed-in-tariff, Rate REP as described

-

<sup>&</sup>lt;sup>32</sup> The IURC issued an Order approving Cause No. 43623 on February 10, 2010.

<sup>33</sup> Residential Air Conditioner Load Management Program EM&V Final Report, August 7, 2014, Table 8, p. 10.
34 Includes 27 MW of ACLM 20 MW of Conservation Voltage Reduction and 36 MW of

<sup>&</sup>lt;sup>34</sup> Includes 27 MW of ACLM, 20 MW of Conservation Voltage Reduction, and 36 MW of load curtailment/interruptible programs.

in Section 4A. Additional DG is not included in the short-term forecast absent further financial incentives. IPL recognizes the installed costs for solar are decreasing, however, modeling limitations do not allow dynamic costs to be included. Therefore, the 2016 IRP will include updated cost which may find solar to be a cost-effective option.

Of current offerings, the most significant DSM programs in terms of energy efficiency savings in 2014 are forecast to be the Core C&I Prescriptive Program (approximately 55,000 MWh) and the Residential Core Plus Peer Comparison Report (approximately 29,000 MWh).

## **Current Load Curtailment/Interruptible Programs**

In addition to the energy efficiency DSM programs and the ACLM demand response program described above, IPL also has a number of Load Curtailment/Interruptible programs that are offered under its tariff and targeted to C&I customers. At the end of 2013, IPL had 36 MW of demand response programs under contract with C&I customers. This is a decrease from the amount available in 2011, in part as a result of the recent economic downturn and of the shutdown of facilities that previously participated but no longer can due to EPA restrictions on emissions from diesel generators. In most cases, the incentives offered are adjusted annually to reflect changes in power market conditions. The currently approved programs are described below.

- Standard Contract Rider No. 14 (Interruptible Power). Rider 14, IPL's first interruptible/curtailable rider has been available since the early 1990s. IPL has one customer participating on Rider 14. This customer represented 9.3 MW of interruptible load.
- Standard Contract Rider No. 15 (Load Displacement). The IURC approved this Rider in April 2001. This Rider is available to customers who contract with IPL and agree to operate their generators at IPL's request to displace their own load. Rider 15 contributed approximately 25.4 MW to IPL's 2014 summer load reductions.
- Standard Contract Rider No. 17 (Curtailment Energy). Rider 17 has been available since 1999 for customers who contract with IPL and agree to curtail their load to a Firm Power Level at IPL's request. Rider 17 contributed approximately 1.7 MW to IPL's 2014 summer load reductions.
- Standard Contract Rider No. 18 (Curtailment Energy II). Rider 18 has been available since 2000 for C&I customers who contract with IPL and agree to curtail their load to a Firm Power Level at IPL's request. Each Rider 18 participant selects their own Firm Power Level and the energy price at which they agree to curtail load. No customers participated on this Rider in 2014.
- Standard Contract Rider No. 23 (Market Based Demand Response). Rider 23 has been available since 2011 for C&I customers on rates HL, PL, PH and SL and aggregators of customers ("ARCs") who wish to participate through IPL in the MISO energy market. No customers have elected to participate in this Rider due to low rates in the market.

• Special Rate SS Agreements. Several Rate SS (Small Secondary Service) customers with loads that exceed the 75 kW demand typically allowed by that rate, are allowed by the tariff to be served on Rate SS under special agreements. These customers typically have sporadic loads and very low load factors. The total diversified Rate SS Special interruptible load for 2014 was approximately 9.6 MW. Due to notification requirements and other non-conforming issues, these resources are not counted towards IPL's Module E resource requirements at the MISO but are nevertheless valuable to IPL as a measure to prevent load from coming onto the system at critical times.

## **Indiana Developments – The Changing Landscape**

The landscape for DSM in Indiana has changed significantly since the last IPL IRP was completed in 2011. Prior DSM efforts were influenced by the significant energy efficiency targets established in the IURC Phase II Generic Order. These targets provided the direction for the amount of DSM efforts in the State of Indiana through 2014. The Generic Order also established five Core DSM Programs and identified the mechanism for these Core programs to be delivered.

The IURC's Generic Order established the Demand Side Management Coordination Committee ("DSMCC") that solicited bids and selected a statewide TPA to deliver the Core Programs on behalf of the jurisdictional electric utilities. After a rigorous process, GoodCents® was selected as TPA by the DSMCC. In July 2011, the IURC approved the contract with GoodCents® and since, the DSMCC and GoodCents® worked diligently to deliver the Core Programs on behalf of the jurisdictional utilities beginning in January, 2012. The delivery of DSM programs by GoodCents will conclude on December 31, 2014. The DSMCC has remained in place to manage the wind-down of the Core Program delivery by GoodCents and to manage other transition related issues.

#### **Senate Enrolled Act 340**

The 2013-2014 Indiana General Assembly passed SEA 340, which, among other things, (1) provided the industrial customers with demand at a single site greater than one MW the opportunity to opt-out of participation in utility sponsored energy efficiency programs, and (2) eliminated the Generic DSM Order's savings goals.

SEA 340 provides that an industrial customer that meets the definition of a "Qualifying Customer" may opt-out by providing notice to its electricity supplier. Once a Qualifying Customer has opted out, the utility may not charge the customer rates that include energy efficiency program costs. The statute defines "energy efficiency program costs" as including: "(1) program costs; (2) lost revenues; and (3) incentives approved by the commission."

SEA 340 also allows customers to opt back in to participation and payment for utility-sponsored energy efficiency programs. A customer who opts back in must participate in the energy

efficiency program for at least 3 years (and must pay energy efficiency program rates for such 3-year period).

## <u>Cause No. 44441 – Qualifying Customer Opt-Outs</u>

The procedures for customer opt out were proposed and approved by the Commission in Cause No. 44441. In accordance with these procedures, IPL has made a good faith effort to notify Qualifying Customers of their ability to opt-out of participating in DSM programs, and defined the date ranges by which the customer must provide notice to opt-out. The Qualifying Customer's intention to opt-out of DSM participation in the second half of 2014, had to be received by IPL on or before June 1, 2014. The opt-out elections were applied to bills beginning with than July 1, 2014. Any Qualifying Customer providing notice after June 1, 2014, but before November 15, 2014, is eligible for opt-out effective January 1, 2015. After January 1, 2015, Qualifying Customers will only be able to opt-out on a calendar year basis with an effective date of January 1st of each year.

Figure 4B.2 below provides the Qualifying Customer opt-out schedule as proposed by the utilities.

Figure 4B.2 – Qualifying Customer Opt-out Schedule

| Notice Must be Received On | <b>Effective Date of Opt Out:</b> |  |  |
|----------------------------|-----------------------------------|--|--|
| or Before:                 |                                   |  |  |
| June 1, 2014               | July 1, 2014                      |  |  |
| November 15, 2014          | January 1, 2015                   |  |  |
| November 15, 2015          | January 1, 2016                   |  |  |
| November 15, 2016          | January 1, 2017                   |  |  |
| November 15, 2017          | January 1, 2018                   |  |  |
| November 15, 2018          | January 1, 2019                   |  |  |

Source: IPL

While it is still uncertain to what extent customer opt-out will reduce the market potential for DSM in IPL's service territory, there will be some reduction in DSM potential. However, the reduction in DSM opportunities may be mitigated to the extent that large customers create energy efficiency projects on their own.

As of the July 1, 2014 initial opt-out opportunity, a total of 42 IPL large customers with approximately 3,640 GWh of sales, have provided notice to opt-out of DSM program participation. This represents about 12.5% of total IPL retail sales. In total, IPL has approximately 150 customers that are served at over 200 sites eligible to opt-out of participation in its DSM programs. In aggregate, eligible customers including those who could opt-out but haven't necessarily done so, represent about 25% of IPL's total retail sales.

## National Developments – The Changing Landscape

Without question, the most significant national development regarding energy efficiency is the rule that was recently proposed by the EPA to regulate CO2 as discussed in Section 3 of this IRP. Labeled the Clean Power Plan ("CPP"), the proposed rule was issued pursuant to Section 111(d) of the Clean Air Act. The EPA has identified four specific building blocks on which compliance with the target state CO2 emission rates can be achieved. Energy efficiency is one of these four building blocks along with heat rate improvements at existing power plants; additional generation by renewable energy resources and nuclear energy. The State of Indiana and IPL are still early in evaluating and commenting on the proposal and trying to understand the role that energy efficiency ("EE") and these other building block will play in compliance.

Due to the evolving nature of the rulemaking and legal challenges, it is unknown whether the CPP will ultimately go into effect. However, while the ultimate disposition of the rulemaking is unknown, it is prudent for IPL to actively plan for the eventuality that this rule, or other carbon constraints, will result in an increasing role for energy efficiency.

Although the specific level of energy efficiency that might be necessary for Indiana to achieve compliance with the Clean Power Plan is not known at this time, the EPA assumes that at some point Indiana is capable of achieving an incremental annual energy efficiency amount of 1.5% per year<sup>35</sup>. The cumulative amount of energy efficiency that EPA has assumed for Indiana under Option 1 (compliance by 2029) is 11.11%. This amount of energy efficiency is expected to be difficult to achieve, but if Indiana is eventually required to comply with the Clean Power Plan, EE will have a significant role in the compliance plan.

Beyond the implications of the CPP for EE in the future, there has continued to be an uptick in the scale and scope of energy efficiency nationally as well as locally. Data shows that the significant increase in DSM efforts in Indiana has continued to be in synch with national developments. According to the 2013 State Energy Efficiency Scorecard report from the American Council for an Energy Efficient Economy ("ACEEE")<sup>36</sup>, total spending on customerfunded energy efficiency programs has increased from approximately \$2.5 billion in 2007 to approximately \$6.0 billion in 2012.

There has not been significant recent Federal legislation regarding energy efficiency since the passage of the American Recovery and Reinvestment Act of 2009 ("ARRA"). This legislation injected more than \$11 billion ARRA funds directly into state energy efficiency programs. ARRA includes several additional provisions modifying and expanding the scope of the energy

http://www2.epa.gov/sites/production/files/2014-06/documents/20140602tsd-ghg-abatement-measures.pdf

<sup>&</sup>quot;The 2013 State Energy Efficiency Scorecard", American Council for an Energy-Efficient Economy by Annie Downs, Sara Hayes, , Max Neubauer, , Seth Nowak, Shruti Vaidyanathan, Kate Farley, Celia Cui and Anna Chittum, November 2013, Table 2, page 9.

<sup>&</sup>lt;sup>37</sup> The inclusion of EE/DSM in the EPA proposed CPP may significantly impact future EE efforts nationally.

efficiency effort. For example, on-site renewables, including solar photovoltaic ("PV"), hot water systems, small wind systems, and geothermal heat pumps are also eligible for a tax incentive worth 30% of the total cost, without a cap.

Many of the Federal tax provisions designed to encourage energy efficiency expired at the end of 2013. Tax credits for combined heat and power systems, fuel cell and microturbines, and accelerated depreciation for smart meters and smart systems remain in place.

Perhaps the most significant long-term consequence of ARRA is the impact on building codes. In order for states to receive the appropriate funds from the ARRA, they must adopt more stringent building codes (2009 IECC and ASHRAE 90.1-2007 for commercial). The ARRA also calls for 90% compliance with these higher codes by 2017. Indiana stakeholders are discussing a utility funded program that would encourage builders and others to achieve compliance with the updated building codes, but a methodology to assure attribution of savings has yet to be determined and agreed upon. This has possible relevance in planning for CPP compliance.

There have been limited demand response developments since the completion of the prior IPL IRP in 2011. In its Order 719, FERC instructed MISO to remove barriers to participation in demand response as part of their Ancillary Services Market ("ASM"). Through its Demand Response Working Group ("DRWG"), in which IPL participates, MISO is working through the attendant issues including, baseline determinations; technical performance requirements, such as communications, measurement, and verification; compensation and the potential conflict with state regulatory authority. The IURC completed an investigation into demand response in Indiana in IURC Cause No. 43566. In response to the IURC's order, IPL filed Standard Contract Rider No. 23 -- Market Based Demand Response Rider, which was approved by the IURC on March 7, 2011. Rider 23 provides customers the opportunity to submit bids through IPL to MISO for Emergency Demand Response and Demand Response Resource Type 1 economic energy. To date, no IPL customers have participated on Rider 23.

# **IPL's DSM Strategy**

IPL has continuously offered DSM programs to benefit customers and optimize demand side resources since 1993. Following the IURC's Generic DSM Order through the passage of Senate Enrolled Act 340, IPL's DSM Strategy had been to comply with the energy efficiency targets established by the IURC in the Phase II Generic Order. Recent IPL DSM Plan filings up to and including the DSM Plan for 2014 (Cause No. 43960) were filed with the intention to have adequate energy efficiency offerings and sufficient funding to allow IPL to achieve the IURC's energy efficiency targets.

Following the passage of SEA 340, IPL voluntarily developed and filed for approval of the 2015-2016 DSM plan with the Commission to continue to offer customer programs. This plan provides for the delivery of a significant amount of DSM savings to our customers (approximately 1.1% of sales per year). The company expects to continue to propose and deliver

additional cost-effective programs consistent with the IURC IRP and CPCN rules for demand side management options. The specific programs to be delivered beyond the current three-year planning horizon will be identified and proposed in subsequent IPL DSM plans to be filed with the Commission.

IPL's DSM initiatives will only be successful with broad customer participation. Therefore, customer adoption remains the most important element of successful DSM implementation. IPL must continue to ensure that the customer has positive interactions with IPL's many program partners and IPL will continue to carefully choose these partners and monitor their efforts.

#### The elements of the IPL 2015-2017 DSM Action Plans will:

- Continue to grow IPL's successful demand response program "CoolCents®"
- Continue to provide premise based Home Energy Audits that includes the installation of low cost energy efficiency measures
- Continue to provide weatherization services for income-qualified customers
- Continue to promote and encourage our customers to take advantage of IPL's web-based energy manage tools
- Continue to provide energy efficiency kits as a fulfillment for participation in the web based on-line audits
- Continue to provide the opportunities for customers to have their second refrigerators and freezers picked up and recycled
- Continue to periodically provide customers with a Peer Comparison Energy Report
- Continue to provide energy efficiency programs to C&I customers by providing prescriptive rebates for lighting, pumps, and motors
- Continue to provide a Custom energy efficiency program to C&I customers that provides funding for projects that do not fit into the Prescriptive program
- Introduce a small business customer audit and direct install program
- Continue to evaluate future DSM expansion capabilities including leveraging the twoway metering capabilities and advanced grid functionality

# **IPL's Screening Process and Evaluation**

Screening of demand side measures is a multi-step process. Measures are first qualitatively screened and then logically grouped into prospective programs. These programs are then systematically evaluated with the aforementioned cost effectiveness tests. IPL calculates future avoided costs and compares them to projected savings.

#### **DSM Cost Effectiveness**

[170-IAC 4-7-7(b)]

The cost effectiveness of the DSM programs is built upon avoided supply costs which include capacity and marginal production costs, as well as program design and delivery features. The program success attributes are discussed below:

- (a) Conservation and load management programs that are correlated to or can be applied coincident to the peak demands of the utility. A strong correlation of DSM to peak load drives proportionately enhanced capacity reductions, along with some level of energy reductions, depending on the specific program. The "peak correlation" attribute is significant to the success of the program because avoided costs are maximized. The type of customer loads targeted will include, for example, ACLM that helps control IPL's system peak.
- (b) Conservation and load management programs with efficient delivery channels. IPL looks to wisely employ incentives targeted to encourage specific measures through traditional low-cost and effective delivery channels. These channels include the new appliance and the new construction markets, where more efficient appliance or insulation specifications could most cost-effectively be substituted for less efficient ones with minimal incremental material costs. The primary benefit to using these channels is the avoidance of labor-intensive removal and upgrade costs of replacement programs.
- (c) Conservation and select load management programs with long-life measures. This will include new construction projects such as insulation, low-e glass, efficient heat pumps, and air conditioners that can last the life of the home in some cases, or nearly 15 years in others. Load management programs that require upfront capital (such as ACLM) also need to be designed for long-life to justify initial costs and balance the DSM portfolio demand and energy savings.
- (d) Conservation programs where government efficiency regulations have yet to happen, and where large efficiency improvements can still be realized. Starting in 1987 with the National Appliance Energy Conservation Act that established minimum efficiency requirements for 12 types of residential appliances sold in the United States ("U.S.")., the law has been amended several times to include mandates for additional minimum efficiency standards for additional appliances and other electric products. An example of this standards improvement is the setting of new efficiency standards for light bulbs which begins in 2012.
- (e) Conservation and load management programs that have been successfully identified elsewhere. Simply put, if DSM programs are not cost-effective in high-cost energy states, such as California, New York, or even Illinois, they will not be cost effective in Indiana. Indiana electric customers generally, and IPL customers specifically, benefit from some of the lowest electric prices in the nation. So it can be difficult to develop cost-effective DSM products to offer. IPL studies Midwestern DSM programs, reviews trade magazines, seeks stakeholder input at industry conferences and solicits advice from conservation advocates for potential conservation and load management programs.

- (f) Conservation programs that benefit electric customers who are financially least-likely to be able to participate on their own because of the higher initial costs of such measures. Income can be a barrier to customers' decisions to participate in energy efficiency and therefore it is appropriate to consider DSM investments targeted to the economically disadvantaged. Over the prior 10 years, IPL has provided weatherization services through its DSM program to several hundred income qualified residential customers, reducing their energy consumption, while improving their comfort and ability to pay their electric bills. Without the IPL program, the majority of these customers would not have been in a position to make these investments in energy efficiency measures.
- (g) Load management programs that take advantage of advances in information technology specifically those that allow customers to respond to price signals either manually or via automated systems to economically shift load to off-peak periods, and/or conserve the load entirely. Information technology capabilities are increasing, while some costs have decreased. IPL monitors this area for cost-effective applications including DSM and demand response measures as time based rate offerings.

IPL delivers some programs jointly with Citizens Gas. Using the same contractor and delivering both gas and electric measures in the same visit reduces overhead costs and improves cost-effectiveness by delivering more measures than if the companies delivered the measures separately.

#### **Avoided Costs**

[170-IAC 4-7-4(b)(12)] [170-IAC 4-7-6(a)(5)] [170-IAC 4-7-6(a)(6)] [170-IAC 4-7-6(b)(2)] [170-IAC 4-7-8(b)(5)] [170-IAC 4-7-8(b)(6)(C)]

The marginal cost of capacity including generation, transmission, distribution, capacity, and the marginal cost of production, including fuel, quantifiable emission costs, and variable operating and maintenance costs are the primary value drivers of the avoided cost benefits associated with a given load reduction.

IPL capacity costs and marginal production costs were fairly flat over the last decade. These costs have risen in recent years and are expected to trend higher as more environmental restrictions on coal-fired production are implemented. Representative values from the tariff rate Cogeneration Service ("CGS") over the prior years are shown in Figure 4B.3 below:

Figure 4B.3 – Historical Avoided Capacity and Production Costs

| Year | Avoided capacity costs (\$/kW/Month) | Avoided production costs (Cents/kWh, Off Peak) |
|------|--------------------------------------|------------------------------------------------|
| 1998 | 2.87                                 | 1.53                                           |
| 1999 | 2.84                                 | 1.55                                           |
| 2000 | 2.91                                 | 1.54                                           |
| 2001 | 2.85                                 | 1.82                                           |
| 2002 | 3.00                                 | 1.55                                           |
| 2003 | 2.94                                 | 1.33                                           |
| 2004 | 2.85                                 | 1.42                                           |
| 2005 | 3.13                                 | 1.39                                           |
| 2006 | 3.08                                 | 1.41                                           |
| 2007 | 3.17                                 | 1.62                                           |
| 2008 | 4.76                                 | 2.14                                           |
| 2009 | 6.18                                 | 2.66                                           |
| 2010 | 6.05                                 | 1.93                                           |
| 2011 | 7.19                                 | 2.20                                           |
| 2012 | 7.30                                 | 2.46                                           |
| 2013 | 7.42                                 | 2.57                                           |
| 2014 | 7.39                                 | 2.65                                           |

Source: IPL

The avoided capacity costs for 2014 were used in the DSM modeling for the updated DSM Action Plan filed in Cause No. 44497. IPL included the marginal cost of capacity (inclusive of savings in generation capacity, and transmission and distribution capacity). The avoided energy costs are from the Ventyx Midwest Fall 2013 Reference Case. The marginal cost of production includes fuel, emission costs and variable operating and maintenance costs.

For this IRP modeling, the marginal generation capacity cost was calculated to be /kW/year which included avoided fixed O&M and the avoided transmission and distribution ("T&D") capacity costs that were assumed at 10% of the avoided generation value<sup>38</sup>. The DSM programs were also credited with avoided T&D line losses of 4.95%, which is a calculation that IPL performs annually. The 4.95% credit was also applied to the avoided energy cost values for the line losses that are avoided by the DSM measure being implemented at the point of use. Future avoided capacity and production costs are shown in Section 7, Confidential Attachment 4.3, DSM Supporting Documents.

<sup>38</sup> The marginal generation capacity cost is based on the deferral of a simple cycle combustion turbine with an installed cost of **100**/kW.

110

#### **Evaluation Process**

[170-IAC 4-7-7(b)] [170-IAC 4-7-7(d)(1)] [170-IAC 4-7-7(d)(2)]

Programs are evaluated using the four traditional California Standard Practice Methodology cost effective tests: These include the Participant Cost Test ("PCT"), Utility Cost Test ("UCT"), Rate Impact Measure ("RIM") Test and the Total Resource Cost Test ("TRC"). A general description of the major tests – including the tests' components and objectives is presented in Section 7, Attachment 4.4, DSM Supporting Documents. The equations for the four traditional California Standard Practice Methodology cost effective tests are expressed in Section 7, Attachment 4.9, DSM Supporting Documents.

IPL systematically uses these tests to derive its prospective DSM programs. First, IPL will look for all programs that pass the RIM test which is the most difficult test to pass. This is both a measure of program efficiency and fairness. Any program passing this test represents both an efficient program and one that benefits all other non-participating customers as well.

Next, IPL looks for programs that pass both the TRC and UCT tests. The TRC test addresses whether the delivered DSM measure is truly efficient – although it does not speak to fairness. So while society as a whole may be served, it is the participant that generally derives much of the benefit, while other customers absorb much of the costs. The UCT addresses whether the delivered DSM measure lowers utility costs. While a positive benefit/cost result of the UCT value lowers revenue requirements (measured in dollars), it may not lower customer rates (measured in dollars per kWh, as included in the RIM test).

The TRC and UCT values are considered for any program that does not pass the RIM test. Since programs that do not pass the RIM test tend to raise rates, IPL must balance the desire to promote efficiency with the need to maintain economical rates. Programs that fail the TRC test may still be considered for implementation for reasons of market continuity, market transformation, public education, synergy with other programs, or other reasons that make interruption or termination of a program a problem for future implementation or creates an adverse perception in the marketplace.

Finally, IPL ensures that the screened DSM measures and programs pass the PCT test which examines the net benefits to the participants of the program. This process has been consistently used by IPL since the development of the 2008 MPS. This and subsequent refinements made to the programs included in the DSM program pending in Cause Nos. 43623, 43960 and 44497.

In Cause No. 44497, IPL also introduced the concept of a hybrid test which was identified as the Customer Balance Test ("CBT"). The CBT can be used to assess the degree of subsidization between participants and non-participants. The calculations for this test are discussed below. The programs that are found to be cost-effective from the UCT and TRC test perspective can be further ranked by the CBT ratio. The CBT is not used as a pass/fail test but serves as an indicator

that programs that did pass the TRC or UCT tests but also had a low CBT ratio should be further examined to determine whether other factors warranted their inclusion in the DSM Plan. IPL presented information on the CBT at the IRP Contemporary Issues Workshop on October 23.

Including programs that passed the TRC or UCT is consistent with the Commission's DSM rules, which require that at least one of the tests listed above be used to evaluate the cost-effectiveness of a DSM program. However, simply passing the TRC or UCT only means the program is cost-effective from a particular viewpoint and may not necessarily mean the program is equitable and in the interest of all customers. While certain programs do not pass the traditional benefit-cost tests these programs do have other societal benefits or the benefits are difficult to quantify and have been generally accepted subject to budget restrictions. Specifically, low-income weatherization programs typically do not pass these cost-effectiveness tests, but IPL believes it is important to offer low-income customers DSM program offerings in order to give such customers the opportunity to participate in programs that will help them control their energy usage and their energy bills.

The CBT tests attempts recognize that not everyone in the customer population receives a net benefit for programs that pass the TRC test. There will be some cross-subsidization between participants and nonparticipants within a customer group but this needs to be minimized to a reasonable extent. For example, the TRC ratio can be greater than 1.0 if a small group of participants benefit a great deal at the expense of a large number of non-participants so long as the benefit averaged over all customers is sufficient. This can raise equity issues among customers. To provide an indication of some balance between these different perspectives, the CBT compares the adverse rate impacts with the aggregate cost savings such that the net benefits of the TRC test must equal or be greater than the net costs of the RIM test. Expressed as a formula:

CBT = NPV Net Benefits of TRC (Avoided Costs – Utility Costs – Participant Costs)

NPV Net Costs of RIM (Utility Costs + Lost revenue – Avoided Costs)

This ratio, while not eliminating all subsidization between participants and non-participants, does balance the benefits with the total costs which now include rate impacts.

#### <u>DSM – Benefit/Cost Test Results</u>

[170-IAC 4-7-7(b)] [170-IAC 4-7-7(c)]

The benefit/cost test results and the Net Present Values ("NPV") of the programs' impact are found in Section 7, Attachment 4.5, DSM Supporting Documents. The DSM programs were evaluated using a discount rate of 8.55%, which is IPL's most recent weighted average cost of capital.

IPL's informational programs form just a part of the customer's knowledge base and when combined with other knowledge-based initiatives (Energy Star®, government information, etc.), and with easy availability of efficiency measures (efficient lighting and appliances in hardware and mass-merchandise stores) ultimately influence the decision process. These program benefits are difficult to quantify, but undoubtedly influence the market and have a place in a comprehensive and cost-effective DSM portfolio such as IPL's.

## Market Potential Study - Future DSM Market Analysis

[170-IAC 4-7-8(b)(4)]

In 2012, IPL in collaboration with Citizens Energy and each respective DSM Oversight Board retained the consulting firm Applied Energy Group ("AEG") (formerly EnerNOC)<sup>39</sup> to complete a Market Potential Study ("MPS") and Action Plan for the period 2014-2017. Since the completion of the 2012 MPS and Action Plan, Senate Enrolled Act 340 ("SEA 340") was passed into law, significantly changing the structure of DSM in Indiana. In response to SEA 340, IPL re-engaged AEG to update the last three years of its DSM Action Plan.

The most significant change to the original Action Plan as developed by AEG related to measure level details. In the updated Action Plan, AEG adjusted measure level participation forecasts, per unit costs, per unit savings, and measure life assumptions. These measure level assumptions have changed primarily as a result of: (1) Evaluation, Measurement & Verification ("EM&V") of IPL's DSM programs; and (2) Adoption of the Indiana Technical Resource Manual ("IN TRM"). In addition to adjusting the measure level assumptions, AEG refreshed the programs' cost-effective results to account for the revised costs and savings to be reflected in the updated Action Plan. As part of refreshing the economics, IPL provided more recent avoided cost information to AEG.

The updated Action Plan reflects decreased savings projections for the Business Energy Incentive Prescriptive and Business Energy Incentive Custom programs, in relation to the prior Action Plan to account for the reduction in savings potential due to opt-out. In other words, as customers begin to opt out of participating in IPL's DSM programs, the pool of potential participants decreases.

<sup>&</sup>lt;sup>39</sup> The EnerNOC resource planning group, including all the principals who had worked on the 2012 MPS, was acquired by Applied Energy Group in the 2<sup>nd</sup> Quarter of 2014. Therefore all references to EnerNOC have been changed to Applied Energy Group.

## DSM Plan Forecasted Savings (2015-2017)

[170-IAC 4-7-6(a)(6)] [170-IAC 4-7-6(b)(4)] [170-IAC 4-7-6(b)(5)] [170-IAC 4-7-6(b)(6)] [170-IAC 4-7-6(b)(6)]

The following table, Figure 4B.4, summarizes the program forecasts (energy and demand impacts) for the IPL 2015-2017 DSM Action Plan proposed in and approval pending in Cause No. 44497. Year 1 program delivery is coincident with 2015 and so on.

Figure 4B.4 – Total Demand and Energy Impacts of Proposed DSM

| Program<br>Year | Energy Savings<br>MWh-Annual<br>Incremental | Demand Savings<br>kW-<br>Annual Incremental |  |  |
|-----------------|---------------------------------------------|---------------------------------------------|--|--|
| 2015            | 122,860                                     | 59,196                                      |  |  |
| 2016            | 126,441                                     | 60,904                                      |  |  |
| 2017            | 129,903                                     | 62,603                                      |  |  |
| Total           | 379,204                                     | 182,703                                     |  |  |

Source: IPL

Target demand and energy savings, by program by year, are found in Section 7, Attachment 4.6, DSM Supporting Documents. These savings are expressed on a Net basis.

The estimated bill reduction, participation incentive, program cost, and energy (kWh) and demand (kW) savings per participant for each program are provided in Section 7, Attachment 4.10, DSM Supporting Documents. This attachment also includes the estimated program penetration rate.

## DSM Plan Proposed Programs (2015-2017)

[170-IAC 4-7-6(a)(6)]

The proposed DSM programs for both Residential and C&I customers are described below. See Section 7, Attachment 4.1, DSM Supporting Documents for the entire 3-Year DSM Plan that was filed in Cause No. 44497. The majority of these programs are currently being offered to IPL customers. IPL proposed to eliminate 3 programs in this filing (largely on the basis of cost-effectiveness):

• Residential New Construction

- Residential Renewable Energy Incentives<sup>40</sup>
- Commercial and Industrial Renewable Energy Incentives

### **Residential Programs**

[170-IAC 4-7-6(b)(1)] [170-IAC 4-7-6(b)(3)]

## **Residential Lighting Program**

The Residential Lighting Program is an existing IPL program that has been available to IPL customers since 2003. The goal of the Residential Lighting Program is to increase the penetration of high efficiency Energy Star® ("ES") qualified lighting in the homes of IPL residential customers. This program will provide IPL residential customers with the opportunity to purchase energy efficient light bulbs, while traditionally these lights have been primarily Compact Fluorescent Lights ("CFLs"), LEDs are becoming available in significantly more types at a much lower prices.

Therefore, LED technologies will be increasingly emphasized as their market readiness increases. The program will provide upstream "buy-downs" for certain products such as compact fluorescent lamps so that customers pay a lower price at the point of purchase without needing to apply for a rebate. The upstream buy-down activity is a component of the program's focus on market transformation that will increase the demand for high efficiency products.

## **Residential Home Energy Assessment Program**

The goals of the existing Residential Home Energy Assessment Program are to produce long-term, cost-effective electric savings in the Residential market sector by helping customers analyze and understand their energy use, recommending appropriate weatherization measures, and facilitating the direct installation of specific low-cost energy saving measures.

This program is designed to generate energy savings for IPL residential customers by providing low-cost energy efficiency measures and improvement recommendations tailored to customer homes.

## Residential Income Qualified Weatherization Program

The Residential Income Qualified Weatherization Program is the continuation of an IPL program that has been available to IPL customers since 1993. Goals of the Residential Income Qualified Weatherization Program are to produce long-term energy and demand savings for qualifying low-income residential customers by providing professionally-installed energy efficiency

<sup>-</sup>

<sup>&</sup>lt;sup>40</sup> In Cause No. 44623, the Commission required IPL to meet certain conditions to continue to offer the Renewable Energy Incentive Programs. IPL's experience has been that there is no evidence of market transformation with these programs.

measures and improvements tailored to customers' homes as well as providing education on ways to reduce energy consumption. This program has generally been jointly delivered with Citizens Energy.

Participating households receive the following types of assistance:

- In-Home Audits and Education—On-site inspections and tests used to identify the applicability of energy-savings measures the program offers and to educate residents about ways to reduce their energy usage.
- Direct Installation of Measures—Install measures to reduce energy use in the home at no charge to residents.

### **Residential School Kits Program**

The Residential School Kits Program is an existing program that achieves cost-effective energy savings by educating students and their families about energy efficiency in their homes. This program incorporates an educational module provided to grade school students, along with a take-home kit of energy efficiency measures. Measures include CFLs and low-flow fixtures. It targets students to help them learn about energy efficiency and how they can apply it at school and at home.

### Residential Online Energy Assessment Program

The Residential Online Energy Assessment Program is an existing IPL program, launched in July 2010, which educates consumers on their home energy use and identifies potential areas where they can take action to reduce their energy consumption. This program continues to be promoted with a combination of marketing materials directing customers to IPL's website to complete an online audit of their home. The web-based energy audit tool (branded as *Home Energy Inspector*) provides customers with information on: (1) no-or low-cost ways to reduce energy consumption, (2) identifies possible investment opportunities in energy efficiency improvements, and (3) describes how a customer's energy bill is calculated. Armed with this information, customers are better equipped to make informed decisions in managing their consumption and energy costs. Customers that complete the brief energy assessment will be provided an energy efficiency kit at no charge that includes low-cost, easy-to-install energy-saving water fixtures and CFLs for self-installation.

## **Residential Appliance Recycling Program**

This existing program was introduced to IPL residential customers in May 2010. The Residential Appliance Recycling Program is a program that provides for the removal and disposal of operable but inefficient secondary refrigerator and freezer units. Many households retain these older refrigerator or freezer units in a garage or basement and often do not realize how inefficient they are. This program provides education on the cost of keeping an older, often underutilized unit along with the opportunity to have the unit removed at no cost and recycled in an environmentally-sound manner.

Residential customers with eligible units can schedule a date to have the unit(s) picked-up at no charge and will also receive an incentive payment for each unit. The current incentive the customer receives for allowing the removal of the appliance is \$30 per unit. IPL is proposing to increase this incentive to \$40 beginning in 2015. IPL's contractor removes the units and hauls the appliance to a facility where the components, including cooling systems and insulation which are potentially harmful to the environment, can be completely recycled. The process used captures hazardous materials and recycles over 95% of the metal, glass and plastic components.

The Room Air Conditioner Pick-Up and Recycling Program is bundled with the Refrigerator Recycling program described above and provides for the removal and disposal of operable but inefficient window/room air conditioner units. This program is intended as an add-on to the Second Refrigerator Pick-Up and Recycling Program, in that a customer who schedules a pick-up of a refrigerator or freezer unit may also relinquish an older, inefficient room air conditioner unit and receive an incentive for both appliances. The incentive for a room air conditioner unit is \$20. Air conditioner unit pick-ups will only be scheduled for customers who are also having a refrigerator and/or freezer picked-up on the same visit.

The units will be taken to the recycling facility and decommissioned and dismantled in an environmentally-responsible way. This program will ensure that these older, inefficient units are permanently taken off the electric grid.

## Residential Air Conditioning Load Management Program

The Residential ACLM Program is a continuation of a program that IPL has offered since 2003. IPL currently has approximately 35,000 customers participating in this program. The program consists of the remote dispatch and control of an ACLM switch installed on participating customers' central cooling units (central air conditioners and heat pumps). The goal of the program is to reduce summer system peak loads. The central cooling units are generally expected to be cycled at a 40% duty cycle strategy using the True Cycle<sup>41</sup> adaptive approach. Key provisions of the program are as follows:

- Enrolled residential customers receive a \$5 credit on their bill for each of the months of June, July, August and September that they participate equaling up to \$20 per year.
- IPL's contractor, GoodCents®, installs the switch on the outside of the customer's home near the central cooling equipment; and
- IPL can control the customer's central cooling unit during peak demand periods for the five months of May through September.

True Cycle is the proprietary term for the logic that the switch vendor Cooper (Cooper acquired Cannon) uses to operate the ACLM during control events that considers uncontrolled air conditioner operation.

117

IPL utilizes its Automated Meter Reading ("AMR") system to assist in conducting a "metered maintenance" program on its switches as a cost-effective means to identify switches needing to be repaired or replaced.

## **Residential Multi-Family Direct Install Program**

This program is designed to affect the energy efficiency of rental apartment units through the installation of energy-efficient, high-performance water fixtures (i.e., showerheads and faucet aerators) and CFLs. The program educates tenants about the energy benefits of these installed measures and behavior changes that will have a lasting impact on their energy and water consumption.

The program targets multi-family complexes with units that are either all-electric or have natural gas-fueled storage water heaters. In the latter situation, IPL partners with Citizens Gas to jointly deliver and share costs for this program.

This program is available at no charge, which is an important consideration since property owners will not typically have an incentive to make investments that provide energy efficiency benefits to the tenants who pay the utility bills.

The program first targets property-management companies as well as property owners in an effort to secure agreements to treat multiple properties through a single point of contact before targeting owners and managers of single properties.

### **Residential Peer Comparison Reports Program**

The Peer Comparison Energy Reports Program utilizes behavioral science-based marketing to provide customized energy consumption information to IPL residential households, engage those households in their energy consumption as compared to their peers, and thus drive changes in behavior that result in measurable energy savings.

Selected households receive a printed and mailed quarterly energy report that combines their energy usage data with demographic and housing data to provide a picture of their energy consumption trends and how those trends compare with similar households. The report contains customized suggestions for reducing energy consumption, including information about key IPL energy efficiency programs.

By comparing a household's energy use to others, including their "most efficient" neighbors, and showing specific actions that those other households took to save energy, the reports provide both goals and a sense of competition that have shown to produce sustained energy-conservation behaviors.

### **Commercial and Industrial Programs**

[170-IAC 4-7-6(b)(1)] [170-IAC 4-7-6(b)(3)]

### **Business Energy Incentives Program**

Business Custom and Prescriptive Incentives Program is an existing IPL program that has been available to IPL customers since September 2010. The C&I Prescriptive Program goal is to produce long-term cost-effective electric savings in the C&I market sector. Savings are achieved by offering incentives structured to cover a portion of the customer's incremental cost of installing prescriptive efficiency measures.

### **Small Business Direct Install Program**

IPL has proposed a new program for delivery in 2015, the Small Business Direct Install Program. The Small Business Direct Install program provides a suite of targeted, highly cost-effective measures to small businesses in a quickly deployable program delivery mechanism, along with education and program support to help business customers reduce their energy bills.

The program will provide several direct-install measures at no additional cost to participants, such as lighting replacements, programmable thermostats, occupancy sensors, vending machine controls, and low-flow water fixtures. The program also connects customers with other programs in the portfolio and a network of qualified trade allies/contractors that can install follow-on measures to provide deeper energy savings.

## **Business Air Conditioning Load Management Program**

The Business ACLM Program is a companion program to the Residential ACLM Program. This program (also branded as CoolCents®) was launched in June 2010 to Rate SS and Rate SL customers. This program provides significant demand savings along with some energy savings to participating customers. Customers who enroll in the program have an ACLM switch installed on their facility cooling equipment. This allows IPL the opportunity to cycle the equipment during times of system peak usage. The switches will be controlled at the same time as the Residential ACLM customer switches. In return for participating, a customer must agree to allow IPL to control 50% of its cooling load and receives an incentive on the basis of net tons of controlled air conditioning load. Customers will receive a \$5/ton credit on their utility bill during the billing months of June, July, August and September for each net ton enrolled.<sup>42</sup>

# Other Proposed DSM Programs through Cause No. 44478

[170-IAC 4-7-6(b)(1)]

The City of Indianapolis asked IPL to support its plan to implement an all-electric car sharing program with its partner, Bolloré Group/BlueIndy. Up to 1,000 car charging stations are

<sup>&</sup>lt;sup>42</sup> See IPL Rider 13 Tariff sheet at iplpower.com.

proposed at approximately 200 locations. IPL understands this would be the largest deployment of such an EV car-sharing program in the United States. IPL entered into a settlement agreement with the OUCC in the BlueIndy case (IURC Cause No. 44478) which includes the evaluation of three additional DSM programs: LED Street lighting, an energy management pilot based on the ISO 50001 standard, and demand response using electric vehicle batteries to provide power to the grid as described below in the electric vehicle section. If the settlement agreement is approved by the Commission, IPL will move forward to plan the implementation of these programs.

## Evaluation, Measurement and Verification ("EM&V")

The key to assessing demand and energy savings is the evaluation of IPL's DSM programs by an independent third-party as a utility industry best practice. Evaluations of the Core and Core Plus programs have been performed by TECMarket Works. IPL's EM&V reports have been provided to the Commission pursuant to the General Administrative Order ("GAO") related to the Commission's August 2014 report to the Indiana General Assembly.

## **DSM Forecast (2018-2034)**

[170-IAC 4-7-6(b)(4)] [170-IAC 4-7-6(b)(5)] [170-IAC 4-7-6(b)(6)] [170-IAC 4-7-6(b)(7)]

The DSM estimates through 2017 contained in this IRP reflect the estimated demand and energy savings for DSM programs for the three years for which approval is being sought in IURC Cause No. 44497. IPL engaged Applied Energy Group ("AEG") to complete a DSM potential forecast for the period 2018-2034. The full report is included in Section 7, Attachment 4.7, DSM Supporting Documents. The following information is excerpted from the AEG Report (Indianapolis Power & Light Demand Side Management Potential for 2015-2034).

To develop the DSM potential forecasts, AEG used a bottom-up analysis approach following the major steps listed below. A more detailed description of the analysis approach is included in the 2012 MPS in Section 7, Attachment 4.8, DSM Supporting Documents.

- Performed a market characterization to describe sector-level electricity use for the
  residential, commercial, and industrial sectors for the base year, 2011 within IPL's
  service territory. This included existing information contained in prior Indiana studies,
  specific updates to the IPL customer database since the 2012 MPS, AEG's own databases
  and tools, and other secondary data sources such as the American Community Survey
  (ACS) and the Energy Information Administration (EIA).
- Developed a baseline projection of energy consumption and peak demand by sector, segment, and end use for 2011 through 2034. This 20-year timeframe was a requirement for the IPL integrated resource plan, and had not been developed in the 2012 MPS or previous Action Plans, which only focused on years through 2017.

- Defined and characterized several hundred DSM measures to be applied to all sectors, segments, and end uses.
- Estimated the Technical, Economic, Maximum Achievable, and Realistic Achievable
  potential from the efficiency measures. This involved a step to calibrate the participation,
  savings, and spending levels of Realistic Achievable potential to align with those filed in
  IPL's 2015-2017 DSM Action Plan.

The following Figure 4B.5 illustrates the forecasted amount of DSM savings potential relative to the baseline projection over the IRP period.

18,000
16,000
16,000
10,000
8,000
4,000
4,000
2,000
0
Baseline Forecast
2,000
0
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000
10,000

Figure 4B.5 - Forecasts of Potential (GWh)

Source: AEG

The information in Figure 4B.5 is summarized in the following Figure 4B.6:

Figure 4B.6 – Summary of Overall DSM Potential

|                                | 2015   | 2016   | 2017   | 2020   | 2025   | 2029   | 2034   |
|--------------------------------|--------|--------|--------|--------|--------|--------|--------|
| Baseline Forecast (GWh)        | 14,033 | 14,186 | 14,319 | 14,722 | 15,260 | 15,526 | 15,940 |
| Cumulative Savings (GWh)       |        |        |        |        |        |        |        |
| Realistic Achievable           | 234    | 320    | 412    | 706    | 1,125  | 1,378  | 1,665  |
| Maximum Achievable             | 305    | 419    | 540    | 915    | 1,417  | 1,718  | 2,067  |
| Economic Potential             | 1,163  | 1,323  | 1,495  | 2,057  | 2,914  | 3,438  | 3,911  |
| Technical Potential            | 1,509  | 1,770  | 2,034  | 2,877  | 4,030  | 4,681  | 5,172  |
| Energy Savings (% of Baseline) |        |        |        |        |        |        |        |
| Realistic Achievable           | 1.7%   | 2.3%   | 2.9%   | 4.8%   | 7.4%   | 8.9%   | 10.4%  |
| Maximum Achievable             | 2.2%   | 3.0%   | 3.8%   | 6.2%   | 9.3%   | 11.1%  | 13.0%  |
| Economic Potential             | 8.3%   | 9.3%   | 10.4%  | 14.0%  | 19.1%  | 22.1%  | 24.5%  |
| Technical Potential            | 10.8%  | 12.5%  | 14.2%  | 19.5%  | 26.4%  | 30.2%  | 32.4%  |

Source: AEG

This DSM outlook is based upon information known today. The impacts of DSM beyond 2017 will depend on the attributes of future programs selected including the load profiles of the measures, program measure duration, program participation and free riders. These factors will change over time along with continued technology advances and large industrial customer participation rates to shape future DSM programs and outcomes. In addition, assumptions around how these programs impact IPL's peak demand and reduce capacity needs, as well as whether DSM will remain cost-effective at the levels identified, remain uncertain. As stated on the cover page to the AEG 20 year forecast, programs were included in the forecast based on a Total Resource Cost (TRC) threshold result of one (1) or greater, while IPL's DSM portfolios of offerings typically have an aggregate TRC value greater than 1. While the TRC test has recently served as a significant threshold for program selection, future cost-effectiveness tests may include other criteria and significantly affect offerings. Future public policy, including the Clean Power Plan and Indiana's legislative direction, will influence IPL's determination of the appropriate level of DSM beyond 2017.

#### **Electric Vehicles**

IPL is implemented an Electric Vehicle ("EV") program, which developed integrated charging infrastructure in homes, businesses and public parking facilities, with partial Smart Grid Investment Grant ("SGIG") funding support from the U.S. Department of Energy ("DOE") and the State of Indiana Office of Energy Development. IPL received authority to defer the nongrant funded portion of this project in Cause No. 43960 for future rate recovery. Approximately 162 of the 200 planned charging stations have been installed in homes and businesses. IPL received approval for both a time of use ("TOU") EVX rate for customer premises and a public EVP rate. To date, approximately 100 customers participate in rate EVX.

Figure 4B.7 – Electric Vehicle Time of Use Rate

|                           |          | Non-Holiday<br>Weekdays | Holidays &<br>Weekends  | Price /<br>kWh |
|---------------------------|----------|-------------------------|-------------------------|----------------|
|                           | Peak     | 2pm-7pm                 |                         | 12.150 ¢       |
| Summer<br>(Jun- Sept)     | Mid-Peak | 10am-2pm;<br>7pm-10pm   | 10am-10pm               | 5.507 ¢        |
|                           | Off-Peak | 12am-10am;<br>10pm-12am | 12am-10am;<br>10pm-12am | 2.331 ¢        |
| Winter                    | Peak     | 8am-8pm                 | 8am-8pm                 | 6.910 ¢        |
| (Jan - May;<br>Oct - Dec) | Off-Peak | 12am-8am;<br>8pm-12am   | 12am-8am;<br>8pm-12am   | 2.764 ¢        |

Source: IPL Rate EVX tariff sheet

IPL found that approximately 76% of the electricity used for EVX charging occurred during off-peak periods, an additional 4% occurred during mid-peak, and the remaining 20% occurred during peak periods in 2013. While the impacts of the total 2013 EVX usage of nearly 400 MWh representing a very small fraction of the total IPL residential and small commercial retail sales are modest<sup>43</sup>, IPL customers have responded favorably to manage this new load during off-peak periods.

The public EV rate, EVP, is based upon a flat fee of \$2.50 regardless of the duration of the charging session and applied for twenty two (22) chargers at eight (8) area public locations. The public systems may be used by any customer or visitor to Indianapolis using a keyfob and credit card based system. While public charging is less robust than expected, it mitigates range anxiety for EV drivers and includes higher usage in 2013 than in 2012. In 2013, 292 subscribers utilized the public units with total usage of 10,600 kWh between January 1, 2013, and December 31, 2013, with an average of 883 kWh consumed per month. This is a 204% increase in kWh per month over the previous year.

Please see IPL's 2013 Electric Vehicle Program Report for more information at: <a href="https://www.iplpower.com/Business/Programs">https://www.iplpower.com/Business/Programs</a> and Services/Electric Vehicle Charging and R ates/.

As described above, the City of Indianapolis asked IPL to support its plan to implement an all-electric car sharing program with its partner, Bolloré Group/BlueIndy for up to 500 EVs and 1,000 car charging stations. The practice of utilizing EV batteries to feed a distribution system as proposed in settlement agreement for this project is often referred to as Vehicle to Grid ("V2G"). If approved, IPL will work with BlueIndy to determine the technical feasibility of piloting this technology and closely monitor and report grid impacts of the BlueIndy project. IPL included EV impact projections in this IRP as described in Section 4D Energy Sales Forecast.

<sup>&</sup>lt;sup>43</sup> IPL's 2013 aggregate residential and small commercial customer sales totaled over 7,000,000,000 MWh as shown in Section 7, Attachment 6.1 - 10 Yr. Energy and Peak Forecast.

### Section 4C. TRANSMISSION AND DISTRIBUTION

#### **Transmission**

[170-IAC 4-7-4(b)(10)(C)] [170-IAC 4-7-6(a)(5)]

IPL provides electric power principally to the city of Indianapolis and portions of the surrounding counties. The IPL transmission system includes 345 kV and 138 kV voltage levels. The 345 kV system consists of a 345 kV loop around the city of Indianapolis and 345 kV transmission lines connecting the IPL service territory to the Petersburg power plant in southwest Indiana. At Petersburg, IPL has 345 kV interconnections with American Electric Power ("AEP") and Duke Energy Midwest ("DEM"), and 138 kV interconnections with DEM, Hoosier Energy, and Vectren ("SIGE"). In the Indianapolis area, IPL has 345 kV interconnections with AEP and DEM and 138kV interconnections with DEM and Hoosier Energy. Autotransformers connect the 345 kV network to the underlying IPL 138 kV transmission system which is also networked and principally serves load. See Section 7, Confidential Attachment 1.1, Transmission and Distribution Supporting Documents for the 2014 FERC Form 715 for a geographic outline of the IPL service territory and the one-line connection diagram showing the IPL facilities.

IPL's electric transmission facilities are designed to provide safe, reliable, and low cost service to IPL customers. As part of this transmission system assessment process, IPL participates in and reviews the findings of assessments of transmission system performance by regional entities as it applies to the IPL transmission system. In addition to the summer peak demand period which is the most critical for IPL, assessments are performed for a range of demand levels including winter seasonal and other off-peak periods. For each of these conditions, sensitivity cases may be included in the assessment.

IPL transmission plans are based on transmission planning criteria and other considerations. Other considerations include load growth, equipment retirement, decrease in the likelihood of major system events and disturbances, equipment failure or expectation of imminent failure.

Changes to transmission facilities are considered when the transmission planning criteria are exceeded and cannot feasibly be alleviated by sound operating practices. Any recommendations to either modify transmission facilities or adopt certain operating practices must adhere to good engineering practice.

A summary of IPL transmission planning criteria follows. IPL transmission planning criteria are periodically reviewed and revised.

• Limit transmission facility voltages under normal operating conditions to within 5% of nominal voltage, under single contingency outages to 5% below nominal voltage, and under multiple contingency outages to 10% below nominal voltage. In addition to the

- above limits, generator plant voltages may also be limited by associated auxiliary system limitations that result in narrower voltage limits.
- Limit thermal loading of transmission facilities under normal operating conditions to within normal limits and under contingency conditions to within emergency limits. New and upgraded transmission facilities can be proposed at 95% of the facility normal rating.
- Maintain stability limits including critical switching times to within acceptable limits for generators, conductors, terminal equipment, loads, and protection equipment for all credible contingencies including three-phase faults, phase-to-ground faults, and the effect of slow fault clearing associated with undesired relay operation or failure of a circuit breaker to open.
- Install and maintain facilities such that three-phase, phase-to-phase, and phase-to-ground fault currents are within equipment withstand and interruption rating limits established by the equipment manufacturer.
- Install and maintain protective relay, control, metering, insulation, and lightning protection equipment to provide for safe, coordinated, reliable, and efficient operation of transmission facilities.
- Install and maintain transmission facilities as per all applicable Indiana Utility Regulatory
  Commission rules and regulations, ANSI/IEEE standards, National Electrical Safety
  Code, IPL electric service and meter guidelines, and all other applicable local, state, and
  federal laws and codes. Guidelines of the National Electric Code may also be
  incorporated.
- The analysis of any project or transaction involving transmission facilities consists of an analysis of alternatives and may include but is not limited to the following:
  - o Initial facility costs and other lifetime costs such as maintenance costs, replacement cost, aesthetics, and reliability.
  - Consideration of transmission losses.
  - Assessment of transmission right-of-way requirements, safety issues, and other potential liabilities.
  - o Engineering economic analysis, cost benefit and risk analysis.
- Plan transmission facilities such that generating capacity is not unduly limited or restricted.
- Plan, build, and operate transmission facilities to permit the import of power during generation and transmission outage and contingency conditions. Provide adequate import capability to the IPL 138 kV system in central Indiana assuming the outage of the largest base load unit connected to the 138 kV system.
- Maintain adequate power transfer limits within the criteria specified herein.
- Provide adequate dynamic reactive capacity to support transmission voltages under contingency outage or other abnormal operating conditions.
- Provide adequate dynamic reactive capacity to support transmission voltages under contingency outage or other abnormal operating conditions.

- Minimize and/or coordinate MVAR exchange between IPL and interconnected systems.
- Generator reactive power output shall be capable of, but not limited to, 95% lag (injecting MVAR) and 95% lead (absorbing MVAR) at the point of interconnection to the transmission system.
- Design transmission substation switching and protection facilities such that the operation
  of substation switching facilities involved with the outage or restoration of a transmission
  line emanating from the substation does not also require the switched outage of a second
  transmission line terminated at the substation. This design criterion does not include
  breaker failure contingencies.
- Design 345 kV transmission substation facilities connecting to generating stations such that maintenance and outage of facilities associated with the generation do not cause an outage of any other transmission facilities connected to the substation. Substation configurations needed to accomplish this objective and meet safety procedures are a breaker and a half scheme, ring bus or equivalent.
- Avoid excessive loss of distribution transformer capacity resulting from a double contingency transmission facility outage.
- Coordinate planning studies and analysis with customers to provide reliable service as well as adequate voltage and delivery service capacity for known load additions.
- Consider long-term future system benefits and risks in transmission facility planning studies.

IPL transmission facilities are also planned and coordinated with the flowing reliability criteria.

- The reliability standards of the North American Electric Reliability Council ("NERC") including the Transmission System Planning Performance Requirements ("TPL") standards, Modeling Data Analysis ("MOD") standards, and Facility Ratings ("FAC") standards. The NERC reliability standards may be found on the NERC website at http://www.nerc.com.
- The regional reliability standards of the reliability entity Reliability First -("RF"). The RF reliability standards may be found on the RF website at http://www.rfirst.org.
- The IPL Transmission Planning Criteria can be found on the MISO website at <a href="https://www.misoenergy.org/Library/Repository/Study/TO%20Planning%20Criteria/IPL%20TO%20Planning%20Criteria.pdf">https://www.misoenergy.org/Library/Repository/Study/TO%20Planning%20Criteria/IPL%20TO%20Planning%20Criteria.pdf</a>.

There is no measure of system wide reliability that covers the reliability of the entire system that includes transmission and generation.

### **Assessment Summary**

 $[170\text{-IAC }4\text{-}7\text{-}4(b)(10)(A)] \ [170\text{-IAC }4\text{-}7\text{-}4(b)(10)(B)] \ [170\text{-IAC }4\text{-}7\text{-}6(a)(5)] \ [170\text{-IAC }4\text{-}7\text{-}6(d)(1)] \ [170\text{-IAC }4\text{-}7\text{-}6(d)(4)]$ 

As a member of MISO, IPL actively participates in the MISO annual coordinated seasonal assessments ("CSA") of the transmission system performance for the upcoming spring, summer, fall, and winter peaks. The CSAs are performed to provide guidance to system operators as to possible acute system conditions that would warrant close observation to ensure system reliability. Planned and unplanned outages are modeled to determine system impacts.

As a member of MISO, IPL actively participates in the Midwest Transmission Expansion Plan ("MTEP") process. MISO annually performs these rigorous studies to facilitate a reliable and economic transmission planning process. The MTEP study process identifies economic values including congestion and fuel saving and reductions in operating reserves, system planning reserve margins, and transmission line losses of a proposed transmission project or portfolio.

System congestion is analyzed through the MISO MTEP. Top Congested Flowgate Analysis is performed by MISO in this process to identify near-term system congestion and a Congestion Relief Analysis is performed to explore longer-term economic opportunities. The Market Efficiency Planning Study process, also performed as part of the MTEP, builds on the study methodologies of both analyses and further improves them by appropriately linking the two processes to identify both transmission issues and economic opportunities. The study results are discussed among MISO members throughout the process as well as reported in the MTEP study report provided by MISO.

The seasonal assessments and MTEP analysis may be found on the MISO website at URL:

 $\frac{https://www.misoenergy.org/Planning/SeasonalAssessments/Pages/SeasonalAssessments.aspx}{https://www.misoenergy.org/Planning/TransmissionExpansionPlanning/Pages/MTEPStudies.asp}{\underline{x}}$ 

RF also performs annual assessments of transmission system performance for the upcoming summer and winter peak seasons, for near-term and long-term shoulder peak load conditions, and from time to time will perform near long-term transmission assessments for off-peak load conditions based on information from each transmission planner including IPL. The transmission system seasonal assessment summarizes the projected performance of the bulk transmission system within ReliabilityFirst's footprint for the upcoming summer peak season and is based upon the studies conducted by Reliability First staff, MISO, PJM, and the Eastern Interconnection Reliability Assessment Group (ERAG). As an entity within the reliability region of Reliability First, IPL actively participates and reviews the studies and study processes of the assessments.

RF develops a series of power flow cases and performance assessments with expected power transfers and long term power purchases and sales. RF also performs First Contingency Incremental Transfer Capability (FCITC) analysis. This analysis shows adequate power transfer capability to support load growth and long term power purchases and sales. FCITC cannot be used as an absolute indicator of the capability of a power system; FCITC is only determined for specific system conditions represented in the study case. Any changes to study case specific conditions, such as: variations in generation dispatch, system configuration, load, or other transfers not modeled in the study case, can significantly affect level of determined transfer capability

These assessments may be found on the RF website at URL: <a href="https://www.rfirst.org/reliability/Pages/default.aspx">https://www.rfirst.org/reliability/Pages/default.aspx</a>

The IPL assessment of transmission system performance is also performed annually in conjunction with the RF and MISO assessments. The IPL assessment follows the NERC TPL standards to assess transmission performance in peak near-term and long-term conditions and other sensitivity conditions.

- IPL transmission performance analysis using dynamic simulations for stability as evaluated under the NERC Transmission System Planning Performance Requirements ("TPL") reliability standards shows no evidence of system or generator instability.
- IPL transmission performance analysis as evaluated under the NERC TPL reliability standards shows a few localized thermal violations appearing on IPL lines and transformers resulting primarily from multiple element outages of internal IPL transmission facilities.
- IPL transmission performance analysis as evaluated under the NERC TPL reliability standards shows transmission voltages in the expected range on IPL facilities.
- IPL transmission performance analysis as evaluated under the NERC TPL reliability standards shows expected loss of demand that is planned, controlled, small, and localized.
- IPL transmission performance analysis as evaluated under the NERC TPL reliability standards shows no evidence of curtailed firm transfers.
- IPL transmission performance analysis as evaluated under the NERC TPL reliability standards shows no evidence of area-wide cascading or voltage collapse.
- Applicable operating and mitigation procedures, in conjunction with planned major transmission facility additions and modifications, result in transmission system performance which meets the requirements of the NERC TPL reliability standards.

### **Key Results**

[170-IAC 4-7-4(b)(10)(D)]

- IPL operates its transmission system efficiently with strong ties to interconnecting companies.
- IPL does not jointly own or operate any transmission facilities.
- The transmission facility outages with the greatest impact on IPL facility loadings are those internal to IPL. Of greatest impact are double-contingency outages on the west side of the service area in an arc stretching from Guion to Rockville to Thompson substations and around the Harding Street Generating Station ("HSS").
- The transmission facility outages with the greatest impact on IPL area voltages are those in neighboring utilities. In particular, these are the AEP Rockport-Jefferson 765kV line and the Duke Cayuga-Nucor 345kV line. IPL will continue to review the impact on voltage resulting from these facility outages, and will monitor available reactive resources to help mitigate this impact and for general voltage support.
- The most critical generating unit affecting the IPL area is HSS Unit 7. This is due to its size, its immediate proximity to the local IPL area load, and that IPL generating units at Petersburg are over 100 miles from the IPL service area making it difficult for them to have a large impact on local area voltages.

Individually and combined, these transmission performance assessments demonstrate that IPL meets the system performance requirements of NERC TPL-001, TPL-002, TPL-003, and TPL-004. From these transmission performance assessments, the IPL transmission system is expected to perform reliably and with continuity over the long term to meet the needs of its customers and the demands placed upon it.

- NERC TPL-001: System performance under normal (no contingency) conditions (Category A)
- NERC TPL-002: System performance following loss of a single bulk electric system element (Category B)
- NERC TPL-003: System performance following loss of two or more bulk electric system elements (Category C)
- NERC TPL-004: System performance following extreme events resulting in the loss of two or more bulk electric system elements (Category D)

IPL continuously seeks to upgrade its ability to model the transmission system and to more accurately forecast its performance. This includes review of available computer software, data collection techniques, equipment capabilities and parameters, and developments in industry and academia. IPL upgraded its current-day and next-day planning software in 2013. It also includes information sharing with neighboring transmission owners and regional transmission organizations.

Based on its own individual efforts, as well as in concert with others, IPL constantly works to ensure that its transmission system will continue to reliably, safely, efficiently, and economically meet the needs of its customers.

IPL's FERC Form 715 was submitted by MISO and is in Section 7, Confidential Attachment 1.1, Transmission and Distribution Supporting Documents to provide additional documentation of the IPL's planning and reliability criteria.

The FERC 715 was based on MTEP 13 studies which contain the most recent power flow study available to IPL including interconnections. In MTEP 13, MISO conducted regional studies using models for 2015 Summer Peak, 2018 Summer Peak, 2018 Shoulder Load, 2018 Light Load, 2018 Winter Peak, 2023 Summer Peak, and 2023 Shoulder Load. The MTEP 13 dynamic simulations identified no system stability needs and meet the NERC standards.

#### **Transmission Short Term Action Plan**

[170-IAC 4-7-6(d)(2)]

For the forecast period, IPL currently plans to add or modify the following transmission facilities. The estimated cost for all facilities is in Section 7, Confidential Attachment 1.3, Transmission and Distribution Supporting Documents.

#### Transmission Plans for the New Eagle Valley CCGT in 2015

- Transmission line upgrades are needed to deliver the capacity and energy of the New Eagle Valley CCGT into the MISO market.
  - o Pritchard Centerton rating increase to 305 MV
  - o Centerton Honey Creek rating increase to 305 MVA
  - o Honey Creek Southport rating increase to 305 MVA
  - o Pritchard Mullinix rating increase to 272 MVA
  - Mullinix Glens Valley rating increase to 272 MVA
- The 1200A line disconnect switches at Honey Creek, and Centerton substations are scheduled for replacement to increase the rating on the above lines
- All three existing 138 kV circuit breakers rated 800 ampere at Mooresville substation are scheduled to increase the rating of line 132-24
- The terminal equipment for the 132-21 line is scheduled for replacement to be compatible with the protection scheme at the new 138 kV Eagle Valley substation. The terminal equipment includes a wave trap, disconnect switches, and relays, etc.

#### Transmission Plans for the New Eagle Valley CCGT in 2016

• A new Eagle Valley to Franklin Township line rated 322 MVA minimum is scheduled for installation from the new Eagle Valley substation. This line will utilize the spare tower position on the Petersburg to Francis Creek to Hanna 345 kV line. The line will include fiber optic conductors in the static wire for communication.

- Two new line terminals are scheduled for installation at the Franklin Township substation to accommodate the routing of the 138 kV line transmission line from the new Eagle Valley 138 kV substation. The terminal equipment includes breakers, disconnect switches, relays, etc.
- A breaker and a half bus design 138 kV Eagle Valley substation is scheduled to be installed for the new CCGT power plant located on the existing Eagle Valley site by April 16, 2016.
- Transfer all four existing 138 kV transmission lines at the existing Eagle Valley plant Pritchard substation.

#### Misc. Transmission Line Jobs – 2015

• Various transmission line surveys and upgrades are needed to increase the line during contingency loading conditions to meet NERC reliability standards.

#### Petersburg to Duke Wheatland to AEP Breed Line- 2015

• The upgrade of the IPL Petersburg to Duke Wheatland to AEP Breed 345 kV line from 956 to at least 1386 MVA has been approved by MISO as a market efficiency project. The project is eligible for cost sharing and is included in the MISO MTEP.

#### Hanna Substation Upgrade - 2016

The upgrade of the Hanna Substation include two new 345 kV breakers, the replacement
of a 275 MVA autotransformer with a 500 MVA autotransformer, and a breaker and a
new 138 kV breaker and a half bus design. Will increase import capability into the IPL
138 kV transmission system improves reliability, and allows for better operational
flexibility.

#### Thompson Substation Upgrade - 2016

• The upgrade of the Thompson Substation include a new 345 kV breakers, the relocation of the 275 MVA Hanna autotransformer and two 138 kV breakers. The project increase imports capability into the IPL 138 kV transmission system, improves reliability, and allows for better operational flexibility.

#### Static VAR System (SVS) - 2016

• The project includes a new Static VAR System (SVS) like a Static VAR Compensator (SVC) or Static Synchronous Compensator (STATCOM) at the Southwest 138 kV substation. The SVC would have a nominal continuous rating of –100 Mvar inductive to +300 Mvar capacitive at 138kV. The STATCOM would have a nominal continuous rating of –100 Mvar inductive to +250 Mvar capacitive at 138kV. The primary application and need for the SVS is for the transient voltage response for transmission events. The SVS would also be used for continuous voltage regulation. The project increase imports capability into the IPL 138 kV transmission system, improves reliability, and allows for better operational flexibility.

### **Transmission Expansion Cost Sharing**

The methodology for the socialization of transmission expansion costs has been one of the significant drivers of uncertainty in the past several years. MISO and the transmission owners began development of a methodology for the sharing of costs for reliability projects in 1994, and shortly thereafter launched into development of a methodology for the sharing of costs of projects deemed to be "economic." Economic projects are those projects that are not needed to meet NERC criteria for reliability but for which there may be an economic benefit. In 2010, MISO filed and FERC accepted a cost sharing methodology for transmission projects built to meet the renewable mandates of states within the footprint. These projects are called Multi-Value Projects ("MVP"). The costs of these projects are socialized across the footprint regardless of the need of load. Included in the MVP filing was a renaming of "Economic" projects; they are now called Market Efficiency Projects ("MEP").

#### FERC Order 1000

Since the last IRP, both at the state level and in the MISO tariff, the right of first refusal for transmission projects needed for reliability has been preserved. Effective with the 2015 planning cycle, due to the implementation of FERC Order 1000, the right to develop Market Efficiency and Multi-Value transmission projects has opened up to third party transmission developers. This event necessitates a process to qualify transmission developers and to select a developer to build the project. This will add up to three years to the process of placing transmission enhancements in service. FERC demands that incumbent utilities who wish to bid on projects not directly connected to their own transmission systems compete with third parties for the right to build and therefore must submit a developer application to MISO for evaluation. If the project is directly connected to the incumbent's transmission system, no application is required; however the incumbent still must compete for the right to build MEPs or MVPs. To preserve its right to develop transmission projects of all types and locations, IPL will complete the application process dictated by the MISO tariff. As one result of implementation of FERC Order 1000, MISO has proposed numerous changes to the project types that will be vetted through the stakeholder process in the coming months. Additionally, due to the integration of Entergy into the MISO system at the end of 2013, changes to the kV blight lines of MEPs and MVPs are proposed. If those bright lines are lowered as proposed, IPL will be required to pay a greater portion of the shared costs of transmission in the now much larger footprint.

To preserve its option to bid to build transmission projects other than reliability projects, IPL is required to submit an application to MISO to qualify as a transmission developer under the Order 1000 rules. FERC requires incumbent transmission developers to qualify on the same terms and conditions as new transmission developers. IPL submitted its application on August 4, 2014.

#### Distribution

[170-IAC 4-7-8(b)(8)]

IPL's Electric Distribution System Plans are based on various criteria and parameters that are used to determine expansion and replacement requirements. The criteria and parameters include: consideration of load growth, equipment load relief, timely equipment replacement to optimize performance, effects of major system events, reliability improvements, national Electric Safety Code (NESC) requirements, and industry guides and design standards.

Distribution construction projects are based on the results of IPL's small area load studies. Grid area data, such as historical data, land use statistics, and demographic customer data, provide the basis for long-range demand projections. These projections are modified for the short-term on the basis of known customer additions and recent historical substation load growth, since the grid area data cannot predict short-term deviations from long-term statistical trends. Distribution substations additions or improvements are scheduled when projected area loads cannot be served from existing substations, or if existing substation facilities reach their design limits. Circuit construction is scheduled to utilize newly installed substation capacity, to provide relief to circuits projected to exceed design capacity or to improve reliability or operational performance. Short-term operating remedies are used to delay construction only with the agreement of the Distribution Operations Department.

A 4.16 kV to 13.2 kV conversion plan consists of the replacement of critical transformers and the conversion of radial circuits where 13.2 kV sources are available to avoid overloads on critical substations. This plan is formulated to avoid the failure of adjacent substations that may lead to a cascading outage event. Any equipment with remaining life that is removed due to conversion is used to provide adequate capacity to the remaining 4.16 kV loads, to provide spare units to cover unforeseen transformer or switchgear failures, and to permit the retirement of equipment which has outlived its useful life and cannot provide reliable service. The conversion schedule is developed to complete the proposed plan with minimum capital expenditures and to maintain system continuity.

Industrial substation expansion is scheduled to provide capacity for known industrial load additions and to relieve existing or anticipated overloaded facilities. Several customers, either by internal policy or government regulations, may be required to maintain 100% emergency capacity, and the company's additional investment is recovered through excess facility agreements. IPL's policy is to provide such service to certain public service customers, such as hospitals and communications facilities provided the customer meets specific engineering design criteria.

IPL maintains a capacitor program to provide sufficient reactive power (known as volt amperes reactive or "VARs") to maintain adequate distribution voltage under all probable operating conditions and to economically reduce facility loading. Through its Smart Grid Initiative,

funded in part through an U.S. Department of Energy ("DOE") Smart Grid Investment Grant ("SGIG"), IPL recently upgraded its capacitor control system to improve operators' the remote monitoring and control capability with two-way verifications from each location. Please see the following section for more details about smart grid efforts.

#### **Smart Grid Initiative**

IPL deployed advanced technologies as part of its DOE-funded Smart Energy Project to accomplish the following functions:

- Strategically automate distribution equipment to improve reliability
- Build upon equipment and systems which are in place to minimize undepreciated assets and minimize costs
- Utilize Advanced Metering Infrastructure ("AMI") for approximately 10,000 customers to accomplish 100% automated meter reading, and integrate interactive system outage and voltage information
- Upgrade communications infrastructure to support long-term requirements

IPL's distribution system includes the following features:

- Supervisory Control and Data Acquisition ("SCADA") functionality enables remote device monitoring and control for 90% of its distribution customers.
- Automated controls are used in 100% of its 1,300 switched capacitor banks.
- Nearly 225 automated reclosers with microprocessor-based programmable remote controls and 50 automatic distribution line switches are in use to reduce customer exposure to outages.
- SCADA functionality was extended to the Central Business District ("CBD") network in downtown Indianapolis through network protector relays and communicating fault indicators on the network.
- A Distribution SCADA (dSCADA) software system has been implemented on the radial distribution network throughout the service territory to link new devices.
- Upgraded microprocessor-based distribution feeder relays have been installed for approximately 300 circuits to enable remote configuration and estimated fault location data to operators.
- An automated Conservation Voltage Reduction ("CVR") program has been implemented through the deployment of smart microprocessor-based Transformer Load-Tap Changer ("LTC") controllers and upgrading capacitor controls from one-way to two-way functionality as described below.

IPL is using common communication systems for the AMI and DA systems to form a robust foundation for additional deployment of "advanced technology" components. For more details about IPL's smart grid efforts, please see Section 7 Attachment 1.2, Transmission and

Distribution Supporting Documents which contains information from the DOE website: smartgrid.gov.

### **Advanced Metering Systems**

IPL has been using an Automatic Meter Reading ("AMR") system for its energy-only metered customers since 2001 to automatically read meters and provide one-day delayed energy information to customers through a web-portal known as PowerView®. Since the AMR system operates well as designed, IPL initiated AMI to capture its demand meters which are still manually read. The DA devices shared common communication networks with AMI. IPL recently renegotiated a long-term metering technology contract to operate both systems through 2016. After 2016, all advanced metering will be transitioned to a single system.

#### **Smart Grid Benefits**

[170-IAC 4-7-6(a)(5)]

Smart Grid, or Distribution Automation ("DA"), will enhance outage restoration with the additional reclosers and advanced relays allowing sections of circuits to be isolated if there is a fault on the system which allows fewer customers to experience a service interruption. In addition, quicker service restoration results when operators may back-feed sections of circuits. Circuits may also be operated more efficiently with interactive information received from devices with two-way communication equipment.

A CVR program allows IPL to reduce system peak demand during peak hours of the year. This voltage reduction through interactive operations monitoring on the 13.2 kV distribution system is planned through multiple circuit devices, two-way communications, and a distribution SCADA control software system. Essentially, IPL will operate the system at slightly lower voltages at the substation bus but still within industry standard limits. Real time voltage readings from two-way communicating capacitor controls and meters are collected to verify compliance with service requirements. Partial system tests in 2012 through 2014 continue to indicate positive results with the largest test reducing demand by 7 MW per hour based on an average voltage reduction at each substation bus of 1%. IPL may also avoid purchasing power from the market during those MISO business practices to "count" this capacity as a Load Modifying Resource (LMR) within the context of the MISO market. IPL estimates achieving up to 40 MW of peak load reductions through CVR if voltage is reduced by 2.5% at each substation bus, however, IPL conservatively registered 20MWs for CVR in MISO and included it in this IRP. See Section 7, Attachment 1.4, Transmission and Distribution Supporting Documents for the IPL CVR Baseline Report dated February 2014.

In 2010, engineering estimates of DA reliability impacts related to the smart grid project projected a reduction in the System Average Interruption Frequency Index ("SAIFI") of 11%.

Representative results measured from January 2014 to July 2014 indicate actual improvements of 12.1% for SAIFI when major event days are excluded.

#### **Distributed Generation Connections**

[170-IAC 4-7-4(b)(5)] [170-IAC 4-7-6(a)(5)]

IPL has successfully connected 66 MW of solar distributed generation (DG) since 2012 through its Rate Renewable Energy Production (REP) program. This includes eight (8) utility scale sites ranging in size from 500 kW to 10 MW in nameplate alternating current capacity. IPL's experience with solar facilities indicates no significant impact to its transmission system. This is due to many factors including the decision to limit the total capacity per site to 10 MW, connect the facilities at 13 kV, and establish the engineering criteria for a maximum of 10 MW connected per substation transformer. IPL is not aware of any occurrence of backfeed on its transmission system including during non-peak hours.

Distribution circuit impacts have been monitored and mitigated through its DG interconnection working group. Specifically, remote control capabilities are enabled through reclosers connected to IPLs DA network. Protection settings for the inverter control systems, reclosers and IPL feeder relays are reviewed by IPL engineers and adapted as needed to avoid "nuisance" tripping which isolates the DG from the IPL grid. IPL monitors the output of the sites over 500 kW in real-time through its dSCADA system. IPL will continue to evaluate the business practices as more DG comes on-line. Section 4A contains more information about existing and "new" solar resources.

### **Electric Vehicle Projects**

As described in section 4B, IPL initiated an electric vehicle (EV) pilot program which included the deployment of one hundred sixty two (162) chargers. Minimal impacts to the distribution grid have been monitored through separate meters for each charger location. Transformer loading analysis has been completed for each site with no replacements necessary

IPL's 2013 Electric Vehicle Program Report can be found under a link located at: <a href="https://www.iplpower.com/Business/Programs\_and\_Services/Electric\_Vehicle\_Charging\_and\_Rates/">https://www.iplpower.com/Business/Programs\_and\_Services/Electric\_Vehicle\_Charging\_and\_Rates/</a>

IPL is using lessons learned from the pilot to plan an all-electric car sharing project with the City of Indianapolis and BlueIndy to include approximately 1,000 chargers to support up to 500 new EVs throughout the greater Indianapolis area as described in testimony in the IURC Cause No. 44478. IPL plans to optimize engineering, construction and back-office practices from its small pilot to efficiently implement this program to improve the distribution infrastructure in preparation for the mobile EV loads.

IPL continues to support the growth of EVs in its service area through these programs. Awareness of EV charging locations allows engineers to verify existing facility capacity and

upgrade requirements. To date these have been limited to customers' service and panel upgrades but any future transformer replacements will be managed closely by IPL. Understanding grid impacts will help IPL to create and implement future demand response programs to release battery energy to the grid during peak periods.

IPL's area EV penetration has been slower than anticipated in the 2011 IRP. Should EV load growth increase significantly, the high load growth scenario in this IRP reflects related impacts as described in Section 4D.

### Cyber Security and Interoperability Standards

IPL recognizes interoperability and strong cyber security practices are essential to advanced technology deployment. IPL employs specific cyber security business practices and procedures and is working closely with vendors to assure that current and proposed Smart Grid standards and procedures are employed. IPL has a dedicated staff including a Certified Information Systems Security Professional ("CISSP") to ensure that cyber security is maintained at each stage of system deployment. IPL tests and updates its security plan to mitigate any foreseen threats to key infrastructure components. IPL monitors and protects its network on a 24/7 basis with intrusion prevention systems to identify any malicious activity targeting or originating from corporate assets, including outside attempts to gain access to the system.

IPL vendors who may affect cyber security risk undergo a screening process which includes a thorough questionnaire and interview process to identify risks and mitigation plans.

IPL also seeks vendors who could commit to physical equipment security and utilize open protocols and standards to support interoperable system components wherever possible. While some customization is required to interface to legacy systems, IPL prefers vendors that utilize standards-based security features of application servers versus proprietary methods to quickly adapt through configuration to new requirements as they unfold and become adopted standards.

The smart grid system is being designed with security best practices incorporated from an architectural standpoint to facilitate security from the beginning of a project. Implementation of security best practices at each system junction point ensures authenticity and reliability of data transport.

## **Future Smart Grid Expectations**

IPL will continue to leverage smart grid investments to provide resource planning benefits, realize operational efficiencies, increase the understanding of equipment performance and to develop asset lifecycle plans. Detailed analysis of field device data being collected through the two-way communications systems will enhance these capabilities. In addition, IPL operations staff plans to use the data to complete the following:

• Leverage fault locations from relays to dispatch trouble crews more effectively and reduce service restoration times.

- Use relay event data to indicate the need for breaker maintenance
- Optimize CVR on distribution circuits to maximize peak load reductions and minimize substation transformers load tap changer operations
- Use CBD SCADA operations as a catalyst for network protector maintenance frequency
- Use CBD fault indicators for cable loading and fault analysis
- Refer to capacitor control and AMI meter voltage information to assess power quality
- Consider time based rates and prepaid metering service offerings

There are plans to upgrade some legacy DA and telecommunication equipment to use the new platforms over the next few years as well.

Transmission and distribution assets will likely play a larger role in future resource planning as distributed resources including DG, DR, and smart grid initiatives increase to provide capacity and energy benefits. IPL plans to optimize operations of these interrelated efforts.

### Section 4D. MARKET TRENDS AND FORECASTS

This section addresses IPL short-term and long-term energy and demand forecasts, model performance, and forecast error, as well as fuel planning, procurement practices and pricing forecasts. Specific data to support the narratives may be found in Section 7.

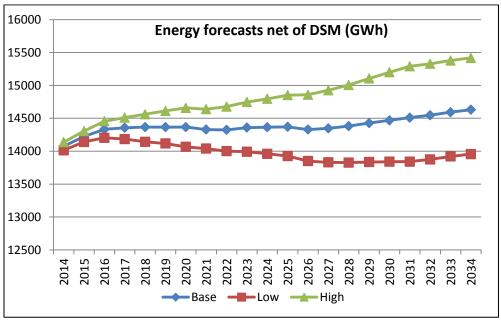
#### **Load Forecast Overview Short Term**

Economic conditions have fairly stabilized in IPL's service territory since the conclusion of the recession that began in 2008. Household-growth in the Marion-county area has been increasing since 2011, and is set to grow at 1.4% over the next three years. Employment rates have been improving steadily since 2010; personal-income is projected to grow albeit at a modest rate compared to 2011 levels because much of the employment-gains are believed to have been in the low-wage sectors. The short-term projected growth rates for these are 1.8% and 1.2% respectively. Energy sales have consequently recovered since the recession, but have not mirrored the overall growth in economic parameters. This is in part due to the structural shift in energy-consumption induced as a result of increasing appliance-efficiencies. Even if better than recession-levels, quarter over quarter growth in 2013 has been negative as depicted in Figure 4D.1 below. IPL's forecasting models, which will be discussed later, depict impending energy sales growth after accounting for the impacts of forecasted demand side management ("DSM") with a compound annual growth rate ("CAGR") over the next three years of 0.7%. This growth rate is then forecasted to decrease after the initial recovery phase because of an economic slow-down.

2.0%
1.0%
0.0%
-1.0200
-2.0%
-3.0%
-4.0%
-5.0%
-6.0%

Figure 4D.1 – Year-Over-Year Change in Historical Weather Normalized kWH Sales

Source: IPL


## **Load Forecast Overview Long Term**

[170-IAC 4-7-4(b)(6)] [170-IAC 4-7-5(a)(6)] [170-IAC 4-7-5(b)]

IPL's long-term load forecast shows that growth will be impacted by organic energy-efficiency trends and DSM load impacts almost as much as the econometric variables. This forecast is based on econometric and end-use based modeling of IPL's gross internal demand ("GID") load and energy forecast plus incorporation of IPL's DSM expectations. Assumptions around DSM program free riders, program duration/degradation, and coincident peak load reductions were used to calculate a total internal demand ("NID") forecast. Sales before any DSM adjustments are expected to grow at a compound annual growth rate of 1.2% over the next three years, and 0.7% over the next 20 years. The growth-rate drops to 0.7% over the next three years after DSM savings are netted out. In other words, DSM is forecasted to address 42% of the estimated load growth. The estimated net energy efficiency DSM impact on the load and energy forecast is 1,575 GWH (337 MW) by 2034. IPL assumes an average 23% free-ridership/spill-over impact. These assumptions and corresponding forecast impacts could vary considerably as specifics of the DSM programs are continually evaluated and updated.

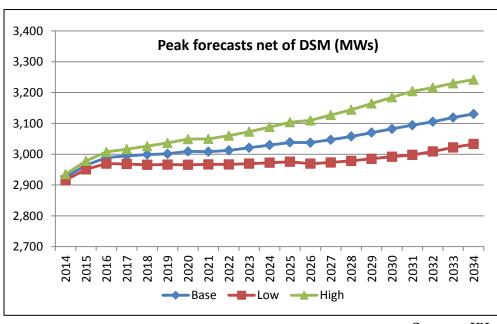

To capture forecast uncertainty in Ventyx's IRP modeling, IPL selected three energy and peak forecast scenarios: 1) Base load, 2) Low load, and 3) High load, with the Base load being the most probable. These energy and peak forecasts are shown in Figure 4D.2 and Figure 4D.3. These forecasts were derived by applying the low and high ranges of the State Utility Forecasting Group's (SUFG) 2013 IPL-forecast to IPL's internal forecast. Although this range, as modeled by the SUFG, is primarily driven by economics, we interpret the range to represent uncertainties resulting from: economic activity, DSM program impacts and technological and behavioral changes. For reference, IPL's base case with net DSM impacts represents a peak load forecast growth at 0.3% CAGR with 3131 MW of net internal demand ("NID") by 2034. IPL's forecast range, as modeled by Ventyx in the Capacity Expansion module, ranged from 0.2% CAGR (3,033 MW) for the Low Load forecast to 0.5% CAGR (3,242 MW) for the High Load forecast by 2034. The impact of this forecast uncertainty on the expansion plan modeling is discussed in Section 4, Integration. Sales forecasts by rate and IPL peak forecast, for the first 10 years, may be found in Section 7, Attachment 6.1, Forecasting Data Sets. The low and high range forecast data for all twenty years are provided in Section 7, Attachment 6.2, Forecasting Data Sets.

Figure 4D.2 Energy Forecast Range



Source: IPL

Figure 4D.3 Peak Forecast Range



Source: IPL

IPL creates the internal load and energy forecast spanning ten years due to constraints in economic data availability. For this IRP, the average growth rate of the tail-end years (final three

years) is used to extrapolate the forecast over twenty years. Figure 4D.4 below shows the data behind the base line forecast in Figures 4D.2 and 4D.3.

Figure 4D.4 – Energy Sales and Peak Forecasts Net of Energy Efficiency DSM

| Year | Energy Forecast<br>(MWh) | YOY %<br>Change | Peak TID<br>(MW) | YOY %<br>Change |
|------|--------------------------|-----------------|------------------|-----------------|
| 2014 | 14,075,327               |                 | 2926             |                 |
| 2015 | 14,223,236               | 1.1%            | 2965             | 1.3%            |
| 2016 | 14,332,600               | 0.8%            | 2989             | 0.8%            |
| 2017 | 14,355,903               | 0.2%            | 2995             | 0.2%            |
| 2018 | 14,366,218               | 0.1%            | 2999             | 0.1%            |
| 2019 | 14,365,853               | 0.0%            | 3001             | 0.1%            |
| 2020 | 14,366,838               | 0.0%            | 3009             | 0.3%            |
| 2021 | 14,329,494               | -0.3%           | 3008             | 0.0%            |
| 2022 | 14,324,115               | 0.0%            | 3013             | 0.1%            |
| 2023 | 14,358,194               | 0.2%            | 3021             | 0.3%            |
| 2024 | 14,364,022               | 0.0%            | 3030             | 0.3%            |
| 2025 | 14,370,741               | 0.0%            | 3038             | 0.3%            |
| 2026 | 14,329,665               | -0.3%           | 3038             | 0.0%            |
| 2027 | 14,347,078               | 0.1%            | 3047             | 0.3%            |
| 2028 | 14,381,659               | 0.2%            | 3058             | 0.3%            |
| 2029 | 14,427,629               | 0.3%            | 3070             | 0.4%            |
| 2030 | 14,469,065               | 0.3%            | 3082             | 0.4%            |
| 2031 | 14,510,624               | 0.3%            | 3094             | 0.4%            |
| 2032 | 14,546,314               | 0.2%            | 3105             | 0.4%            |
| 2033 | 14,592,712               | 0.3%            | 3119             | 0.4%            |
| 2034 | 14,630,095               | 0.3%            | 3131             | 0.4%            |

Source: IPL

## **Energy Sales Forecast**

 $[170\text{-IAC }4\text{-}7\text{-}4(b)\ (1)] \ [170\text{-IAC }4\text{-}7\text{-}4(b)(2)] \ [170\text{-IAC }4\text{-}7\text{-}4(b)(4)] \ [170\text{-IAC }4\text{-}7\text{-}4(b)(6)] \ [170\text{-IAC }4\text{-}7\text{-}4(b)(6$ 

IPL's forecasting effort is based on statistically adjusted end-use econometric modeling and takes into account factors including:

- Economic variables
- Energy efficiency standards
- New technology penetration

- Weather
- DSM

IPL employs an econometric model that also makes use of some end-use impacts in order to accommodate efficiency measures, appliance saturation and new technology penetration, such as electric vehicles. This methodology was developed for IPL by Itron, Inc. ("Itron"), a consulting firm that assisted IPL with past retail energy forecasts. Additional detail with respect to this end-use technique may be found in Section 7, Confidential Attachment 6.3, Forecasting Data Sets. Estimates of appliance saturation and efficiency are obtained from the U.S. Energy Information Administration ("EIA"), a statistical information agency of the U.S. Department of Energy ("DOE"). EIA information is modified by Itron to better reflect appliance saturation and end-use efficiency impacts within IPL's jurisdictional territory. This data can be found in Section 7, Confidential Attachment 6.4, Forecasting Data Sets.

IPL's forecast also includes an estimate to reflect customer adoption of plug-in hybrid electric vehicles ("PHEV") and electric vehicles. It is estimated that up to 10% of IPL's customers may purchase a new car in any given year. An annual adoption rate of hybrid electric vehicles, based on a report published by the Electric Power Research Institute (EPRI)<sup>44</sup>, is applied to this number. The usage per car is assumed to be 2,477 kWh per year, and cars are assumed to have a 7-year use-span. This usage compares to approximately 3,900 kWh per year per IPL residential EVX customer in 2013.<sup>45</sup> The cumulative estimated energy-impact, as listed below in Figure 4D.5, is added to the forecast.

<sup>&</sup>lt;sup>44</sup> IPL modified the rate set forth in 'Environmental Assessment of Plug-In Hybrid Electric Vehicles' by the Electric Power Research Institute (EPRI), July 2007 to a less aggressive adoption rate, which is reflective of IPL's service territory.

As shown in IPL's 2013 report available at this link: <a href="https://www.iplpower.com/Business/Programs">https://www.iplpower.com/Business/Programs</a> and Services/Electric Vehicle Charging and Rates/

Figure 4D.5 Electric-Vehicle Assumptions Applied to Load Forecast

| Year | Assumed<br>Annual EVs<br>Sold | Cumulative EVs Sold | Annual Electricity<br>Consumption per<br>Car (kwh) | Cumulative Load (MWH) |
|------|-------------------------------|---------------------|----------------------------------------------------|-----------------------|
| 2014 | 165                           | 313                 | 2477                                               | 776                   |
| 2015 | 221                           | 534                 | 2477                                               | 1,324                 |
| 2016 | 306                           | 841                 | 2477                                               | 2,083                 |
| 2017 | 421                           | 1,261               | 2477                                               | 3,124                 |
| 2018 | 564                           | 1,825               | 2477                                               | 4,520                 |
| 2019 | 792                           | 2,617               | 2477                                               | 6,483                 |
| 2020 | 909                           | 3,526               | 2477                                               | 8,734                 |
| 2021 | 1,022                         | 4,548               | 2477                                               | 11,266                |
| 2022 | 1,136                         | 5,684               | 2477                                               | 14,080                |
| 2023 | 1,250                         | 6,934               | 2477                                               | 17,175                |

Source: IPL

As of 2013, the actual total number of registered electric vehicles in the Indianapolis area is 211<sup>46</sup>. The BlueIndy program is expected to add 500 electric vehicles. IPL recognizes the variance between forecasted and actual EVs deployed and anticipates the availability of BlueIndy public chargers may foster adoption of additional EVs in the area. The forecast of electric-vehicles and estimation of their impact on the load will be refined in subsequent IRP analysis as and when more information specific to IPL's service area becomes available.

IPL gathers information about residential and commercial customer adoption of end-use appliances, penetration and consumption patterns through means that vary from scheduled surveys that are described in the IRP rule. These methods include DSM program data collection such as home energy audits, refrigerator recycling, air conditioning load management program participation, the evaluation measurement and verification process for DSM programs. Requests for new commercial and residential service extensions are managed through engineering and connections groups where load information such as square footage and HVAC specifications are used to estimate projected customer consumption. Similarly, existing and new IPL industrial customers remain in close contact with individual Strategic Account Representatives to address the addition of new loads. This information is shared with appropriate engineering and resource planning staff to prepare for significant forecasted demand changes.

In addition, virtually all of IPL's meters are read daily since the completion of the smart grid project in 2013.<sup>47</sup> IPL is able to understand system loading and evaluate any concerns in real-

\_

<sup>&</sup>lt;sup>46</sup> Source: Indiana Bureau of Motor Vehicles

<sup>&</sup>lt;sup>47</sup> Less than 1% of the meters read may be unreachable due to obstructions such as vehicles or trees or communication issues.

time as well as utilize information for forecasting from its meter data management system if needed.

IPL's NID is net of incremental DSM as projected by AEG. AEG's DSM forecast was adjusted to account for prorated implementation of programs and the fact that the base forecast has historical DSM (up till 2014) embedded in it owing to the use of actual historical consumption data. Figure 4D.6 shows the cumulative DSM impact applied to the forecast.

Figure 4D.6 DSM Assumptions Applied to Load Forecast

| Year | Cumulative Energy<br>Forecast (MWh) | Cumulative Energy<br>Efficiency Peaks (MW) |
|------|-------------------------------------|--------------------------------------------|
| 2014 | 60,942                              | 11                                         |
| 2015 | 119,587                             | 19                                         |
| 2016 | 207,416                             | 37                                         |
| 2017 | 295,970                             | 57                                         |
| 2018 | 386,788                             | 73                                         |
| 2019 | 484,327                             | 93                                         |
| 2020 | 567,922                             | 110                                        |
| 2021 | 674,654                             | 131                                        |
| 2022 | 769,184                             | 151                                        |
| 2023 | 830,724                             | 168                                        |
| 2024 | 910,577                             | 183                                        |
| 2025 | 995,088                             | 199                                        |
| 2026 | 1,128,097                           | 225                                        |
| 2027 | 1,201,352                           | 240                                        |
| 2028 | 1,259,135                           | 255                                        |
| 2029 | 1,305,910                           | 268                                        |
| 2030 | 1,357,487                           | 281                                        |
| 2031 | 1,409,738                           | 295                                        |
| 2032 | 1,468,342                           | 310                                        |
| 2033 | 1,516,762                           | 322                                        |
| 2034 | 1,574,806                           | 337                                        |

Source: IPL

IPL's retail sales forecast is the summation of individual rate class forecasts. The bulk of IPL's econometric models is multi-regression in nature and is generated for each major rate class of IPL's retail customers. The models require monthly inputs and provide monthly outputs, thereby allowing for a true monthly sales forecast rather than one which parses quarterly or annual data. The sales forecasting effort is accomplished using models that are based on billing cycle sales. Simulation models are then created to convert billing cycle information into a calendar month format. This allows for modeling actual information without exposure to unbilled estimation that is integral with a calendar month approach. An overview of IPL's current forecast, both sales

and peaks, are expressed in Figure 4D.4 above. The "YOY % Change" column is an indication of year-over-year growth.

The models that support the base level forecast are developed as either average-use models by rate or aggregated-sales models by rate. The homogeneity of the residential rate class allows for the use of average-use techniques. A forecast of the number of customers and the average-use of an individual customer is generated for each residential rate. IPL's Commercial and Industrial ("C&I") customers are more heterogeneous and an aggregated-sales by rate methodology has been found to be superior. Average-use models have been tested for these larger customers; however, the load variation of these customers makes an average-use approach statistically untenable.

Economic drivers, one of the independent variables, are re-specified for each iteration of the forecast. Econometric forecasts modeling software is typically limited to two or three economic drivers per modeling run. The inclusion of more drivers generally causes a collinearity problem which degrades the predictive power of the model. The main economic drivers used in IPL's most current forecast are as follows:

#### **Residential Economic Drivers**

- Total Households Marion County to estimate number of customers
- Real Household Income Indianapolis to estimate average KWh use
- Household Size Indianapolis to estimate average KWh use

#### **Small C&I Economic Drivers**

Indianapolis Non-Manufacturing Employment – to estimate rate SS and SH KWh requirement

#### **Large C&I Economic Drivers**

- Indianapolis Non-Manufacturing Employment to estimate rate SL and PL KWh requirement
- Indianapolis Manufacturing Employment to estimate rate PH & HL KWh requirement

Moody's Economy.com supplies the economic drivers used by IPL. These are provided on a local, Metropolitan Statistical Area ("MSA"), statewide, and national basis. IPL's models are generally better using local specified drivers than ones that are broader in scope. A compilation of the drivers used, as well as others provided by Moody's Economy.com can be found in Section 7, Confidential Attachment 6.5, Forecasting Data Sets. As previously mentioned, the driver sets used are unique to the current forecast effort. Past or future forecasts may be specified using a different set of drivers that are statistically superior at different points in time. IPL's models are created with a 10-year horizon for internal purposes and then inflated at an

average rate of 0.6% for the subsequent 10 years on a before-DSM basis. Summer and winter peaks are inflated at an average rate of 0.7% on a before-DSM basis.

Historic weather and customer information are also important drivers of IPL's retail forecast models. The actual weather information is obtained from the National Oceanic and Atmospheric Administration ("NOAA") and includes heating degree days ("HDD") and cooling degree days ("CDD"). The most recent 30-year averages of monthly HDDs and CDDs are used as 'normals' for the forecast period. The customer information applied in IPL's retail forecasts (customer counts by rate, KWh sales by rate, and billing day information) are all acquired from confidential IPL customer records. Input data sets used in the modeling effort may be found in Section 7, Attachments 6.6, 6.7 and 6.8, Forecasting Data Sets. These attachments are segmented down to the three classes of customers: residential, small C&I, and large C&I. Data found in these attachments includes customer counts by rate, sales history by rate, weather information, and model outputs, as well as statistical specifications of each model.

#### **Peak Forecast**

[170-IAC 4-7-4(b) (1)] [170-IAC 4-7-4(b)(2)] [170-IAC 4-7-4(b)(6)] [170-IAC 4-7-5(a)(8)]

As a member of MISO, IPL supplies monthly forecasts in response to MISO's emphasis on balancing monthly peak supply and demand. To meet this requirement, IPL develops a monthly peak forecast by means of a "hybrid" model that utilizes both econometric drivers and energy-efficiency impacts, similar to the energy models described above. From the monthly values, a summer-peak (allotted to July) and a winter-peak (allotted to January) are identified. IPL's peak models reflect the GID. Adjustments are then made for incremental projections of energy efficiency DSM initiatives to create the TID. IPL created high and low ranges for the peak forecast, similar to the energy forecast, for the IRP modeling. The forecast data can be found in Section 7, Attachment 6.2, Forecasting Data Sets.

The peak model is linked to the energy forecast model in such a way that the same economic variables drive the peak forecast. Average temperatures/degree-days associated with historical peak-days form the weather bases. Specification of the models, including all history, incorporated driver variables, and output may be found in Section 7, Attachment 6.9, Forecasting Data Sets. Summer peak projections are highlighted in Figure 4D.4 above and the monthly forecast of peaks is available in Section 7, Attachment 6.1, Forecasting Data Sets.

## **Model Performance and Analysis**

[170-IAC 4-7-5(a)(5)] [170-IAC 4-7-5(a)(7)] [170-IAC 4-7-5(a)(4)]

IPL periodically evaluates forecast model performance (1) when the model is created, (2) on a monthly basis as a variance analysis and (3) after-the-fact as a year-end comparison.

During forecast development a number of models are analyzed at the rate level. The adjusted R-squared statistic, Mean Absolute Percent Error ("MAPE"), the Durbin-Watson statistic, and reasonableness of each model to IPL are statistically evaluated. The IPL Forecasting group targets adjusted R-squared values better than 90%; this is accomplished in nearly all cases. Further, MAPE needs to be less than 2% and the Durbin-Watson statistic is targeted around 2.0. IPL considers independent variables with T-statistics of at least 2.0 acceptable. This judgment is somewhat subjective and dependent upon the implied importance of the variable. The other statistical measures considered are discussed in Section 7, Confidential Attachment 6.10, Forecasting Data Sets.

"Out of Sample Testing" is another methodology that IPL uses to gauge model performance. This methodology involves withholding a year of history from the model and then assessing how well the model is able to predict previous historic results.

Occasionally, a model that performs well from a statistical standpoint may not seem reasonable when further inspected. Excessive specification of independent variables is one cause of this situation. The investigation of rates of change between recent history and model-generated predictions can identify models that are statistically valid yet unreasonable. When disagreement between a model and common sense inspection arises, additional investigation and/or specification are required. (Recent history must be weather-corrected to allow for meaningful comparisons.) Models of individual rates, after undergoing comprehensive review, are summed to create a proposed forecast. The proposed forecast is then evaluated against aggregated weather-adjusted history as a final test before the forecast is recommended.

IPL uses different methodologies to obtain weather-normalized energy sales and demand. Energy sales are normalized to the most recent 30-year averages of HDDs and CDDs. Demand is normalized to the historical average of the peak producing weather conditions. One method of obtaining weather-corrected energy sales or demand is to re-run the models as simulations with normal weather substituted for actual weather. The difference between predicted energy sales or demand (actual weather) and simulated energy sales or demand (normal weather) is the amount the actual energy sales or demand should be adjusted to give normalized energy sales or demand. Another method is to take the difference between actual weather and normal weather and multiply it by an appropriate weather coefficient for the given conditions. This adjustment is the amount the actual energy sales or demand should be adjusted by to give normalized energy sales or demand. The weather coefficient is obtained by analyzing the current daily response to weather. In effect, this allows behavior changes that may exist compared to more historical approaches in long-term models.

Evaluation of the variance of energy sales and peak demand is looked at each month after weather adjustments have been completed. IPL's forecasting staff uses this information to consider model performance. As long as monthly variance moves reasonably with current "knowns" like economic factors and/or weather, a conditional approval supports the forecast.

However, should variance move contrary to "knowns," investigation of possible bias and other elements are undertaken. A similar determination, but with greater detail is made at year-end. Actual and weather-adjusted results are compared to the forecasted values generated each of the previous five years. This is done with respect to energy sales at the class level, namely residential, small C&I, and large C&I. Summer peak and winter peak, both actual and weather-adjusted, are reviewed in similar fashion.

The Mean Percent Error (MPE) is used to evaluate overall forecast performance after the fact. Two interesting comparisons that gauge IPL's forecasting ability are those that compare weather-adjusted annual GWH sales and weather-adjusted summer peak to their respective forecasts. IPL's one-year-out energy forecast, as measured by MPE, is on average, within 1.7% of weather-adjusted sales. The summer MPE peak forecast averages 2.4%. IPL targets a one-year forecast error of less than 2%. Occasionally, rapidly changing external conditions, such as the extreme winter of 2013-14, can cause fluctuations that exceed this bandwidth. However, reviewing forecast updates on a quarterly basis will allow IPL to make both tactical adjustments in the short-term and initiate additional scenario analyses in the long term. Figures 4D.7 and 4D.8 highlight IPL's overall retail energy sales and summer peak demands forecast performance, respectively, for the last 10 years. The remainder of the forecast error analyses, at the class level, may be found in the previously mentioned Section 7, Attachment 6.11, Forecasting Data Sets.

Figure 4D.7 – Forecast Error Analysis: Weather-Adjusted Energy Sales vs. Forecasts

|           | ANNUAL "INDIANAPOLIS ONLY" GWH SALES |                |            |            |            |            |  |
|-----------|--------------------------------------|----------------|------------|------------|------------|------------|--|
|           | Adjusted & Forecasted                |                |            |            |            |            |  |
|           |                                      |                |            |            |            |            |  |
|           |                                      | Forecast Made: |            |            |            |            |  |
| For       | Adjusted                             | One            | Two        | Three      | Four       | Five       |  |
|           | Sales *                              | Year Ago       | Years Ago  | Years Ago  | Years Ago  | Years Ago  |  |
| 2003      | 14,543 920                           | 14,561.734     | 15,077.845 | 15,143.833 | 15,385.066 | 15,346.251 |  |
|           |                                      | 0.1%           | 3.7%       | 4.1%       | 5.8%       | 5.5%       |  |
| 2004      | 14,759.085                           | 14,588.136     | 14,767.804 | 15,327.185 | 15,446.414 | 15,756.329 |  |
|           |                                      | -1.2%          | 0.1%       | 3.8%       | 4.7%       | 6.8%       |  |
| 2005      | 14,928 377                           | 14,917.100     | 14,809.058 | 14,966.217 | 15,620.768 | 15,752.324 |  |
|           |                                      | -0.1%          | -0.8%      | 0.3%       | 4.6%       | 5.5%       |  |
| 2006      | 14,959 551                           | 15,221.281     | 15,164.506 | 14,996.604 | 15,153.834 | 15,938.745 |  |
|           |                                      | 1.7%           | 1.4%       | 0.2%       | 1.3%       | 6.5%       |  |
| 2007      | 14,971.610                           | 15,255.687     | 15,452.281 | 15,408.373 | 15,157.356 | 15,364.855 |  |
|           |                                      | 1.9%           | 3.2%       | 2.9%       | 1.2%       | 2.6%       |  |
| 2008      | 14,956 362                           | 15,264.979     | 15,427.470 | 15,702.410 | 15,620.741 | 15,334.846 |  |
|           |                                      | 2.1%           | 3.1%       | 5.0%       | 4.4%       | 2.5%       |  |
| 2009      | 14,296 266                           | 15,208.790     | 15,472.539 | 15,612.025 | 15,932.337 | 15,838.873 |  |
|           |                                      | 6.4%           | 8.2%       | 9.2%       | 11.4%      | 10.8%      |  |
| 2010      | 14,120.637                           | 14,287.148     | 15,356.932 | 15,702.517 | 15,817.438 | 16,173.497 |  |
|           |                                      | 1.2%           | 8.8%       | 11.2%      | 12.0%      | 14.5%      |  |
| 2011      | 14,010.057                           | 14,172.293     | 14,420.894 | 15,463.008 | 15,832.780 | 16,020.434 |  |
|           |                                      | 1.1%           | 2.8%       | 9.4%       | 11.5%      | 12.5%      |  |
| 2012      | 14,011 544                           | 14,268.134     | 14,391.694 | 14,717.444 | 15,591.706 | 16,066.858 |  |
|           |                                      | 1.8%           | 2.6%       | 4.8%       | 10.1%      | 12.8%      |  |
| 2013      | 13,878.196                           | 14,118.020     | 14,263.240 | 14,491.940 | 14,783.227 | 15,721.475 |  |
|           |                                      | 1.7%           | 2.7%       | 4.2%       | 6.1%       | 11.7%      |  |
|           |                                      |                |            |            |            |            |  |
|           |                                      |                |            |            |            |            |  |
|           |                                      |                |            |            |            |            |  |
| Mean % Em | or                                   | 1.7%           | 3.7%       | 5.5%       | 6.9%       | 8.6%       |  |

Source: IPL

Figure 4D.8 – Forecast Error Analysis: Weather-Adjusted Summer Peak Demands vs. Forecasts

|        |                  |                   |              |              | MER PEA     |           |       |                |                |       |       |
|--------|------------------|-------------------|--------------|--------------|-------------|-----------|-------|----------------|----------------|-------|-------|
|        |                  |                   |              | Α            | djusted &   | Forecaste | d     |                |                |       |       |
|        |                  | Б ()              | f 1          |              |             |           |       |                |                |       |       |
|        | A dimete d       | Forecast N<br>One | Two          | Three        | Four        | Five      | Six   | Carran         | Ei alat        | Nine  | Ten   |
| For    | Adjusted<br>Peak | Year              |              |              | Years       | Years     | Years | Seven<br>Years | Eight<br>Years | Years | Years |
| FOI    | Demand           | Ago               | Years<br>Ago | Years<br>Ago |             | Ago       | Ago   | Ago            |                | Ago   | Ago   |
| 2003   | 3023             | 3061              | 3202         | 3144         | Ago<br>3129 | 3102      | 3091  | 3101           | Ago<br>3035    | 3038  | 3081  |
| 2003   | 3023             | 1.3%              | 5.9%         | 4.0%         | 3.5%        | 2.6%      | 2.2%  | 2.6%           | 0.4%           | 0.5%  | 1.9%  |
| 2004   | 3085             | 3042              | 3106         | 3260         | 3195        | 3179      | 3156  | 3146           | 3160           | 3078  | 3079  |
| 2004   | 3063             | -1.4%             | 0.7%         | 5.7%         | 3.6%        | 3.0%      | 2.3%  | 2.0%           | 2.4%           | -0.2% | -0.2% |
| 2005   | 3108             | 3167              | 3088         | 3149         | 3318        | 3245      | 3227  | 3211           | 3202           | 3223  | 3120  |
| 2003   | 3106             | 1.9%              | -0.6%        | 1.3%         | 6.8%        | 4.4%      | 3.8%  | 3.3%           | 3.0%           | 3.7%  | 0.4%  |
| 2006   | 3165             | 3110              | 3203         | 3132         | 3191        | 3376      | 3.8%  | 3275           | 3267           | 3259  | 3288  |
| 2000   | 3103             | -1.7%             | 1.2%         | -1.0%        | 0.8%        | 6.7%      | 4.2%  | 3.5%           | 3.2%           | 3.0%  | 3.9%  |
| 2007   | 3177             | 3195              | 3156         | 3243         | 3173        | 3233      | 3430  | 3.3%           | 3322           | 3322  | 3319  |
| 2007   | 3177             | 0.6%              | -0.7%        | 2.1%         | -0.1%       | 1.8%      | 8.0%  | 5.4%           | 4.6%           | 4.6%  | 4.5%  |
| 2008   | 3153             | 3197              | 3231         | 3190         | 3264        | 3215      | 3277  | 3483           | 3402           | 3370  | 3379  |
| 2008   | 3133             | 1.4%              | 2.5%         | 1.2%         | 3.5%        | 2.0%      | 3.9%  | 10.5%          | 7.9%           | 6.9%  | 7.2%  |
| 2009   | 2902             | 3218              | 3236         | 3293         | 3236        | 3313      | 3257  | 3321           | 3536           | 3457  | 3419  |
| 2009   | 2902             | 10.9%             | 11.5%        | 13.5%        | 11.5%       | 14.2%     | 12.2% | 14.4%          | 21.8%          | 19.1% | 17.8% |
| 2010   | 2886             | 3117              | 3253         | 3274         | 3343        | 3281      | 3354  | 3300           | 3364           | 3590  | 3514  |
| 2010   | 2000             | 8.0%              | 12.7%        | 13.4%        | 15.8%       | 13.7%     | 16.2% | 14.3%          | 16.6%          | 24.4% | 21.8% |
| 2011   | 2905             | 2943              | 3173         | 3287         | 3312        | 3391      | 3327  | 3395           | 3344           | 3408  | 3644  |
| 2011   | 2703             | 1.3%              | 8.4%         | 11.6%        | 12.3%       | 14.3%     | 12.7% | 14.4%          | 13.1%          | 14.7% | 20.3% |
| 2012   | 2822             | 2938              |              | 3253         | 3320        | 3350      | 3445  | 3372           | 3429           | 3388  | 3453  |
| 2012   | 2022             | 4.0%              | 6.0%         | 13.3%        | 15.0%       | 15.8%     | 18.1% | 16.3%          | 17.7%          | 16.7% | 18.3% |
| 2013   | 2839             | 2928              | 2975         | 3047         | 3311        | 3352      | 3388  | 3489           | 3418           | 3484  | 3432  |
| 2015   | 2007             | 3.0%              | 4.5%         | 6.8%         | 14.2%       | 15.3%     | 16.2% | 18.6%          | 16.9%          | 18.5% | 17.3% |
|        |                  |                   |              |              |             |           |       |                |                |       |       |
| Mean % | Frror            | 2.7%              | 4.7%         | 6.5%         | 7.9%        | 8.5%      | 9.1%  | 9.6%           | 9.8%           | 10.2% | 10.3% |

Source: IPL

## **IPL Fuel Planning**

[170-IAC 4-7-4(b)(7)]

IPL procures and manages a reliable supply of fuel for its generating units at the lowest long-term cost reasonably possible, consistent with maintaining low long-term busbar cost and compliance with all environmental requirements and/or guidelines. Busbar costs reflect those needed to produce a kilowatt of energy to the transmission grid.

IPL seeks competitive prices for coal through the use of the solicitation and negotiation process. IPL considers all material factors, including, but not limited to, (a) availability of supply from qualified suppliers, (b) current inventory levels, (c) forecast of fuel usage, (d) market conditions and other factors affecting price and availability, and (e) existing and anticipated environmental

standards. IPL prepares long-term projections of fuel purchased, annual inventory levels, quality and delivered cost for each plant.

For the coal-fired units, IPL maintains coal inventory at levels sufficient to ensure service reliability, to provide flexibility in responding to known and anticipated changes in conditions, and to avoid risks due to unforeseen circumstances. Inventory targets are established based upon forecasted usage, deliverability and quality of the required fuel to each unit, the position of the unit in the dispatch order, risk of market supply-demand imbalance, and the ability to conduct quick market transactions. The general level of inventory throughout the year is adjusted to meet anticipated conditions (i.e., summer/winter peak load, transportation outages, unit outages, fuel unloading system outages, etc.).

Natural gas ("NG") is currently purchased on a daily basis as required based on availability and pricing from several suppliers for its NG fired units. IPL's existing natural gas units have run intermittently which did not justify the need for contracts with fixed demand charges. As a larger portion of its generation will move to NG, IPL recently negotiated NG contracts. NG procurement includes commodity pricing, transportation and delivery components for the new Eagle Valley CCGT and planned refueled HSS units IPL will negotiate commodity pricing prior to plant start-ups expected in late 2015 and 2016. IPL has secured firm delivery as well as nonotice and park/loan services which are used for unexpected unit starts & stops to mitigate fuel availability risks. IPL maintains firm transportation to liquid supply zones for the new Eagle Valley CCGT unit which can also serve the Harding Street units. As generating units are refueled to NG, IPL will contract for additional firm transportation as necessary. Since the Georgetown units are used for peaking needs only, firm NG contracts are not cost-effective. IPL contracts with Citizens Gas for firm redelivery and balancing services to the generating units located at the Harding Street and Georgetown plants.

## **Fuel Price Forecasting and Methodology**

[170-IAC 4-7-4(b)(2)] [170-IAC 4-7-6(a)(3)]

The fuel forecasts used in the IPL 2014 IRP modeling are based on Ventyx's "Midwest Fall 2013 Power Reference Case, Electricity and Fuel Price Outlook". These fuel forecasts and their related explanations also appear in Ventyx's "2014 Integrated Resource Plan Modeling Summary", dated October 13, 2014. See Section 7, Confidential Attachment 5.1, Ventyx IPL IRP Modeling Summary for additional details.

A forecast of average annual fuel costs by IPL generating unit is found in Figure 4D.9.

## Confidential Figure 4D.9 – IPL Average Annual Fuel Forecast per Generating Unit (Nominal \$/MMBtu)

|      | Petersburg<br>1-4 | Eagle<br>Valley 3-6 | Harding<br>Street<br>5&6 | Harding<br>Street 7 | Eagle<br>Valley<br>CCGT | Harding<br>Street<br>Natural<br>Gas Units |
|------|-------------------|---------------------|--------------------------|---------------------|-------------------------|-------------------------------------------|
| 2015 |                   |                     |                          |                     |                         |                                           |
| 2016 |                   |                     |                          |                     |                         |                                           |
| 2017 |                   |                     |                          |                     |                         |                                           |
| 2018 |                   |                     |                          |                     |                         |                                           |
| 2019 |                   |                     |                          |                     |                         |                                           |
| 2020 |                   |                     |                          |                     |                         |                                           |
| 2021 |                   |                     |                          |                     |                         |                                           |
| 2022 |                   |                     |                          |                     |                         |                                           |
| 2023 |                   |                     |                          |                     |                         |                                           |
| 2024 |                   |                     |                          |                     |                         |                                           |
| 2025 |                   |                     |                          |                     |                         |                                           |
| 2026 |                   |                     |                          |                     |                         |                                           |
| 2027 |                   |                     |                          |                     |                         |                                           |
| 2028 |                   |                     |                          |                     |                         |                                           |
| 2029 |                   |                     |                          |                     |                         |                                           |
| 2030 |                   |                     |                          |                     |                         |                                           |
| 2031 |                   |                     |                          |                     |                         |                                           |
| 2032 |                   |                     |                          |                     |                         |                                           |
| 2033 |                   |                     |                          |                     |                         |                                           |
| 2034 |                   |                     |                          |                     |                         |                                           |

\*Individual Unit Natural Gas prices will vary slightly due to differing delivery charges.

### Source: IPL

### **Market Transactions**

IPL offers all of its generating resources into the MISO energy market and IPL's load is bid into the MISO energy market. Therefore, IPL has no scheduled power import and export transactions, neither firm nor non-firm.

### Section 5. SHORT-TERM ACTION PLAN

[170-IAC 4-7-9(1)(A)]

As suggested in the revised 170 IAC 4-7-9, IPL has included a comparison of the last IRP short-term action plan to what actions actually transpired, a summary of actions planned for the next three years (3) including a schedule and budgetary costs as well as a description of its Preferred Resource Portfolio.

## **Comparison to Last IRP**

[170-IAC 4-7-9(4)]

IPL measures its progress and success in relation to the IRP objective by comparison of the previous IRP goals and what actually transgressed. The 2011 IRP short-term action plan was centered on developing cost-effective DSM programs to meet aggressive IURC energy efficiency requirements, complying with strict new EPA rules that had the potential to force early retirements of small coal-fired units, and the need to begin the process of replacing that capacity with new generation, most likely a CCGT.

The majority of the items identified are in the process of being implemented. The IURC DSM targets identified in the 2011 IRP were abolished in May 2014 as a result of legislation, yet IPL expects to be at or near the former IURC DSM targets by the end of 2014. The IURC issued a report of the DSM to the legislature in August 2014 detailing historical accomplishments for all Indiana utilities.

Many actions were taken over the past three years as a result of EPA rules including significant changes to existing generation as described below. In addition, several autotransformers, transmission lines and substation breakers identified in the 2011 short-term action plans were upgraded. See Figure 5.1 below for details on the Company's 2011 IRP objectives and implementation status.

Figure 5.1 – IPL 2011 IRP Objectives and Implementation

| 2011 Objectives                                                                                      | Implementation as of<br>October 2014                                                                                                                                                                                                                                                                                                                                                                                                                      | IURC Cause No.                        |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Retire the six (6) small<br>unscrubbed coal-fired units<br>by 2016 (EV Units 3-6 and<br>HSS 5 and 6) | <ul> <li>Eagle Valley Units 3 through 6 will be retired by April 16, 2016</li> <li>Harding Street Station Units 5 and 6 will be refueled to natural gas</li> </ul>                                                                                                                                                                                                                                                                                        | <ul><li>N/A</li><li>44339</li></ul>   |
| Retire four (4) oil-fired units by 2015 (HSS Units 3 and 4 and EV Units 1 and 2)                     | • In 2013, IPL retired the four oil-fired units (HSS Units 3 and 4 and EV 1 and 2) mentioned along with HSS GT 3                                                                                                                                                                                                                                                                                                                                          | • N/A                                 |
| Retrofit "Big 5" to comply<br>with EPA MATS<br>regulation (Pete 1 through<br>4 and HSS 7)            | <ul> <li>IPL received IURC approval to proceed to retrofit<br/>Petersburg units and construction is underway</li> <li>IPL has sought approval to refuel HSS Unit 7 to<br/>natural gas</li> </ul>                                                                                                                                                                                                                                                          | <ul><li>44242</li><li>44540</li></ul> |
| Meet IURC established<br>DSM targets (Cause No.<br>42693)                                            | • IPL expects to be at or near cumulative targets at the end of 2014. IURC targets have been suspended with the passage of SEA 340. IPL will continue to offer cost-effective DSM, including its proposed 2015/16 Plan proposed to the IURC.                                                                                                                                                                                                              | • 44497                               |
| Select and implement preferred resource to replace retirements                                       | • IPL received approval to construct 644 to 685 MW <sup>48</sup> EV CCGT (Cause No. 44339)                                                                                                                                                                                                                                                                                                                                                                | • 44339                               |
| Reduce capacity exposure resulting from IPL shortage in Planning Years 2015-2016 and 2016-2017       | <ul> <li>IPL has purchased 100 MWs of Capacity for the two stated planning periods and nears completion of an agreement for an additional 200 MW for PY 2016-2017</li> <li>IPL achieved a successful FERC wavier to mitigate exposure from the "6 week" gap</li> <li>Implemented operational enhancements to increase the Unforced Capacity on existing units</li> <li>Achieved capacity credit for the Conservation Voltage Reduction program</li> </ul> | • N/A                                 |
| Complete Distributed<br>Automation and Advanced<br>Metering Infrastructure<br>Projects               | Projects have been completed and are fully operational                                                                                                                                                                                                                                                                                                                                                                                                    | • N/A                                 |

Source: IPL

<sup>&</sup>lt;sup>48</sup> IPL is constructing a 671 MW CCGT.

#### 2014 Short Term Action Plan

#### **Environmental**

IPL's short-term action plan focuses on compliance with the changing environmental landscape and maintaining the viability of IPL's base load generating units. IPL is currently in the process of installing MATS controls on the Petersburg coal-fired units as shown above.

Additionally, IPL is preparing for compliance with new National Pollution Discharge Elimination System ("NPDES") permit limitations. On August 28, 2012, the IDEM issued NPDES permit renewals to Petersburg and Harding Street. These permits contain new Water Quality Based Effluent Limits ("WQBELs") and Technology-Based Effluent Limits ("TBELs") for the regulated facility NPDES discharges with a compliance date of October 1, 2015 for the new WQBELs. IPL sought and received approval to extend the compliance deadline to September 29, 2017 through Agreed Orders from IDEM. The NPDES permits limit several pollutants, but the new mercury and selenium limits drive the need for additional wastewater treatment technologies at Petersburg and Harding Street. IPL determined that installation of the necessary wastewater treatment technologies and other potential future environmental requirements in addition to the necessary Mercury and Air Toxic Standard (MATS) controls described in IPL's case-in-chief Cause No. 44242 was not the reasonable least cost plan for HSS. Instead, IPL is currently proposing to refuel HSS Unit 7 to operate on natural gas which reduces the cost to comply with environmental regulations and reduces the impact on the environment.

Review of the impact of new air, water, and waste regulations is ongoing as these regulations are still being developed. IPL will continue to evaluate its compliance options as the requirements become more defined. Aside from MATS and NPDES implications, this IRP represents no additional technology investments or Operation and Maintenance ("O&M") costs associated with potential new air, water, and waste regulations.

## **Demand Side Management**

'

The IPL short-term action plan (2015-2017 Action Plan) for demand side management ("DSM") was filed and approval is currently pending before the IURC in Cause No. 44497. This proceeding specifically seeks approval of DSM programs and budgets for 2015 and 2016. The 2015-2017 Action Plan was based on an update of the Market Potential Study that was completed in 2012. In 2012 IPL, in collaboration with Citizens Energy and each respective Oversight Board retained the consulting firm EnerNOC (now Applied Energy Group or "AEG")<sup>49</sup> to complete a Market Potential Study ("MPS") and Action Plan for the period 2014-2017. Since the completion of the 2012 MPS and resulting Action Plan, Senate Enrolled Act 340 ("SEA 340") was passed into law, significantly changing the structure of DSM in Indiana. IPL

<sup>&</sup>lt;sup>49</sup> The EnerNOC resource planning group, including all the principals who had worked on the 2012 MPS, was acquired by Applied Energy Group in the 2<sup>nd</sup> Quarter of 2014. Therefore references to EnerNOC have generally been changed to AEG.

re-engaged AEG to update its 2015-2017 Action Plan to account for the elimination of IURC annual savings targets and the opt-out provision of large customers and to identify cost-effective achievable DSM potential in the 2015-2017 timeframe.

The Action Plan was adjusted to reflect decreased savings projections by approximately 20% compared to savings projections in IPL's 2014 DSM Plan.

Figure 5.2 – DSM Annual Savings Projections

| Program                  | 2014 Annual Savings<br>Projection (MWh) | Average 2015-2017 Annual<br>Savings Projection (MWh) | % Reduction |
|--------------------------|-----------------------------------------|------------------------------------------------------|-------------|
| Business<br>Prescriptive | 98,636                                  | 78,813                                               | (20%)       |

Source: IPL

The three year plan in Cause No. 44497 covers the years 2015-2017. Although cost and savings information was developed and presented for 3 years, IPL is only seeking spending approval to deliver the programs for the first 2 years (2015-2016) as listed below. If approved, IPL will continue to offer a broad range of cost effective programs to our customers as shown in Figure 5.3. For more information, please see Section 4B.

Figure 5.3 – DSM Programs Proposed in Cause No. 44497

| Programs                                     |
|----------------------------------------------|
| Residential Lighting                         |
| Residential Income Qualified Weatherization  |
| Residential Air Conditioning Load Management |
| Residential Multi Family Direct Install      |
| Residential Home Energy Assessment           |
| Residential School Kit                       |
| Residential Online Energy Assessment         |
| Residential Appliance Recycling              |
| Residential Peer Comparison Reports          |
| Business Energy Incentives - Prescriptive    |
| Business Energy Incentives – Custom          |
| Small Business Direct Install                |
| Business Air Conditioning Load Management    |

Source: IPL

IPL forecasted twenty (20) years of DSM savings that are included in the load forecast. Future programs will be developed for the balance of the IRP period and presented in subsequent IURC

proceedings. The twenty year forecast is provided in Section 7, Attachment 4.7, DSM Supporting Documents.

In addition, IPL entered into a settlement agreement with the OUCC in the BlueIndy case (IURC Cause No. 44478) which includes three potential new DSM programs: LED Energy Efficient Streetlighting Program, assessing customer strategic energy management (ISO 50001 or similar program), and determining the potential feasibility of using the BlueIndy electric vehicle batteries to provide electricity back to the IPL grid as a demand response resource If approved by the Commission, IPL will move forward to plan specific details in the near future.

#### **Transmission**

IPL's has studied and is evaluating the need for transmission and substation projects for retirement of generation connected to the IPL 138 kV system to ensure deliverability of power into the IPL load zone. These projects include the installation of new 345 kV breakers, autotransformers, and 138 kV capacitor banks to improve power import capability from the 345 kV system to load centers on the 138 kV system. Several projects associated with the new CCGT will be completed in 2015 and 2016. In addition, IPL plans to install a Static VAR System (SVS) to provide dynamic voltage and VAR support. See Section 4C and Section 7 – Confidential Attachment 1.3 for detailed project information.

#### **Distribution**

IPL has completed its distribution automation ("DA") and Advanced Metering Infrastructure ("AMI") plans funded in part by a Smart Grid Investment Grant ("SGIG") awarded by the U.S. Department of Energy ("DOE") as described in section 4. These assets will be optimized for continued service restoration improvements, to connect additional solar distributed generation facilities of approximately 30 MW, and to utilize the conservation voltage reduction ("CVR") program to reduce demand by between 20 and 40 MW during peak conditions. In addition, data collected will be mined for asset management improvements to complete condition based maintenance and replacements. Estimated expenses are allocated in the capital budget process and do not exceed average annual expenditures; therefore they are not specifically highlighted in the IRP.

## Research & Development/Technology Applications

IPL continually evaluates emerging technologies, new applications of technologies and contemporary methods to improve operational excellence, identify future business opportunities and enhance long-term planning. Specifically, (1) energy storage, (2) enhanced combustion turbine output options, (3) the expansion of electric transportation, and (4) utilizing smart grid assets are included as part of these efforts.

(1) IPL is investigating the possibility of installing a Battery Energy Storage System ("BESS") within its grid to provide ancillary services. This could be up to a 20 MW facility located on the IPL 138 kV transmission system, which will also facilitate local

- stakeholder education. See Section 2, Changing Business Landscapes, for more information about the potential BESS installation.
- (2) IPL considers efficiency improvements that may provide additional generating capacity such as a technique known as "fogging" whereby inlet air is cooled to increase gas turbine outputs. Analysis is underway, therefore, no specific incremental capacity in terms of MWs are included in the preferred resource portfolio.
- (3) IPL proposed expanding local electric transportation infrastructure in its proceeding before the IURC in 2014. If approved, this project will support the first all-electric carsharing program in the U.S. through the installation of up to 1,000 Electric Vehicle Supply Equipment ("EVSE") units at approximately 200 locations throughout the IPL service territory. The project is expected to begin later this year and be completed in mid-2016.
- (4) IPL will continue to utilize smart grid system assets to support its Conservation Voltage Reduction ("CVR") program. Two-way communicating devices at distribution substations and capacitor bank locations allow IPL to remotely lower the system voltage incrementally to reduce peak demand. The voltage levels on the feeders and at Advanced Metering Infrastructure ("AMI") meters are monitored to ensure service voltage limits are maintained. In addition, IPL plans to leverage the AMI assets for power quality monitoring overall and future energy management possibilities for inclusion in DSM programs.

#### **Preferred Portfolio**

Subsequent to the 2011 IRP, as mentioned above, IPL received approval to construct a 644 to 685 MW<sup>50</sup> Eagle Valley CCGT (IURC Cause No. 44339). Once in-service, this approval along with IPL's other current generation will allow IPL to meet its peak demand until other unit retirements are necessary. Therefore, IPL's preferred portfolio includes no additional generation in the time horizon of the short-term action plan, extending out until the anticipated retirement of Petersburg 1 along with Harding Street Units 5 through 7 in the early 2030's. The determination and additional details surrounding IPL's preferred portfolio can be found in Section 4 - Integration. Significant changes, comprising the reasonable least cost plan, will be made to IPL's current coal-fired fleet to meet recent environmental requirements as described below.

## **Existing Generation**

Environmental requirements, specifically the Mercury and Air Toxics rule ("MATS") and the National Pollutant Discharge Elimination System ("NPDES") along with potential future environmental regulations, significantly impacted the evaluation process of the six unscrubbed coal-fired units and continue to have a large impact on IPL's larger coal fleet. Eagle Valley coal Units 3 through 6 are nearing the end of their useful lives, making future investments for EPA

<sup>&</sup>lt;sup>50</sup> IPL is constructing a 671 MW CCGT.

compliance uneconomical. These units will be retired to coincide with the MATS compliance date in April 2016. To maintain generation to serve load, IPL requested and received approval (Cause No. 44339) to construct a 644 to 685 MW<sup>3</sup> CCGT, which is projected to be in-service by April 2017 as mentioned above.

Harding Street Station Units 5 and 6 represent the other two unscrubbed units in IPL's fleet. Due to the close vicinity to load, these units provide a large reliability benefit to IPL's system. Based on reliability and economic factors in the evaluation, IPL determined refueling HSS Units 5 and 6 - along with HSS Unit 7 – to natural gas in 2016 is the reasonable least cost plan.

Refueling HSS Units 5 through 7 and the addition of the 671 MW Eagle Valley CCGT allows IPL to diversify its portfolio in addition to providing economic energy solutions to its customers. Additionally, IPL's resource plan recognizes the value and reliability offered by its four coal-fired units located in Petersburg. Additional environmental compliance investments controls on these units continue to be cost-effective and necessary over the next two to three years.

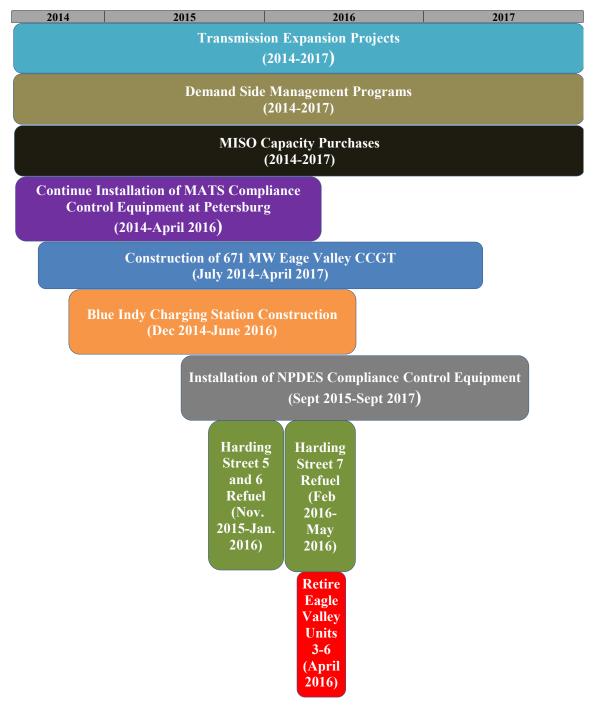
### **Capacity Needs (2015-2017)**

Historically, IPL has relied on short-term capacity markets for up to 300 MW of its capacity requirements. However, for the period 2015 to 2016, IPL will be facing additional challenges as MISO capacity prices continue to rise and retirements increase to comply with new EPA regulations. As discussed above, IPL will be retiring Eagle Valley coal-fired units 3-6 by April 16, 2016, six weeks before the end of the MISO Planning Year ("PY") 2015-2016. Under MISO's current resource adequacy requirements, a capacity resource that clears a planning reserve auction must be available during the entire commitment period, otherwise replacement capacity from the same Load Resource Zone ("LRZ") must be secured to avoid compliance penalties. On June 20, 2014, IPL submitted a request to FERC to waive the replacement requirement needed during the stated 6 week span. This request was granted by FERC on October 15, 2014, eliminating the need to replace capacity during that time span and avoiding unnecessary costs for IPL customers.

To mitigate the MISO Planning Resource Auction price volatility risk, IPL has bilaterally purchased 100 MWs of Zone 6 Zonal Resource Credits at a fixed and known price for the PY 2015-2016 resulting in a minimal net capacity requirement. For PY 2016-2017, IPL has purchased 100 MWs of Zone 6 Zonal Resource Credits at a fixed and known price and nears completion of an agreement for an additional 200 MW. This results in a net capacity requirement ranging from 50 to 100 MW.

IPL will continue to evaluate the purchase of additional capacity to meet the difference between its actual Planning Reserve Margin Requirement and secured resources with bilateral purchases or sales, auction purchases or sales, additional demand response, or other resources. Starting in Planning Year 2017-2018, with the addition of the Eagle Valley CCGT, IPL projects that its

resources will exceed its MISO Planning Reserve Margin Requirement for 2017-2018 by 240 MWs which it plans to optimize in the capacity market.


### **2014 Short Term Action Plan Summary**

[170-IAC 4-7-9(1)(B)] [170-IAC 4-7-9(2)] [170-IAC 4-7-9(3)]

This short-term planning period focuses on managing the impacts of implementing the recommendations that resulted from the 2011 IRP, including meeting reliability needs in 2015 and beyond through transmission system upgrades during the "gap year" of June 2016 through May 2017 when new and refueled generation resources will not be available. The following recommendations are in the process of being implemented. The short-term action plan covering 2015 through 2017 identifies the initial steps toward IPL's longer-term resource strategy as shown below in Figures 5.4 and 5.5, which include a timeline of the projects mentioned above and their projected costs.

Figure 5.4 – Short Term Action Plan Timeline

#### **Short Term Action Plan Timeline**



Source: IPL

Figure 5.5 – Short Term Action Plan Current Capital and DSM Cost **Estimates** 

| Project                                    | Timing    | Current Estimated Cost <sup>51</sup> |
|--------------------------------------------|-----------|--------------------------------------|
| MATS <sup>52</sup>                         | 2014-2016 | \$460M                               |
| Eagle Valley 671 MW CCGT                   | 2014-2017 | \$590M                               |
| Harding Street Units 5&6<br>Refuel         | 2015-2016 | \$36M                                |
| Harding Street Unit 7 Refuel <sup>53</sup> | 2015-2016 | \$134M                               |
| Waste Water Compliance (NPDES)             | 2015-2017 | \$258M                               |
| Transmission Expansion                     | 2014-2017 | \$100M-\$120M                        |
| MISO Capacity Purchases                    | 2015-2017 | \$10M-\$15M                          |
| Demand Side Management<br>Programs         | 2015-2016 | \$67M                                |
| Blue Indy-Electric Vehicle<br>Project      | 2014-2016 | \$16M                                |
| <b>Total Costs</b>                         |           | \$1,671M-\$1,696M                    |

Source: IPL

IPL will monitor the progression of the above action items to ensure they are completed within the budgeted costs and in a timely manner. Consistent with business operations related to major projects, IPL will regularly review progress and success in relation to these IRP objectives. In addition, subsequent IRPs will include a comparison of these short term IRP goals to what actually transpires in the future.

These include estimated coal pond and ash pond closure costs.

These costs do not include O&M, carrying charges, or AFUDC.These reflect current projections based on the refuel of HSS Unit 7.

# Section 6. ACRONYMS

CEM

| Acronym         | Reference                                                               |
|-----------------|-------------------------------------------------------------------------|
| 3-Year DSM Plan | IPL's 2015-2017 Demand Side Management Plan proposed in Cause No. 44497 |
| AC              | Alternating current                                                     |
| ACEEE           | American Council for an Energy Efficient Economy                        |
| ACESA           | American Clean Energy and Security Act of 2009                          |
| ACI             | Activated carbon injection                                              |
| ACLM            | Air-Conditioning Load Management                                        |
| AEG             | Applied Energy Group                                                    |
| AEP             | American Electric Power                                                 |
| AFUDC           | Allowance for Funds Used During Construction                            |
| AG              | Indiana Office of the Attorney General                                  |
| AHRI            | Air Conditioning, Heating & Refrigeration Institute                     |
| AMI             | Advanced Metering Infrastructure                                        |
| AMR             | Automatic Meter Reading                                                 |
| ARRA            | American Recovery and Reinvestment Act of 2009                          |
| ASM             | Ancillary Services Market                                               |
| ATC             | Available Transmission Capability                                       |
| BA              | Balancing Authority                                                     |
| BACT            | Best Available Control Technology                                       |
| BART            | Best Available Retrofit Technology                                      |
| BESS            | Battery Energy Storage System                                           |
| C&I             | Commercial and industrial                                               |
| CAA             | Clean Air Act                                                           |
| CAAA            | Clean Air Act Amendments of 1990                                        |
| CAGR            | Compound annual growth rate                                             |
| CAIR            | Clean Air Interstate Rule                                               |
| CBD             | Central Business District                                               |
| CCGT            | Combined cycle gas turbine                                              |
| CCOFA           | Closed-Coupled Overfire Air                                             |
| CCR             | Coal Combustion Residuals                                               |
| CCS             | Carbon capture and sequestration                                        |
| CCT             | Clean coal technology                                                   |
| CDD             | Cooling degree days                                                     |
| CEM             | Customer Energy Management System Program                               |

Customer Energy Management System Program

CESQG Conditionally exempt small quantity generator

CFL Compact Fluorescent Light

CGS Cogeneration Service

CIP Critical Infrastructure Protection

CISSP Certified Information Systems Security Protocol

CO<sub>2</sub> Carbon dioxide
CONE Cost of New Entry

CoolCents® IPL's Air Conditioning Load Management Program CPCN Certificate of Public Convenience and Necessity

CSAPR Cross State Air Pollution Rule

CT Combustion turbine

CVR Conservation Voltage Reduction

CWA Clean Water Act

DA Distribution Automation
DOE U.S. Department of Energy

DRWG Demand Response Working Group

dSCADA Distribution SCADA
DSI Dry sorbent injection

DSM Demand Side Management

DSMCC Demand Side Management Coordination Committee

ECM Electronic Commutated Fan ECS Energy Control System

EFORd Equivalent Forced Outage Rate demand EIA U.S. Energy Information Administration

EIS Enterprise Information Services

ELG National effluent limitation guidelines
EM&V Evaluation, Measurement and Verification
EPA U.S. Environmental Protection Agency

ER Energy Resource ES ENERGY STAR®

ESP Electrostatic precipitator

EV Electric Vehicles or Eagle Valley Generating Station

FAC Fuel Adjustment Clause

FEED Front End Engineering Design

FERC Federal Energy Regulatory Commission

FGD Flue Gas Desulfurization

FOB Free On-Board

Fracking Hydraulic fracturing

GDP Gross Domestic Product

Georgetown Generating Station

GHG Greenhouse gas

GID Gross internal demand
HAPs Hazardous air pollutants
HDD Heating degree days

HERS ENERGY STAR® Home Energy Rater Index

Hg Mercury

HRSG Heat recovery steam generator
HSS Harding Street Generating Station

HVAC Heating, ventilation and air-conditioning

IDEM Indiana Department of Environmental Management

IEA Indiana Energy Association

IEEE Institute of Electrical and Electronics Engineers

ICAP Installed Capacity

IGCC Integrated Gasification Combined Cycle

IMM Independent Market Monitor

IPL Indianapolis Power & Light Company

IRP Integrated Resource Plan

Itron Itron, Inc.

IURC Indiana Utility Regulatory Commission

JCSP Joint Coordinated System Plan LAER Lowest Achievable Emission Rate

LMR Load Modifying Resource

LNB Low NO<sub>x</sub> Burner LNG Liquid natural gas

LOLE Loss of Load Expectation
LQG Large quantity generator
LSE Load Serving Entity

LTC Transformer Load-Tap Changer

MACT Maximum Achievable Control Technology

MAIFI Mandatory Average Interruption Frequency Index

MAPE Mean Absolute Percent Error
MATS Mercury and Air Toxics Standard
MECT Module E Capacity Tracking
MGD Million gallons per day

MISO Midcontinent Independent Transmission System Operator, Inc.

MOD Transmission Planning Standards, part of NERC Reliability Standards

MOPR Minimum Offer Price Requirements

MPE Mean Percent Error
MPP Multi-Pollutant Plan
MPS Market Potential Study

MSA Metropolitan Statistical Area

MTEP MISO Transmission Expansion Plan

MVA Mega Volt Amplifier MVP Multi-Value Projects

NAAQS National Ambient Air Quality Standard

NERC North American Electric Reliability Corporation

NG Natural Gas

NID Net internal demand

NIST National Institute of Standards and Technology

NN Neutral Net

NOAA National Oceanic and Atmospheric Administration

NO<sub>x</sub> Nitrogen oxide

NPDES National Pollution Discharge Elimination System

NPV Net Present Value

NYMEX New York Mercantile Exchange
O&M Operation and Maintenance costs
OUCC Office of Utility Consumer Counselor

PC Pulverized coal

Pete Petersburg Generating Station
PHEV Plug-In hybrid electric vehicle
PJM PJM RTO; "PJM Interconnection"

PM<sub>2.5</sub> Particulate matter less than 2.5 microns

PPA Power Purchase Agreement

PRMR Planning Resource Margin Requirements

PRM<sub>UCAP</sub> Planning Reserve Margin on UCAP

PT Participant cost test

PV Photovoltaic

PVRR Present value of revenue requirements

Rate EVP IPL Tariff: Experimental Service for Electric Vehicles Charging on

**Public Premises** 

Rate EVX IPL Tariff: Experimental Time of Use Service for Electric Vehicles

**Charging on Customer Premises** 

Rate REP IPL Tariff: Renewable Energy Production
Rate SS IPL Tariff: Small Secondary Service
RCRA Resource Conservation and Recovery Act

REC Renewable Energy Credit
RES Renewable Energy Standards
RFC Reliability First Corporation

RFP Request For Proposal

RIM Ratepayer impact measurement RTO Regional Transmission Organization

SAIFI System Average Interruption Frequency Index SCADA Supervisory Control and Data Acquisition

SCPC Supercritical Pulverized Coal
SCR Selective Catalytic Reduction
SFT Simultaneous Feasibility Study
SGIG Smart Grid Investment Grant

SIGE Vectren

SIP State Implementation Plan

SNCR Selective Non-Catalytic Reduction

SO<sub>2</sub> Sulfur dioxide

SOFA Separated Overfire Air SQG Small quantity generator

TBEL Technology based effluent limits

TID Total internal demand

TOU Time of use

TPA Third Party Administrator

TPL Transmission Planning Standards, part of NERC Reliability Standards

TRC Total resource cost

TVA Tennessee Valley Authority

U.S. United States

UCAP Unforced Capacity
UCT Utility cost test

Ultra SCPC Ultra Supercritical Pulverized Coal

VAR Reactive Power

Utility MACT Utility Maximum Achievable Control Technology

WQBEL Water quality based effluent limits

WTG Wind turbine generators

### **Section 7. ATTACHMENTS**

Confidential Attachment 1.1 (FERC Form 715 Cover Letter) [170-IAC 4-7-4(b)(10)(A)] [170-IAC 4-7-4(b)(10)(B)]

Attachment 1.2 (US DOE IPL Smart Energy Project)

Confidential Attachment 1.3 (Cost of Transmission Expansion Projects) [170-IAC 4-7-6(d)(2)]

Attachment 1.4 (CVR Demand Response Verification)

Attachment 2.1 (2013 IPL System Load) [170-IAC 4-7-4(b)(13)]

Attachment 3.1 (Load Research Narrative) [170-IAC 4-7-4(b)(3)][170-IAC 4-7-5(a)(1)][170-IAC 4-7-5(a)(2)]

Attachment 3.2 (2013 Hourly Load Shape Summary) [170-IAC 4-7-4(b)(3)][170-IAC 4-7-5(a)(1)][170-IAC 4-7-5(a)(2)]

Attachment 4.1 (DSM Case - Cause No. 44497)

Attachment 4.2 (July 1, 2014 DSM Status Report)

Confidential Attachment 4.3 (DSM Future Avoided Costs) [170-IAC 4-7-6(b)(2)]

Attachment 4.4 (Standard DSM Benefit Cost Tests) [170-IAC 4-7-4(b)(12)][170-IAC 4-7-7(b)] [170-IAC 4-7-7(d)(1)]

Attachment 4.5 (DSM Benefit Cost Results) [170-IAC 4-7-4(b)(12)] [170-IAC 4-7-7(b)] [170-IAC 4-7-7(c)]

Attachment 4.6 (DSM 15-17 Costs and Energy and Demand Savings)

Attachment 4.7 (AEG's DSM Forecast) [170-IAC 4-7-6(b)(4)] [170-IAC 4-7-6(b)(5)] [170-IAC 4-7-6(b)(7)] [170-IAC 4-7-6(b)(7)]

Attachment 4.8 (2012 MPS)

Attachment 4.9 (Benefit Cost Test Equations) [170-IAC 4-7-7(d)(2)]

Attachment 4.10 (DSM Per Participant Data) [170-IAC 4-7-6(b)(4)][170-IAC 4-7-6(b)(5)][170-IAC 4-7-6(b)(6)][170-IAC 4-7-6(b)(7)]

Confidential Attachment 5.1 (Ventyx IPL-IRP 2014 Report)

Attachment 6.1 (10 Yr Energy and Peak Forecast) [170-IAC 4-7-4(b)(2)]

Attachment 6.2 (20 Yr High and Low Range Forecast) [170-IAC 4-7-4(b)(2)]

Confidential Attachment 6.3 (End Use Modeling Technique)

Confidential Attachment 6.4 (EIA End Use Data) [170-IAC 4-7-4(b)(2)]

Confidential Attachment 6.5 (Energy - Forecast Drivers) [170-IAC 4-7-4(b)(2)]

Attachment 6.6 (Energy - Input Data Set 1) [170-IAC 4-7-4(b)(2)] [170-IAC 4-7-5(a)(3)]

Attachment 6.7 (Energy - Input Data Set 2) [170-IAC 4-7-4(b)(2)] [170-IAC 4-7-5(a)(3)]

Attachment 6.8 (Energy - Input Data Set 3) [170-IAC 4-7-4(b)(2)] [170-IAC 4-7-5(a)(3)]

Attachment 6.9 (Peak - Forecast Drivers and Input Data) [170-IAC 4-7-4(b)(2)]

Confidential Attachment 6.10 (Model Performance - Statistical Measures)

Attachment 6.11 (Forecast Error Analysis)

Attachment 7.1 (Non-Technical Summary) [170-IAC 4-7-4(a)]

Attachment 8.1 (Rate REP Projects)

Attachment 8.2 (Rate REP Map)

Attachment 9.1 (IRP Public Advisory Meeting Presentations)





2014 IRP Riblic Attachment 1.1

March 31, 2014

Federal Energy Regulatory Commission Secretary of the Commission Form No. 715 888 First Street, NE Washington, D.C. 20426

RE: FERC Form 715 - Annual Transmission Planning and Evaluation Report

#### Dear Secretary Bose:

Pursuant to Sections 213(b), 307(a) and 311 of the Federal Power Act and 18 CFR § 141.300 of the Federal Energy Regulatory Commission's ("FERC" or "Commission") regulations, enclosed for filing is the FERC Form 715 Response for certain Transmission Owners of the Midcontinent Independent System Operator, Inc. ("MISO") that elected to have a regional filing of their FERC Form 715 response. A listing of those Transmission Owners for which this data is supplied (the "Respondents") is included as Attachment 1.1 A summary of the information submitted in compliance with Part 1 through Part 6, Appendix A of Form 715 is included as Attachment 2.

This filing, submitted to FERC via CD, contains Critical Energy Infrastructure Information ("CEII"). Thus, this filing is made pursuant to the Commission's regulations 18 CFR § 388.112(b)(2)(ii) (A) and contains the following:

- The electronic media of all six parts of Form 715 with all pages marked "Critical Energy Infrastructure Information - Do Not Release;" and
- 2) A cover letter with two Attachments identifying the Respondents and a summary of the filing content with all pages marked "Critical Infrastructure Information - Do Not Release."

Please note the following points concerning the filing:

The response for Part 1 has a dual purpose. MISO is providing detailed information that will identify the source of data for each of the six parts of the report with exceptions as noted in Attachment 2. Also, this information is intended to satisfy Part 1 and includes the certifying signature.

The responding Transmitting Utilities are now Transmission Owners of the MISO, and therefore, the MISO will now be filing FERC Form 715 on their behalf.

The response for all Parts is being made to FERC on a CD.

There will be no charge for providing the public with copies of the FERC 715 filing on a CD. The MISO reserves the right to levy a charge in future filing years if this cost becomes a significant burden.

This letter constitutes MISO's written statement requesting, on behalf of the Respondents, privileged treatment of the information contained in this filing as CEII pursuant to the Commission's Regulations at 18 CFR § 388.112(a).

If you have any questions about this filing, including the above request for CEII treatment, please do not hesitate to contact me. The required contact information is below my signature to this letter.

Ben Stearney

MISO, Engineer II Expansion Planning

2985 Ames Crossing Drive

Eagan, MN 55121

bstearney@misoenergy.org

Phone: 651-632-8414 Fax: 651-632-8417

CC: MISO Transmission Owning Member Respondents

#### **ATTACHMENT 1**

#### **MISO Regional FILING RESPONDENTS** FOR WHICH FERC FORM 715 DATA IS BEING SUPPLIED

BREC **Big Rivers Electric Corporation** 

Municipal Electric Utility of the City of Cedar Falls Iowa CFU

(Cedar Falls Utilities)

CMMPA Central Minnesota Municipal Power Agency

**CWLD** Columbia Water & Light **CWLP** City Water Power & Light DPC **Dairyland Power Cooperative** 

**Duke Energy Indiana** DUKE **Great River Energy** GRE Hoosier Energy HE

Indianapolis Power & Light Company **IPL** 

ITCM **ITC Midwest** ITCT **ITCTransmission** 

MISO Midcontinent Independent Transmission System Operator

MDU Montana-Dakota Utilities Co. MEC MidAmerican Energy Company

Michigan Electric Transmission Company **METC** 

MP Minnesota Power

MPW Muscatine Power and Water **MRES** Missouri River Energy Services OTP Otter Tail Power Company

Prairie Power Inc. PPI

SIPC Southern Illinois Power Cooperative

Southern Minnesota Municipal Power Agency SMMPA

Vectren Energy Delivery Vectren

**XEL Xcel Energy** 

#### **ATTACHMENT 2**

#### MISO **FERC FORM 715 RESPONSE**

#### ITEMS SUBMITTED AND FEE SCHEDULE

#### PART 1

Information regarding identification and certification of contact people required for Part 1 of the order is supplied. Part 1 also included detailed information identifying the source of the data for each of the six parts.

#### PART 2

Six power flow cases corresponding to the two, five and ten year time frame are provided in Saved Case format. A detailed description of each case is found in the title block of each case. The cases provided will be the following:

A bus name Data Dictionary complete with EIA generator codes is supplied.

#### PART 3

• A geographic MISO Transmission Planning Map showing approved future transmission plans in the MISO region is included. Respondents' maps showing breaker placement are also provided.

#### PART 4

Respondents' Planning Criteria is included and also posted on the MISO's Planning page as required. The MISO utilizes the Respondents' Planning Criteria in the MISO Transmission Expansion Plan ("MTEP") study report filed to meet requirements of Part 4.

#### PART 5

Respondents' reporting requirements for Part 5 are satisfied by the MISO's Transmission Planning Business Practices Manual. A copy of the manual is included in this filing.

#### PART 6

Respondents' reporting requirements for Part 6 are satisfied by the MTEP report and applicable Appendices. A copy is included in this filing.

Any questions regarding the material should be directed to Mr. Ben Stearney, Engineer II, MISO, 2985 Ames Crossing Drive, Eagan, MN 55121, phone 651-632-8414, bsteamey@misoenergy.org, fax 651-632-8417.

There is no charge for a CD of this FERC filing. Requests for a copy should be directed to the FERC. Respondent's contact information is located in Part 1 of the filing.

March 31, 2014

| FERC Form 7                                                                                                                                                                                              | 15                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| MISO Region - Apri                                                                                                                                                                                       | l 1, 2014                          |
| Part 1: Identification and Certification                                                                                                                                                                 |                                    |
| Transmitting Utility Name                                                                                                                                                                                | Indianapolis Power & Light Company |
| <del></del>                                                                                                                                                                                              | 1230 W. Morris St.                 |
| Transmitting Utility Mailing Address                                                                                                                                                                     | Indianapolis, IN 46221-1710        |
| Contact Person Name                                                                                                                                                                                      | Mark J. Kempker                    |
| Title                                                                                                                                                                                                    | Mgr. Transmission Planning         |
| Telephone Number                                                                                                                                                                                         | (317) 261-8615                     |
| FAX Number                                                                                                                                                                                               | (317) 630-5787                     |
| information submitted, and also authorizes the MISO to consent to r CEII disclosure policy and subject to any exceptions noted in row 2  Objections or other conditions related to the MISO's release of |                                    |
| information contained in this filing to third parties.                                                                                                                                                   | to A A                             |
| Certifying Official Signature                                                                                                                                                                            | Much I Kamoker                     |
| Name (please print)                                                                                                                                                                                      | Mark J. Kempker                    |
| Title                                                                                                                                                                                                    | Mgr. Transmission Planning         |
| information in the Respondent's behalf. Regional contact                                                                                                                                                 |                                    |
|                                                                                                                                                                                                          |                                    |
| information is as follows:  Regional Organization  Mailing Address                                                                                                                                       |                                    |
| Regional Organization<br>Mailing Address                                                                                                                                                                 |                                    |
| Regional Organization  Mailing Address  Contact Person                                                                                                                                                   |                                    |
| Regional Organization  Mailing Address  Contact Person  Contact Person Title                                                                                                                             |                                    |
| Regional Organization                                                                                                                                                                                    |                                    |
| Regional Organization  Mailing Address  Contact Person  Contact Person Title  Contact Person Telephone Number  Contact Person email                                                                      | Expansion Plan (MTEP) Models       |
| Regional Organization  Mailing Address  Contact Person  Contact Person Title  Contact Person Telephone Number  Contact Person email                                                                      | Expansion Plan (MTEP) Models       |
| Regional Organization  Mailing Address  Contact Person  Contact Person Title  Contact Person Telephone Number  Contact Person email                                                                      | Expansion Plan (MTEP) Models       |
| Regional Organization  Mailing Address  Contact Person  Contact Person Title  Contact Person Telephone Number  Contact Person email  Power Flow Cases Available are 2013 MISO MISO Transmission          | Expansion Plan (MTEP) Models       |
| Regional Organization  Mailing Address  Contact Person  Contact Person Title  Contact Person Telephone Number  Contact Person email  Power Flow Cases Available are 2013 MISO MISO Transmission          | Expansion Plan (MTEP) Models       |
| Regional Organization  Mailing Address  Contact Person  Contact Person Title  Contact Person Telephone Number                                                                                            | Expansion Plan (MTEP) Models       |

| report in respondent's behalf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             |     |   |    |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----|---|----|---|
| referencing power flow bus names with long English names and EIA plant codes  Part 3: Transmitting Utility Map and Diagrams  Respondent authorizes the MISO to submit a regional bulk transmission Planning mp that includes the respondent's bulk transmission Planning maps that have been provided to the MISO Respondent will submit additional maps  Part 4: Transmission Planning Reliability Criteria**  Respondent employs NERC Transmission Planning Standards TPL-001-0.1, TPL-002-0.7, TPL-003-0.7, and TPL-004-0. FAC-010-0.2, and NUC-001-2 are also applicable to an RC or TP. RTO and RRO, State, and MISO Member (Local) planning criteria are also used. MISO will submit the applicable criteria following FERC instructions.  Respondent will submit criteria in addition to that submitted by MISO.  Respondent will submit its own criteria  Yes No X  Part 5: Transmission Planning Assessment Practices**  Respondent will submit the MISO Transmission Planning Assessment Practices the MISO to submit the MISO Planning Business practices document (Assessment Practices) in respondent's behalf.  Respondent will submit assessment Practices in addition Yes No X  Part 5: Evaluation of Transmission System Performance  Respondent will submit its own Assessment Practices Yes No X  Part 5: Evaluation of Transmission System Performance  Respondent cities the Annual MISO MTEP report, including Appendices A, B, C, D1, D2, D3, D4, D5 and D8 as a satisfactory evaluation of the performance of its portion of the transmission system, and authorizes the MISO to submit this report in respondent's behalf. | representation that exists in the MISO MTEP models and will |     |   |    |   |
| Respondent authorizes the MISO to submit a regional bulk transmission Planning map that includes the respondent's bulk transmission system  Respondent authorizes the MISO to submit the respondent's transmission Planning maps that have been provided to the MISO  Respondent will submit additional maps  Part 4: Transmission Planning Reliability Criteria**  Respondent employs NERC Transmission Planning Standards TPL-001-0.1, TPL-002-0, TPL-003-0, and TPL-004-0. FAC-010-2, and NUC-001-2 are also applicable to an RC or TP. RTO and RRO, State, and MISO Member (Local) planning criteria are also used. MISO will submit the applicable criteria following FERC instructions.  Respondent will submit criteria in addition to that submitted by MISO.  Respondent will submit its own criteria  Yes No X  Part 5: Transmission Planning Assessment Practices**  Respondent endorsess the MISO Transmission Planning Assessment Practices used in the MTEP, and authorizes the MISO to submit the MISO Planning Business practices document (Assessment Practices) in respondent's behalf.  Respondent will submit Assessment Practices in addition those of the MISO  Respondent will submit its own Assessment Practices Yes No X  Part 6: Evaluation of Transmission System Performance  Respondent cities the Annual MISO MTEP report, including Appendices A, B, C, D1, D2, D3, D4, D5 and D8 as a satisfactory evaluation of the performance of its portion of the transmission system, and authorizes the MISO to submit this report in respondent's behalf.                                                                  | referencing power flow bus names with long English names    |     |   |    |   |
| Respondent authorizes the MISO to submit a regional bulk transmission Planning map that includes the respondent's bulk transmission system  Respondent authorizes the MISO to submit the respondent's transmission Planning maps that have been provided to the MISO  Respondent will submit additional maps  Part 4: Transmission Planning Reliability Criteria**  Respondent employs NERC Transmission Planning Standards TPL-001-0.1, TPL-002-0, TPL-003-0, and TPL-004-0. FAC-010- 2, and NUC-001-2 are also applicable to an RC or TP. RTO and RRO, State, and MISO Member (Local) planning criteria are also used. MISO will submit the applicable criteria following FERC instructions.  Respondent will submit criteria in addition to that submitted by MISO.  Respondent will submit its own criteria  Part 5: Transmission Planning Assessment Practices**  Respondent endorsess the MISO Transmission Planning Assessment Practices used in the MTEP, and authorizes the MISO to submit the MISO Planning Business practices document (Assessment Practices) in respondent's behalf.  Respondent will submit Assessment Practices in addition those of the MISO  Respondent will submit its own Assessment Practices in Addition those of the MISO  Part 6: Evaluation of Transmission System Performance  Respondent cities the Annual MISO MTEP report, including Appendices A, B, C, D1, D2, D3, D4, D5 and D8 as a satisfactory evaluation of the performance of its portion of the transmission system, and authorizes the MISO to submit this report in respondent's behalf.                                                      | Part 3: Transmitting Utility Map and Diagrams               |     |   |    |   |
| transmission Planning map that includes the respondent's bulk transmission system Respondent authorizes the MISO to submit the respondent's transmission Planning maps that have been provided to the MISO Respondent will submit additional maps  Part 4: Transmission Planning Reliability Criteria** Respondent employs NERC Transmission Planning Standards TPL-001-0.1, TPL-002-0, TPL-003-0, and TPL-004-0. FAC-010-2, and NUC-001-2 are also applicable to an RC or TP. RTO and RRO, State, and MISO Member (Local) planning criteria are also used. MISO will submit the applicable criteria following FERC instructions. Respondent will submit criteria in addition to that submitted by MISO. Respondent will submit tis own criteria  Part 5: Transmission Planning Assessment Practices** Respondent endorsess the MISO Transmission Planning Assessment Practices used in the MTEP, and authorizes the MISO to submit the MISO Planning Business practices document (Assessment Practices) in respondent's behalf. Respondent will submit its own Assessment Practices  Respondent will submit its own Assessment Practices  Part 6: Evaluation of Transmission System Performance Respondent cities the Annual MISO MTEP report, including Appendices A, B, C, D1, D2, D3, D4, D5 and D8 as a satisfactory evaluation of the performance of its portion of the transmission system, and authorizes the MISO to submit this report in respondent's behalf.                                                                                                                                                                            |                                                             |     |   |    |   |
| Bulk transmission system Respondent authorizes the MiSO to submit the respondent's transmission Planning maps that have been provided to the MiSO Respondent will submit additional maps  Part 4: Transmission Planning Reliability Criteria** Respondent employs NERC Transmission Planning Standards TPL-001-0.1, TPL-002-0, TPL-003-0, and TPL-004-0. FAC-010-2, and NUC-001-2 are also applicable to an RC or TP. RTO and RRO, State, and MiSO Member (Local) planning criteria are also used. MiSO will submit the applicable criteria following FERC instructions. Respondent will submit criteria in addition to that submitted by MiSO. Respondent will submit its own criteria  Part 5: Transmission Planning Assessment Practices** Respondent endorsess the MiSO Transmission Planning Assessment Practices used in the MTEP, and authorizes the MISO to submit the MISO Planning Business practices document (Assessment Practices) in respondent's behalf. Respondent will submit Assessment Practices in addition Tyes No X  Yes No X  Yes No X  Yes No X  Part 6: Evaluation of Transmission System Performance Respondent will submit its own Assessment Practices Part 6: Evaluation of Transmission System Performance Respondent cities the Annual MISO MTEP report, including Appendices A, B, C, D1, D2, D3, D4, D5 and D8 as a satisfactory evaluation of the performance of its portion of the transmission system, and authorizes the MISO to submit this report in respondent's behalf.                                                                                                                                    |                                                             |     |   |    |   |
| Respondent authorizes the MiSO to submit the respondent's transmission Planning maps that have been provided to the MiSO Respondent will submit additional maps  Part 4: Transmission Planning Reliability Criteria** Respondent employs NERC Transmission Planning Standards TPL-001-0.1 , TPL-002-0 , TPL-003-0, and TPL-004-0. FAC-010- 2, and NUC-001-2 are also applicable to an RC or TP. RTO and RRO, State, and MiSO Member (Local) planning criteria are also used. MiSO will submit the applicable criteria following FERC instructions. Respondent will submit its own criteria in addition to that submitted by MiSO. Respondent will submit its own criteria Yes No X  Part 5: Transmission Planning Assessment Practices** Respondent endorses the MiSO Transmission Planning Assessment Practices used in the MTEP, and authorizes the MISO to submit the MISO Planning Business practices document (Assessment Practices) in respondent's behalf. Respondent will submit assessment Practices in addition those of the MISO Respondent will submit its own Assessment Practices Part 6: Evaluation of Transmission System Performance Respondent cities the Annual MISO MTEP report, including Appendices A, B, C, D1, D2, D3, D4, D5 and D8 as a satisfactory evaluation of the performance of its portion of the transmission system, and authorizes the MISO to submit this report in respondent's behalf.                                                                                                                                                                                                                       |                                                             |     |   |    |   |
| transmission Planning maps that have been provided to the MISO  Respondent will submit additional maps  Part 4: Transmission Planning Reliability Criteria**  Respondent employs NERC Transmission Planning Standards TPL-001-0.1, TPL-002-0, TPL-003-0, and TPL-004-0. FAC-010- 2, and NUC-001-2 are also applicable to an RC or TP. RTO and RRO, State, and MISO Member (Local) planning criteria are also used. MISO will submit the applicable criteria following FERC instructions.  Respondent will submit its own criteria in addition to that submitted by MISO.  Respondent will submit its own criteria  Part 5: Transmission Planning Assessment Practices**  Respondent endorses the MISO Transmission Planning Assessment Practices used in the MTEP, and authorizes the MISO to submit the MISO Planning Business practices document (Assessment Practices) in respondent's behalf.  Respondent will submit assessment Practices in addition those of the MISO  Respondent will submit its own Assessment Practices  Yes  No  X  Part 6: Evaluation of Transmission System Performance Respondent cities the Annual MISO MTEP report, including Appendices A, B, C, D1, D2, D3, D4, D5 and D8 as a satisfactory evaluation of the performance of its portion of the transmission system, and authorizes the MISO to submit this report in respondent's behalf.                                                                                                                                                                                                                                                                        |                                                             |     |   |    |   |
| Respondent will submit additional maps  Part 4: Transmission Planning Reliability Criteria** Respondent employs NERC Transmission Planning Standards TPL-001-0.1 , TPL-002-0 , TPL-003-0, and TPL-004-0. FAC-010- 2, and NUC-001-2 are also applicable to an RC or TP. RTO and RRO, State, and MISO Member (Local) planning criteria are also used. MISO will submit the applicable criteria following FERC instructions. Respondent will submit criteria in addition to that submitted by MISO. Respondent will submit its own criteria  Yes No X  Part 5: Transmission Planning Assessment Practices** Respondent endorsess the MISO Transmission Planning Assessment Practices used in the MTEP, and authorizes the MISO to submit the MISO Planning Business practices document (Assessment Practices) in respondent's behalf. Respondent will submit Assessment Practices in addition those of the MISO Respondent will submit its own Assessment Practices  Yes No X  Part 6: Evaluation of Transmission System Performance Respondent cities the Annual MISO MTEP report, including Appendices A, B, C, D1, D2, D3, D4, D5 and D8 as a satisfactory evaluation of the performance of its portion of the transmission system, and authorizes the MISO to submit this report in respondent's behalf.                                                                                                                                                                                                                                                                                                                                           | transmission Planning maps that have been provided to the   |     |   |    |   |
| Respondent employs NERC Transmission Planning Standards TPL-001-0.1, TPL-002-0, TPL-003-0, and TPL-004-0. FAC-010- 2, and NUC-001-2 are also applicable to an RC or TP. RTO and RRO, State, and MISO Member (Local) planning criteria are also used. MISO will submit the applicable criteria following FERC instructions. Respondent will submit criteria in addition to that submitted by MISO. Respondent will submit its own criteria  Part 5: Transmission Planning Assessment Practices** Respondent endorsess the MISO Transmission Planning Assessment Practices used in the MTEP, and authorizes the MISO to submit the MISO Planning Business practices document (Assessment Practices) in respondent's behalf. Respondent will submit assessment Practices in addition those of the MISO Respondent will submit its own Assessment Practices  Yes  No  X  Part 6: Evaluation of Transmission System Performance Respondent cities the Annual MISO MTEP report, including Appendices A, B, C, D1, D2, D3, D4, D5 and D8 as a satisfactory evaluation of the performance of its portion of the transmission system, and authorizes the MISO to submit this report in respondent's behalf.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                             |     |   |    |   |
| Respondent employs NERC Transmission Planning Standards TPL-001-0.1 , TPL-002-0 , TPL-003-0, and TPL-004-0 . FAC-010- 2, and NUC-001-2 are also applicable to an RC or TP. RTO and RRO, State, and MISO Member (Local) planning criteria are also used. MISO will submit the applicable criteria following FERC instructions.  Respondent will submit criteria in addition to that submitted by MISO.  Respondent will submit its own criteria  Part 5: Transmission Planning Assessment Practices**  Respondent endorsess the MISO Transmission Planning Assessment Practices used in the MTEP, and authorizes the MISO to submit the MISO Planning Business practices document (Assessment Practices) in respondent's behalf.  Respondent will submit Assessment Practices in addition those of the MISO  Respondent will submit its own Assessment Practices  Yes  No  X  Part 6: Evaluation of Transmission System Performance Respondent cities the Annual MISO MTEP report, including Appendices A, B, C, D1, D2, D3, D4, D5 and D8 as a satisfactory evaluation of the performance of its portion of the transmission system, and authorizes the MISO to submit this report in respondent's behalf.                                                                                                                                                                                                                                                                                                                                                                                                                                          | Part 4: Transmission Planning Reliability Criteria**        |     |   |    |   |
| TPL-001-0.1 , TPL-002-0 , TPL-003-0, and TPL-004-0. FAC-010-2, and NUC-001-2 are also applicable to an RC or TP. RTO and RRO, State, and MISO Member (Local) planning criteria are also used. MISO will submit the applicable criteria following FERC instructions.  Respondent will submit criteria in addition to that submitted by MISO.  Respondent will submit its own criteria Yes No X  Part 5: Transmission Planning Assessment Practices**  Respondent endorsess the MISO Transmission Planning Assessment Practices used in the MTEP, and authorizes the MISO to submit the MISO Planning Business practices document (Assessment Practices) in respondent's behalf.  Respondent will submit Assessment Practices in addition to that submit Assessment Practices in Addition to the MISO MISO MISO MISO MISO MISO MISO MISO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             |     |   |    |   |
| 2, and NUC-001-2 are also applicable to an RC or TP. RTO and RRO, State, and MISO Member (Local) planning criteria are also used. MISO will submit the applicable criteria following FERC instructions.  Respondent will submit criteria in addition to that submitted by MISO.  Respondent will submit its own criteria  Part 5: Transmission Planning Assessment Practices**  Respondent endorsess the MISO Transmission Planning Assessment Practices used in the MTEP, and authorizes the MISO to submit the MISO Planning Business practices document (Assessment Practices) in respondent's behalf.  Respondent will submit Assessment Practices in addition those of the MISO  Respondent will submit its own Assessment Practices  Part 6: Evaluation of Transmission System Performance  Respondent cities the Annual MISO MTEP report, including Appendices A, B, C, D1, D2, D3, D4, D5 and D8 as a satisfactory evaluation of the performance of its portion of the transmission system, and authorizes the MISO to submit this report in respondent's behalf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                             |     |   |    |   |
| RRO, State, and MISO Member (Local) planning criteria are also used. MISO will submit the applicable criteria following FERC instructions.  Respondent will submit criteria in addition to that submitted by MISO.  Respondent will submit its own criteria  Part 5: Transmission Planning Assessment Practices**  Respondent endorsess the MISO Transmission Planning Assessment Practices used in the MTEP, and authorizes the MISO to submit the MISO Planning Business practices doccument (Assessment Practices) in respondent's behalf.  Respondent will submit Assessment Practices in addition  those of the MISO  Respondent will submit its own Assessment Practices  Yes No X  Part 6: Evaluation of Transmission System Performance  Respondent cities the Annual MISO MTEP report, including Appendices A, B, C, D1, D2, D3, D4, D5 and D8 as a satisfactory evaluation of the performance of its portion of the transmission system, and authorizes the MISO to submit this report in respondent's behalf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                             |     |   |    |   |
| Also used. MISO will submit the applicable criteria following FERC instructions.  Respondent will submit criteria in addition to that submitted by MISO.  Respondent will submit its own criteria  Part 5: Transmission Planning Assessment Practices**  Respondent endorsess the MISO Transmission Planning Assessment Practices used in the MTEP, and authorizes the MISO to submit the MISO Planning Business practices  Accoument (Assessment Practices) in respondent's behalf.  Respondent will submit Assessment Practices in addition whose of the MISO  Respondent will submit its own Assessment Practices  Part 6: Evaluation of Transmission System Performance Respondent cities the Annual MISO MTEP report, including Appendices A, B, C, D1, D2, D3, D4, D5 and D8 as a satisfactory evaluation of the performance of its portion of the transmission system, and authorizes the MISO to submit this report in respondent's behalf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                             | Yes | Х | No |   |
| Respondent will submit criteria in addition to that submitted by MISO.  Respondent will submit its own criteria  Part 5: Transmission Planning Assessment Practices**  Respondent endorsess the MISO Transmission Planning Assessment Practices used in the MTEP, and authorizes the MISO to submit the MISO Planning Business practices  document (Assessment Practices) in respondent's behalf.  Respondent will submit Assessment Practices in addition those of the MISO  Respondent will submit its own Assessment Practices  Part 6: Evaluation of Transmission System Performance Respondent cities the Annual MISO MTEP report, including Appendices A, B, C, D1, D2, D3, D4, D5 and D8 as a satisfactory evaluation of the performance of its portion of the transmission system, and authorizes the MISO to submit this report in respondent's behalf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                             |     |   |    |   |
| Respondent will submit criteria in addition to that submitted by MISO.  Respondent will submit its own criteria  Part 5: Transmission Planning Assessment Practices**  Respondent endorsess the MISO Transmission Planning Assessment Practices used in the MTEP, and authorizes the MISO to submit the MISO Planning Business practices document (Assessment Practices) in respondent's behalf.  Respondent will submit Assessment Practices in addition those of the MISO  Respondent will submit its own Assessment Practices  Part 6: Evaluation of Transmission System Performance  Respondent cities the Annual MISO MTEP report, including Appendices A, B, C, D1, D2, D3, D4, D5 and D8 as a satisfactory evaluation of the performance of its portion of the transmission system, and authorizes the MISO to submit this report in respondent's behalf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , ·                                                         |     |   |    |   |
| MISO.  Respondent will submit its own criteria  Part 5: Transmission Planning Assessment Practices**  Respondent endorsess the MISO Transmission Planning Assessment Practices used in the MTEP, and authorizes the MISO to submit the MISO Planning Business practices document (Assessment Practices) in respondent's behalf.  Respondent will submit Assessment Practices in addition those of the MISO  Respondent will submit its own Assessment Practices  Part 6: Evaluation of Transmission System Performance Respondent cities the Annual MISO MTEP report, including Appendices A, B, C, D1, D2, D3, D4, D5 and D8 as a satisfactory evaluation of the performance of its portion of the transmission system, and authorizes the MISO to submit this report in respondent's behalf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             |     |   |    |   |
| Respondent will submit its own criteria  Part 5: Transmission Planning Assessment Practices**  Respondent endorsess the MISO Transmission Planning Assessment Practices used in the MTEP, and authorizes the MISO to submit the MISO Planning Business practices document (Assessment Practices) in respondent's behalf.  Respondent will submit Assessment Practices in addition those of the MISO Respondent will submit its own Assessment Practices  Part 6: Evaluation of Transmission System Performance Respondent cities the Annual MISO MTEP report, including Appendices A, B, C, D1, D2, D3, D4, D5 and D8 as a satisfactory evaluation of the performance of its portion of the transmission system, and authorizes the MISO to submit this report in respondent's behalf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                                                    | Yes |   | No | Х |
| Part 5: Transmission Planning Assessment Practices**  Respondent endorsess the MISO Transmission Planning Assessment Practices used in the MTEP, and authorizes the MISO to submit the MISO Planning Business practices document (Assessment Practices) in respondent's behalf. Respondent will submit Assessment Practices in addition those of the MISO Respondent will submit its own Assessment Practices  Part 6: Evaluation of Transmission System Performance Respondent cities the Annual MISO MTEP report, including Appendices A, B, C, D1, D2, D3, D4, D5 and D8 as a satisfactory evaluation of the performance of its portion of the transmission system, and authorizes the MISO to submit this report in respondent's behalf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                             | Yes |   | No | Х |
| Respondent endorsess the MISO Transmission Planning Assessment Practices used in the MTEP, and authorizes the MISO to submit the MISO Planning Business practices document (Assessment Practices) in respondent's behalf. Respondent will submit Assessment Practices in addition those of the MISO Respondent will submit its own Assessment Practices  Yes No X  Part 6: Evaluation of Transmission System Performance Respondent cities the Annual MISO MTEP report, including Appendices A, B, C, D1, D2, D3, D4, D5 and D8 as a satisfactory evaluation of the performance of its portion of the transmission system, and authorizes the MISO to submit this report in respondent's behalf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                           |     |   |    |   |
| Assessment Practices used in the MTEP, and authorizes the MISO to submit the MISO Planning Business practices  document (Assessment Practices) in respondent's behalf.  Respondent will submit Assessment Practices in addition those of the MISO  Respondent will submit its own Assessment Practices  Part 6: Evaluation of Transmission System Performance  Respondent cities the Annual MISO MTEP report, including Appendices A, B, C, D1, D2, D3, D4, D5 and D8 as a satisfactory evaluation of the performance of its portion of the transmission system, and authorizes the MISO to submit this report in respondent's behalf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                             |     |   |    |   |
| MISO to submit the MISO Planning Business practices  document (Assessment Practices) in respondent's behalf.  Respondent will submit Assessment Practices in addition those of the MISO  Respondent will submit its own Assessment Practices  Yes  No  X  Part 6: Evaluation of Transmission System Performance Respondent cities the Annual MISO MTEP report, including Appendices A, B, C, D1, D2, D3, D4, D5 and D8 as a satisfactory evaluation of the performance of its portion of the transmission system, and authorizes the MISO to submit this report in respondent's behalf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                             |     |   |    |   |
| Respondent will submit Assessment Practices in addition those of the MISO  Respondent will submit its own Assessment Practices  Yes  No  X  Part 6: Evaluation of Transmission System Performance Respondent cities the Annual MISO MTEP report, including Appendices A, B, C, D1, D2, D3, D4, D5 and D8 as a satisfactory evaluation of the performance of its portion of the transmission system, and authorizes the MISO to submit this report in respondent's behalf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MISO to submit the MISO Planning Business practices         | Yes | Х | No |   |
| those of the MISO  Respondent will submit its own Assessment Practices  Yes  No  X  Part 6: Evaluation of Transmission System Performance Respondent cities the Annual MISO MTEP report, including Appendices A, B, C, D1, D2, D3, D4, D5 and D8 as a satisfactory evaluation of the performance of its portion of the transmission system, and authorizes the MISO to submit this report in respondent's behalf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                             |     |   |    |   |
| Respondent will submit its own Assessment Practices  Part 6: Evaluation of Transmission System Performance Respondent cities the Annual MISO MTEP report, including Appendices A, B, C, D1, D2, D3, D4, D5 and D8 as a satisfactory evaluation of the performance of its portion of the transmission system, and authorizes the MISO to submit this report in respondent's behalf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                                           | Yes |   | No | Х |
| Part 6: Evaluation of Transmission System Performance Respondent cities the Annual MISO MTEP report, including Appendices A, B, C, D1, D2, D3, D4, D5 and D8 as a satisfactory evaluation of the performance of its portion of the transmission system, and authorizes the MISO to submit this report in respondent's behalf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                             | Yes |   | No | Х |
| Respondent cities the Annual MISO MTEP report, including Appendices A, B, C, D1, D2, D3, D4, D5 and D8 as a satisfactory evaluation of the performance of its portion of the transmission system, and authorizes the MISO to submit this report in respondent's behalf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                             |     |   |    |   |
| Appendices A, B, C, D1, D2, D3, D4, D5 and D8 as a satisfactory evaluation of the performance of its portion of the transmission system, and authorizes the MISO to submit this report in respondent's behalf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             |     |   |    |   |
| satisfactory evaluation of the performance of its portion of the transmission system, and authorizes the MISO to submit this report in respondent's behalf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Respondent cities the Annual MISO MTEP report, including    |     |   |    |   |
| transmission system, and authorizes the MISO to submit this report in respondent's behalf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Appendices A, B, C, D1, D2, D3, D4, D5 and D8 as a          |     |   |    |   |
| report in respondent's behalf.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                             |     |   |    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                             |     |   |    |   |
| Respondent will submit its own evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                             |     |   |    |   |
| toopenative will capitate our ovaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Respondent will submit its own evaluation                   |     |   |    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                             |     |   |    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                             |     |   |    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                             |     |   |    |   |

\*Tranmission planning data is submitted to the MISO for the MISO's further submission as part of the Regional FERC Form 715 filing being made on behalf of Transmission Owning members of the MISO. Parts of this filing contain CEII as marked. Data provided by Transmission Owners marked as CEII will not be used for any other purpose by the MISO unless specifically authorized. FERC Form 715 data as submitted may contain data regarding the electric system of partys other than the responding Transmission Owner. There are no representations made regarding the accuracy of any other party's data included in this filing. In addition, the MISO's policy on disclosure of FERC Form 715 data to FERC is: Upon notification of a third party request to FERC for disclosure of this filing and subject to satisfaction of all other appropriate FERC CEII disclosure requirements, the MISO is authorized to and will consent to such disclosure.

# Part 3 IPL GENERAL TRANSMISSION MAP



# **Document Change Control**

| Rev. No. | Changes                                                                                        | Date       |
|----------|------------------------------------------------------------------------------------------------|------------|
| 1.1      | Updated criteria 15-18 & general formatting                                                    | 8/20/2009  |
| 1.2      | Updated criteria 9                                                                             | 5/17/2010  |
| 1.3      | General wording and formatting                                                                 | 2/15/2011  |
| 1.4      | Updated criteria 1, 2, 9, & 15 added paragraph on upgrades to existing transmission facilities | 12/13/2012 |
|          |                                                                                                |            |
|          |                                                                                                |            |
|          |                                                                                                |            |



Indianapolis Power & Light Company's electric transmission facilities are designed to provide safe, reliable, and low cost service to IPL customers. IPL transmission facilities are planned using the IPL transmission planning reliability criteria in conjunction with the reliability standards of the North American Electric Reliability Council (NERC) including the Transmission Planning (TPL) standards and Modeling Data Analysis (MOD) standards. The NERC reliability standards may be found on the NERC website at <a href="http://www.nerc.com">http://www.nerc.com</a>. IPL transmission facilities are also planned using the regional reliability standards of the reliability entity Reliability First Corporation (RFC). The RFC reliability standards may be found on the RFC website at <a href="http://www.rfirst.org">http://www.rfirst.org</a>. IPL transmission facilities are also planned as part of an effort to coordinate the development of the greater regional transmission system with neighboring systems and other member companies of the Midwest Independent System Operator (MISO). The MISO regional planning efforts may be found on the MISO website at <a href="http://www.midwestiso.org">http://www.midwestiso.org</a>.

IPL transmission plans are based on transmission planning criteria and other considerations. Other considerations include load growth, equipment retirement, decrease in the likelihood of major system events and disturbances, equipment failure or expectation of imminent failure.

Changes to transmission facilities are considered when the transmission planning criteria are exceeded and cannot feasibly be alleviated by sound operating practices. Any recommendations to either modify transmission facilities or adopt certain operating practices must adhere to good engineering practice and sensible business judgment.

Upgrades to existing IPL transmission facilities or new transmission facilities connected to the IPL transmission system proposed by MISO Market Participants and other interested parties will be considered as time permits. The schedule for consideration of Market Participant proposed projects is at the sole discretion of IPL. This type of proposal whether or not fully funded by a Market Participant or other interested parties may not disrupt the on-going IPL planning process, disrupt or otherwise delay the planning process for reliability needs of the IPL system or replace an IPL project scheduled to resolve the same or similar transmission issue.

A summary of IPL transmission planning criteria follows. IPL transmission planning criteria are periodically reviewed and revised, and are subject to change with applicable notice.



- 1) Limit transmission facility voltages under normal operating conditions to within 5% of nominal voltage, under single contingency outages to 5% below nominal voltage, and under multiple contingency outages to 10% below nominal voltage. In addition to the above limits, generator plant voltages may also be limited by associated auxiliary system limitations that result in narrower voltage limits.
- 2) Limit thermal loading of transmission facilities under normal operating conditions to within normal limits and under contingency conditions to within emergency limits. New and upgraded transmission facilities can be proposed at 95% of the facility normal rating.
- 3) Maintain stability limits including critical switching times to within acceptable limits for generators, conductors, terminal equipment, loads, and protection equipment for all credible contingencies including three-phase faults, phase- to-ground faults, and the effect of slow fault clearing associated with undesired relay operation or failure of a circuit breaker to open.
- 4) Install and maintain facilities such that three-phase, phase- tophase, and phase-to-ground fault currents are within equipment withstand and interruption rating limits established by the equipment manufacturer.
- Install and maintain protective relay, control, metering, insulation, and lightning protection equipment to provide for safe, coordinated, reliable, and efficient operation of transmission facilities.
- 6) Install and maintain transmission facilities as per all applicable Indiana Utility Regulatory Commission rules and regulations, ANSI/IEEE standards, National Electrical Safety Code, IPL electric service and meter guidelines, and all other applicable local, state, and federal laws and codes. Guidelines of the National Electric Code may also be incorporated.



- 7) The analysis of any project or transaction involving transmission facilities consists of an analysis of alternatives and may include but is not limited to the following:
  - a) Initial facility costs and other lifetime costs such as maintenance costs, replacement cost, aesthetics, and reliability.
  - b) Consideration of transmission losses.
  - c) Assessment of transmission right-of-way requirements, safety issues, and other potential liabilities.
  - d) Engineering economic analysis, cost benefit and risk analysis.
- 8) Plan transmission facilities such that generating capacity is not unduly limited or restricted.
- 9) Plan, build, and operate transmission facilities to permit the import of power during generation and transmission outage and contingency conditions. Provide adequate import capability to the IPL 138 kV system in central Indiana assuming the outage of the largest base load unit connected to the 138 kV system.
- 10) Maintain adequate power transfer limits within the criteria specified herein.
- 11) Provide adequate dynamic reactive capacity to support transmission voltages under contingency outage or other abnormal operating conditions.
- 12) Minimize and/or coordinate MVAR exchange between IPL and interconnected systems.
- 13) Generator reactive power output shall be capable of, but not limited to, 95% lag (injecting MVAR) and 95% lead (absorbing MVAR) at the point of interconnection to the transmission system.



- 14) Design transmission substation switching and protection facilities such that the operation of substation switching facilities involved with the outage or restoration of a transmission line emanating from the substation does not also require the switched outage of a second transmission line terminated at the substation. This design criterion does not include breaker failure contingencies.
- 15) Design 345 kV transmission substation facilities connecting to generating stations such that maintenance and outage of facilities associated with the generation do not cause an outage of any other transmission facilities connected to the substation. Substation configurations needed to accomplish this objective and meet safety procedures are a breaker and a half scheme, ring bus or equivalent.
- 16) Avoid excessive loss of distribution transformer capacity resulting from a double contingency transmission facility outage.
- 17) Coordinate planning studies and analysis with customers to provide reliable service as well as adequate voltage and delivery service capacity for known load additions.
- 18) Consider long term future system benefits and risks in transmission facility planning studies.

# FERC FORM 715 Part 5



# Transmission Planning Assessment Practices April 10, 2014

Indianapolis Power & Light Company employs the Midwest ISO Transmission Planning Assessment Practices, which may be found at the following link:

MISO Transmission Planning Assessment Practices

# **Indianapolis Power & Light Company**

Smart Energy Project

#### **Scope of Work**

Indianapolis Power & Light Company's (IPL's) Smart Energy Project involved implementation of distribution automation (DA) assets, an advanced metering infrastructure (AMI) system, a meter data management system (MDMS), and various customer systems. The project deployed 10,349 smart meters and DA equipment including automated switches, relays, reclosers, capacitors, voltage regulators, and condition monitors. Customer systems included enhanced website features, allowing customers to enroll in energy programs and personalized energy dashboard access. IPL also deployed 162 electric vehicle (EV) charging stations to better understand EV impacts on the grid.

#### **Objectives**

The Smart Energy Project aimed to improve the operational efficiency of its distribution system, reducing operations and maintenance costs. New DA assets are also used to shorten outage and restoration times, improving service reliability for IPL's customer base.

#### **Deployed Smart Grid Technologies**

- Smart meters: IPL deployed 3,846 meters to residential locations and 6,503 meters to commercial and industrial locations. The smart meters measure interval consumption data and communicate wirelessly to the utility. They also support outage detection functions that have been integrated into the outage management system.
- Communications infrastructure: Radio frequency mesh network technology was used to build the meter communication network. Receivers located at key substations transfer meter data to a fiber optic network, which backhauls the data to the AMI head end system. An additional 90 miles of fiber optic circuits provides the necessary infrastructure for AMI and DA.
- Advanced electricity service options: IPL now offers a web portal
  for customers with either AMI meters or existing automated
  meter reading (AMR) devices. The web portal facilitates two-way
  information exchange, allowing customers to view their electricity consumption information and better manage
  their use and monthly bills. The web portal also provides tips to conserve electricity.

#### **At-A-Glance**

Recipient: Indianapolis Power & Light

State: Indiana

NERC Region: ReliabilityFirst Corporation

Total Project Cost: \$52,700,000

Total Federal Share: \$20,000,000

Project Type: Advanced Metering Infrastructure

**Customer Systems** 

**Electric Distribution Systems** 

#### **Equipment**

- 10,349 Smart Meters
- AMI Communications System
  - Meter Communications Network
  - Backhaul Communications Network
- Meter Data Management System
- Customer Web Portal (for customers with both new and pre-project meters)
- DA Equipment for all 400 Circuits
  - o Distribution SCADA System
  - o DA Communications Network
  - Automated Distribution Circuit Switches
  - Automated Capacitors
  - o Automated Voltage Regulators
  - o Equipment Condition Monitors
- 162 Electric Vehicle Charging Stations

#### **Key Benefits**

- Improved Electric Service Reliability and Power Quality
- Reduced Operating and Maintenance Costs
- Deferred Investment in Distribution Capacity Expansion
- Reduced Costs from Equipment Failures
- Reduced Truck Fleet Fuel Usage
- Reduced Greenhouse Gas and Criteria Pollutant Emissions



#### **Indianapolis Power & Light Company** (continued)

- **Distribution automation systems**: The project deployed automated network relays, switches, reclosers, and substation and transformer monitoring systems across all 400 distribution circuits.
- **Automated capacitor controls**: Automated capacitor controls, combined with a new distribution supervisory control and data acquisition (dSCADA) equipment, provides enhanced service restoration and enables more efficient distribution of power across the system.
- **Electric vehicle charging stations**: 162 EV charging stations were deployed in residential, utility fleet, and public locations. IPL is collecting the usage data from the charging stations to help determine the potential impacts of EVs on the grid.

#### **Benefits Realized**

- **Improved electric service reliability and power quality:** DA equipment improves system reliability and operational efficiency through reduced outage and restoration times.
- Reduced operating and maintenance costs: Operators have the ability to remotely configure field devices to enable
  live line restrictions on circuits prior to crews completing work and return the settings to normal while avoiding
  extra trips
- **Deferred investment in distribution capacity expansion:** The verification process for equipment status allows IPL to avoid additional investments in capacitors.
- Reduced costs from equipment failures: The combination of automated relays and reclosers helps isolate faults or
  resume operations in the event of a transient fault. Substation and transformer monitoring informs IPL of
  irregularities with assets before problems occur, thus reducing equipment failures.
- **Reduced truck fleet fuel usage:** Fully automating meter reading as well as remotely operating devices supports fewer miles driven.
- Reduced greenhouse gas and criteria pollutant emissions: Reduced fleet driving results in reduced emissions.

#### **Lessons Learned**

Overall, the holistic project was quite successful. Cross functional teams who installed and operate equipment work well together. While the initial DA communications network was not robust enough for all field devices, the expanded system improves reliability. Integration efforts were more extensive than anticipated but ultimately effective. Customer acceptance of website enhancements resulted in improved J.D. Powers customer satisfaction ratings.

#### **Future Plans**

IPL plans to continue to leverage its smart grid assets to improve reliability and reduce operating expenses as well as deploy additional distribution protection equipment, interface with distributed generation in its service territory, continue to use conservation voltage reduction program to reduce peak demand, and use the information about grid impacts of electric vehicles through a larger scale project. In addition, plans are in the implementation stage to expand and more effectively monitor telecommunications systems.

#### **Contact Information**

Joan Soller
Director, Resource Planning
Indianapolis Power & Light Company (IPL)



Indianapolis Power & Light Company (continued)

Joan.soller@aes.com

Recipient team website: IPLpower.com





# **Short Term Action Plan Transmission Expansion Projects**

|   | Project                                                      | Description                                                                                                                                                                                                                                                                                                                                                                                                                                          | Construction<br>Period | Estimated Cost |
|---|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------|
| 1 | Transmission Plans for the New Eagle<br>Valley CCGT Phase I  | Upgrade conductor for 5 circuits, replace 2 sets of line disconnect switches, three 138 kV breakers, and terminal equipment at EV                                                                                                                                                                                                                                                                                                                    | 2014-2015              |                |
| 2 | Transmission Plans for the New Eagle<br>Valley CCGT Phase II | New 138 kV line in spare tower position, new EV substation, 2 sets of terminal equipment, transfer four existing 138 kV circuits.                                                                                                                                                                                                                                                                                                                    | 2015-2016              |                |
| 3 | Petersburg to Duke Wheatland to AEP Breed Line               | Upgrading this 345 kV line from Pete to Wheatland to Breed from 956 MVA to at least 1386 MVA has been approved by MISO as a market efficiency project and is eligible for MTEP cost sharing.                                                                                                                                                                                                                                                         | 2015                   | _              |
| 4 | Hanna Substation Upgrade                                     | This includes the replacement of a 275 MVA autotransformer with a 500 MVA autotransformer, adding 2 new 345 kV breakers, upgrading the 138 kV breaker and bus design to improve operational flexibility.                                                                                                                                                                                                                                             | 2016                   |                |
| 5 | Thompson Substation Upgrade                                  | Include a new 345 kV breakers, 2 new 138 kV breakers, and relocating the 275 MVA Hanna autotransformer to increase imports capability into the IPL 138 kV transmission system, improve reliability, and operational flexibility.                                                                                                                                                                                                                     | 2016                   | _              |
| 6 | Static VAR System (SVS)                                      | A new Static VAR System (SVS) is planned at the Southwest 138 kV substation. The design will be finalized in 2014 to provide reactive power in the range of –100 Mvar inductive to +300 Mvar capacitive to provide voltage regulation and mitigate transient voltage response for transmission events. This will also increase import capability into the IPL 138 kV transmission system, improves reliability, and improve operational flexibility. | 2016                   |                |
|   |                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                    | total                  |                |



# INDIANAPOLIS POWER & LIGHT CO. CUSTOM BASELINE PROFILE FOR CONSERVATION VOLTAGE REDUCTION DEMAND RESPONSE VERIFICATION PLAN

# **CONTENTS**

| 1.  | Exe    | ecutive summary                                   | 3  |
|-----|--------|---------------------------------------------------|----|
| 2.  | Volt   | tage baseline is more accurate                    | 4  |
| 3.  | Veri   | ify CVR factor through controlled tests           | 7  |
| ;   | 3.1.   | Three days of tests in 2012                       | 8  |
| ;   | 3.2.   | Two days of tests 2013                            | 9  |
| ;   | 3.3.   | Ongoing CVR factor measurement                    | 11 |
| 4.  | Eve    | ent savings verification                          | 12 |
| 5.  | Deta   | ailed equations to calculate savings              | 13 |
|     |        |                                                   |    |
|     |        | LIST OF FIGURES                                   |    |
| Fig | gure 1 | - Top ten in 45 day MW profiles                   | 4  |
| Fig | gure 2 | ? - Top ten in 45 days normalized profiles        | 5  |
| Fig | gure 3 | B – Top ten in 45 days normalized voltage profile | 6  |
| Fig | gure 4 | - Three day test results in 2012                  | 8  |
| Fig | gure 5 | 5 - Raw data from test in 2013                    | 9  |
| Fig | gure 6 | 6 - Leading edge CVR factor calculation           | 10 |
| Fig | gure 7 | '- Calibrating event voltage to baseline          | 12 |
| Fiç | gure 8 | 3 - CVR demand reduction verification             | 12 |
|     |        | LIST OF TABLES                                    |    |
| Та  | hla 1  |                                                   | 11 |

# 1. Executive summary

This document describes Indianapolis Power & Light Company's plan to measure demand savings per MISO requirements using a custom baseline. None of the other baseline options in Attachment TT are accurate or applicable to demand reduction through Conservation Voltage Reduction (CVR). CVR requires a different technique using industry accepted methods.

This custom baseline is unique because the most accurate baseline is a voltage profile rather than a load profile. A combination of carefully verified load response to voltage and measured amount of change from a voltage baseline accurately portrays the load reduction. Also, a rapid initiation of the voltage reduction shows a marked change profile at the beginning and end of an event. All of this provides accurate verification of actual results from a reduction event.

The approach for the baseline and demand reduction verification is:

- Adopt a verified CVR factor for load response through controlled tests at IPL.
- Establish a baseline operating voltage of how IPL has operated and would continue to operate without the CVR event ( $V_{Base}$ ).
- Measure actual voltage ( $V_{CVR}$ ) during the event and compare to baseline voltage profile.
- Measure actual demand  $(D_{CVR})$  delivered to customers during the CVR event.
- Calibrate the voltage at the beginning of the event the baseline voltage profile.
- Calculate demand reduction using equation (5-11).

This document describes IPLs Custom Baseline and verification protocol in compliance with MISO attachment TT item 3(d).

# 2. Voltage baseline is more accurate

Many demand reduction baselines use a variety of recent history load profiles for comparison with load profiles on the event day. This can work well if the unmodified profile would have been the same as the event day. IPL tried the standard baselines and found they do not work well for CVR. Consider the following example using the highest ten days method.

Figure 1shows actual highest ten weekday load profiles. It also shows the average baseline as a heavy black line. A dashed line shows the same average baseline with a 40 MW, four hour reduction. Now imagine that a reduction event occurred any one day of the ten days that created the baseline. It is clear that the daily variation completely overwhelms and masks the savings.

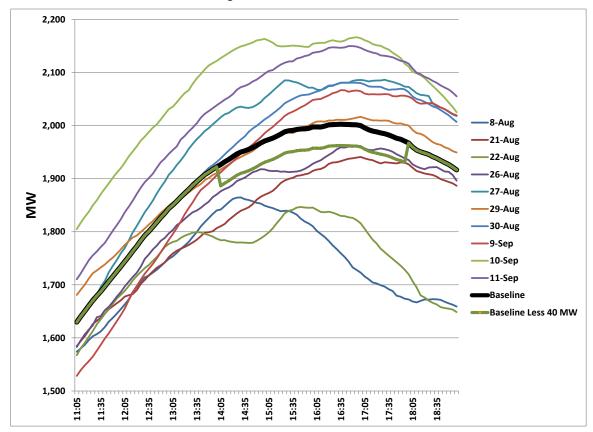



Figure 1 - Top ten in 45 day MW profiles

A second effort to use the top ten also did not produce satisfactory results. Figure 2 shows a normalized version of the same profiles in Figure 1. Demands for each interval are divided by the average for that day. The vertical axis is percent of average for the day. This compresses the profiles closer to the average. It might be possible to observe the leading and trailing edges if the CVR initiates quickly. However load shapes for any individual day still overwhelm and mask the expected savings.

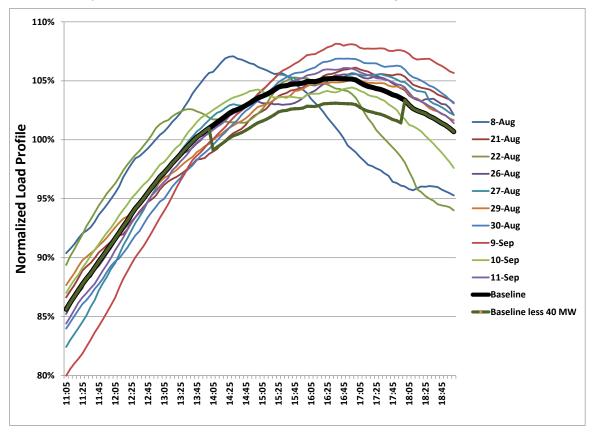



Figure 2 - Top ten in 45 days normalized profiles

The only solution to this problem is to use industry accepted practice of comparing voltage during an CVR event to a voltage baseline. Careful testing before the CVR event reveals a consistent load response to voltage. Combining the measured voltage change and the known voltage response delivers the demand reduction.

Figure 3 shows the daily voltage profiles for the same top ten days. It also shows the average profile with a heavy black line. The highlighted, dashed line is the voltage reduction required to generate the demand savings depicted on Figure 1 and Figure 2. Without question, the profile is much more consistent from day to day. Also, it is far more obvious that the CVR action did happen. This is why the voltage baseline profile is so much better.

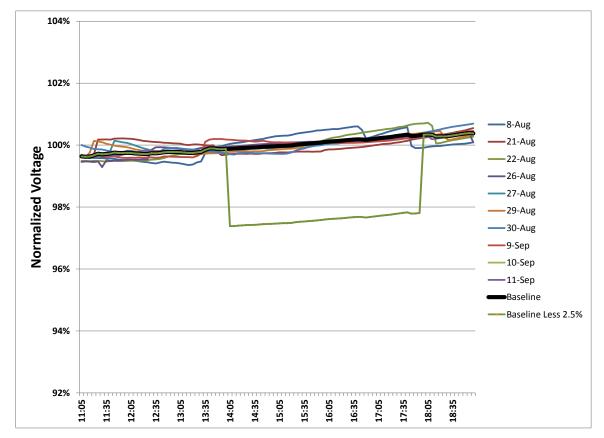



Figure 3 – Top ten in 45 days normalized voltage profile

# 3. Verify CVR factor through controlled tests

Calculating the load response to CVR requires treating a portion of load and simultaneously comparing the treated load profile to a reference. Simultaneous comparison improves the accuracy and eliminates uncertainty of weather corrections. Repeating the tests on several days and treating different representative groups further improves confidence in the load response. Finally, careful monitoring of individual circuits during a CVR test assures the results do not inadvertently include emergency load transfers, power outages, etc.

IPL conducted tests for near peak summer conditions in 2012 and in 2013. The next two sections describe IPL testing to determine the CVR factor.

#### 3.1. Three days of tests in 2012

IPL conducted tests on three consecutive days in 2012. A selection process identified eleven (out of 99) substation transformers whose aggregate load profile closely matched the profile of the system and of the remaining 88 transformers. The eleven transformers had about 163 MW peak for the test. Voltage was lowered for a four hour strip between 14:00 and 18:00 each day.

Care was taken to be sure no load transfers or other unusual patterns occurred. One industrial customer switched on about 2 MW on one of the three days in the middle of the test. That customer was removed from the analysis because the expected reduction was also about 2 MW.

Figure 4 graphically shows the final results. The blue line shows the treated voltage in per unit of the untreated voltage. The red line shows the treated load profile in per unit of the untreated profile. There is an obvious voltage change and an obvious load response to the voltage. The shorter purple line is a best guess of what the profile would have looked like without the CVR treatment. This test yielded 1.7 MW average demand reduction and  $\text{CVR}_f = 0.85$ .

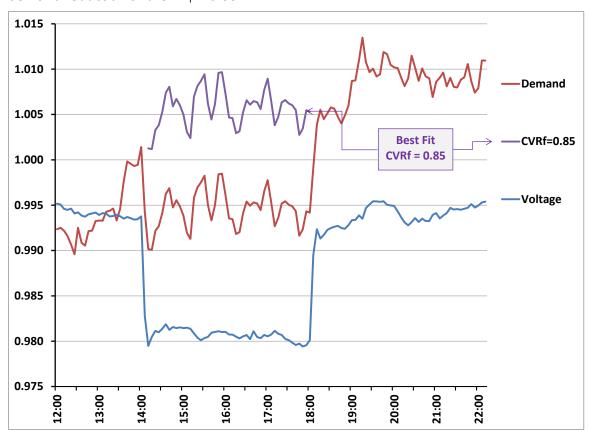



Figure 4 - Three day test results in 2012

#### 3.2. Two days of tests 2013

IPL conducted tests on two more days in 2013. This test provided a much bigger sample, and a different sample from the 2012 test. Thirty-two transformers (about one third) received treatment. Careful analysis revealed load transfers between treated and untreated transformers during the September 11 analysis window. They were removed from the sample leaving twenty-nine treated transformers with about 466 MW. The reaming transformers that did not experience load transfers served as the baseline.

Figure 5 shows the raw data averages for the two days of the test. The green line is voltage on a 120 Volt base while the blue line is the actual MW demand. There is absolutely no doubt that the voltage changed and that the load responded to the voltage. Two light blue diagonal lines provide a visual image of the approximate load profiles for treated load. Those lines projected to the right-hand, MW axis show the reduction was between 5 and 6 MW.

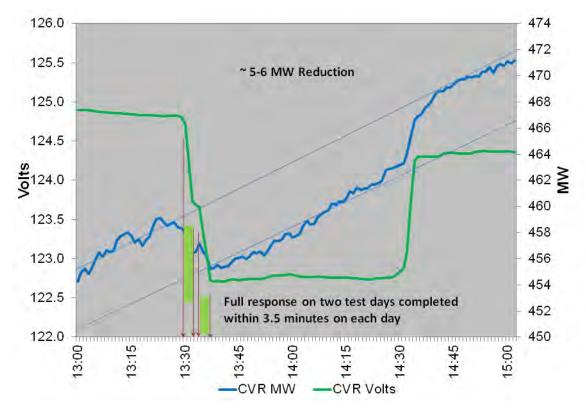



Figure 5 - Raw data from test in 2013

Figure 6 graphically shows a CVR factor calculation comparing the pre-event load, pre-event voltage to their changes during the CVR event. Figure 6 displays the average voltage and average demand over the two days test. The blue line is the treated load profile compared to the baseline load profile in per unit of the baseline. The green line is treated voltage profile compared to the baseline voltage profile in per unit of the baseline voltage profile.

Two yellow lines show the average voltage reduced 0.0163 when CVR was applied. Two red lines through the load profile show the average demand reduced 0.0128 per

unit in response to the voltage. The calculated CVR factor is 0.079 using only the before treatment baseline.

Table 1 shows a complete calculation that also includes the post event response. It includes the voltage (yellow) and load (red) averages from Figure 6. Note that the voltage and load averages do not include a short amount of data during the transitions at the beginning and the end of the event. The final CVR factor from this test is 0.75.

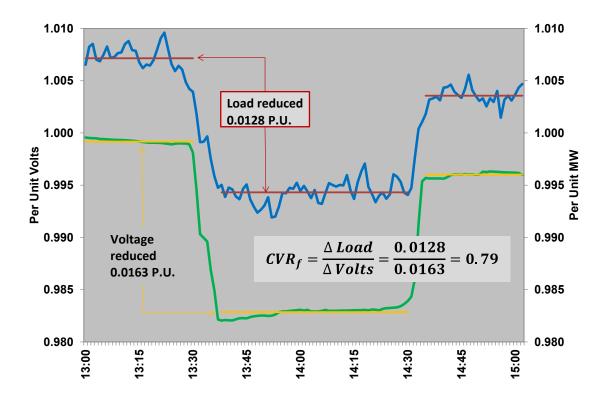



Figure 6 - Leading edge CVR factor calculation

Table 1

Full CVR factor calculation example

|                                                                                | Volt Ratio CVR to Reference | MW Ratio CVR to Reference |
|--------------------------------------------------------------------------------|-----------------------------|---------------------------|
| 1) Before Reduction time window                                                | 0.9992                      | 1.0071                    |
| 2) During Reduction time window                                                | 0.9829                      | 0.9943                    |
| 3) After Reduction time window                                                 | 0.9960                      | 1.0036                    |
| 4) Before and After time window (average of Row 1 and Row 3)                   | 0.9977                      | 1.0054                    |
| 5) Reduction amount (Row 4 - Row 2)                                            | 0.0148                      | 0.0111                    |
| CVR Factor – $\Delta$ Demand / $\Delta$ Volts Values from Row 5 0.011 / 0.0148 | 0                           | .75                       |

IPL conducted two detailed tests over five near peak days using in two years. The aggregate CVR factor for 2012 is 0.85 and is 0.75 for 2013. IPL will use 0.8 CVR factor until additional tests justify changes. This is reasonably conservative to not overestimate savings. The Indiana Utilities Regulatory Commission recently approved a CVR factor of 1.0 for AEP in Indiana. Using a CVR factor of 1.0 would increase IPL savings estimates by 25%

#### 3.3. Ongoing CVR factor measurement

IPL is confident the CVR factor of 0.8 is accurate and does not over estimate savings. However, IPL will continue to conduct verification tests to be sure the CVR factor is correct. IPL will initiate CVR on approximately half of the system on one near peak day, and then the other half on another near peak day. The CVR factor will be calculated as described in section 0, Table 1. The before event window will be one hour will before initiation. The "during event" window will be no less than two and not more than four hours and include all data except the transitions. The after event window will be one full hour after the return to normal is complete.

# 4. Event savings verification

Demand savings during an event consists of the following steps

- Calculate an average voltage baseline using measured voltages for ten previous non-event days during the same time window as the event. This data is permanently stored in and always available from IPL's PI data historian.
- Compare the hour before event voltage average to the voltage baseline. Calibrate
  the event hour before voltage to the baseline profile. This step further improves
  accuracy of results. A calibration example is shown in Figure 7.
- · Calculate the voltage reduction from the baseline
- Calculate the demand savings using equation (5-11).

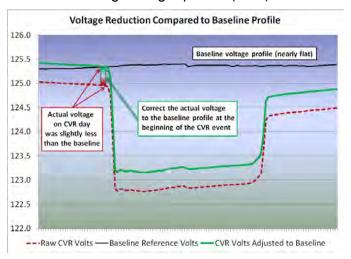



Figure 7- Calibrating event voltage to baseline

IPL has developed and will continue to improve an excel workbook that will perform all savings calculations. It will draw all data from the PI historian to make the savings calculation. Figure 8 shows a sample output from the tool. It simulates the results from testing and a request for 7.5 MW.

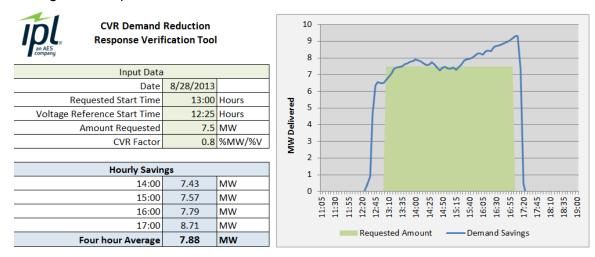



Figure 8 - CVR demand reduction verification

# 5. Detailed equations to calculate savings

Calculating CVR savings is similar to calculating the original price from a discounted price. It is slightly more complicated because the exact savings rate must be calculated from voltage and load. However the concept is to calculate what the demand would have been and subtract what was actually measured. The demand savings is the calculated non-CVR demand less the measured demand during the CVR event.

The following definitions will be very helpful to understand the calculations:

 $D_{Savings} = Demand \ saved \ (measured \ in \ MW)$ 

 $D_{Base} = total \ MW \ demand \ without \ IVVC \ (this is the untreated baseline)$ 

 $D_{CVR} = total \ MW \ demand \ with \ IVVC \ in \ service$ 

 $V_{Base} = Baseline \ voltage \ established \ before \ IVVC \ implementation \ (per \ unit)$ 

 $V_{CVR} = Voltage measured with IVVC in service (per unit)$ 

 $CVR_f = Agreed\ Conservation\ Voltage\ Reduction\ Factor$ 

 $\Delta V = Difference$  between voltage with IVVC and established baseline (per unit)

The most important value in the calculation is the Conservation Voltage Reduction factor,  $CVR_f$ .  $CVR_f$  describes how energy savings vary with respect to voltage. Industry experts calculate  $CVR_f$  by conducting extensive tests on utility circuits and sometimes on individual loads. Sometimes, experts simultaneously enable IVVC on a group of test circuits and compare performance to a second, untreated, group of circuits. In other cases, experts use a single group of circuits to by alternating times with IVVC off and on. Regardless of the method, voltage and energy consumption with IVVC off becomes the baseline. Voltage and energy with IVVC in service are compared to the baseline to determine savings and  $CVR_f$ .

The measured voltage difference is:

$$\Delta V = V_{Rase} - V_{CVR} \tag{5-1}$$

The energy savings are:

$$E_{Savings} = E_{Base} - E_{CVR} ag{5-2}$$

The voltage is normally expressed in per unit because the utility maintains a very close tolerance. Nominal voltage is 1.0 per unit. Energy has a large variation over time and normally is not measured in per unit. Energy is most commonly measured in MWh, although kWh, GWh and even Wh can be used.

Experts calculate  $CVR_f$  by comparing energy during IVVC treatment times to untreated baselines with the following equation:

$$CVR_f = \frac{\frac{E_{Savings}}{E_{Base}}}{\frac{\Delta V}{V_{Rase}}}$$
 (5-3)

 $CVR_f$  is a simple ratio of energy savings to voltage difference. For example, when  $CVR_f = 1.0$ , we can expect a 1% reduction in energy for every 1% reduction in voltage. A  $CVR_f = 1.0$ 

1.5 indicates a 1.5% energy reduction for every 1% reduction in voltage. IPL measured  $CVR_f = 0.8$ 

IPL's plan calls for treating all eligible circuits when needed. This generates maximum reduction. However, no coincident baseline circuits will be available once reduction is fully operational. Therefore, it is important to develop a method to calculate savings when no simultaneous baseline is available. Fortunately, there is a way for IPL to provide assurance that the energy savings are real and the commitments have been met.

 $V_{\it Base}$  is readily available because IPL has extensive historical information in the PI Historian database. Analysis described in Section \_(TBA)\_ shows IPL maintained a consistent voltage management practices for several years. This past practice of consistent and well managed voltage control allows provides a very good value for  $V_{\it Base}$ .

IPL PI historian also has extensive energy information, but the historical information does not provide the accurate baseline as it did for voltage. Energy is highly dependent on weather and the economy. Adjusting historical energy data for weather, the economy and other factors will never provide a future baseline with the necessary accuracy for IVVC benefits. Using the CVR factor, a well justified voltage baseline, and actual energy use will produce the most accurate savings estimates. This is especially true when IPL uses a conservative  $CVR_f = 0.5$  in order to assure savings targets are met or exceeded.

Referring back to the basic energy savings equation (5-2) and rearranging for  $D_{Base}$ ,

(5-4)

The savings portion of (5-4) may also be expressed in terms of  $E_{Base}$  and the voltage difference:

(5-5)

Substituting the right side of (5-5) into (5-4) gives the following:

(5-6)

Now solve for  $E_{Base}$  in terms of  $E_{CVR}$  and  $CVR_f$ : in three steps. First rearrange (5-6) to:

(5-7)

Then factoring (5-7) for  $E_{Base}$  on the right side of the equation,

(5-8)

And finally we have  $E_{Base}$  in terms of measured energy and voltage with IVVC in service.

$$\frac{}{(CV)}$$
 (5-9)

Now substitute (5-9) for  $E_{Base}$  in (5-2). This gives the savings based on energy measured,  $CVR_f$ , and voltage difference while IVVC is in service.

$$\left(\frac{CVR}{CV}\right)$$
 (5-10)

Finally, (5-10) can be simplified by factoring  $E_{CVR}$  on the right hand side. This gives the savings based on measurements with IVVC fully in service.

$$\left(\begin{array}{cc} \hline & \\ \hline & (CV & ) \end{array}\right)$$
 (5-11)

All savings calculations use equation (5-11).

To summarize, IPL will enable IVVC on all eligible circuits to maximize savings for customers. Perfect knowledge of savings will never be available. However IPL can reliably confirm that it met or exceeded the savings commitments as

- Adopt a conservative CVR factor (see other sections describing the use of 0.5)
- Establish a baseline operating voltage of how IPL has operated and would continue to operate without the sophistication of Smart Grid IVVC ( $V_{Base}$ )
- Measure actual energy delivered to customers while IVVC is in service ( $E_{CVR}$ )
- Measure actual voltage delivered to customers while IVVC is in service ( $V_{CVR}$ )
- Calculate savings using equation (5-11)

#### Indianapolis Power & Light Company 2014 Integrated Resource Plan

| IPL System Loads For Calendar Year 2013, MW |       |      |      |      |      |      |      |      |      |      |      |      |      | 013, MW |      |      |      |      |      |      |      |      |      |      |
|---------------------------------------------|-------|------|------|------|------|------|------|------|------|------|------|------|------|---------|------|------|------|------|------|------|------|------|------|------|
| Date                                        | HE1 1 | HE2  | HE3  | HE4  | HE5  | HE6  | HE7  | IE8  | HE9  | HE10 | HE11 | HE12 | HE13 | HE14    | HE15 | HE16 | HE17 | HE18 | HE19 | HE20 | HE21 | HE22 | HE23 | HE24 |
| 1/1/2013                                    | 1586  | 1554 | 1526 | 1525 | 1532 | 1568 | 1597 | 1630 | 1631 | 1676 | 1713 | 1721 | 1719 | 1713    | 1712 | 1696 | 1728 | 1856 | 1951 | 1955 | 1946 | 1911 | 1856 | 1803 |
| 1/2/2013                                    | 1764  | 1758 | 1761 | 1792 | 1856 | 1970 | 2123 | 2251 | 2264 | 2222 | 2168 | 2133 | 2074 | 2011    | 1985 | 1998 | 2039 | 2129 | 2207 | 2199 | 2173 | 2113 | 2052 | 1976 |
| 1/3/2013                                    | 1925  | 1898 | 1888 | 1901 | 1932 | 2033 | 2163 | 2274 | 2257 | 2206 | 2154 | 2117 | 2092 | 2034    | 2032 | 2018 | 2019 | 2085 | 2147 | 2111 | 2070 | 1989 | 1901 | 1802 |
| 1/4/2013                                    | 1739  | 1716 | 1701 | 1721 | 1762 | 1854 | 2008 | 2122 | 2124 | 2099 | 2076 | 2036 | 2011 | 1957    | 1929 | 1888 | 1877 | 1970 | 2075 | 2062 | 2035 | 1988 | 1911 | 1830 |
| 1/5/2013                                    | 1772  | 1743 | 1724 | 1733 | 1756 | 1800 | 1865 | 1937 | 1942 | 1920 | 1882 | 1843 | 1760 | 1695    | 1707 | 1723 | 1759 | 1846 | 1913 | 1894 | 1872 | 1808 | 1740 | 1655 |
| 1/6/2013                                    | 1592  | 1543 | 1511 | 1499 | 1500 | 1520 | 1559 | 1605 | 1638 | 1684 | 1763 | 1809 | 1847 | 1848    | 1849 | 1851 | 1884 | 1955 | 2039 | 2023 | 1987 | 1921 | 1848 | 1761 |
| 1/7/2013                                    | 1702  | 1683 | 1697 | 1722 | 1787 | 1946 | 2115 | 2235 | 2219 | 2174 | 2099 | 2032 | 1976 | 1920    | 1875 | 1824 | 1818 | 1908 | 2050 | 2050 | 2017 | 1950 | 1853 | 1760 |
| 1/8/2013                                    | 1703  | 1673 | 1681 | 1684 | 1729 | 1827 | 2012 | 2136 | 2113 | 2040 | 1974 | 1932 | 1880 | 1800    | 1768 | 1716 | 1720 | 1805 | 1939 |      | 1913 | 1843 | 1745 | 1646 |
| 1/9/2013                                    | 1562  | 1514 | 1482 | 1469 | 1484 | 1581 | 1758 | 1867 | 1848 | 1828 | 1809 | 1757 | 1720 | 1687    | 1655 | 1638 | 1636 | 1731 | 1838 | 1843 | 1829 | 1787 | 1701 | 1617 |
| 1/10/2013                                   | 1570  | 1549 | 1546 | 1560 | 1609 | 1714 | 1883 | 2010 | 1973 | 1945 | 1932 | 1922 | 1916 | 1901    | 1882 | 1867 | 1896 | 1947 | 1976 |      | 1881 | 1791 | 1675 | 1554 |
| 1/11/2013                                   | 1470  | 1426 | 1394 | 1378 | 1408 | 1478 | 1631 | 1736 | 1715 | 1698 | 1697 | 1688 | 1678 | 1638    | 1600 | 1575 | 1551 | 1581 | 1667 | 1637 | 1610 | 1557 | 1491 | 1402 |
| 1/12/2013                                   | 1328  | 1284 | 1263 | 1256 | 1267 | 1305 | 1356 | 1430 | 1467 | 1493 | 1489 | 1476 | 1453 | 1424    |      | 1379 | 1398 | 1485 | 1537 | 1508 | 1477 | 1443 | 1379 | 1304 |
| 1/13/2013                                   | 1249  | 1208 | 1176 | 1173 | 1195 | 1230 | 1281 | 1361 | 1425 | 1495 | 1547 | 1581 | 1625 | 1654    | 1704 | 1746 | 1770 | 1832 | 1911 | 1922 | 1918 | 1881 | 1822 | 1765 |
| 1/14/2013                                   | 1715  | 1693 | 1699 | 1719 | 1773 | 1902 | 2100 | 2242 | 2218 | 2186 | 2159 | 2104 | 2062 | 2062    | 2064 | 2073 | 2106 | 2149 | 2230 | 2197 | 2165 | 2091 | 1992 | 1890 |
| 1/15/2013                                   | 1826  | 1795 | 1787 | 1785 | 1830 | 1937 | 2136 | 2248 | 2216 | 2187 | 2129 | 2070 | 2054 | 2022    | 1981 | 1998 | 2014 | 2068 | 2126 |      | 2059 | 1988 | 1877 | 1766 |
| 1/16/2013                                   | 1708  | 1686 | 1680 | 1688 | 1719 | 1820 | 1997 | 2108 | 2086 | 2060 | 2046 | 2004 | 1951 | 1919    | 1909 | 1907 | 1930 | 1977 | 2080 | 2066 | 2035 | 1966 | 1856 | 1738 |
| 1/17/2013                                   | 1666  | 1629 | 1613 | 1621 | 1650 | 1748 | 1922 | 2020 | 2007 | 1980 | 1943 | 1868 | 1832 | 1803    |      | 1759 | 1755 | 1851 | 1994 | 2012 | 2009 | 1963 | 1879 | 1788 |
| 1/18/2013                                   | 1740  | 1722 | 1729 | 1756 | 1797 | 1919 | 2102 | 2224 | 2193 | 2095 | 2036 | 1974 | 1926 | 1867    | 1824 | 1781 | 1774 | 1827 | 1946 |      | 1908 | 1844 | 1765 | 1677 |
| 1/19/2013                                   | 1602  | 1546 | 1522 | 1517 | 1523 | 1555 | 1618 | 1680 | 1697 | 1685 | 1667 | 1631 | 1585 | 1533    |      | 1464 | 1458 | 1518 | 1632 | 1643 | 1618 | 1584 | 1535 | 1465 |
| 1/20/2013                                   | 1409  | 1382 | 1377 | 1419 | 1471 | 1543 | 1617 | 1718 | 1772 | 1801 | 1802 | 1765 | 1747 | 1706    | 1673 | 1682 | 1739 | 1846 | 1960 | 1963 | 1944 | 1896 | 1848 | 1768 |
| 1/21/2013                                   | 1728  | 1700 | 1694 | 1713 | 1765 | 1867 | 1995 | 2111 | 2157 | 2214 | 2269 | 2260 | 2269 | 2252    | 2217 | 2206 | 2237 | 2319 | 2467 | 2482 | 2460 | 2392 | 2306 | 2225 |
| 1/22/2013                                   | 2169  | 2152 | 2153 | 2166 | 2207 | 2312 | 2468 | 2600 | 2588 | 2538 | 2459 | 2387 | 2330 | 2276    | 2215 | 2182 | 2192 | 2309 | 2433 |      | 2402 | 2326 | 2216 | 2119 |
| 1/23/2013                                   | 2040  | 2016 | 2005 | 2018 | 2062 | 2161 | 2326 | 2423 | 2388 | 2369 | 2378 | 2357 | 2317 | 2290    | 2250 | 2229 | 2232 | 2258 | 2312 |      | 2242 | 2158 | 2055 | 1956 |
| 1/24/2013                                   | 1926  | 1913 | 1915 | 1940 | 1980 | 2091 | 2275 | 2398 | 2367 | 2311 | 2278 | 2226 | 2174 | 2135    |      | 2042 | 2067 | 2144 | 2269 |      | 2259 | 2189 | 2075 | 1973 |
| 1/25/2013                                   | 1914  | 1873 | 1854 | 1856 | 1879 | 1982 | 2146 | 2263 | 2243 | 2224 | 2240 | 2183 | 2123 | 2098    | 2067 | 2053 | 2062 | 2084 | 2151 | 2127 | 2096 | 2046 | 1975 | 1896 |
| 1/26/2013                                   | 1833  | 1802 | 1799 | 1807 | 1842 | 1890 | 1952 | 2032 | 2056 | 2059 | 2012 | 1920 | 1859 | 1792    | 1742 | 1699 | 1694 | 1765 | 1917 | 1957 | 1955 | 1936 | 1886 | 1841 |
| 1/27/2013                                   | 1793  | 1761 | 1754 | 1750 | 1761 | 1797 | 1842 | 1888 | 1913 | 1930 | 1928 | 1899 | 1868 | 1857    | 1839 | 1837 | 1864 | 1924 | 1978 | 1959 | 1930 | 1857 | 1765 | 1654 |
| 1/28/2013                                   | 1572  | 1520 | 1488 | 1479 | 1502 | 1600 | 1752 | 1860 | 1827 | 1815 | 1819 | 1817 | 1814 | 1799    | 1767 | 1745 | 1740 | 1770 | 1804 | 1779 | 1733 | 1656 | 1543 | 1426 |
| 1/29/2013                                   | 1354  | 1307 | 1276 | 1277 | 1309 | 1406 | 1584 | 1701 | 1680 | 1661 | 1671 | 1669 | 1658 | 1658    | 1642 | 1612 | 1613 | 1643 | 1714 | 1686 | 1650 | 1575 | 1472 | 1353 |
| 1/30/2013                                   | 1268  | 1206 | 1185 | 1182 | 1219 | 1328 | 1505 | 1647 | 1655 | 1654 | 1680 | 1700 | 1674 | 1663    | 1643 | 1672 | 1728 | 1797 | 1922 | 1957 | 1961 | 1923 | 1858 | 1780 |
| 1/31/2013                                   | 1738  | 1730 | 1728 | 1748 | 1805 | 1922 | 2117 | 2237 | 2194 | 2194 | 2191 | 2160 | 2152 | 2123    | 2083 | 2053 | 2080 | 2124 | 2239 | 2280 | 2291 | 2284 | 2233 | 2183 |

|           |      |      |      |      |      |      |      |      | 1    | PL Syster | n Loads F | or Calend | ar Year 20 | 13, MW |      |      |      |      |      |      |      |      |      |      |
|-----------|------|------|------|------|------|------|------|------|------|-----------|-----------|-----------|------------|--------|------|------|------|------|------|------|------|------|------|------|
| Date      | HE1  | HE2  | HE3  | HE4  | HE5  | HE6  | HE7  | HE8  | HE9  | HE10      | HE11      | HE12      | HE13       | HE14   | HE15 | HE16 | HE17 | HE18 | HE19 | HE20 | HE21 | HE22 | HE23 | HE24 |
| 2/1/2013  | 2150 | 2133 | 2133 | 2158 | 2207 | 2294 | 2447 | 2564 | 2541 | 2487      | 2443      | 2375      | 2309       | 2261   | 2228 | 2202 | 2177 | 2212 | 2338 | 2351 | 2324 | 2277 | 2198 | 2085 |
| 2/2/2013  | 2008 | 1953 | 1922 | 1904 | 1911 | 1946 | 2004 | 2060 | 2065 | 2082      | 2078      | 2014      | 2012       | 1992   | 1971 | 1967 | 1957 | 1993 | 2049 | 2043 | 2019 | 1999 | 1962 | 1920 |
| 2/3/2013  | 1882 | 1867 | 1866 | 1884 | 1898 | 1922 | 1959 | 2005 | 2029 | 2068      | 2069      | 2045      | 2046       | 2052   | 2048 | 2038 | 2034 | 2051 | 2123 | 2120 | 2100 | 2077 | 2000 | 1929 |
| 2/4/2013  | 1857 | 1815 | 1798 | 1797 | 1827 | 1935 | 2114 | 2231 | 2208 | 2187      | 2177      | 2115      | 2090       | 2080   | 2042 | 1987 | 1904 | 1904 | 2024 | 2058 | 2025 | 1957 | 1866 | 1762 |
| 2/5/2013  | 1702 | 1667 | 1669 | 1675 | 1723 | 1829 | 2018 | 2147 | 2120 | 2085      | 2096      | 2056      | 2023       | 2025   | 1991 | 1940 | 1930 | 1953 | 2048 | 2038 | 1988 | 1915 | 1816 | 1725 |
| 2/6/2013  | 1657 | 1624 | 1621 | 1630 | 1667 | 1762 | 1950 | 2058 | 2027 | 2012      | 1987      | 1938      | 1882       | 1851   | 1820 | 1789 | 1790 | 1836 | 1979 | 2033 | 2019 | 1953 | 1853 | 1755 |
| 2/7/2013  | 1682 | 1631 | 1616 | 1617 | 1667 | 1782 | 1939 | 2055 | 2015 | 1951      | 1879      | 1822      | 1771       | 1729   | 1675 | 1635 | 1604 | 1625 | 1735 | 1772 | 1753 | 1689 | 1588 | 1484 |
| 2/8/2013  | 1434 | 1416 | 1434 | 1458 | 1512 | 1637 | 1829 | 1964 | 1962 | 1974      | 2009      | 1994      | 1974       | 1958   | 1936 | 1913 | 1906 | 1917 | 1973 | 1972 | 1946 | 1897 | 1825 | 1721 |
| 2/9/2013  | 1663 | 1610 | 1596 | 1613 | 1639 | 1710 | 1801 | 1879 | 1893 | 1851      | 1806      | 1751      | 1693       | 1638   | 1584 | 1546 | 1541 | 1583 | 1726 | 1785 | 1785 | 1759 | 1707 | 1645 |
| 2/10/2013 | 1589 | 1548 | 1521 | 1503 | 1494 | 1519 | 1563 | 1609 | 1649 | 1686      | 1698      | 1656      | 1636       | 1641   | 1635 | 1636 | 1653 | 1662 | 1734 | 1733 | 1693 | 1607 | 1520 | 1424 |
| 2/11/2013 | 1352 | 1305 | 1293 | 1301 | 1365 | 1492 | 1700 | 1854 | 1859 | 1880      | 1932      | 1928      | 1934       | 1916   | 1898 | 1867 | 1865 | 1867 | 1945 | 1967 | 1937 | 1873 | 1778 | 1679 |
| 2/12/2013 | 1617 | 1591 | 1592 | 1607 | 1649 | 1783 | 1977 | 2073 | 2027 | 1962      | 1907      | 1855      | 1813       | 1763   | 1725 | 1671 | 1651 | 1689 | 1803 | 1864 | 1865 | 1823 | 1746 | 1658 |
| 2/13/2013 | 1608 | 1579 | 1572 | 1585 | 1624 | 1733 | 1925 | 2028 | 2000 | 1988      | 1993      | 1963      | 1915       | 1862   | 1782 | 1706 | 1671 | 1680 | 1799 | 1863 | 1857 | 1815 | 1735 | 1632 |
| 2/14/2013 | 1565 | 1536 | 1524 | 1537 | 1565 | 1669 | 1854 | 1946 | 1925 | 1891      | 1847      | 1790      | 1769       | 1723   | 1705 | 1703 | 1657 | 1667 | 1778 | 1834 | 1830 |      | 1697 | 1619 |
| 2/15/2013 | 1557 | 1530 | 1520 | 1540 | 1580 | 1693 | 1862 | 1973 | 1959 | 1955      | 1978      | 1949      | 1931       | 1905   | 1906 | 1901 | 1877 | 1881 | 1951 | 1990 | 1967 | 1932 | 1875 | 1807 |
| 2/16/2013 | 1752 | 1736 | 1707 | 1700 | 1725 | 1778 | 1853 | 1913 | 1946 | 1967      | 1967      | 1978      | 1954       | 1907   | 1889 | 1904 | 1926 | 1975 | 2058 | 2079 | 2051 | 2004 | 1941 | 1871 |
| 2/17/2013 | 1822 | 1795 | 1792 | 1811 | 1836 | 1889 | 1955 | 2008 | 2006 | 1954      | 1894      | 1835      | 1793       | 1738   | 1687 | 1640 | 1632 | 1671 | 1826 | 1922 | 1923 |      | 1837 | 1759 |
| 2/18/2013 | 1711 | 1676 | 1671 | 1677 | 1714 | 1799 | 1931 | 2008 | 1970 | 1930      | 1895      | 1823      | 1762       | 1720   | 1659 | 1628 | 1636 | 1687 | 1791 | 1799 | 1774 | 1712 | 1615 | 1519 |
| 2/19/2013 | 1444 | 1414 | 1441 | 1497 | 1574 | 1735 | 1937 | 2080 | 2081 | 2108      | 2145      | 2149      | 2168       | 2158   | 2146 | 2138 | 2168 | 2204 | 2281 | 2288 | 2249 | 2175 | 2063 | 1969 |
| 2/20/2013 | 1905 | 1878 | 1870 | 1881 | 1940 | 2068 | 2266 | 2358 | 2322 | 2272      | 2200      | 2139      | 2087       | 2038   | 1982 | 1952 | 1928 | 1988 | 2098 | 2155 | 2130 | 2074 | 1972 | 1880 |
| 2/21/2013 | 1821 | 1816 | 1822 | 1828 | 1856 | 1956 | 2116 | 2206 | 2171 | 2167      | 2157      | 2059      | 2025       | 1977   | 1949 | 1962 | 1994 | 2033 | 2105 | 2126 | 2117 | 2061 | 1953 | 1835 |
| 2/22/2013 | 1773 | 1735 | 1699 | 1669 | 1697 | 1772 | 1881 | 1968 | 1972 | 2001      | 2015      | 2016      | 2017       | 2010   | 1989 | 1957 | 1923 | 1917 | 1952 | 1950 | 1913 | 1860 | 1797 | 1707 |
| 2/23/2013 | 1641 | 1614 | 1592 | 1594 | 1619 | 1678 | 1753 | 1820 | 1826 | 1810      | 1789      | 1754      | 1711       | 1652   | 1597 | 1556 | 1541 | 1581 | 1708 | 1792 | 1804 | 1793 | 1754 | 1698 |
| 2/24/2013 | 1652 | 1625 | 1610 | 1615 | 1632 | 1677 | 1744 | 1784 | 1782 | 1756      | 1705      | 1657      | 1620       | 1585   | 1537 | 1509 | 1496 | 1540 | 1650 | 1773 | 1787 |      | 1709 | 1646 |
| 2/25/2013 | 1607 | 1583 | 1594 | 1610 | 1670 | 1788 | 1993 | 2078 | 2010 | 1928      | 1901      | 1841      | 1803       | 1768   | 1709 | 1670 | 1663 | 1705 | 1804 | 1882 | 1875 |      | 1727 | 1629 |
| 2/26/2013 | 1553 | 1522 | 1513 |      | 1556 | 1665 | 1854 | 1992 | 2009 | 1996      | 2020      | 2002      | 1984       | 1952   | 1912 | 1895 | 1874 | 1870 | 1908 | 1903 | 1866 |      | 1688 | 1584 |
| 2/27/2013 | 1507 | 1464 | 1447 | 1454 | 1500 | 1635 | 1826 | 1948 | 1955 | 1972      | 1985      | 1973      | 1975       | 1984   | 1988 | 1980 | 1974 | 1986 | 2044 | 2067 | 2035 |      | 1853 | 1756 |
| 2/28/2013 | 1689 | 1647 | 1627 | 1625 | 1662 | 1768 | 1924 | 2023 | 2012 | 2008      | 2015      | 2011      | 1990       | 1970   | 1933 | 1912 | 1924 | 1932 | 1980 | 2003 | 1980 | 1920 | 1822 | 1714 |

|           |      |      |      |      |      |      |      |      | ]    | IPL Syste | m Loads F | or Calend | ar Year 20 | 13, MW |      |      |      |      |      |      |        |      |      |      |
|-----------|------|------|------|------|------|------|------|------|------|-----------|-----------|-----------|------------|--------|------|------|------|------|------|------|--------|------|------|------|
| Date      | HE1  | HE2  | HE3  | HE4  | HE5  | HE6  | HE7  | HE8  | HE9  | HE10      | HE11      | HE12      | HE13       | HE14   | HE15 | HE16 | HE17 | HE18 | HE19 | HE20 | HE21 I | HE22 | HE23 | HE24 |
| 3/1/2013  | 1644 | 1607 | 1593 | 1590 | 1632 | 1727 | 1917 | 2002 | 1988 | 1986      | 1987      | 1981      | 1965       | 1953   | 1943 | 1924 | 1927 | 1935 | 1966 | 1973 | 1929   | 1870 | 1801 | 1717 |
| 3/2/2013  | 1655 | 1614 | 1595 | 1597 | 1617 | 1665 | 1732 | 1796 | 1856 | 1897      | 1924      | 1909      | 1892       | 1867   | 1846 | 1826 | 1826 | 1828 | 1874 | 1927 | 1912   | 1875 | 1812 | 1746 |
| 3/3/2013  | 1700 | 1668 | 1640 | 1643 | 1641 | 1672 | 1718 | 1743 | 1785 | 1807      | 1769      | 1726      | 1721       | 1719   | 1706 | 1683 | 1680 | 1707 | 1785 | 1913 | 1913   | 1891 | 1828 | 1770 |
| 3/4/2013  | 1723 | 1712 | 1718 | 1745 | 1808 | 1940 | 2131 | 2199 | 2118 | 2016      | 2002      | 1940      | 1887       | 1850   | 1858 | 1863 | 1888 | 1896 | 1949 | 1996 | 1951   | 1870 | 1769 | 1661 |
| 3/5/2013  | 1589 | 1560 | 1542 | 1541 | 1582 | 1685 | 1861 | 1945 | 1910 | 1921      | 1938      | 1943      | 1945       | 1951   | 1934 | 1934 | 1932 | 1960 | 2000 | 2044 | 2009   | 1944 | 1842 | 1734 |
| 3/6/2013  | 1685 | 1653 | 1650 | 1664 | 1709 | 1805 | 1983 | 2069 | 2082 | 2073      | 2061      | 2035      | 2007       | 2001   | 1981 | 1983 | 1978 | 1995 | 2038 | 2081 | 2048   | 1974 | 1867 | 1754 |
| 3/7/2013  | 1684 | 1650 | 1632 | 1640 | 1669 | 1790 | 1959 | 2021 | 1997 | 1990      | 1965      | 1922      | 1885       | 1860   | 1835 | 1839 | 1847 | 1861 | 1910 | 1979 | 1952   | 1895 | 1795 | 1698 |
| 3/8/2013  | 1643 | 1619 | 1628 | 1645 | 1696 | 1821 | 2014 | 2076 | 1991 | 1911      | 1861      | 1814      | 1778       | 1738   | 1683 | 1636 | 1621 | 1597 | 1650 | 1765 | 1775   | 1756 | 1691 | 1619 |
| 3/9/2013  | 1569 | 1518 | 1502 | 1502 | 1520 | 1555 | 1608 | 1631 | 1664 | 1649      | 1620      | 1583      | 1541       | 1500   | 1474 | 1467 | 1468 | 1485 | 1524 | 1595 | 1576   | 1537 | 1478 | 1402 |
| 3/10/2013 | 1333 | 1296 | 1260 | 1257 | 1264 | 1299 | 1336 | 1367 | 1400 | 1419      | 1428      | 1420      | 1382       | 1359   | 1339 | 1341 | 1360 | 1396 | 1454 | 1523 | 1489   | 1415 | 1317 | 1243 |
| 3/11/2013 | 1196 | 1174 | 1179 | 1216 |      | 1486 | 1640 | 1650 | 1639 | 1680      | 1696      | 1720      | 1735       | 1712   | 1721 | 1737 | 1787 | 1808 | 1851 | 1897 | 1852   | 1761 | 1655 | 1590 |
| 3/12/2013 | 1544 | 1526 | 1526 | 1553 | 1662 | 1850 | 1986 | 1979 | 1953 | 1970      | 1976      | 1902      | 1834       | 1759   | 1718 | 1685 | 1699 | 1731 | 1771 | 1872 | 1848   | 1755 | 1648 | 1594 |
| 3/13/2013 | 1561 | 1565 | 1585 | 1636 |      | 1949 | 2093 | 2079 | 2060 | 2073      | 2059      | 2032      | 2037       | 2011   | 1985 | 1975 | 1969 | 1957 | 1978 | 2037 | 2003   | 1902 | 1796 | 1735 |
| 3/14/2013 | 1700 | 1692 | 1719 | 1754 | 1873 | 2058 | 2197 | 2142 | 2073 | 2004      | 1937      | 1881      | 1830       | 1783   | 1711 | 1679 | 1712 | 1715 | 1758 | 1851 | 1821   | 1741 | 1645 | 1592 |
| 3/15/2013 | 1554 | 1546 | 1556 | 1593 | 1702 | 1885 | 2013 | 1980 | 1941 | 1922      | 1857      | 1800      | 1740       | 1686   | 1634 | 1624 | 1610 | 1594 | 1617 | 1659 | 1623   | 1556 | 1469 | 1395 |
| 3/16/2013 | 1352 | 1327 | 1320 | 1329 |      | 1424 | 1499 | 1534 | 1540 | 1546      |           | 1576      |            | 1547   | 1551 | 1569 | 1589 | 1592 | 1632 | 1687 | 1661   | 1610 | 1519 | 1476 |
| 3/17/2013 | 1451 | 1441 | 1454 | 1474 |      | 1538 | 1619 | 1659 | 1720 | 1759      | 1761      | 1746      | 1727       | 1706   | 1681 | 1643 | 1639 | 1670 | 1736 | 1805 | 1774   | 1698 | 1617 | 1567 |
| 3/18/2013 | 1554 | 1550 | 1553 | 1569 |      | 1867 | 1996 | 1982 | 1972 | 1975      | 1963      | 1937      | 1889       | 1859   | 1869 | 1861 | 1873 | 1875 | 1902 | 1920 | 1861   | 1751 | 1637 | 1571 |
| 3/19/2013 | 1564 | 1584 | 1628 | 1676 |      | 2018 | 2140 | 2131 | 2093 | 2076      | 2077      | 2034      | 1963       | 1916   | 1851 | 1798 | 1753 | 1747 | 1800 | 1907 | 1884   | 1791 | 1695 | 1626 |
| 3/20/2013 | 1596 | 1580 | 1590 | 1635 | 1757 | 1958 | 2081 | 2068 | 2054 | 2047      | 2004      | 1976      | 1950       | 1917   | 1885 | 1920 | 1942 | 1960 | 1997 | 2084 | 2057   | 1969 | 1876 | 1813 |
| 3/21/2013 | 1784 | 1779 | 1784 | 1823 |      | 2126 | 2247 | 2207 | 2142 | 2066      | 2039      | 1984      | 1938       | 1874   | 1812 | 1771 | 1755 | 1753 | 1799 | 1920 | 1909   | 1839 | 1750 | 1696 |
| 3/22/2013 | 1670 | 1675 | 1694 | 1737 | 1862 | 2051 | 2177 | 2131 | 2026 | 1955      | 1888      | 1834      | 1778       | 1725   | 1656 | 1610 | 1565 | 1545 | 1577 | 1692 | 1711   | 1671 | 1592 | 1515 |
| 3/23/2013 | 1480 | 1455 | 1447 | 1460 |      | 1554 | 1633 | 1691 | 1717 | 1711      | 1666      | 1593      | 1536       | 1461   | 1417 | 1389 | 1380 | 1390 | 1419 | 1542 | 1566   | 1540 | 1492 | 1451 |
| 3/24/2013 | 1426 | 1403 | 1402 | 1418 |      | 1493 | 1570 | 1634 | 1691 | 1719      |           | 1733      | 1738       | 1729   | 1738 | 1784 | 1830 | 1832 | 1853 | 1898 | 1862   | 1791 | 1716 | 1651 |
| 3/25/2013 | 1621 | 1608 | 1611 | 1654 | 1748 | 1885 | 1976 | 1992 | 2014 | 2027      | 2000      | 1976      |            | 1912   | 1894 | 1897 | 1894 | 1886 | 1900 | 1963 | 1915   | 1818 | 1722 | 1652 |
| 3/26/2013 | 1618 | 1602 | 1615 | 1645 | 1740 | 1891 | 1996 | 1979 | 1987 | 1958      | 1899      | 1840      | 1808       | 1796   | 1757 | 1734 | 1722 | 1762 | 1809 | 1898 | 1865   | 1777 | 1681 | 1614 |
| 3/27/2013 | 1585 | 1578 | 1589 | 1629 |      | 1909 | 2003 | 1976 | 1919 | 1871      | 1817      | 1792      | 1797       | 1790   | 1767 | 1728 | 1702 | 1691 | 1710 | 1822 | 1819   | 1758 | 1667 | 1617 |
| 3/28/2013 | 1597 | 1589 | 1605 | 1639 | 1743 | 1914 | 2007 | 1975 | 1910 | 1860      | 1809      | 1764      | 1725       | 1678   | 1629 | 1576 | 1532 | 1520 | 1533 | 1644 | 1659   | 1608 | 1530 | 1483 |
| 3/29/2013 | 1453 | 1463 | 1469 | 1515 |      | 1742 | 1846 | 1832 | 1807 | 1778      | 1715      | 1625      | 1573       | 1526   | 1482 | 1450 | 1432 | 1423 | 1433 | 1511 | 1500   | 1462 | 1388 | 1339 |
| 3/30/2013 | 1320 | 1315 | 1333 | 1359 |      | 1487 | 1561 | 1576 | 1559 | 1518      |           | 1419      | 1374       | 1337   | 1316 | 1289 | 1302 | 1324 | 1339 | 1424 | 1418   | 1374 | 1312 | 1254 |
| 3/31/2013 | 1208 | 1183 | 1171 | 1181 | 1195 | 1241 | 1297 | 1330 | 1388 | 1415      | 1421      | 1368      | 1315       | 1272   | 1240 | 1222 | 1215 | 1230 | 1281 | 1386 | 1373   | 1333 | 1268 | 1223 |

|           |      |      |      |      |      |      |      |      | ]    | IPL Syste | m Loads F | or Calend | ar Year 20 | 013, MW |      |      |      |      |      |      |      |        |      |      |
|-----------|------|------|------|------|------|------|------|------|------|-----------|-----------|-----------|------------|---------|------|------|------|------|------|------|------|--------|------|------|
| Date      | HE1  | HE2  | HE3  | HE4  | HE5  | HE6  | HE7  | HE8  | HE9  | HE10      | HE11      | HE12      | HE13       | HE14    | HE15 | HE16 | HE17 | HE18 | HE19 | HE20 | HE21 | HE22   | HE23 | HE24 |
| 4/1/2013  | 1208 | 1220 | 1251 | 1305 | 1423 | 1585 | 1700 | 1712 | 1714 | 1716      | 1708      | 1692      | 1683       | 1645    | 1609 | 1581 | 1557 | 1559 | 1592 | 1704 | 1720 | 1660   | 1579 | 1528 |
| 4/2/2013  | 1494 | 1492 | 1511 | 1546 | 1659 | 1829 | 1930 | 1893 | 1844 | 1821      | 1775      | 1745      | 1722       | 1669    | 1616 | 1569 | 1542 | 1540 | 1557 | 1666 | 1687 | 1635   | 1559 | 1506 |
| 4/3/2013  | 1483 | 1481 | 1503 | 1543 | 1658 | 1823 | 1933 | 1900 | 1841 | 1809      | 1765      | 1723      | 1694       | 1649    | 1597 | 1556 | 1531 | 1523 | 1558 | 1664 | 1659 | 1601   | 1516 | 1459 |
| 4/4/2013  | 1426 | 1410 | 1413 | 1447 | 1546 | 1713 | 1815 | 1809 | 1790 | 1750      | 1710      | 1671      | 1630       | 1596    | 1530 | 1505 | 1467 | 1460 | 1452 | 1538 | 1560 | 1490   | 1407 | 1356 |
| 4/5/2013  | 1337 | 1334 | 1342 | 1378 | 1476 | 1634 | 1728 | 1723 | 1698 | 1658      | 1631      | 1598      | 1574       | 1544    | 1511 | 1459 | 1435 | 1400 | 1390 | 1472 | 1479 | 1426   | 1353 | 1294 |
| 4/6/2013  | 1264 | 1248 | 1249 |      | 1291 | 1358 | 1401 | 1446 |      | 1467      | 1456      | 1425      | 1369       | 1336    | 1309 |      | 1302 | 1294 | 1302 | 1368 | 1379 |        | 1245 |      |
| 4/7/2013  | 1125 | 1103 | 1081 | 1078 | 1090 | 1129 | 1144 | 1181 | 1235 | 1276      | 1284      | 1292      | 1299       | 1287    | 1290 | 1292 | 1311 | 1309 | 1326 | 1414 | 1411 | 1 1331 | 1224 | 1148 |
| 4/8/2013  | 1093 | 1076 | 1067 | 1096 | 1189 | 1377 | 1490 | 1505 | 1529 | 1564      | 1573      | 1586      | 1591       | 1568    | 1551 | 1534 | 1519 | 1503 | 1491 | 1553 | 1538 | 3 1430 | 1306 |      |
| 4/9/2013  | 1159 | 1122 | 1111 | 1133 | 1227 | 1404 | 1510 | 1514 | 1548 | 1580      | 1624      | 1678      | 1696       | 1695    | 1674 | 1657 | 1638 | 1613 | 1589 | 1644 | 1643 | 1543   | 1412 | 1308 |
| 4/10/2013 | 1244 | 1196 | 1180 | 1193 | 1276 | 1453 | 1563 | 1586 |      | 1708      | 1746      | 1777      | 1778       |         | 1798 |      | 1711 | 1678 | 1622 | 1676 | 1610 |        | 1352 |      |
| 4/11/2013 | 1196 | 1164 | 1156 |      | 1262 | 1423 | 1540 | 1551 | 1590 | 1629      | 1642      | 1655      | 1654       | 1620    | 1603 | 1578 | 1578 |      | 1575 | 1593 | 1533 |        | 1296 |      |
| 4/12/2013 | 1174 | 1137 | 1144 | 1179 | 1291 | 1481 | 1631 | 1654 |      | 1672      | 1675      | 1671      | 1682       | 1682    | 1665 |      | 1634 |      | 1627 | 1668 | 1649 |        | 1477 |      |
| 4/13/2013 | 1352 | 1313 | 1302 | 1310 | 1339 | 1406 | 1441 | 1496 |      | 1560      | 1554      | 1523      | 1485       | 1430    | 1392 | 1367 | 1349 |      | 1341 | 1422 | 1464 |        | 1359 |      |
| 4/14/2013 | 1266 | 1252 | 1239 |      | 1255 | 1297 | 1305 | 1343 |      | 1364      | 1346      | 1329      | 1315       |         | 1301 | 1303 | 1310 | 1303 | 1315 | 1388 | 142€ |        | 1248 |      |
| 4/15/2013 | 1116 | 1094 | 1091 | 1124 | 1220 | 1417 | 1509 | 1546 |      | 1597      | 1596      | 1594      | 1599       |         | 1566 |      | 1517 |      | 1498 | 1536 | 1550 |        | 1316 |      |
| 4/16/2013 | 1176 | 1140 | 1128 | 1155 | 1243 | 1417 | 1519 | 1549 |      | 1590      | 1603      | 1587      | 1581       | 1585    | 1583 | 1592 | 1585 |      | 1563 | 1585 | 1560 |        | 1342 |      |
| 4/17/2013 | 1208 | 1181 | 1176 |      | 1314 | 1544 | 1599 | 1612 |      | 1640      | 1639      | 1643      | 1632       | 1622    | 1608 |      | 1582 |      | 1553 | 1632 | 1601 |        | 1376 |      |
| 4/18/2013 | 1204 | 1163 | 1153 |      | 1273 | 1460 | 1542 | 1592 |      | 1694      | 1722      | 1742      | 1733       | 1691    | 1652 | 1610 | 1602 | 1616 | 1612 | 1615 | 1564 |        | 1357 |      |
| 4/19/2013 | 1182 | 1161 | 1154 |      | 1293 | 1433 | 1640 | 1678 |      | 1771      | 1777      | 1782      | 1716       |         | 1749 |      |      |      | 1715 | 1731 | 1713 |        | 1554 |      |
| 4/20/2013 | 1433 | 1410 | 1396 | 1416 | 1464 | 1527 | 1546 | 1563 |      | 1568      | 1550      | 1519      | 1472       | 1438    | 1401 | 1380 | 1366 | 1360 | 1365 | 1445 | 1513 |        | 1439 |      |
| 4/21/2013 | 1366 | 1358 | 1360 | 1374 | 1404 | 1458 | 1472 | 1514 | 1516 | 1495      | 1458      | 1432      | 1390       |         | 1332 |      | 1327 | 1337 | 1348 | 1431 | 1478 |        | 1333 |      |
| 4/22/2013 | 1248 | 1243 | 1256 |      | 1432 | 1633 | 1713 | 1682 |      | 1649      | 1629      | 1618      | 1616       |         | 1563 |      | 1511 | 1494 | 1478 | 1520 | 1539 |        |      |      |
| 4/23/2013 | 1171 | 1146 | 1150 | 1175 | 1276 | 1458 | 1538 | 1549 |      | 1610      | 1607      | 1611      | 1623       | 1549    | 1561 | 1549 | 1539 |      | 1539 | 1573 | 1538 |        | 1331 |      |
| 4/24/2013 | 1189 | 1159 | 1168 |      | 1317 | 1513 | 1634 | 1676 |      | 1793      | 1773      | 1771      | 1749       |         | 1683 | 1654 | 1636 | 1627 | 1612 | 1658 | 1681 |        | 1479 |      |
| 4/25/2013 | 1380 | 1375 | 1374 | 1425 | 1531 | 1721 | 1768 | 1734 |      | 1679      | 1657      | 1642      | 1624       | 1598    | 1563 | 1535 | 1492 | 1472 | 1474 | 1526 | 1587 |        | 1418 |      |
| 4/26/2013 | 1325 | 1320 | 1333 |      | 1479 | 1651 | 1719 | 1686 |      | 1640      | 1612      | 1590      | 1565       | 1541    | 1509 |      | 1444 | 1412 | 1387 | 1429 | 1453 |        | 1303 |      |
| 4/27/2013 | 1183 | 1158 | 1158 |      | 1209 | 1275 | 1304 | 1351 | 1373 | 1382      | 1370      | 1351      | 1332       | 1321    | 1305 | 1303 | 1304 | 1306 | 1315 | 1352 | 1365 |        | 1244 |      |
| 4/28/2013 | 1129 | 1102 | 1089 | 1082 | 1102 | 1135 | 1153 | 1230 |      | 1323      | 1348      | 1356      | 1350       |         | 1337 | 1341 | 1365 |      | 1379 | 1413 | 1415 |        |      |      |
| 4/29/2013 | 1131 | 1105 | 1117 | 1133 | 1240 | 1416 | 1529 | 1540 |      | 1581      | 1585      | 1587      | 1573       |         | 1555 |      | 1512 | 1493 | 1484 | 1504 | 1536 |        | 1302 |      |
| 4/30/2013 | 1148 | 1115 | 1119 | 1141 | 1235 | 1406 | 1490 | 1518 | 1552 | 1591      | 1618      | 1639      | 1670       | 1697    | 1700 | 1710 | 1696 | 1670 | 1640 | 1649 | 1672 | 1554   | 1400 | 1280 |

|           |      |      |      |      |      |      |      |      | ]    | IPL Syste | m Loads F | or Calend | lar Year 20 | 13, MW |      |      |      |      |      |      |        |      |      |      |
|-----------|------|------|------|------|------|------|------|------|------|-----------|-----------|-----------|-------------|--------|------|------|------|------|------|------|--------|------|------|------|
| Date      | HE1  | HE2  | HE3  | HE4  | HE5  | HE6  | HE7  | HE8  | HE9  | HE10      | HE11      | HE12      | HE13        | HE14   | HE15 | HE16 | HE17 | HE18 | HE19 | HE20 | HE21 I | HE22 | HE23 | HE24 |
| 5/1/2013  | 1206 | 1158 | 1139 | 1144 | 1233 | 1386 | 1475 | 1533 | 1597 | 1676      | 1732      | 1776      | 1822        | 1853   | 1869 | 1865 | 1860 | 1835 | 1805 | 1774 | 1770   | 1654 | 1493 | 1369 |
| 5/2/2013  | 1280 | 1230 | 1200 | 1208 | 1283 | 1437 | 1522 | 1587 | 1652 | 1724      | 1768      | 1796      | 1828        | 1839   | 1846 | 1817 | 1780 | 1732 | 1699 | 1682 | 1696   | 1578 | 1430 | 1314 |
| 5/3/2013  | 1246 | 1194 | 1173 | 1193 | 1269 | 1429 | 1518 | 1565 | 1600 | 1638      | 1669      | 1693      | 1719        | 1738   | 1712 | 1679 | 1618 | 1572 | 1534 | 1533 | 1551   | 1473 | 1346 | 1241 |
| 5/4/2013  | 1167 | 1129 | 1096 | 1092 | 1118 | 1145 | 1166 | 1234 | 1294 | 1340      | 1359      | 1365      | 1366        | 1357   | 1338 | 1330 | 1316 | 1314 | 1306 | 1323 | 1356   | 1304 | 1228 | 1155 |
| 5/5/2013  | 1105 | 1074 | 1051 | 1049 | 1043 | 1067 | 1088 | 1165 | 1233 | 1275      | 1298      | 1319      | 1323        | 1321   | 1312 | 1317 | 1331 | 1328 | 1346 | 1373 | 1403   | 1335 | 1231 | 1163 |
| 5/6/2013  | 1112 | 1089 | 1093 | 1118 | 1221 | 1390 | 1481 | 1529 | 1550 | 1580      | 1612      | 1632      | 1630        | 1598   | 1568 | 1543 | 1515 | 1505 | 1488 | 1509 | 1532   | 1424 | 1306 | 1214 |
| 5/7/2013  | 1155 | 1124 | 1112 | 1132 | 1226 | 1394 | 1476 | 1533 | 1557 | 1617      | 1648      | 1670      | 1680        | 1676   | 1649 | 1600 | 1584 | 1562 | 1549 | 1553 | 1587   | 1489 | 1354 | 1249 |
| 5/8/2013  | 1185 | 1152 | 1137 | 1156 | 1246 | 1399 | 1479 | 1556 | 1606 | 1683      | 1712      | 1749      | 1761        | 1755   | 1740 | 1722 | 1691 | 1676 | 1647 | 1627 | 1641   | 1532 | 1390 | 1276 |
| 5/9/2013  | 1199 | 1157 | 1136 | 1160 |      | 1393 | 1486 | 1516 | 1597 | 1673      | 1735      | 1790      |             | 1762   | 1709 | 1675 | 1665 | 1623 | 1572 | 1593 | 1585   | 1480 | 1346 | 1260 |
| 5/10/2013 | 1197 | 1163 | 1152 | 1165 | 1250 | 1415 | 1504 | 1572 | 1616 | 1664      | 1684      | 1684      | 1673        | 1657   | 1623 | 1594 | 1570 | 1534 | 1496 | 1466 | 1458   | 1372 | 1269 | 1179 |
| 5/11/2013 | 1129 | 1094 | 1076 | 1084 | 1106 | 1151 | 1194 | 1285 | 1344 | 1391      | 1404      | 1377      | 1353        | 1312   | 1304 | 1300 | 1296 | 1288 | 1274 | 1286 | 1355   | 1312 | 1246 | 1181 |
| 5/12/2013 | 1137 | 1110 | 1108 | 1112 |      | 1165 | 1199 | 1264 | 1304 | 1319      |           | 1290      |             | 1253   | 1253 | 1236 | 1247 | 1246 | 1268 | 1319 | 1391   | 1348 | 1265 | 1203 |
| 5/13/2013 | 1166 | 1144 | 1154 | 1194 |      | 1486 | 1581 | 1590 | 1604 | 1622      | 1618      | 1614      |             | 1572   | 1541 | 1519 | 1497 | 1483 | 1457 | 1470 | 1514   | 1424 | 1305 | 1208 |
| 5/14/2013 | 1165 | 1126 | 1123 | 1149 |      | 1408 | 1510 | 1470 | 1553 | 1596      | 1621      | 1643      | 1669        | 1698   | 1725 | 1745 | 1749 | 1750 | 1741 | 1730 | 1751   | 1648 | 1497 | 1371 |
| 5/15/2013 | 1299 | 1247 | 1221 | 1230 |      | 1469 | 1576 | 1659 | 1737 | 1814      | 1876      | 1932      | 1991        | 2038   | 2066 | 2073 | 2032 | 2006 | 1972 | 1958 | 1964   | 1833 | 1664 | 1519 |
| 5/16/2013 | 1424 | 1357 | 1328 | 1326 |      | 1556 | 1644 | 1728 | 1782 | 1869      | 1918      | 1964      | 1977        | 1994   | 2017 | 2019 | 2031 | 2016 | 1968 | 1920 | 1917   | 1788 | 1608 | 1472 |
| 5/17/2013 | 1371 | 1304 | 1274 | 1280 |      | 1529 | 1606 | 1693 | 1785 | 1879      | 1944      | 1994      | 2031        | 2054   | 1983 | 1857 | 1783 | 1741 | 1688 | 1670 | 1672   | 1594 | 1468 | 1355 |
| 5/18/2013 | 1278 | 1232 | 1199 | 1184 |      | 1239 | 1287 | 1369 | 1439 | 1490      | 1513      | 1531      | 1543        | 1576   | 1609 | 1657 | 1684 | 1686 | 1665 | 1636 | 1647   | 1583 | 1489 | 1370 |
| 5/19/2013 | 1286 | 1217 | 1183 | 1160 |      | 1158 | 1192 | 1309 | 1432 | 1532      | 1622      | 1704      | 1774        | 1835   | 1896 | 1950 | 1987 | 1989 | 1973 | 1930 | 1939   | 1836 | 1679 | 1542 |
| 5/20/2013 | 1456 | 1407 | 1378 | 1386 |      | 1637 | 1756 | 1829 | 1893 | 1970      |           | 2141      | 2221        | 2257   | 2269 | 2257 | 2230 | 2195 | 2154 | 2092 | 2076   | 1933 | 1757 | 1620 |
| 5/21/2013 | 1516 | 1457 | 1385 | 1327 |      | 1521 | 1631 | 1673 | 1722 | 1826      | 1913      | 1999      |             | 2132   | 2167 | 2193 | 2181 | 2129 | 2038 | 1975 | 1965   | 1832 | 1638 | 1485 |
| 5/22/2013 | 1396 | 1345 | 1304 | 1309 |      | 1554 | 1656 | 1699 | 1737 | 1829      | 1871      | 1863      | 1836        | 1825   | 1830 | 1862 | 1836 | 1783 | 1743 | 1740 | 1731   | 1617 | 1465 | 1345 |
| 5/23/2013 | 1265 | 1209 | 1186 | 1208 |      | 1420 | 1517 | 1560 | 1602 | 1637      | 1666      | 1679      |             | 1664   | 1626 | 1590 | 1534 | 1479 | 1460 | 1480 | 1483   | 1408 | 1297 | 1210 |
| 5/24/2013 | 1157 | 1132 | 1119 | 1134 |      | 1351 | 1448 | 1483 | 1499 | 1531      | 1531      | 1530      |             | 1524   | 1510 | 1484 | 1462 | 1440 | 1414 | 1389 | 1409   | 1361 | 1264 | 1171 |
| 5/25/2013 | 1109 | 1072 | 1048 | 1051 | 1079 | 1087 | 1118 | 1191 | 1252 | 1296      |           | 1306      |             | 1267   | 1264 | 1251 | 1256 | 1244 | 1248 | 1267 | 1307   | 1259 | 1195 | 1126 |
| 5/26/2013 | 1076 | 1042 | 1033 | 1022 |      | 1056 | 1080 | 1138 | 1187 | 1211      | 1235      |           |             | 1228   | 1233 | 1239 | 1243 | 1245 | 1240 | 1262 | 1310   | 1269 | 1199 | 1133 |
| 5/27/2013 | 1083 | 1053 | 1038 | 1031 | 1061 | 1071 | 1071 | 1132 | 1230 | 1297      | 1342      | 1368      |             | 1427   | 1479 | 1529 | 1540 | 1550 | 1553 | 1566 | 1564   | 1469 | 1361 | 1270 |
| 5/28/2013 | 1194 | 1157 | 1141 | 1157 | 1256 | 1406 | 1520 | 1620 | 1686 | 1755      | 1816      | 1872      | 1924        | 1953   | 1959 | 1969 | 1956 | 1929 | 1928 | 1897 | 1900   | 1810 | 1645 | 1516 |
| 5/29/2013 | 1411 | 1343 | 1303 | 1303 | 1380 | 1514 | 1620 | 1725 | 1833 | 1937      | 2017      | 2098      | 2163        | 2200   | 2229 | 2250 | 2230 | 2174 | 2112 | 2043 | 2034   | 1906 | 1731 | 1581 |
| 5/30/2013 | 1475 | 1403 | 1365 | 1373 |      | 1566 | 1685 | 1794 | 1896 | 2020      | 2134      | 2229      | 2290        | 2318   | 2315 | 2300 | 2285 | 2247 | 2154 | 2100 | 2072   | 1968 | 1805 | 1653 |
| 5/31/2013 | 1547 | 1479 | 1432 | 1426 | 1489 | 1601 | 1686 | 1731 | 1750 | 1783      | 1804      | 1793      | 1827        | 1840   | 1841 | 1851 | 1840 | 1792 | 1753 | 1718 | 1735   | 1689 | 1584 | 1477 |

|           |      |      |      |      |      |      |      |      | ]    | IPL Syster | n Loads F | or Calend | ar Year 20 | 13, MW |      |      |      |      |      |      |      |      |      |      |
|-----------|------|------|------|------|------|------|------|------|------|------------|-----------|-----------|------------|--------|------|------|------|------|------|------|------|------|------|------|
| Date      | HE1  | HE2  | HE3  | HE4  | HE5  | HE6  | HE7  | HE8  | HE9  | HE10       | HE11      | HE12      | HE13       | HE14   | HE15 | HE16 | HE17 | HE18 | HE19 | HE20 | HE21 | HE22 | HE23 | HE24 |
| 6/1/2013  | 1399 | 1338 | 1287 | 1244 | 1244 | 1271 | 1290 | 1356 | 1418 | 1489       | 1565      | 1582      | 1576       | 1582   | 1589 | 1616 | 1644 | 1641 | 1623 | 1580 | 1591 | 1544 | 1454 | 1358 |
| 6/2/2013  | 1274 | 1217 | 1170 | 1145 | 1131 | 1113 | 1143 | 1241 | 1334 | 1388       | 1407      | 1428      | 1444       | 1451   | 1460 | 1480 | 1492 | 1477 | 1457 | 1444 | 1453 | 1404 | 1292 | 1194 |
| 6/3/2013  | 1125 | 1091 | 1074 | 1091 | 1164 | 1269 | 1369 | 1438 | 1486 | 1537       | 1570      | 1583      | 1602       | 1612   | 1606 | 1609 | 1596 | 1590 | 1567 | 1534 | 1525 | 1457 | 1323 | 1220 |
| 6/4/2013  | 1156 | 1115 | 1103 | 1120 | 1188 | 1288 | 1399 | 1470 | 1535 | 1607       | 1627      | 1661      | 1693       | 1712   | 1717 | 1723 | 1712 | 1696 | 1652 | 1607 | 1612 | 1526 | 1374 | 1264 |
| 6/5/2013  | 1188 | 1152 | 1138 | 1143 | 1220 | 1320 | 1419 | 1499 | 1568 | 1636       | 1697      | 1765      | 1821       | 1845   | 1904 | 1931 | 1925 | 1913 | 1883 | 1817 | 1821 | 1718 | 1545 | 1407 |
| 6/6/2013  | 1281 | 1243 | 1204 | 1211 | 1259 | 1372 | 1506 | 1546 | 1577 | 1620       | 1651      | 1671      | 1695       | 1755   | 1814 | 1862 | 1867 | 1859 | 1807 | 1757 | 1747 | 1678 | 1525 | 1394 |
| 6/7/2013  | 1311 | 1258 | 1225 | 1221 | 1282 | 1378 | 1453 | 1546 | 1603 | 1686       | 1752      | 1809      | 1855       | 1856   | 1823 | 1784 | 1718 | 1645 | 1594 | 1565 | 1582 | 1517 | 1420 | 1304 |
| 6/8/2013  | 1236 | 1174 | 1139 | 1119 | 1132 | 1144 | 1183 | 1272 | 1346 | 1408       | 1475      | 1533      | 1580       | 1616   | 1648 | 1669 | 1677 | 1668 | 1637 | 1591 | 1603 | 1558 | 1452 | 1353 |
| 6/9/2013  | 1265 | 1210 | 1170 | 1148 | 1149 | 1134 | 1159 | 1246 | 1349 | 1471       | 1571      | 1639      | 1685       | 1736   | 1758 | 1740 | 1712 | 1683 | 1657 | 1632 | 1648 | 1594 | 1491 | 1392 |
| 6/10/2013 | 1315 | 1262 | 1231 | 1242 | 1322 | 1450 | 1544 | 1619 | 1720 | 1815       | 1883      | 1927      | 1956       | 1942   | 1904 | 1842 | 1804 | 1815 | 1796 | 1751 | 1744 | 1680 | 1527 | 1403 |
| 6/11/2013 | 1313 | 1266 | 1233 |      |      | 1410 | 1528 | 1636 | 1754 | 1867       | 1951      | 2028      | 2117       | 2179   | 2222 | 2253 | 2199 | 2172 | 2103 | 2050 | 2025 | 1932 | 1766 | 1611 |
| 6/12/2013 | 1503 | 1436 | 1402 |      | 1483 | 1596 | 1731 | 1851 | 1963 | 2053       | 2180      | 2313      | 2434       | 2477   | 2473 | 2473 | 2443 | 2416 | 2399 | 2321 | 2305 | 2205 | 2044 | 1911 |
| 6/13/2013 | 1817 | 1738 | 1689 | 1612 | 1634 | 1721 | 1790 | 1815 | 1856 | 1874       | 1876      | 1903      | 1959       | 1999   | 2034 | 2033 | 2013 | 1960 | 1890 | 1795 | 1734 | 1662 | 1500 | 1362 |
| 6/14/2013 | 1278 | 1216 | 1192 | 1190 | 1247 | 1335 | 1438 | 1533 | 1626 | 1722       | 1778      | 1857      | 1907       | 1938   | 1962 | 1991 | 1982 | 1946 | 1867 | 1799 | 1762 | 1685 | 1532 | 1401 |
| 6/15/2013 | 1297 | 1235 | 1194 |      | 1190 | 1182 | 1231 | 1324 | 1449 | 1555       | 1648      | 1733      | 1786       | 1825   | 1878 | 1907 | 1872 | 1865 | 1849 | 1789 | 1770 | 1705 | 1582 | 1477 |
| 6/16/2013 | 1385 | 1335 | 1283 | 1254 | 1241 | 1239 | 1246 | 1317 | 1382 | 1450       | 1485      | 1545      | 1607       | 1676   | 1720 | 1755 | 1804 | 1816 | 1803 | 1765 | 1765 | 1728 | 1604 | 1468 |
| 6/17/2013 | 1376 | 1316 | 1285 |      | 1376 | 1481 | 1603 | 1708 | 1841 | 1992       | 2102      | 2207      | 2276       | 2330   | 2352 | 2370 | 2337 | 2260 | 2183 | 2128 | 2086 | 1973 | 1783 | 1616 |
| 6/18/2013 | 1484 | 1411 | 1360 | 1354 | 1418 | 1503 | 1626 | 1741 | 1846 | 1974       | 2078      | 2173      | 2265       | 2314   | 2334 | 2333 | 2303 | 2244 | 2165 | 2077 | 2001 | 1902 | 1720 | 1568 |
| 6/19/2013 | 1443 | 1359 | 1309 |      | 1353 | 1434 | 1536 | 1624 | 1723 | 1827       | 1910      | 1986      | 2056       | 2106   | 2152 | 2173 | 2168 | 2140 | 2076 | 1997 | 1964 | 1867 | 1688 | 1523 |
| 6/20/2013 | 1412 | 1337 | 1295 | 1288 | 1354 | 1441 | 1561 | 1670 | 1784 | 1911       | 2010      | 2111      | 2208       | 2264   | 2309 | 2321 | 2304 | 2273 | 2216 | 2123 | 2047 | 1923 | 1731 | 1574 |
| 6/21/2013 | 1462 | 1388 | 1345 |      | 1389 | 1460 | 1592 | 1701 | 1839 | 1987       | 2109      | 2204      | 2287       | 2350   | 2392 | 2404 | 2391 | 2330 | 2236 | 2144 | 2086 | 1999 | 1868 | 1722 |
| 6/22/2013 | 1601 | 1517 | 1451 | 1436 |      | 1433 | 1481 | 1604 | 1757 | 1938       | 2079      | 2182      | 2245       | 2279   | 2262 | 2122 | 1984 | 1890 | 1822 | 1777 | 1771 | 1718 | 1612 | 1498 |
| 6/23/2013 | 1404 | 1337 | 1297 | 1272 | 1266 | 1249 | 1291 | 1407 | 1555 | 1709       | 1868      | 1979      | 2064       | 2113   | 2070 | 1899 | 1827 | 1789 | 1758 | 1747 | 1763 | 1729 | 1612 | 1498 |
| 6/24/2013 | 1412 | 1359 | 1335 |      | 1432 | 1546 | 1647 | 1773 | 1864 | 1987       | 2102      | 2206      | 2297       | 2375   | 2423 | 2453 | 2460 | 2433 | 2355 | 2254 | 2197 | 2074 | 1891 | 1739 |
| 6/25/2013 | 1614 | 1530 | 1476 |      | 1515 | 1623 | 1734 | 1855 | 1976 | 2154       | 2241      | 2327      | 2436       | 2524   | 2563 | 2592 | 2578 | 2515 | 2424 | 2359 | 2324 | 2132 | 1878 | 1691 |
| 6/26/2013 | 1583 | 1500 | 1449 |      | 1490 | 1586 | 1676 | 1764 | 1838 | 1925       | 2034      | 2176      | 2285       | 2337   | 2305 | 2215 | 2138 | 2106 | 2047 | 1981 | 1955 | 1872 | 1725 | 1590 |
| 6/27/2013 | 1489 | 1423 | 1392 | 1398 | 1477 | 1591 | 1703 | 1803 | 1931 | 2142       | 2189      | 2279      | 2374       | 2435   | 2463 | 2504 | 2498 | 2488 | 2446 | 2358 | 2290 | 2183 | 1990 | 1813 |
| 6/28/2013 | 1694 | 1602 | 1536 | 1510 | 1549 | 1616 | 1714 | 1843 | 1966 | 2078       | 2175      | 2235      | 2283       | 2310   | 2233 | 2062 | 2079 | 2066 | 2010 | 1929 | 1851 | 1741 | 1601 | 1465 |
| 6/29/2013 | 1364 | 1298 | 1251 | 1228 | 1239 | 1231 | 1268 | 1377 | 1470 | 1532       | 1582      | 1610      | 1635       | 1629   | 1589 | 1565 | 1576 | 1558 | 1542 | 1510 | 1533 | 1505 | 1408 | 1328 |
| 6/30/2013 | 1248 | 1198 | 1172 | 1156 | 1164 | 1167 | 1184 | 1248 | 1330 | 1415       | 1486      | 1556      | 1607       | 1637   | 1637 | 1634 | 1620 | 1608 | 1595 | 1568 | 1596 | 1547 | 1440 | 1341 |

|           |      |      |      |      |      |      |       |      | ]    | PL Syste | m Loads F | or Calend | ar Year 20 | 13, MW |      |      |      |      |      |        |      |      |      |      |
|-----------|------|------|------|------|------|------|-------|------|------|----------|-----------|-----------|------------|--------|------|------|------|------|------|--------|------|------|------|------|
| Date      | HE1  | HE2  | HE3  | HE4  | HE5  | HE6  | HE7 H | E8   | HE9  | HE10     | HE11      | HE12      | HE13       | HE14   | HE15 | HE16 | HE17 | HE18 | HE19 | HE20 I | IE21 | HE22 | HE23 | HE24 |
| 7/1/2013  | 1257 | 1220 | 1201 | 1252 | 1336 | 1393 | 1469  | 1558 | 1639 | 1680     | 1727      | 1779      | 1776       | 1787   | 1765 | 1755 | 1713 | 1653 | 1619 | 1591   | 1613 | 1540 | 1433 | 1351 |
| 7/2/2013  | 1280 | 1242 | 1216 | 1222 | 1294 | 1389 | 1472  | 1541 | 1610 | 1668     | 1671      | 1695      | 1752       | 1803   | 1814 | 1823 | 1827 | 1795 | 1760 | 1693   | 1665 | 1595 | 1469 | 1352 |
| 7/3/2013  | 1273 | 1218 | 1201 | 1200 | 1270 | 1363 | 1444  | 1557 | 1623 | 1693     | 1754      | 1819      | 1868       | 1917   | 1935 | 1968 | 1970 | 1934 | 1831 | 1760   | 1728 | 1677 | 1546 | 1421 |
| 7/4/2013  | 1322 | 1250 | 1214 | 1185 | 1190 | 1192 | 1188  | 1257 | 1349 | 1446     | 1551      | 1632      | 1665       | 1667   | 1645 | 1633 | 1612 | 1572 | 1515 | 1476   | 1473 | 1437 | 1413 | 1344 |
| 7/5/2013  | 1268 | 1217 | 1194 | 1196 | 1238 | 1291 | 1362  | 1462 | 1585 | 1691     | 1759      | 1822      | 1870       | 1922   | 1947 | 1981 | 1989 | 1973 | 1907 | 1829   | 1812 | 1758 | 1627 | 1505 |
| 7/6/2013  | 1414 | 1351 | 1312 | 1295 | 1303 | 1317 | 1327  | 1389 | 1458 | 1528     | 1571      | 1595      | 1591       | 1580   | 1581 | 1576 | 1584 | 1569 | 1534 | 1520   | 1547 | 1538 | 1448 | 1346 |
| 7/7/2013  | 1271 | 1204 | 1174 | 1152 | 1152 | 1152 | 1164  | 1229 | 1308 | 1389     | 1479      | 1598      | 1722       | 1819   | 1879 | 1948 | 2012 | 2030 | 1990 | 1942   | 1918 | 1848 | 1705 | 1564 |
| 7/8/2013  | 1465 | 1395 | 1361 | 1372 | 1438 | 1536 | 1660  | 1784 | 1907 | 2029     | 2150      | 2233      | 2255       | 2297   | 2289 | 2332 | 2373 | 2373 | 2323 | 2247   | 2219 | 2125 | 1963 | 1823 |
| 7/9/2013  | 1698 | 1611 | 1571 | 1571 | 1636 |      | 1859  | 1967 | 2083 | 2148     | 2200      | 2281      | 2329       | 2414   | 2499 | 2556 | 2568 | 2512 | 2443 | 2344   | 2294 | 2190 | 2037 | 1889 |
| 7/10/2013 | 1784 | 1694 | 1652 | 1634 | 1701 | 1816 | 1918  | 2057 | 2187 | 2345     | 2427      | 2403      | 2296       | 2127   | 2098 | 2163 | 2231 | 2256 | 2216 | 2162   | 2124 | 2017 | 1852 | 1680 |
| 7/11/2013 | 1527 | 1438 | 1371 | 1351 | 1404 | 1487 | 1571  | 1677 | 1780 | 1886     | 1965      | 2022      | 2058       | 2089   | 2104 | 2116 | 2106 | 2069 | 2003 | 1918   | 1863 | 1777 | 1612 | 1471 |
| 7/12/2013 | 1360 | 1293 | 1255 | 1246 | 1299 |      | 1465  | 1582 | 1689 | 1801     | 1895      | 1956      | 2015       | 2069   | 2109 | 2133 | 2117 | 2075 | 2005 | 1903   | 1846 | 1772 | 1609 | 1472 |
| 7/13/2013 | 1365 | 1296 | 1250 | 1230 | 1233 | 1236 | 1270  | 1376 | 1503 | 1641     | 1739      | 1808      | 1866       | 1930   | 1991 | 2047 | 2067 | 2032 | 1988 | 1928   | 1886 | 1815 | 1689 | 1573 |
| 7/14/2013 | 1473 | 1394 | 1338 | 1313 | 1301 | 1281 | 1316  | 1450 | 1610 | 1770     | 1922      | 2063      | 2159       | 2225   | 2272 | 2307 | 2341 | 2343 | 2319 | 2273   | 2233 | 2159 | 2016 | 1869 |
| 7/15/2013 | 1756 | 1665 | 1606 | 1595 | 1649 | 1745 | 1858  | 2001 | 2154 | 2301     | 2410      | 2495      | 2564       | 2613   | 2646 | 2654 | 2631 | 2609 | 2551 | 2462   | 2396 | 2266 | 2060 | 1887 |
| 7/16/2013 | 1755 | 1648 | 1594 | 1575 | 1634 | 1730 | 1838  | 1981 | 2143 | 2318     | 2439      | 2525      | 2602       | 2631   | 2637 | 2649 | 2612 | 2589 | 2539 |        | 2419 | 2318 | 2138 | 1962 |
| 7/17/2013 | 1831 | 1729 | 1671 | 1652 | 1709 |      | 1913  | 2055 | 2205 | 2368     | 2503      | 2608      | 2672       | 2722   | 2747 | 2757 | 2746 | 2734 | 2686 | 2588   | 2516 | 2396 | 2202 | 2029 |
| 7/18/2013 | 1890 | 1788 | 1711 | 1685 | 1729 |      | 1933  | 2093 | 2260 | 2424     | 2530      | 2628      | 2713       | 2768   | 2789 | 2793 | 2769 | 2736 | 2674 | 2590   | 2532 | 2419 | 2221 | 2050 |
| 7/19/2013 | 1921 | 1830 | 1759 | 1744 | 1792 |      | 1989  | 2133 | 2274 | 2432     | 2550      | 2634      | 2699       | 2738   | 2761 | 2749 | 2721 | 2666 | 2586 |        | 2459 | 2348 | 2180 | 2023 |
| 7/20/2013 | 1900 | 1797 | 1727 | 1678 | 1664 | 1675 | 1689  | 1811 | 1959 | 2026     | 2079      | 2052      | 1934       | 1840   | 1785 | 1768 | 1749 |      | 1678 |        | 1679 | 1626 | 1536 | 1453 |
| 7/21/2013 | 1386 | 1321 | 1290 | 1310 | 1229 |      | 1279  | 1372 | 1513 | 1681     | 1811      | 1877      | 1926       | 1975   | 2048 | 2110 | 2108 | 2100 | 2071 | 2038   | 2051 | 1958 | 1815 | 1693 |
| 7/22/2013 | 1591 | 1508 | 1452 | 1449 | 1513 | 1639 | 1718  | 1779 | 1836 | 1918     | 1966      | 2022      | 2079       | 2151   | 2206 | 2245 | 2229 | 2229 | 2187 | 2133   | 2092 | 1982 | 1794 | 1649 |
| 7/23/2013 | 1538 | 1457 | 1422 | 1422 | 1493 | 1621 | 1715  | 1857 | 2003 | 2191     | 2331      | 2435      | 2519       | 2557   | 2591 | 2579 | 2537 | 2458 | 2345 |        | 2091 | 1927 | 1709 |      |
| 7/24/2013 | 1416 | 1315 | 1268 | 1260 | 1311 | 1394 | 1456  | 1528 | 1593 | 1671     | 1734      | 1792      | 1859       | 1898   | 1929 | 1945 | 1950 | 1919 | 1866 |        | 1748 | 1649 | 1495 | 1372 |
| 7/25/2013 | 1278 | 1224 | 1196 | 1197 | 1256 |      | 1428  | 1530 | 1613 | 1697     | 1758      | 1818      | 1871       | 1923   |      | 1998 | 2006 | 1990 | 1929 |        | 1823 | 1720 |      | 1419 |
| 7/26/2013 | 1322 | 1263 | 1236 | 1234 | 1297 | 1388 | 1460  | 1576 | 1669 | 1789     | 1852      | 1911      | 1989       | 2036   | 2059 | 2052 | 2017 | 1936 | 1854 | 1810   | 1800 | 1716 |      | 1475 |
| 7/27/2013 | 1384 | 1318 | 1288 | 1271 | 1286 | 1323 | 1345  | 1391 | 1466 | 1561     | 1628      | 1676      | 1689       | 1703   | 1715 | 1731 | 1722 | 1696 | 1628 | 1545   | 1534 | 1458 | 1351 | 1249 |
| 7/28/2013 | 1169 | 1118 | 1084 | 1067 | 1067 | 1065 | 1070  | 1147 | 1222 | 1298     | 1340      | 1385      | 1410       | 1418   | 1432 | 1452 | 1459 | 1455 | 1439 |        | 1475 | 1429 | 1326 |      |
| 7/29/2013 | 1160 | 1130 | 1116 | 1130 | 1214 | 1318 | 1405  | 1492 | 1582 | 1668     | 1731      | 1794      | 1833       | 1881   | 1907 | 1932 | 1945 | 1917 | 1852 | 1780   | 1765 | 1648 | 1490 | 1366 |
| 7/30/2013 | 1275 | 1224 | 1199 | 1206 | 1271 | 1390 | 1462  | 1548 | 1644 | 1734     | 1765      | 1793      | 1805       | 1817   | 1794 | 1773 | 1735 | 1705 | 1681 | 1681   | 1698 | 1613 | 1482 | 1382 |
| 7/31/2013 | 1307 | 1259 | 1246 | 1255 | 1332 | 1483 | 1564  | 1613 | 1661 | 1722     | 1764      | 1793      | 1825       | 1852   | 1862 | 1858 | 1848 | 1838 | 1820 | 1793   | 1816 | 1742 | 1599 | 1480 |

|           |      |      |      |      |      |      |      |      | ]    | IPL Syster | m Loads F | or Calend | ar Year 20 | 13, MW |      |      |      |      |      |      |      |      |      |      |
|-----------|------|------|------|------|------|------|------|------|------|------------|-----------|-----------|------------|--------|------|------|------|------|------|------|------|------|------|------|
| Date      | HE1  | HE2  | HE3  | HE4  | HE5  | HE6  | HE7  | HE8  | HE9  | HE10       | HE11      | HE12      | HE13       | HE14   | HE15 | HE16 | HE17 | HE18 | HE19 | HE20 | HE21 | HE22 | HE23 | HE24 |
| 8/1/2013  | 1386 | 1331 | 1293 | 1297 | 1366 | 1505 | 1564 | 1646 | 1740 | 1855       | 1928      | 2000      | 2070       | 2113   | 2125 | 2121 | 2098 | 2064 | 1992 | 1908 | 1885 | 1766 | 1589 | 1446 |
| 8/2/2013  | 1336 | 1270 | 1235 | 1229 | 1290 | 1405 | 1474 | 1560 | 1637 | 1729       | 1811      | 1903      | 1997       | 2060   | 2090 | 2030 | 1949 | 1872 | 1818 | 1780 | 1799 | 1718 | 1596 | 1491 |
| 8/3/2013  | 1402 | 1339 | 1298 | 1282 | 1295 | 1330 | 1341 | 1414 | 1500 | 1591       | 1643      | 1689      | 1752       | 1827   | 1892 | 1941 | 1957 | 1935 | 1879 | 1795 | 1751 | 1647 | 1504 | 1372 |
| 8/4/2013  | 1270 | 1196 | 1152 | 1129 | 1124 | 1122 | 1119 | 1203 | 1314 | 1408       | 1492      | 1556      | 1613       | 1672   | 1724 | 1757 | 1787 | 1785 | 1760 | 1708 | 1703 | 1602 | 1447 | 1319 |
| 8/5/2013  | 1244 | 1194 | 1177 | 1191 | 1287 | 1414 | 1493 | 1573 | 1685 | 1782       | 1880      | 1949      | 2018       | 2062   | 2102 | 2079 | 2017 | 1964 | 1918 | 1872 | 1864 | 1739 |      |      |
| 8/6/2013  | 1383 | 1323 | 1301 | 1307 | 1400 | 1558 | 1639 | 1707 | 1784 | 1861       | 1897      | 1947      | 2001       | 2041   | 2038 | 2034 | 2070 | 2068 | 2049 | 2014 | 2020 | 1905 | 1740 | 1621 |
| 8/7/2013  | 1526 | 1463 | 1432 | 1433 | 1509 | 1673 | 1752 | 1828 | 1895 | 1963       | 2039      | 2108      | 2217       | 2292   | 2327 | 2364 | 2345 | 2313 | 2250 | 2199 | 2165 | 2031 | 1856 | 1716 |
| 8/8/2013  | 1601 | 1534 | 1500 | 1505 | 1589 | 1748 | 1816 | 1903 | 2004 | 2103       | 2198      | 2306      | 2402       | 2456   | 2416 | 2317 | 2232 | 2191 | 2147 | 2125 | 2100 | 1948 | 1783 |      |
| 8/9/2013  | 1548 | 1487 | 1451 | 1454 | 1527 | 1686 | 1761 | 1807 | 1856 | 1926       | 2004      | 2102      | 2191       | 2240   | 2289 | 2308 | 2274 | 2189 | 2082 | 2006 | 1982 | 1860 | 1708 | 1562 |
| 8/10/2013 | 1464 | 1392 | 1347 | 1328 | 1344 | 1365 | 1388 | 1470 | 1578 | 1707       | 1829      | 1935      | 2015       | 2070   | 2123 | 2154 | 2156 | 2127 | 2065 | 1999 | 1978 | 1871 | 1725 |      |
| 8/11/2013 | 1489 | 1409 | 1345 | 1307 | 1300 | 1308 | 1304 | 1416 | 1565 | 1722       | 1834      | 1920      | 1996       | 2057   | 2101 | 2138 | 2164 | 2152 | 2116 | 2044 | 2027 | 1881 | 1701 |      |
| 8/12/2013 | 1449 | 1378 | 1348 | 1356 | 1445 | 1619 | 1691 | 1790 | 1912 | 2032       | 2138      | 2242      | 2313       | 2378   | 2399 | 2391 | 2321 | 2251 | 2166 | 2135 | 2096 | 1954 | 1769 |      |
| 8/13/2013 | 1534 | 1448 | 1420 | 1414 | 1502 | 1642 | 1699 | 1764 | 1828 | 1926       | 1987      | 2041      | 2085       | 2092   | 2075 | 2045 | 1974 | 1895 | 1796 | 1703 | 1680 | 1548 |      |      |
| 8/14/2013 | 1212 | 1168 | 1155 | 1159 | 1241 | 1380 | 1449 | 1506 | 1572 | 1633       | 1659      | 1696      | 1724       | 1730   | 1739 | 1752 | 1734 | 1715 | 1669 | 1639 | 1634 | 1514 | 1363 |      |
| 8/15/2013 | 1190 | 1150 | 1133 | 1143 | 1218 | 1366 | 1435 | 1489 | 1548 | 1634       | 1680      | 1710      | 1742       | 1764   | 1760 | 1761 | 1767 | 1728 | 1676 | 1657 | 1659 | 1546 | 1399 |      |
| 8/16/2013 | 1219 | 1180 | 1162 | 1173 | 1255 | 1404 | 1479 | 1532 | 1579 | 1627       | 1653      | 1688      | 1729       | 1753   | 1773 | 1771 | 1751 | 1720 | 1655 | 1618 | 1619 | 1530 | 1414 |      |
| 8/17/2013 | 1233 | 1188 | 1153 | 1146 | 1161 | 1191 | 1212 | 1289 | 1407 | 1509       | 1585      | 1642      | 1693       | 1718   | 1728 | 1745 | 1757 | 1756 | 1715 | 1678 | 1669 | 1577 | 1460 | 1353 |
| 8/18/2013 | 1268 | 1213 | 1174 | 1150 | 1148 | 1163 | 1157 | 1240 | 1349 | 1470       | 1591      | 1683      | 1758       | 1821   | 1861 | 1900 | 1938 | 1940 | 1900 | 1876 | 1855 | 1724 | 1549 |      |
| 8/19/2013 | 1323 | 1266 | 1240 | 1253 | 1338 | 1511 | 1582 | 1654 | 1758 | 1878       | 1978      | 2074      | 2153       | 2208   | 2248 | 2283 | 2266 | 2229 | 2172 | 2113 | 2071 | 1897 | 1708 |      |
| 8/20/2013 | 1443 | 1368 | 1331 | 1333 | 1408 | 1565 | 1646 | 1719 | 1850 | 1986       | 2104      | 2201      | 2278       | 2334   | 2378 | 2409 | 2394 | 2358 | 2282 | 2251 | 2199 | 2029 | 1840 |      |
| 8/21/2013 | 1560 | 1485 | 1441 | 1431 | 1504 | 1673 | 1754 | 1825 | 1941 | 2082       | 2208      | 2297      | 2372       | 2430   | 2466 | 2502 | 2484 | 2438 | 2360 | 2316 | 2253 | 2052 | 1853 |      |
| 8/22/2013 | 1584 | 1498 | 1457 | 1453 | 1525 | 1692 | 1769 | 1822 | 1933 | 2060       | 2196      | 2317      | 2390       | 2373   | 2410 | 2388 | 2282 | 2174 | 2097 | 2074 | 2037 | 1884 | 1714 |      |
| 8/23/2013 | 1497 | 1433 | 1394 | 1395 | 1466 | 1622 | 1710 | 1764 | 1878 | 1981       | 2074      | 2169      | 2238       | 2297   | 2339 | 2365 | 2346 | 2282 | 2191 | 2106 | 2030 | 1881 | 1700 | 1547 |
| 8/24/2013 | 1421 | 1348 | 1291 | 1264 | 1255 | 1289 | 1288 | 1384 | 1505 | 1645       | 1763      | 1847      | 1940       | 2034   | 2101 | 2149 | 2173 | 2147 | 2068 | 1985 | 1910 | 1778 |      |      |
| 8/25/2013 | 1373 | 1303 | 1255 | 1223 | 1216 | 1226 | 1211 | 1304 | 1438 | 1590       | 1722      | 1848      | 1962       | 2063   | 2150 | 2213 | 2249 | 2236 | 2175 | 2115 | 2051 | 1876 | 1679 |      |
| 8/26/2013 | 1415 | 1349 | 1310 | 1321 | 1412 | 1588 | 1679 | 1756 | 1897 | 2062       | 2217      | 2342      | 2448       | 2497   | 2500 | 2527 | 2508 | 2460 | 2395 | 2365 | 2297 | 2108 | 1915 | 1756 |
| 8/27/2013 | 1634 | 1575 | 1532 | 1538 | 1617 | 1796 | 1903 | 1946 | 2027 | 2141       | 2290      | 2456      | 2601       | 2660   | 2696 | 2678 | 2663 | 2619 |      | 2502 | 2432 | 2250 | 2044 |      |
| 8/28/2013 | 1773 | 1691 | 1653 | 1653 | 1742 | 1911 | 1990 | 2043 | 2171 | 2321       | 2448      | 2555      | 2677       | 2754   | 2807 | 2801 | 2768 | 2705 | 2627 | 2577 | 2490 | 2300 | 2079 | 1910 |
| 8/29/2013 | 1771 | 1674 | 1618 | 1611 | 1674 | 1841 | 1919 | 1963 | 2078 | 2210       | 2335      | 2426      | 2502       | 2556   | 2601 | 2601 | 2585 | 2518 | 2444 | 2410 | 2340 | 2147 | 1930 | 1765 |
| 8/30/2013 | 1639 | 1555 | 1502 | 1489 | 1559 | 1710 | 1776 | 1864 | 1974 | 2136       | 2274      | 2385      | 2489       | 2565   | 2643 | 2657 | 2648 | 2594 | 2558 | 2577 | 2407 | 2274 | 2095 |      |
| 8/31/2013 | 1792 | 1683 | 1600 | 1545 | 1530 | 1534 | 1525 | 1616 | 1787 | 1942       | 2091      | 2214      | 2328       | 2430   | 2478 | 2418 | 2181 | 2069 | 1997 | 1968 | 1892 | 1767 | 1653 | 1549 |

|           |      |      |      |      |      |      |      |      | 1    | PL Syste | m Loads F | or Calend | ar Year 2 | 013, MW |      |      |      |      |      |      |      |      |      |      |
|-----------|------|------|------|------|------|------|------|------|------|----------|-----------|-----------|-----------|---------|------|------|------|------|------|------|------|------|------|------|
| Date      | HE1  | HE2  | HE3  | HE4  | HE5  | HE6  | HE7  | HE8  | HE9  | HE10     | HE11      | HE12      | HE13      | HE14    | HE15 | HE16 | HE17 | HE18 | HE19 | HE20 | HE21 | HE22 | HE23 | HE24 |
| 9/1/2013  | 1454 | 1390 | 1344 | 1312 | 1300 | 1316 | 1329 | 1380 | 1470 | 1568     | 1683      | 1808      | 1900      | 1954    | 2016 | 2062 | 2070 | 2061 | 1972 | 1946 | 1910 | 1805 | 1666 | 1549 |
| 9/2/2013  | 1455 | 1391 | 1350 | 1337 | 1355 | 1386 | 1387 | 1432 | 1519 | 1608     | 1665      | 1744      | 1849      | 1953    | 2017 | 2065 | 2083 | 2048 | 1979 | 1946 | 1880 | 1710 | 1544 | 1413 |
| 9/3/2013  | 1317 | 1258 | 1227 | 1221 | 1281 | 1431 | 1490 | 1542 | 1612 | 1686     | 1748      | 1813      | 1869      | 1897    | 1930 | 1954 | 1951 | 1928 | 1855 | 1834 | 1777 | 1617 | 1435 | 1316 |
| 9/4/2013  | 1251 | 1203 | 1185 | 1193 | 1280 | 1423 | 1506 | 1554 | 1633 | 1732     | 1807      | 1875      | 1944      | 2018    | 2084 | 2127 | 2141 | 2107 | 2050 | 2027 | 1935 | 1765 | 1590 | 1435 |
| 9/5/2013  | 1346 | 1287 | 1264 | 1269 | 1359 | 1515 | 1596 | 1648 | 1748 | 1867     | 1959      | 2024      | 2105      | 2187    | 2253 | 2272 | 2271 | 2231 | 2176 | 2157 | 2063 | 1866 | 1663 | 1517 |
| 9/6/2013  | 1392 | 1311 | 1263 | 1255 | 1328 | 1476 | 1549 | 1580 | 1655 | 1737     | 1828      | 1907      | 2009      | 2090    | 2158 | 2201 | 2189 | 2137 | 2040 | 1997 | 1912 | 1770 | 1605 |      |
| 9/7/2013  | 1359 | 1293 | 1249 | 1228 | 1243 | 1280 | 1291 | 1363 | 1483 | 1626     | 1770      | 1883      | 1969      | 2043    | 2117 | 2170 | 2184 | 2120 | 2052 | 2053 | 1992 | 1878 | 1737 | 1601 |
| 9/8/2013  | 1510 | 1438 | 1387 | 1352 | 1348 | 1365 | 1370 | 1449 | 1609 | 1759     | 1911      | 2039      | 2130      | 2194    | 2219 | 2212 | 2254 | 2225 | 2187 | 2209 | 2112 | 1957 | 1776 | 1624 |
| 9/9/2013  | 1527 | 1455 | 1423 | 1422 | 1517 | 1688 | 1803 | 1840 | 1924 | 2033     | 2162      | 2339      | 2486      | 2571    | 2647 | 2670 | 2655 | 2618 | 2556 | 2543 | 2459 | 2272 | 2068 |      |
| 9/10/2013 | 1817 | 1729 | 1691 | 1683 | 1760 | 1937 | 2036 | 2083 | 2200 | 2360     | 2509      | 2647      | 2754      | 2809    | 2801 | 2804 | 2759 | 2669 | 2556 | 2506 | 2366 | 2172 | 1988 |      |
| 9/11/2013 | 1705 | 1645 | 1613 | 1606 | 1678 | 1869 | 1970 | 2006 | 2118 | 2265     | 2405      | 2555      | 2664      | 2725    | 2776 | 2789 | 2754 | 2677 | 2578 | 2544 | 2412 | 2213 | 2002 |      |
| 9/12/2013 | 1723 | 1648 | 1601 | 1591 | 1679 | 1836 | 1932 | 1932 | 1947 | 1915     | 1999      | 2025      | 2055      | 2122    | 2171 | 2220 | 2211 | 2148 | 2082 | 2039 | 1906 | 1718 | 1535 |      |
| 9/13/2013 | 1306 | 1246 | 1223 | 1220 | 1289 | 1435 | 1510 | 1531 | 1573 | 1626     |           | 1659      | 1663      | 1647    | 1637 | 1633 | 1612 | 1563 | 1515 | 1526 | 1476 | 1395 | 1273 |      |
| 9/14/2013 | 1127 | 1082 | 1066 | 1064 | 1088 | 1142 | 1161 | 1218 | 1280 | 1331     | 1350      | 1362      | 1369      |         | 1400 | 1422 | 1437 | 1435 | 1405 | 1445 | 1400 | 1316 | 1228 |      |
| 9/15/2013 | 1096 | 1067 | 1041 | 1035 | 1042 | 1070 | 1083 | 1135 | 1207 | 1269     |           | 1353      | 1385      |         | 1464 | 1494 | 1502 | 1503 | 1539 | 1590 | 1529 | 1436 | 1324 |      |
| 9/16/2013 | 1174 | 1133 | 1124 | 1140 | 1246 | 1424 | 1542 | 1552 | 1580 | 1616     | 1645      | 1674      | 1702      |         | 1666 | 1645 | 1621 | 1608 | 1582 | 1629 | 1544 | 1425 | 1300 |      |
| 9/17/2013 | 1158 | 1122 | 1113 | 1134 | 1211 | 1376 | 1474 | 1480 | 1518 | 1577     | 1616      | 1653      | 1689      | 1707    | 1703 | 1693 | 1680 | 1649 | 1635 | 1689 | 1615 | 1480 | 1352 |      |
| 9/18/2013 | 1198 | 1168 | 1154 | 1171 | 1254 | 1427 | 1548 | 1551 | 1598 | 1666     |           | 1785      | 1850      |         | 1976 | 2013 | 2016 | 1986 | 1956 | 1998 | 1901 | 1753 | 1595 |      |
| 9/19/2013 | 1380 | 1336 | 1320 | 1329 | 1418 |      | 1685 | 1721 | 1742 | 1789     |           | 1820      | 1914      | 1992    | 2059 | 2117 | 2127 | 2102 | 2068 | 2094 | 2014 | 1863 | 1692 |      |
| 9/20/2013 | 1485 | 1432 | 1399 | 1406 | 1475 | 1657 | 1757 | 1786 | 1858 | 1973     | 2057      | 2084      | 2069      | 2039    | 2012 | 1949 | 1894 | 1828 | 1799 | 1789 | 1727 | 1626 | 1498 |      |
| 9/21/2013 | 1283 | 1223 | 1173 | 1152 | 1163 | 1202 | 1244 | 1276 | 1345 | 1416     | 1459      | 1475      | 1482      |         | 1500 | 1486 | 1486 | 1463 | 1433 | 1467 | 1420 | 1334 | 1234 |      |
| 9/22/2013 | 1105 | 1065 | 1047 | 1033 | 1045 | 1073 | 1096 | 1133 | 1214 | 1268     | 1302      | 1328      | 1346      |         | 1388 | 1414 | 1440 | 1443 | 1441 | 1495 | 1427 | 1334 | 1228 |      |
| 9/23/2013 | 1103 | 1073 | 1070 | 1089 | 1183 | 1356 | 1467 | 1474 | 1513 | 1558     | 1596      | 1629      | 1644      | 1654    | 1663 | 1660 | 1650 | 1630 | 1610 | 1637 | 1553 | 1429 | 1295 |      |
| 9/24/2013 | 1153 | 1114 | 1102 | 1118 | 1202 | 1381 | 1470 | 1482 | 1522 | 1580     | 1639      | 1663      | 1699      |         | 1741 | 1750 | 1750 | 1713 | 1708 | 1736 | 1646 | 1512 | 1380 |      |
| 9/25/2013 | 1201 | 1162 | 1140 | 1157 | 1236 | 1405 | 1517 | 1520 | 1554 | 1634     | 1709      | 1771      | 1811      | 1844    | 1865 | 1875 | 1861 | 1821 | 1774 | 1781 | 1670 | 1517 | 1372 |      |
| 9/26/2013 | 1190 | 1145 | 1130 | 1140 | 1219 | 1379 | 1465 | 1476 | 1535 | 1599     | 1659      | 1707      | 1752      |         | 1822 | 1838 | 1837 | 1807 | 1779 | 1788 | 1681 | 1538 | 1392 |      |
| 9/27/2013 | 1212 | 1161 | 1147 | 1151 | 1229 | 1383 | 1482 | 1495 | 1535 | 1617     | 1674      | 1745      | 1796      |         | 1850 | 1864 | 1854 | 1799 | 1728 | 1709 | 1611 | 1487 | 1368 |      |
| 9/28/2013 | 1182 | 1135 | 1101 | 1097 | 1117 | 1167 | 1202 | 1247 | 1325 | 1409     | 1470      | 1532      | 1576      |         | 1670 | 1701 | 1718 | 1679 | 1663 | 1664 | 1584 | 1485 | 1382 |      |
| 9/29/2013 | 1208 | 1157 | 1132 | 1124 | 1132 | 1166 | 1213 | 1254 | 1325 | 1374     | 1406      | 1432      | 1434      | 1437    | 1432 | 1440 | 1446 | 1459 | 1508 | 1534 | 1477 | 1386 | 1288 |      |
| 9/30/2013 | 1155 | 1128 | 1135 | 1162 | 1257 | 1438 | 1575 | 1589 | 1622 | 1681     | 1724      | 1766      | 1800      | 1811    | 1816 | 1804 | 1778 | 1743 | 1737 | 1762 | 1664 | 1539 | 1402 | 1297 |

|            |      |      |      |      |      |      |      |      | ]    | PL Syster | n Loads F | or Calend | ar Year 20 | 13, MW |      |      |      |      |      |      |      |      |      |      |
|------------|------|------|------|------|------|------|------|------|------|-----------|-----------|-----------|------------|--------|------|------|------|------|------|------|------|------|------|------|
| Date       | HE1  | HE2  | HE3  | HE4  | HE5  | HE6  | HE7  | HE8  | HE9  | HE10      | HE11      | HE12      | HE13       | HE14   | HE15 | HE16 | HE17 | HE18 | HE19 | HE20 | HE21 | HE22 | HE23 | HE24 |
| 10/1/2013  | 1231 | 1196 | 1183 | 1199 | 1283 | 1451 | 1587 | 1601 | 1633 | 1675      | 1694      | 1720      | 1731       | 1746   | 1765 | 1785 | 1776 | 1763 | 1772 | 1795 | 1709 | 1571 | 1439 | 1337 |
| 10/2/2013  | 1265 | 1221 | 1206 | 1213 | 1320 | 1507 | 1640 | 1661 | 1710 | 1760      | 1787      | 1811      | 1830       | 1860   | 1882 | 1912 | 1897 | 1854 | 1870 | 1880 | 1772 | 1639 | 1503 | 1393 |
| 10/3/2013  | 1319 | 1280 | 1260 | 1274 | 1361 | 1544 | 1678 | 1693 | 1726 | 1791      | 1860      | 1919      | 1927       | 1949   | 1989 | 2013 | 1995 | 1961 | 1963 | 1965 | 1868 | 1732 | 1576 | 1457 |
| 10/4/2013  | 1373 | 1320 | 1299 | 1300 | 1386 | 1542 | 1676 | 1689 | 1766 | 1839      | 1847      | 1873      | 1925       | 1999   | 2068 | 2095 | 2052 | 1975 | 1965 | 1941 | 1857 | 1742 | 1609 | 1504 |
| 10/5/2013  | 1416 | 1362 | 1327 | 1305 | 1325 | 1367 | 1442 | 1490 | 1570 | 1662      | 1703      | 1685      | 1675       | 1675   | 1679 | 1675 | 1667 | 1696 | 1720 | 1677 | 1600 | 1508 | 1413 | 1330 |
| 10/6/2013  | 1266 | 1220 | 1194 | 1185 | 1189 | 1225 | 1265 | 1309 | 1346 | 1362      | 1381      | 1391      | 1378       | 1374   | 1366 | 1368 | 1381 | 1385 | 1447 | 1463 | 1391 | 1297 | 1193 | 1134 |
| 10/7/2013  | 1084 | 1069 | 1065 | 1089 | 1179 |      | 1471 | 1468 | 1499 | 1551      | 1551      | 1559      | 1562       | 1555   | 1523 | 1507 | 1492 | 1481 | 1534 | 1544 | 1474 | 1378 | 1266 | 1183 |
| 10/8/2013  | 1136 | 1117 | 1106 | 1131 | 1217 | 1389 | 1505 | 1495 | 1507 | 1555      | 1592      | 1617      | 1636       | 1632   | 1626 | 1614 | 1591 | 1556 | 1583 | 1589 | 1505 | 1392 | 1275 | 1196 |
| 10/9/2013  | 1144 | 1113 | 1111 | 1129 | 1217 | 1390 | 1508 | 1494 | 1515 | 1566      | 1597      | 1633      | 1656       | 1660   | 1653 | 1649 | 1635 | 1601 | 1625 | 1630 | 1540 | 1425 | 1293 | 1212 |
| 10/10/2013 | 1158 | 1124 | 1120 | 1139 | 1219 |      | 1502 | 1508 | 1529 | 1576      | 1616      | 1648      | 1666       | 1671   | 1683 | 1660 | 1651 | 1611 | 1635 | 1623 | 1529 | 1413 | 1294 | 1203 |
| 10/11/2013 | 1147 | 1119 | 1114 | 1129 | 1201 | 1360 | 1477 | 1480 | 1517 | 1570      | 1604      | 1639      | 1655       | 1663   | 1656 | 1659 | 1641 | 1600 | 1583 | 1560 | 1482 | 1386 | 1275 | 1189 |
| 10/12/2013 | 1123 | 1084 | 1067 | 1057 | 1082 | 1137 | 1189 | 1223 | 1288 | 1343      | 1380      | 1409      | 1443       | 1471   | 1479 | 1467 | 1450 | 1438 | 1488 | 1490 | 1445 | 1374 | 1296 | 1220 |
| 10/13/2013 | 1170 | 1124 | 1090 | 1065 | 1063 | 1083 | 1122 | 1146 | 1215 | 1269      | 1313      | 1344      | 1360       | 1381   | 1393 | 1413 | 1426 | 1413 | 1453 | 1450 | 1378 | 1289 | 1203 | 1134 |
| 10/14/2013 | 1080 | 1060 | 1059 | 1077 | 1164 | 1312 | 1429 | 1436 | 1462 | 1503      | 1536      | 1558      | 1587       | 1594   | 1589 | 1566 | 1542 | 1528 | 1587 | 1558 | 1469 | 1373 | 1270 | 1185 |
| 10/15/2013 | 1128 | 1107 | 1095 | 1111 | 1193 | 1337 | 1465 | 1486 | 1518 | 1564      | 1585      | 1607      | 1612       | 1610   | 1591 | 1569 | 1559 | 1568 | 1622 | 1588 | 1521 | 1423 | 1318 | 1236 |
| 10/16/2013 | 1186 | 1155 | 1137 | 1141 | 1203 | 1342 | 1462 | 1464 | 1479 | 1509      | 1521      | 1516      | 1524       | 1512   | 1503 | 1487 | 1473 | 1458 | 1521 | 1504 | 1447 | 1354 | 1253 | 1184 |
| 10/17/2013 | 1126 | 1115 | 1109 | 1139 | 1224 | 1375 | 1492 | 1514 | 1530 | 1556      | 1569      | 1560      | 1578       | 1571   | 1537 | 1509 | 1490 | 1485 | 1570 |      | 1511 | 1426 | 1331 | 1261 |
| 10/18/2013 | 1214 | 1195 | 1193 | 1216 | 1304 | 1439 | 1547 | 1550 | 1553 | 1559      | 1546      | 1543      | 1538       | 1518   | 1492 | 1454 | 1427 | 1420 | 1473 | 1458 | 1414 | 1342 | 1268 | 1204 |
| 10/19/2013 | 1163 | 1135 | 1128 | 1133 | 1163 | 1221 | 1286 | 1347 | 1393 | 1437      | 1441      | 1418      | 1373       | 1348   | 1319 | 1320 | 1319 | 1327 | 1415 | 1430 | 1408 | 1351 | 1293 | 1239 |
| 10/20/2013 | 1201 | 1184 | 1174 | 1171 | 1198 | 1239 | 1293 | 1316 | 1341 | 1351      | 1334      | 1328      | 1311       | 1304   | 1290 | 1294 | 1305 | 1331 | 1424 | 1418 | 1363 | 1307 | 1238 | 1187 |
| 10/21/2013 | 1140 | 1114 | 1118 | 1150 | 1257 | 1407 | 1531 | 1539 | 1544 | 1546      | 1565      | 1549      | 1540       | 1535   | 1511 | 1497 | 1503 | 1539 | 1585 | 1556 | 1491 | 1413 | 1331 | 1268 |
| 10/22/2013 | 1248 | 1239 | 1253 | 1299 | 1414 | 1593 | 1733 | 1719 | 1692 | 1667      | 1627      | 1602      | 1583       | 1560   | 1559 | 1554 | 1582 | 1618 | 1664 | 1635 | 1588 | 1499 | 1399 | 1338 |
| 10/23/2013 | 1302 | 1298 | 1316 | 1349 | 1450 | 1618 | 1727 | 1732 | 1739 | 1748      | 1711      | 1657      | 1623       | 1627   | 1634 | 1632 | 1630 | 1645 | 1710 | 1643 | 1646 | 1550 | 1459 | 1393 |
| 10/24/2013 | 1350 | 1329 | 1333 | 1353 | 1448 | 1610 | 1731 | 1726 | 1739 | 1766      | 1749      | 1737      | 1750       | 1737   | 1700 | 1696 | 1690 | 1725 | 1785 | 1762 | 1707 | 1623 | 1539 | 1480 |
| 10/25/2013 | 1452 | 1443 | 1460 | 1492 | 1592 | 1754 | 1878 | 1859 | 1771 | 1755      | 1724      | 1675      | 1632       | 1586   | 1540 | 1499 | 1492 | 1513 | 1606 | 1609 | 1586 | 1537 | 1464 | 1403 |
| 10/26/2013 | 1371 | 1362 | 1361 | 1376 | 1417 | 1484 | 1569 | 1589 | 1615 | 1621      | 1623      | 1599      | 1520       | 1440   | 1406 | 1429 | 1405 | 1418 | 1492 | 1484 | 1453 | 1411 | 1364 | 1312 |
| 10/27/2013 | 1303 | 1290 | 1301 | 1321 | 1354 | 1413 | 1480 | 1512 | 1504 | 1467      | 1414      | 1391      | 1361       | 1337   | 1321 | 1323 | 1331 | 1378 | 1502 | 1509 | 1470 | 1416 | 1350 | 1303 |
| 10/28/2013 | 1286 | 1288 | 1318 | 1367 | 1495 | 1685 | 1826 | 1803 | 1771 | 1714      | 1666      | 1630      | 1606       | 1573   | 1545 | 1510 | 1496 | 1533 | 1626 | 1608 | 1552 | 1468 | 1379 | 1311 |
| 10/29/2013 | 1275 | 1269 | 1272 | 1314 | 1419 | 1615 | 1742 | 1718 | 1699 | 1698      | 1672      | 1658      | 1651       | 1614   | 1593 | 1573 | 1564 | 1612 | 1655 | 1624 | 1562 | 1464 | 1353 | 1286 |
| 10/30/2013 | 1232 | 1208 | 1203 | 1219 | 1313 | 1483 | 1608 | 1621 | 1602 | 1633      | 1626      | 1638      | 1637       | 1615   | 1616 | 1595 | 1571 | 1610 | 1643 | 1611 | 1540 | 1434 | 1323 | 1258 |
| 10/31/2013 | 1196 | 1163 | 1154 | 1168 | 1267 | 1440 | 1561 | 1584 | 1582 | 1617      | 1631      | 1643      | 1643       | 1630   | 1618 | 1603 | 1608 | 1649 | 1652 | 1601 | 1515 | 1387 | 1286 | 1210 |

|            |      |      |      |      |      |      |       |      | I    | PL Syster | n Loads F | or Calend | ar Year 20 | 13, MW |      |      |      |      |      |        |      |      |      |      |
|------------|------|------|------|------|------|------|-------|------|------|-----------|-----------|-----------|------------|--------|------|------|------|------|------|--------|------|------|------|------|
| Date       | HE1  | HE2  | HE3  | HE4  | HE5  | HE6  | HE7 E | IE8  | HE9  | HE10      | HE11      | HE12      | HE13       | HE14   | HE15 | HE16 | HE17 | HE18 | HE19 | HE20 I | IE21 | HE22 | HE23 | HE24 |
| 11/1/2013  | 1168 | 1143 | 1150 | 1177 | 1270 | 1448 | 1586  | 1591 | 1602 | 1627      | 1612      | 1575      | 1558       | 1530   | 1505 | 1479 | 1451 | 1456 | 1498 | 1486   | 1464 | 1401 | 1329 | 1254 |
| 11/2/2013  | 1213 | 1181 | 1174 | 1188 | 1230 | 1299 | 1364  | 1403 | 1431 | 1442      | 1420      | 1392      | 1381       | 1361   | 1341 | 1358 | 1384 | 1423 | 1492 | 1482   | 1451 | 1405 | 1334 | 1276 |
| 11/3/2013  | 1238 | 1220 | 1220 | 1233 | 1260 | 1312 | 1376  | 1423 | 1451 | 1437      | 1397      | 1381      | 1358       | 1338   | 1325 | 1317 | 1338 | 1421 | 1539 | 1541   | 1528 | 1477 | 1409 | 1343 |
| 11/4/2013  | 1298 | 1261 | 1250 | 1253 | 1302 | 1417 | 1607  | 1681 | 1674 | 1666      | 1672      | 1657      | 1657       | 1636   | 1622 | 1623 | 1622 | 1659 | 1728 | 1697   | 1647 | 1568 | 1466 | 1363 |
| 11/5/2013  | 1305 | 1266 | 1239 | 1235 | 1261 | 1358 | 1528  | 1607 | 1590 | 1530      | 1546      | 1567      | 1629       | 1616   | 1608 | 1576 | 1555 | 1592 | 1690 | 1665   | 1625 | 1541 | 1431 | 1326 |
| 11/6/2013  | 1260 | 1209 | 1187 | 1177 | 1205 | 1305 | 1483  | 1568 | 1572 | 1589      | 1620      | 1638      | 1641       | 1644   | 1627 | 1610 | 1626 | 1673 | 1683 | 1665   | 1641 | 1583 | 1482 | 1394 |
| 11/7/2013  | 1332 | 1304 | 1291 | 1313 | 1361 | 1488 | 1685  | 1782 | 1754 | 1724      | 1699      | 1660      | 1631       | 1617   | 1573 | 1549 | 1552 | 1661 | 1745 | 1731   | 1699 | 1648 | 1572 | 1492 |
| 11/8/2013  | 1446 | 1425 | 1430 | 1441 | 1491 | 1610 | 1786  | 1869 | 1821 | 1780      | 1741      | 1690      | 1644       | 1624   | 1582 | 1539 | 1528 | 1588 | 1662 | 1637   | 1612 | 1567 | 1485 | 1410 |
| 11/9/2013  | 1346 | 1301 | 1291 | 1284 | 1303 | 1350 | 1414  | 1457 | 1488 | 1485      | 1474      | 1444      | 1414       | 1365   | 1339 | 1318 | 1329 | 1387 | 1475 | 1459   | 1436 | 1398 | 1353 | 1286 |
| 11/10/2013 | 1232 | 1202 | 1192 | 1193 | 1213 | 1247 | 1307  | 1349 | 1395 | 1417      | 1415      | 1402      | 1390       | 1358   | 1346 | 1336 | 1362 | 1465 | 1591 | 1606   | 1598 | 1556 | 1490 | 1422 |
| 11/11/2013 | 1378 | 1364 | 1363 | 1376 | 1405 | 1492 | 1663  | 1759 | 1743 | 1747      | 1738      | 1724      | 1720       | 1711   | 1682 | 1673 | 1692 | 1741 | 1770 | 1763   | 1741 | 1699 | 1625 | 1556 |
| 11/12/2013 | 1507 | 1478 | 1469 | 1485 | 1529 | 1650 | 1845  | 1950 | 1899 | 1856      | 1835      | 1807      | 1804       | 1780   | 1779 | 1790 | 1834 | 1913 | 1969 | 1957   | 1933 | 1870 | 1776 | 1691 |
| 11/13/2013 | 1637 | 1620 | 1622 | 1641 | 1695 | 1823 | 2001  | 2082 | 2016 | 1950      | 1906      | 1849      | 1807       | 1763   | 1729 | 1701 | 1711 | 1812 | 1920 | 1915   | 1897 | 1827 | 1740 | 1651 |
| 11/14/2013 | 1588 | 1558 | 1539 | 1548 | 1589 | 1699 | 1877  | 1943 | 1894 | 1839      | 1801      | 1746      | 1718       | 1684   | 1649 | 1603 | 1612 | 1694 | 1770 | 1764   | 1732 | 1671 | 1589 | 1497 |
| 11/15/2013 | 1427 | 1384 | 1369 | 1368 | 1399 | 1498 | 1660  | 1747 | 1737 | 1737      | 1755      | 1723      | 1698       | 1658   | 1604 | 1569 | 1588 | 1648 | 1683 | 1648   | 1609 | 1571 | 1500 | 1426 |
| 11/16/2013 | 1362 | 1315 | 1277 | 1264 | 1261 | 1294 | 1357  | 1401 | 1447 | 1500      | 1519      | 1510      | 1491       | 1455   | 1416 | 1388 | 1394 | 1481 | 1530 | 1500   | 1457 | 1413 | 1358 | 1277 |
| 11/17/2013 | 1212 | 1170 | 1143 | 1122 | 1119 | 1138 | 1173  | 1202 | 1236 | 1301      | 1341      | 1368      | 1389       | 1391   | 1405 | 1406 | 1367 | 1378 | 1457 | 1469   | 1452 | 1393 | 1329 | 1259 |
| 11/18/2013 | 1211 | 1177 | 1187 | 1199 | 1252 | 1384 | 1568  | 1675 | 1647 | 1630      | 1638      | 1630      | 1618       | 1597   | 1579 | 1564 | 1570 | 1669 | 1768 | 1768   | 1742 | 1684 | 1608 | 1511 |
| 11/19/2013 | 1458 | 1432 | 1427 | 1449 | 1495 | 1620 | 1818  | 1915 | 1874 | 1822      | 1789      | 1727      | 1706       | 1681   | 1641 | 1620 | 1651 | 1744 | 1855 | 1858   | 1832 | 1782 | 1680 | 1592 |
| 11/20/2013 | 1534 | 1509 | 1512 | 1524 | 1566 | 1694 | 1874  | 1955 | 1907 | 1883      | 1853      | 1795      | 1735       | 1697   | 1660 | 1657 | 1657 | 1764 | 1829 | 1803   | 1758 | 1681 | 1582 | 1469 |
| 11/21/2013 | 1399 | 1358 | 1333 | 1327 | 1362 | 1470 | 1649  | 1745 | 1734 | 1740      | 1746      | 1738      | 1709       | 1687   | 1675 | 1671 | 1681 | 1742 | 1751 | 1712   | 1677 | 1594 | 1501 | 1397 |
| 11/22/2013 | 1327 | 1279 | 1253 | 1250 | 1278 | 1372 | 1539  | 1657 | 1655 | 1669      | 1710      | 1721      | 1727       | 1747   | 1742 | 1716 | 1715 | 1793 | 1818 | 1797   | 1772 | 1720 | 1662 | 1585 |
| 11/23/2013 | 1539 | 1510 | 1501 | 1508 | 1540 | 1587 | 1669  | 1741 | 1771 | 1776      | 1762      | 1751      | 1740       | 1764   | 1779 | 1792 | 1826 | 1938 | 2002 | 2000   | 1991 | 1956 | 1896 | 1837 |
| 11/24/2013 | 1804 | 1763 | 1757 | 1761 | 1779 | 1817 | 1881  | 1935 | 1942 | 1901      | 1847      | 1796      | 1770       | 1733   | 1695 | 1684 | 1730 | 1893 | 1994 | 2005   | 1995 | 1955 | 1902 | 1830 |
| 11/25/2013 | 1782 | 1750 | 1736 | 1733 | 1769 | 1865 | 2016  | 2115 | 2103 | 2104      | 2113      | 2098      | 2074       | 2044   | 2015 | 2003 | 2004 | 2075 | 2084 | 2048   | 2006 | 1930 | 1822 | 1709 |
| 11/26/2013 | 1629 | 1590 | 1569 | 1568 | 1604 | 1711 | 1868  | 1961 | 1951 | 1968      | 1969      | 1969      | 1948       | 1924   | 1910 | 1867 | 1869 | 1954 | 1983 | 1972   | 1953 | 1904 | 1831 | 1749 |
| 11/27/2013 | 1683 | 1648 | 1633 | 1655 | 1713 | 1838 | 2003  | 2121 | 2135 | 2159      | 2187      | 2180      | 2162       | 2100   | 2000 | 1972 | 1979 | 2075 | 2140 | 2123   | 2103 | 2062 | 1983 | 1892 |
| 11/28/2013 | 1821 | 1770 | 1739 | 1739 | 1761 | 1783 | 1820  | 1856 | 1868 | 1865      | 1855      | 1815      | 1736       | 1639   | 1551 | 1499 | 1503 | 1592 | 1666 | 1679   | 1697 | 1709 | 1690 | 1666 |
| 11/29/2013 | 1650 | 1641 | 1640 | 1660 | 1704 | 1763 | 1850  | 1900 | 1883 | 1825      | 1753      | 1698      | 1644       | 1588   |      | 1552 | 1585 | 1701 | 1787 | 1809   | 1797 | 1777 | 1730 | 1668 |
| 11/30/2013 | 1607 | 1575 | 1562 | 1563 | 1568 | 1599 | 1659  | 1700 | 1706 | 1688      | 1635      | 1590      | 1529       | 1481   | 1440 | 1412 | 1440 | 1548 | 1626 | 1641   | 1644 | 1622 | 1579 | 1518 |

|            |      |      |      |      |      |      |      |      | ]    | IPL Syste | m Loads F | or Calend | ar Year 20 | 13, MW |      |      |      |      |      |      |        |      |      |      |
|------------|------|------|------|------|------|------|------|------|------|-----------|-----------|-----------|------------|--------|------|------|------|------|------|------|--------|------|------|------|
| Date       | HE1  | HE2  | HE3  | HE4  | HE5  | HE6  | HE7  | HE8  | HE9  | HE10      | HE11      | HE12      | HE13       | HE14   | HE15 | HE16 | HE17 | HE18 | HE19 | HE20 | HE21 I | HE22 | HE23 | HE24 |
| 12/1/2013  | 1463 | 1426 | 1401 | 1397 | 1409 | 1444 | 1487 | 1543 | 1555 | 1537      | 1505      | 1472      | 1436       | 1410   | 1384 | 1377 | 1416 | 1535 | 1642 | 1669 | 1661   | 1616 | 1544 | 1459 |
| 12/2/2013  | 1401 | 1377 | 1373 | 1387 | 1432 | 1560 | 1732 | 1865 | 1836 | 1830      | 1823      | 1785      | 1752       | 1725   | 1697 | 1679 | 1714 | 1799 | 1835 | 1816 | 1781   | 1721 | 1623 | 1512 |
| 12/3/2013  | 1443 | 1405 | 1390 | 1400 | 1453 | 1582 | 1765 | 1868 | 1838 | 1821      | 1824      | 1813      | 1777       | 1757   | 1738 | 1718 | 1724 | 1791 | 1818 | 1787 | 1752   | 1683 | 1575 | 1463 |
| 12/4/2013  | 1390 | 1350 | 1324 | 1313 | 1343 | 1449 | 1608 | 1728 | 1702 | 1693      | 1707      | 1707      | 1704       | 1704   | 1690 | 1671 | 1657 | 1722 | 1783 | 1752 | 1703   | 1626 | 1514 | 1396 |
| 12/5/2013  | 1314 | 1268 | 1232 | 1235 | 1271 | 1380 | 1587 | 1734 | 1733 | 1770      | 1823      | 1848      | 1866       | 1871   | 1868 | 1900 | 1945 | 2040 | 2085 | 2068 | 2049   | 1988 | 1906 | 1808 |
| 12/6/2013  | 1748 | 1708 | 1685 | 1689 | 1731 | 1831 | 1968 | 2058 | 2060 | 2065      | 2077      | 2073      | 2068       | 2054   | 2061 | 2053 | 2067 | 2156 | 2155 | 2119 | 2070   | 2015 | 1940 | 1843 |
| 12/7/2013  | 1792 | 1782 | 1791 | 1809 | 1840 | 1903 | 1987 | 2071 | 2085 | 2056      | 1996      | 1944      | 1893       | 1845   | 1816 | 1825 | 1866 | 2009 | 2086 | 2080 | 2071   | 2049 | 1996 | 1930 |
| 12/8/2013  | 1856 | 1807 | 1770 | 1761 | 1764 | 1796 | 1835 | 1898 | 1920 | 1961      | 1974      | 1974      | 1959       | 1930   | 1917 | 1917 | 1956 | 2050 | 2092 | 2070 | 2027   | 1957 | 1855 | 1746 |
| 12/9/2013  | 1679 | 1644 | 1637 | 1651 | 1700 | 1834 | 2007 | 2118 | 2116 | 2108      | 2114      | 2097      | 2089       | 2061   | 2033 | 2065 | 2048 | 2189 | 2246 | 2230 | 2197   | 2121 | 2023 | 1909 |
| 12/10/2013 | 1837 | 1798 | 1785 | 1791 | 1844 | 1953 | 2147 | 2276 | 2258 | 2206      | 2162      | 2130      | 2087       | 2069   | 2033 | 2021 | 2038 | 2174 | 2261 | 2249 | 2219   | 2165 | 2071 | 1978 |
| 12/11/2013 | 1931 | 1907 | 1917 | 1933 | 1956 | 2073 | 2246 | 2339 | 2283 | 2260      | 2218      | 2111      | 2041       | 2004   | 2036 | 2073 | 2114 | 2231 | 2289 | 2305 | 2305   | 2252 | 2180 | 2103 |
| 12/12/2013 | 2069 | 2051 | 2045 | 2057 | 2116 | 2236 | 2425 | 2537 | 2497 | 2419      | 2353      | 2283      | 2211       | 2167   | 2156 | 2152 | 2170 | 2311 | 2380 | 2365 | 2326   | 2271 | 2166 | 2060 |
| 12/13/2013 | 1989 | 1948 | 1924 | 1935 | 1980 | 2074 | 2233 | 2355 | 2293 | 2203      | 2118      | 2049      | 1985       | 1947   | 1955 | 1951 | 1967 | 2052 | 2063 | 2042 | 2015   | 1960 | 1889 | 1792 |
| 12/14/2013 | 1713 | 1646 | 1621 | 1608 | 1622 | 1668 | 1728 | 1812 | 1841 | 1879      | 1905      | 1895      | 1873       | 1844   | 1826 | 1822 | 1832 | 1937 | 1981 | 1974 | 1957   | 1933 | 1882 | 1810 |
| 12/15/2013 | 1757 | 1711 | 1692 | 1698 | 1708 | 1748 | 1805 | 1886 | 1947 | 2013      | 2039      | 1998      | 1943       | 1963   | 1999 | 2009 | 2047 | 2139 | 2190 | 2173 | 2142   | 2070 | 1984 | 1882 |
| 12/16/2013 | 1820 | 1786 | 1770 | 1782 | 1829 | 1939 | 2107 | 2224 | 2232 | 2218      | 2214      | 2194      | 2176       | 2163   | 2137 | 2133 | 2126 | 2203 | 2231 | 2194 | 2150   | 2083 | 1984 | 1877 |
| 12/17/2013 | 1802 | 1762 | 1750 | 1752 | 1787 | 1905 | 2094 | 2193 | 2193 | 2193      | 2192      | 2155      | 2120       | 2086   | 2050 | 2076 | 2096 | 2184 | 2236 | 2195 | 2166   | 2112 | 2001 | 1890 |
| 12/18/2013 | 1818 | 1797 | 1784 | 1809 | 1860 | 1973 | 2164 | 2282 | 2237 | 2158      | 2104      | 2027      | 1953       | 1903   | 1854 | 1832 | 1882 | 2017 | 2121 | 2101 | 2077   | 2001 | 1896 | 1763 |
| 12/19/2013 | 1687 | 1632 | 1615 | 1601 | 1624 | 1711 | 1868 | 1968 | 1942 | 1870      | 1861      | 1828      | 1795       | 1778   | 1767 | 1755 | 1770 | 1867 | 1886 | 1861 | 1821   | 1759 | 1665 | 1545 |
| 12/20/2013 | 1456 | 1401 | 1360 | 1358 | 1373 | 1470 | 1622 | 1733 | 1752 | 1742      | 1751      | 1743      | 1739       | 1727   | 1712 | 1695 | 1680 | 1714 | 1726 | 1682 | 1638   | 1584 | 1508 | 1419 |
| 12/21/2013 | 1327 | 1276 | 1249 | 1242 | 1252 | 1296 | 1372 | 1456 | 1544 | 1617      | 1674      | 1678      | 1667       | 1659   | 1648 | 1637 | 1661 | 1742 | 1744 | 1729 | 1701   | 1662 | 1603 | 1514 |
| 12/22/2013 | 1453 | 1386 | 1350 | 1334 | 1342 | 1374 | 1433 | 1503 | 1572 | 1621      | 1656      | 1682      | 1701       | 1706   | 1706 | 1712 | 1743 | 1818 | 1859 | 1850 | 1838   | 1813 | 1759 | 1682 |
| 12/23/2013 | 1622 | 1583 | 1567 | 1582 | 1627 | 1717 | 1860 | 1976 | 2022 | 2050      | 2068      | 2081      | 2074       | 2067   | 2050 | 2036 | 2043 | 2104 | 2154 | 2136 | 2123   | 2105 | 2067 | 1999 |
| 12/24/2013 | 1956 | 1940 | 1935 | 1953 | 1999 | 2093 | 2205 | 2295 | 2318 | 2312      | 2244      | 2157      | 2077       | 1987   | 1929 | 1891 | 1907 | 2031 | 2104 | 2103 | 2090   | 2073 | 2032 | 1976 |
| 12/25/2013 | 1908 | 1848 | 1812 | 1801 | 1803 | 1834 | 1873 | 1907 | 1934 | 1956      | 1967      | 1959      |            | 1901   | 1854 | 1825 | 1807 | 1855 | 1876 | 1864 | 1855   | 1833 | 1781 | 1718 |
| 12/26/2013 | 1667 | 1640 | 1633 | 1627 | 1661 | 1756 | 1876 | 1972 | 1977 | 1948      | 1937      | 1897      | 1844       | 1788   | 1742 | 1713 | 1743 | 1872 | 1943 | 1932 | 1908   | 1866 | 1796 | 1717 |
| 12/27/2013 | 1650 | 1622 | 1595 | 1581 | 1617 | 1691 | 1807 | 1893 | 1892 | 1855      | 1806      | 1752      | 1703       | 1655   | 1618 | 1583 | 1600 | 1700 | 1791 | 1787 | 1782   | 1751 | 1693 | 1612 |
| 12/28/2013 | 1542 | 1507 | 1477 | 1473 | 1486 | 1532 | 1581 | 1639 | 1659 | 1639      | 1602      | 1569      | 1512       | 1463   | 1435 | 1434 | 1460 | 1565 | 1655 | 1657 | 1642   | 1601 | 1551 | 1485 |
| 12/29/2013 | 1432 | 1395 | 1372 | 1364 | 1375 | 1389 | 1431 | 1481 | 1534 | 1557      | 1581      | 1560      | 1511       | 1500   | 1584 | 1644 | 1724 | 1826 | 1865 | 1867 | 1861   | 1821 | 1763 | 1706 |
| 12/30/2013 | 1678 | 1657 | 1655 | 1663 | 1724 | 1820 | 1944 | 2052 | 2075 | 2058      | 2060      | 2036      | 2003       | 1950   | 1932 | 1945 | 1981 | 2089 | 2174 | 2157 | 2138   | 2081 | 1996 | 1910 |
| 12/31/2013 | 1843 | 1806 | 1789 | 1788 | 1810 | 1884 | 1990 | 2074 | 2074 | 2106      | 2056      | 1984      | 1924       | 1875   | 1846 | 1838 | 1855 | 1950 | 2008 | 1940 | 1878   | 1803 | 1737 | 1694 |

## **Load Research**

Load shape data including annual load shapes, seasonal load shapes, monthly load shapes, selected weekly load shapes, and daily load shapes are maintained by IPL at the rate class/customer class level. The sample for the Small Commercial Class Rate SS is stratified using NAICS codes in to manufacturing low and high use and non-manufacturing low and high use. All load research is developed by IPL.

IPL currently maintains a load research sample of 501 load profile meters. The distribution of these meters by rate and class are shown in the following table.

| Load Research Me | eters l | by Rate and Clas | s   |
|------------------|---------|------------------|-----|
|                  |         |                  |     |
| Rate RS          | 96      | Rate SS          | 103 |
| Rate RC          | 83      | Rate SH          | 68  |
| Rate RH          | 151     |                  |     |
| Residential      | 330     | Sm C & I         | 171 |

In addition to the Residential and Small Commercial/Industrial meters outlined above, all Large Commercial/Industrial have 15 minute profile metering. The 15 minute information provides load research and billing increment data for our demand sensitive customers.

Table 1 shows the load research sample design. The stratification criteria are shown for the following rates:

- RS Residential Basic Service
- RC Residential Basic Service with electric water heating
- RH Residential Basic Service with electric heat
- SS Small Commercial & Industrial Secondary Service (Small)
- SH Small Commercial & Industrial Secondary Service (Electric Space Conditioning

Table 1
STRATIFICATION CRITERIA BY RATE

| <u>Rate</u> | # of Strata | <u>Criteria</u>                                                                                       |
|-------------|-------------|-------------------------------------------------------------------------------------------------------|
| RS          | 4           | high/low winter and high/low summer                                                                   |
| RC          | 4           | high/low winter and high/low summer                                                                   |
| RH          | 5           | small/large heat pump houses,<br>small/large resistance houses and<br>apartments                      |
| SS          | 6           | survey small/large by manufacturing;<br>non-manufacturing; billing<br>manufacturing/non-manufacturing |

Hourly 8760 data is retained in EXCEL spreadsheets.

## Historical Billing Data

Historical billing data by account for the demand billed customers is maintained on an on-going basis.

## **IPL 2014 IRP**



Attachment 3.2 (2013 Hourly Load Shape Summary) is provided electronically.

Petitioner's Exhibit ZE-2 2015-2017 Action Plan

This report was prepared by EnerNOC Utility Solutions Consulting 500 Ygnacio Valley Blvd., Suite 450 Walnut Creek, CA 94596

- I. Rohmund, Project Director D. Costenaro, Project Manager
- C. Carrera

## **CONTENTS**

| 1  | Residential Lighting Program                        | 1  |
|----|-----------------------------------------------------|----|
| 2  | Residential Income Qualified Weatherization Program | 3  |
| 3  | Residential AC Load Management Program              | 5  |
| 4  | Residential Multi-Family Direct Install Program     | 7  |
| 5  | Residential Home Energy Assessment Program          | 10 |
| 6  | Residential School Kit                              | 12 |
| 7  | Residential Online ENergy Assessment Program        | 14 |
| 8  | Residential Appliance Recycling Program             | 16 |
| 9  | Residential Peer Comparison Program                 | 18 |
| 10 | Business Prescriptive Program                       | 20 |
| 11 | Business Custom Incentives Program                  | 22 |
| 12 | Small Business Direct Install Program               | 24 |
| 13 | Business AC Load Management Program.                | 26 |

### CHAPTER | 1

## RESIDENTIAL LIGHTING PROGRAM

## Program Description

The Residential Lighting program will encourage residential customers in improving the energy efficiency of their homes through lighting measures. The program will primarily focus on CFL lighting, but begin to phase in LED technologies as their market readiness increases.

The program will provide upstream "buydowns" for certain products such as compact fluorescent lamps so that customers pay a lower price at the point of purchase without needing to apply for a rebate. The upstream buydown activity is a component of the program's focus on market transformation that will increase the demand for high efficiency products.

#### **Objectives**

The purpose of the Residential Lighting program is to increase the penetration of high-efficiency measures in the homes of IPL's residential customers. The program enables the adoption of these energy efficiency measures by offering point of purchase rebates for the purchase and installation of qualifying home equipment for lighting.

The program has several objectives:

- Increase consumers' awareness of the breadth of energy efficiency opportunities in their homes.
- Make a significant contribution to IPL's energy savings achievements.
- Demonstrate IPL's commitment to and confidence in the measures' performance and their ability to reduce home energy use.
- Strengthen customer trust in IPL as their partner in saving energy.

The Residential Lighting program is well-suited for accomplishing these objectives because the rebate-eligible measures are proven technologies about which customers can readily find supporting information.

## **Projected Savings**

The estimated energy savings are given in terms of annual per-unit values. These values were applied to the estimated number of measures rebated under the program each year. The savings noted in each year reflect the savings from measures installed by customers through the program in that year. This does <u>not</u> include the impact of measures still in operation from previous years.

Total Net Incremental Energy Savings (kWh)

|                           | Total Net Incremental Energy avings (kWh) |            |            |  |
|---------------------------|-------------------------------------------|------------|------------|--|
| Mea ure                   | 2015                                      | 2016       | 2017       |  |
| ENERGY STAR CFL           | 9,084,827                                 | 8,963,187  | 8,840,071  |  |
| ENERGY STAR LED           | 746,254                                   | 937,060    | 1,129,565  |  |
| ENERGY STAR Reflector CFL | 1,297,832                                 | 1,140,769  | 982,230    |  |
| ENERGY STAR Reflector LED | 373,127                                   | 562,236    | 753,043    |  |
| ENERGY STAR Specialty CFL | 4,866,871                                 | 4,889,011  | 4,911,150  |  |
| TOTAL                     | 16,368,911                                | 16,492,264 | 16,616,059 |  |

|  | Total Net Incremental | Demand Savings (kW) |
|--|-----------------------|---------------------|
|--|-----------------------|---------------------|

| Total Net Incremental Demand |         |                | avings (kW)     |
|------------------------------|---------|----------------|-----------------|
| Measure                      | 2015    | 2016           | 2017            |
| ENERGY STAR CFL              | 1,078.8 | 1,064.4        | <b>1,04</b> 9.8 |
| ENERGY STAR LED              | 89.2    | 112.0          | 135.1           |
| ENERGY STAR Reflector CFL    | 154.1   | 135.5          | 116.6           |
| ENERGY STAR Reflector LED    | 44.6    | 67.2           | 90.0            |
| ENERGY STAR Specialty CFL    | 577.9   | 58 <b>0</b> .6 | 583.2           |
| TOTAL                        | 1,945   | 1,960          | 1,975           |

## Administrative Requirements

IPL will administer the Residential Lighting program through an implementation contractor. IPL's role will be to ensure that:

- The implementation contractor performs all the activities associated with delivery of all components of the program, and
- IPL's educational and program messages are delivered accurately and clearly to ensure the effectiveness of program delivery and maximize customer satisfaction with the program.

The program is expected to operate according to the following administrative and total utility budget:

|                       | Total Utility Budget |                    |                      |
|-----------------------|----------------------|--------------------|----------------------|
| Total Admin Costs     | \$480,021            | \$48 <b>0</b> ,918 | \$475,420            |
| Total Incentive Costs | \$1,483,403          | \$1,486,392        | \$1,468, <b>0</b> 66 |
| Total Utility Budget  | \$1,963,423          | \$1,967,310        | \$1,943,486          |

### Cost-Effectiveness

The cost-effectiveness metrics of the Residential Prescriptive program are as follows:

| 10.5%        | Cost Effectiveness Tests |           |           |           |
|--------------|--------------------------|-----------|-----------|-----------|
| Program      | TRC Ratio                | UCT Ratio | PCT Ratio | RIM Ratio |
| Res Lighting | 1.05                     | 2.25      | 3.05      | 1.00      |

2 www.enernoc.com

# RESIDENTIAL INCOME QUALIFIED WEATHERIZATION PROGRAM

## Program Description

The Residential Income Qualified Weatherization program will provide energy efficiency services and energy education to IPL's low-income customers; helping them to reduce their energy usage and increase the affordability of their energy bills. This program will focus on education and the installation of measures in homes that meet the low income criteria.

Participating households will receive the following types of assistance:

- In-Home Audits and Education—These are on-site inspections and tests used to
  identify the applicability of energy-savings measures the program offers and to
  educate residents about ways to reduce their energy usage.
- Direct Installation of Measures—Install measures to reduce energy use in the home at no charge to residents.

#### **Objectives**

The purpose of the Residential Income Qualified Weatherization program is to educate and assist eligible residential customers with making their homes more energy efficient. Unlike other programs, a principle objective is to provide repairs necessary to install energy savings improvements in a part of the housing stock that is often old and substandard in comparison to middle and upper income housing.

## Projected Savings

The estimated energy savings are given in terms of annual per-unit values. These values were applied to the estimated number of households participating in the program each year. The savings noted in each year reflect incremental or annual savings from measures installed by customers through the program in that year. This does <u>not</u> include the impact of measures still in operation from previous years.

Total Net Incremental Energy Savings (kWh)

|                        | Total Net Incremental Energy Savings (kWh) |           |           |  |
|------------------------|--------------------------------------------|-----------|-----------|--|
| Measure                | 2015                                       | 2016      | 2017      |  |
| Attic Insulation       | 93,565                                     | 93,565    | 93,565    |  |
| Audit Recommendations  | 77,340                                     | 77,340    | 77,340    |  |
| CFLs                   | 1,197,600                                  | 1,197,600 | 1,197,600 |  |
| Faucet Aerator         | 221,240                                    | 221,240   | 221,240   |  |
| Infiltration Reduction | 101,478                                    | 101,478   | 101,478   |  |
| Low Flow Showerhead    | 311,048                                    | 311,048   | 311,048   |  |
| Pipe Wrap              | 17,478                                     | 17,478    | 17,478    |  |
| Tank Wrap (EF 0.88)    | 37,205                                     | 37,205    | 37,205    |  |
| TOTAL                  | 2,056,953                                  | 2,056,953 | 2,056,953 |  |

## Total Net Incremental Demand Savings (kW)

|                        | Total Net Incremental Demand Savings (kW) |       |       |  |
|------------------------|-------------------------------------------|-------|-------|--|
| Measure                | 2015                                      | 2016  | 2017  |  |
| Attic Insulation       | 72.5                                      | 72.5  | 72.5  |  |
| Audit Recommendations  | 5.0                                       | 5.0   | 5.0   |  |
| CFLs                   | 300.0                                     | 300.0 | 300.0 |  |
| Faucet Aerator         | 30.0                                      | 30.0  | 30.0  |  |
| Infiltration Reduction | 17.5                                      | 17.5  | 17.5  |  |
| Low Flow Showerhead    | -                                         | -     | _     |  |
| Pipe Wrap              | 2.5                                       | 2.5   | 2.5   |  |
| Tank Wrap (EF 0.88)    | 5.0                                       | 5.0   | 5.0   |  |
| TOTAL                  | 433                                       | 433   | 433   |  |

## Administrative Requirements

IPL will mainly administer the Residential Income Qualified Weatherization program with a program implementation contractor and through partnerships with weatherization program providers. The program is expected to operate according to the following administrative and total utility budget:

#### Total Program Budget

| Recurrence            |             | Total Utility Budget |             |  |
|-----------------------|-------------|----------------------|-------------|--|
| Total Admin Costs     | \$993,729   | \$993,729            | \$993,729   |  |
| Total Incentive Costs | \$313,128   | \$313,128            | \$313,128   |  |
| Total Utility Budget  | \$1,306,858 | \$1,306,858          | \$1,306,858 |  |

### Cost-Effectiveness

The cost-effectiveness metrics of the Residential Income Qualified Weatherization program are as follows:

|         |           | Cost Effectiv | ess Tests |           |
|---------|-----------|---------------|-----------|-----------|
| Program | TRC Ratio | UCT Ratio     | PCT Ratio | RIM Ratio |
| Res IQW | 0.61      | 0.61          | -         | 0.48      |

### CHAPTER 3

### RESIDENTIAL AC LOAD MANAGEMENT PROGRAM

# Program Description

The Residential AC Load Management program typically occurs during times of high peak demand or supply-side constraints. During an event, participants' equipment is controlled by a one-way remote switch

The one-way remote switch is connected to the condensing unit of the AC. When
activated by a control signal, the switch will not allow the equipment to operate for
the duration of the event. The compressor is shut down up to 50% of the time in
discrete cycles during an event while the fan continues to operate. This allows cool
air to be circulated throughout the home while the compressor is disabled. The
operation of the switch is usually controlled through a digital paging network.

The program has the following components:

- Switch Installation A small device is installed on the outside of the home near the air conditioner. The switch is connected to the condensing unit of the AC and activated by a control signal.
- Bill Credit Participants receive a \$5 credit on their monthly bill from June to September.

#### **Objectives**

The purpose of the Residential AC Load Management program is to lower the peak demand usage in the IPL service territory to provide system and grid relief. The program provides financial incentives for customers as a means to not only promote energy efficient behavior, but also lower the cost of peak energy.

### Projected Savings

The estimated energy and demand savings are given in terms of annual per-unit values, split out here for single family and multifamily customers. These values were applied to the estimated number of participating customers under the program each year. The savings noted in each year reflect the savings of the entire participant population.

Total Net Incremental Energy Savings (kWh)

|                                     | Total Net Incre | emental Energy | Savings (kWh) |
|-------------------------------------|-----------------|----------------|---------------|
| Measure                             | 2015            | 2016           | 2017          |
| Res SF ACLM switch (50% True Cycle) | 404,965         | 414,645        | 424,325       |
| Res MF ACLM switch (50% True Cycle) | 19,712          | 21,863         | 24,014        |
| TOTAL                               | 424,677         | 436,508        | 448,339       |

Total Net Incremental Demand Savings (kW)

|                                     | Total Net Incre | avings (kW) |          |
|-------------------------------------|-----------------|-------------|----------|
| Measure                             | 2015            | 2016        | 2017     |
| Res SF ACLM switch (50% True Cycle) | 33,133.5        | 33,925.5    | 34,717.5 |
| Res MF ACLM switch (50% True Cycle) | 1,612.8         | 1,788.8     | 1,964.8  |
| TOTAL                               | 34,746          | 35,714      | 36,682   |

### Administrative Requirements

The Residential AC Load Management program will be administered through an implementation contractor. The utility's role will be to ensure that:

 the implementation contractor performs all the activities associated with delivery of all components of the program

The program is expected to operate according to the following administrative and total utility budget:

#### **Total Program Budget**

|                       | 25 HE S     | t           |             |
|-----------------------|-------------|-------------|-------------|
| Total Admin Costs     | \$575,831   | \$591,750   | \$607,669   |
| Total Incentive Costs | \$1,445,231 | \$1,490,713 | \$1,536,196 |
| Total Utility Budget  | \$2,021,061 | \$2,082,463 | \$2,143,864 |

#### Cost-Effectiveness

The cost-effectiveness metrics of the Residential New Construction program are as follows:

|                        | Cost Effectiveness Tests |           |           |           |
|------------------------|--------------------------|-----------|-----------|-----------|
| Program                | TRC Ratio                | UCT Ratio | PCT Ratio | RIM Ratio |
| Res AC Load Management | 2.65                     | 1.57      | (*)       | 1.56      |

## CHAPTER 4

## RESIDENTIAL MULTI-FAMILY DIRECT INSTALL PROGRAM

# Program Description

The Residential Multi-Family Direct Install program provides targeted, highly cost-effective measures to multifamily households in a quickly deployable program delivery mechanism. This will provide energy savings to the multifamily segment, which is typically an underserved market with respect to energy efficiency programs. This is largely because of the preponderance of rental units with the so-called split owner-renter barrier. In other words, since the landlord or owner does not pay the utility bill, there is very little incentive to install higher efficiency equipment.

The program targets multifamily complexes with units that are both individually metered (residential ratepayers) and master metered (commercial ratepayers). The program is designed to go beyond providing financial incentives to multi-family households and aims to make them well-educated energy consumers. The services the program will provide, including in-home audits and referrals to contractors and financial resources, aim to help them gain a better understanding of their home energy use and achieve savings while also improving the comfort of their homes.

As a program mainly designed to educate and empower multi-family customers to make energy-efficient home improvements, the program contains a set of direct install measures.

The Residential Multi-Family Direct Install program has several components:

- Walk-Through Audits—These are on-site inspections and tests used to identify
  energy efficiency opportunities; audit reports contain specific recommendations,
  including expected costs, energy savings, and resource referrals.
- Direct Installation of Low-Cost Measures—During the audit visit, the auditor will
  install a package of low-cost energy-saving measures, at no additional charge to
  the customer, to immediately improve the energy performance of the house.
- Assistance with Additional Measure Adoptions—the program will provide cash rebates to audit participants who install weatherization measures recommended from the audit, as well as assistance on how to access rebates offered as followon measures or under other programs.

#### **Objectives**

The purpose of the Residential Multi-Family Direct Install program is to help residential customers view the energy performance of their homes as more than the sum of independent decisions about individual components. It reflects the view that reducing residential energy use is more than a series of actions; it is an attitude and plan borne of knowledge. This is a "big picture" approach. The services are designed to bring customers to a more holistic view of home energy performance.

The program is part of a long-term strategy to raise awareness of home energy savings opportunities among residential customers and to help them take action using incentives offered by IPL's energy efficiency programs. The program will achieve several objectives:

- Improve customer understanding of how their homes use energy and how they can use it more effectively for less money
- Procure immediate energy savings through installation of low-cost energy-saving measures
- Encourage installation of additional energy-saving measures recommendations with additional incentives
- Aid residential customers' perception of IPL as their partner in reducing home energy use

## Projected Savings

The estimated energy savings are given in terms of annual per-unit values. These values were applied to the estimated number of measures installed under the program each year. This does <u>not</u> include the impact of measures still in operation from previous years.

Total Net Incremental Energy Savings (kWh)

|                        | Total Net Inco | Total Net Incremental Energy Savings (kWh) |           |  |  |
|------------------------|----------------|--------------------------------------------|-----------|--|--|
| Measure                | 2015           | 2016                                       | 2017      |  |  |
| Bath Faucet Aerator    | 312,420        | 312,420                                    | 312,420   |  |  |
| Candelabra             | 165,100        | 165,100                                    | 165,100   |  |  |
| CFL - 18W              | 1,613,400      | 1,613,400                                  | 1,613,400 |  |  |
| CFL - Globe            | 806,700        | 806,700                                    | 806,700   |  |  |
| Kitchen Faucet Aerator | 620,400        | 620,400                                    | 620,400   |  |  |
| LED Nightlight         | 136,000        | 136,000                                    | 136,000   |  |  |
| Low Flow Showerhead    | 2,059,800      | 2,059,800                                  | 2,059,800 |  |  |
| TOTAL                  | 5,713,820      | 5,713,820                                  | 5,713,820 |  |  |

### Total Net Incremental Demand Savings (kW)

|                        | Total Net Incremental Demand Savings (kW) |      |      |  |
|------------------------|-------------------------------------------|------|------|--|
| Measure                | 2015                                      | 2016 | 2017 |  |
| Bath Faucet Aerator    | 48                                        | 48   | 48   |  |
| Candelabra             | 60                                        | 60   | 60   |  |
| CFL - 18W              | 360                                       | 360  | 360  |  |
| CFL - Globe            | 180                                       | 180  | 180  |  |
| Kitchen Faucet Aerator | 48                                        | 48   | 48   |  |
| LED Nightlight         | -                                         | -    |      |  |
| Low Flow Showerhead    | 138                                       | 138  | 138  |  |
| TOTAL                  | 834                                       | 834  | 834  |  |

# Administrative Requirements

IPL will administer the Residential Multi-Family Direct Install program through an implementation contractor. IPL' role will be to ensure that:

- The implementation contractor performs all the activities associated with delivery of all components of the program, and
- Educational and program messages are delivered accurately and clearly to ensure the effectiveness of program delivery and maximize customer satisfaction with the program.

The program is expected to operate according to the following administrative and total utility budget:

#### Total Program Budget

|                       |             | Total Utility Budge         | t           |  |  |
|-----------------------|-------------|-----------------------------|-------------|--|--|
| Total Admin Costs     | \$784,100   | \$784,100 \$784,100 \$784,1 |             |  |  |
| Total Incentive Costs | \$386,000   | \$386,000                   | \$386,000   |  |  |
| Total Utility Budget  | \$1,170,100 | \$1,170,100                 | \$1,170,100 |  |  |

## Cost-Effectiveness

The cost-effectiveness metrics of the Residential Multi-Family Direct Install program are as follows:

|                       |           | Cost Effecti | veness Tests |           |
|-----------------------|-----------|--------------|--------------|-----------|
| Program               | TRC Ratio | UCT Ratio    | PCT Ratio    | RIM Ratio |
| Res MF Direct Install | 1.39      | 1.39         | -            | 0.80      |

## CHAPTER | 5

## RESIDENTIAL HOME ENERGY ASSESSMENT PROGRAM

# Program Description

The Residential Home Energy Assessment program provides education, an on-site audit, and a suite of energy efficiency measures to help single family customers reduce their energy bills.

The program is designed to go beyond providing financial incentives to residential customers and aims to make them well-educated energy consumers. The services the program will provide include in-home audits and direct-install measures like CFL light bulbs and low-flow water fixtures.

The Residential Home Energy Assessment program has several components:

- Walk-Through Audits—These are on-site inspections and tests used to identify energy efficiency opportunities; audit reports contain specific recommendations, including expected costs, energy savings, and resource referrals.
- Direct Installation of Low-Cost Measures—During the audit visit, the auditor will
  install a package of low-cost energy-saving measures, at no additional charge to
  the customer, to immediately improve the energy performance of the house.

#### **Objectives**

The purpose of the Residential Home Energy Assessment program is to help residential customers view the energy performance of their homes as more than the sum of independent decisions about individual components. It reflects the view that reducing residential energy use is more than a series of actions; it is an attitude and plan borne of knowledge. This is a "big picture" approach. The services are designed to bring customers to a more holistic view of home energy performance.

The program is part of a long-term strategy to raise awareness of home energy savings opportunities among residential customers and to help them take action using incentives offered by the utilities and State programs. The program will achieve several objectives:

- Improve customer understanding of how their homes use energy and how they can use it more effectively for less money
- Procure immediate energy savings through installation of low-cost energysaving measures
- Aid residential customers' perception of IPL as their partner in reducing home energy use

10

#### **Projected Savings**

The estimated energy savings are based on annual per-unit values. These values were applied to the estimated number of measures installed under the program each year. This does <u>not</u> include the impact of measures still in operation from previous years.

Total Net Incremental Energy Savings (kWh)

|                       | Total Net Incremental Energy Savings (kWh |           |           |  |
|-----------------------|-------------------------------------------|-----------|-----------|--|
| Measure               | 2015                                      | 2016      | 2017      |  |
| Audit Recommendations | 1,051,680                                 | 1,051,680 | 1,051,680 |  |
| CFLs                  | 1,915,760                                 | 1,915,760 | 1,915,760 |  |
| Faucet Aerator        | 833,376                                   | 833,376   | 833,376   |  |
| Low Flow Showerhead   | 1,729,248                                 | 1,729,248 | 1,729,248 |  |
| Pipe Wrap             | 110,700                                   | 110,700   | 110,700   |  |
| Tank Wrap (EF 0.88)   | 209,232                                   | 209,232   | 209,232   |  |
| TOTAL                 | 5,849,996                                 | 5,849,996 | 5,849,996 |  |

#### Total Net Incremental Demand Savings (kW)

|                       | Total Net Incremental Demand Savings (kW) |      |      |  |
|-----------------------|-------------------------------------------|------|------|--|
| Measure               | 2015                                      | 2016 | 2017 |  |
| Audit Recommendations | 160                                       | 160  | 160  |  |
| CFLs                  |                                           | -    | -    |  |
| Faucet Aerator        | 144                                       | 144  | 144  |  |
| Low Flow Showerhead   | -                                         | - 1  |      |  |
| Pipe Wrap             | 12                                        | 12   | 12   |  |
| Tank Wrap (EF 0.88)   | 36                                        | 36   | 36   |  |
| TOTAL                 | 352                                       | 352  | 352  |  |

### Administrative Requirements

IPL will administer the Residential Home Energy Assessment program through an implementation contractor. IPL' role will be to ensure that:

- The implementation contractor performs all the activities associated with delivery of all components of the program, and
- Educational and program messages are delivered accurately and clearly to ensure the effectiveness of program delivery and maximize customer satisfaction with the program.

The program is expected to operate according to the following administrative and total utility budget:

#### **Total Program Budget**

|                       | Total Utility Budget |             |             |  |
|-----------------------|----------------------|-------------|-------------|--|
| Total Admin Costs     | \$1,339,944          | \$1,339,944 | \$1,339,944 |  |
| Total Incentive Costs | \$269,650            | \$269,650   | \$269,650   |  |
| Total Utility Budget  | \$1,609,594          | \$1,609,594 | \$1,609,594 |  |

#### Cost-Effectiveness

The cost-effectiveness metrics of the Residential Home Energy Assessment program are as follows:

|         |           | Cost Effecti | veness Tests |           |
|---------|-----------|--------------|--------------|-----------|
| Program | TRC Ratio | UCT Ratio    | PCT Ratio    | RIM Ratio |
| Res HEA | 1.15      | 1.15         | -            | 0.69      |

## CHAPTER 6

## **RESIDENTIAL SCHOOL KIT**

### Program Description

The Residential School Kit program incorporates an educational module provided to grade school students, along with a take-home kit of energy efficiency measures. Measures include CFLs and low-flow fixtures. It targets students to help them learn about energy efficiency and how they can apply it at school and at home. Participating schools will receive education in the classroom and take-home kits filled with energy efficiency saving devices. The program is designed to educate both the students and their parents about simple energy efficiency and conservation practices, driving grassroots market transformation throughout the service territory.

#### **Objectives**

The program has several objectives:

- Increase consumers' awareness of the breadth of energy efficiency opportunities in their homes.
- Lay the foundation for future energy stewardship by educating young students.
- Make significant contribution to portfolio energy savings goals.
- Strengthen customer trust in IPL as their partner in saving energy.

### Projected Savings

The estimated energy savings are based on annual per-unit values. These values were applied to the estimated number of measures provided under the program each year. This does <u>not</u> include the impact of measures still in operation from previous years.

#### Total Net Incremental Energy Savings (kWh)

|                     | Total Net Incremental Energy Savings (kWh) |           |           |  |
|---------------------|--------------------------------------------|-----------|-----------|--|
| Measure             | 2015                                       | 2016      | 2017      |  |
| CFL - 13W           | 578,700                                    | 578,700   | 578,700   |  |
| CFL - 23W           | 479,655                                    | 479,655   | 479,655   |  |
| Faucet Aerator      | 1,533,216                                  | 1,533,216 | 1,533,216 |  |
| FilterTone Alarm    | 110,614                                    | 110,614   | 110,614   |  |
| LED Nightlight      | 61,462                                     | 61,462    | 61,462    |  |
| Low Flow Showerhead | 1,317,820                                  | 1,317,820 | 1,317,820 |  |
| TOTAL               | 4,081,469                                  | 4,081,469 | 4,081,469 |  |

#### Total Net Incremental Demand Savings (kW)

|                     | Total Net Incremental Demand Savings (kW) |       |       |  |
|---------------------|-------------------------------------------|-------|-------|--|
| Measure             | 2015                                      | 2016  | 2017  |  |
| CFL - 13W           | 75.6                                      | 75.6  | 75.6  |  |
| CFL - 23W           | 63.3                                      | 63.3  | 63.3  |  |
| Faucet Aerator      | 30.2                                      | 30.2  | 30.2  |  |
| FilterTone Alarm    | 171.4                                     | 171.4 | 171.4 |  |
| LED Nightlight      | -                                         |       | -     |  |
| Low Flow Showerhead | 62.4                                      | 62.4  | 62.4  |  |
| TOTAL               | 403                                       | 403   | 403   |  |

### Administrative Requirements

The program administration role will be to ensure that:

- The implementation contractor performs all the activities associated with delivery of all components of the program, and
- IPL' educational and program messages are delivered accurately and clearly to ensure the effectiveness of program delivery and maximize customer satisfaction with the program.

The program is expected to operate according to the following administrative and total utility budget:

### Total Program Budget

|                       |           | otal Utility Budge | get       |  |  |
|-----------------------|-----------|--------------------|-----------|--|--|
| Total Admin Costs     | \$401,628 | \$401,628          | \$401,628 |  |  |
| Total Incentive Costs | \$229,143 | \$229,143          | \$229,143 |  |  |
| Total Utility Budget  | \$630,771 | \$630,771          | \$630,771 |  |  |

### Cost-Effectiveness

The cost-effectiveness metrics of the Residential Schools program are as follows:

|                |       | Cost Effective | veness Tests |           |
|----------------|-------|----------------|--------------|-----------|
| Program        | TRC R | UCT Ratio      | PCT Ratio    | RIM Ratio |
| Res School Kit | 1.90  | 1.90           | -            | 0.90      |

## CHAPTER | 7

## **RESIDENTIAL ONLINE ENERGY ASSESSMENT PROGRAM**

| Program<br>Description | The Residential Online Energy Assessment program is an online engagement activity that provides customers with education and information regarding their home energy use. Customer who visit IPL's website and complete the engagement activity will receive a kit of low cost energy efficiency measures.   |                                                                       |                                                      |                                      |  |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------|--------------------------------------|--|
| Objectives             | The purpose of this program is to increase the penetration of high-efficiency measures in the homes of residential customers and increase consumers' awareness of the breadth of energy efficiency opportunities available. It will also strengthen customer trust in IPL as their partner in saving energy. |                                                                       |                                                      |                                      |  |
| Projected Savings      | were applied to the estimated nu                                                                                                                                                                                                                                                                             |                                                                       |                                                      |                                      |  |
|                        |                                                                                                                                                                                                                                                                                                              |                                                                       | remental Energy S                                    | avings (kWh)                         |  |
|                        | Thirty care                                                                                                                                                                                                                                                                                                  | Total Net Inc                                                         | remental Energy S                                    |                                      |  |
|                        | Measure<br>Bath Aerator                                                                                                                                                                                                                                                                                      | Total Net Inc                                                         | remental Energy S<br>2016<br>44,099                  | 2017                                 |  |
|                        | Measure                                                                                                                                                                                                                                                                                                      | Total Net Inc                                                         | 2016                                                 |                                      |  |
|                        | Measure<br>Bath Aerator                                                                                                                                                                                                                                                                                      | Total Net Inc<br>2,45<br>40,090                                       | 2016<br>44,099                                       | 2017<br>46,304                       |  |
|                        | Measure Bath Aerator CFL - 13W                                                                                                                                                                                                                                                                               | Total Net Inc<br>2.4.5<br>40,090<br>112,242                           | 2016<br>44,099<br>123,466                            | 2017<br>46,304<br>129,639            |  |
|                        | Measure Bath Aerator CFL - 13W CFL - 19W                                                                                                                                                                                                                                                                     | Total Net Inc<br>2.4.5<br>40,090<br>112,242                           | 2016<br>44,099<br>123,466                            | 2017<br>46,304<br>129,639            |  |
|                        | Measure  Bath Aerator  CFL - 13W  CFL - 19W  Hot Water Thermometer                                                                                                                                                                                                                                           | Total Net Inc<br>2.15<br>40,090<br>112,242<br>133,738                 | 2016<br>44,099<br>123,466<br>147,112                 | 2017<br>46,304<br>129,639<br>154,468 |  |
|                        | Measure Bath Aerator CFL - 13W CFL - 19W Hot Water Thermometer Kitchen Aerator                                                                                                                                                                                                                               | Total Net Inc<br>2.45<br>40,090<br>112,242<br>133,738<br>-<br>186,703 | 2016<br>44,099<br>123,466<br>147,112<br>-<br>205,374 | 2017<br>46,304<br>129,639<br>154,468 |  |

## Total Net Incremental Demand Savings (kW)

|                          | Total Net Incremental Demand Savings (kW) |      |      |  |
|--------------------------|-------------------------------------------|------|------|--|
| Measure                  | 2015                                      | 2016 | 2017 |  |
| Bath Aerator             | 9.2                                       | 10.1 | 10.6 |  |
| CFL - 13W                | 25.0                                      | 27.5 | 28.9 |  |
| CFL - 19W                | 29.2                                      | 32.1 | 33.7 |  |
| Hot Water Thermometer    | 9                                         | ے    | u    |  |
| Kitchen Aerator          | 10.7                                      | 11.8 | 12.4 |  |
| Low Flow Showerhead      | 29.1                                      | 32.0 | 33.6 |  |
| Refrigerator Thermometer | -                                         | -    | -    |  |
| TOTAL                    | 103                                       | 114  | 119  |  |

14 www.enernoc.com

## Administrative Requirements

The program administrative staff's role will be to ensure that:

- The implementation contractor performs all the activities associated with delivery of all components of the program, and
- IPL educational and program messages are delivered accurately and clearly to ensure the effectiveness of program delivery and maximize customer satisfaction with the program.

The program is expected to operate according to the following administrative and total utility budget:

### Total Program Budget

|                       | To        | otal Utility Budget | ty Budget |  |  |
|-----------------------|-----------|---------------------|-----------|--|--|
| Total Admin Costs     | \$113,809 | \$121,690           | \$126,024 |  |  |
| Total Incentive Costs | \$87,565  | \$96,322            | \$101,138 |  |  |
| Total Utility Budget  | \$201,374 | \$218,012           | \$227,162 |  |  |

#### Cost-Effectiveness

The cost-effectiveness metrics of the Residential Online Energy Assessment are as follows:

|                              | THE REAL PROPERTY. | Cost Effecti | veness Tests |           |
|------------------------------|--------------------|--------------|--------------|-----------|
| Program                      | TRC Ratio          | UCT Ratio    | PCT Ratio    | RIM Ratio |
| Res Online Energy Assessment | 1.33               | 1.33         | -            | 0.76      |

## CHAPTER 8

## RESIDENTIAL APPLIANCE RECYCLING PROGRAM

#### Program Description

The Residential Appliance Recycling program achieves energy savings by offering a bounty payment to customers to remove their old, inefficient appliances and recycle them. It includes refrigerators, freezers and room AC units. The program offers free pickup of units from residences plus customer incentives and education about the benefits of secondary unit disposal, to encourage their participation. There are no costs to participating customers. The contractor will pick-up, disable, and recycle the units. Once IPL receives verification that the units have been recycled. The customer will receive a \$40 incentive per refrigerator recycled and a \$20 incentive per Room AC recycled.

In addition to educating residential customers about the benefits of secondary unit disposal, the program provides services to enable disposal of the units. The two program components are:

#### **Customer Incentives**

- Pickup of units from homes will be by appointment directly with the program implementation contractor.
- The program implementation contractor mails incentive checks to customers after units have been removed.
- To qualify, refrigerator, freezer, or room air conditioning units must be in working condition, meet minimum size requirements, and be readily accessible for removal.

#### **Environmental Disposal of Units**

 Units will be removed to a collection facility and disassembled for environmentally responsible disposal of CFCs and recycling of remaining components.

### **Objectives**

The purpose of the Residential Appliance Recycling program is to eliminate a very inefficient usage of electricity in homes: the retention of refrigerators, freezers, and room air conditioners for use as secondary units. This is a two-pronged goal: to remove existing secondary units from operation and to prevent existing primary refrigerators, freezers, and room air conditioners from being retained and used as secondary units when customers purchase new units.

The program has several objectives:

- Transform attitudes about retaining older, less efficient refrigerators, freezers, and room air conditioners as secondary units.
- Accrue electricity consumption and demand savings toward IPL's savings achievements.
- Demonstrate IPL's commitment to good stewardship of the environment by sponsoring proper disposal of units.

Appliance Recycling is well-suited for accomplishing these objectives because: consumers are more willing than ever to help safeguard the environment and adopt behaviors that save energy without compromising their lifestyles. The program makes it

16 www.enernoc.com

#### **Projected Savings**

convenient and cost-effective for customers to dispose of these older units, overcoming a past barrier to getting rid of them.

The estimated energy savings are given in terms of annual per-unit values. These values were applied to the estimated number of appliances removed under the program each year. This does  $\underline{not}$  include the impact of measures still in operation from previous years.

Total Net Incremental Energy Savings (kWh)

| Total Net Incremental Energy Savin |           |           |           |  |
|------------------------------------|-----------|-----------|-----------|--|
| Measure                            | 2015      | 2016      | 2017      |  |
| Freezer Recycling                  | 389,760   | 389,760   | 389,760   |  |
| Refrigerator Recycling             | 1,879,360 | 1,879,360 | 1,879,360 |  |
| Window AC unit Recycling           | 13,050    | 13,050    | 13,050    |  |
| TOTAL                              | 2,282,170 | 2,282,170 | 2,282,170 |  |

#### Total Net Incremental Demand Savings (kW)

|                          | Total Net Incremental Demand Savings (kW) |       |       |  |
|--------------------------|-------------------------------------------|-------|-------|--|
| Measure                  | 2015                                      | 2016  | 2017  |  |
| Freezer Recycling        | 68.9                                      | 68.9  | 68.9  |  |
| Refrigerator Recycling   | 327.0                                     | 327.0 | 327.0 |  |
| Window AC unit Recycling | 11.8                                      | 11.8  | 11.8  |  |
| TOTAL                    | 408                                       | 408   | 408   |  |

### Administrative Requirements

IPL will administer the Residential Appliance Recycling program through an implementation contractor. IPL's role will be to ensure that:

- The implementation contractor performs all the activities associated with delivery of all components of the program, and
- IPL's educational and program messages are delivered accurately and clearly to ensure the effectiveness of program delivery and maximize customer satisfaction with the program.

The program is expected to operate according to the following administrative and total utility budget:

|                       | Total Utility Budget |           |           |  |
|-----------------------|----------------------|-----------|-----------|--|
| Total Admin Costs     | \$153,479            | \$153,479 | \$153,479 |  |
| Total Incentive Costs | \$592,396            | \$592,396 | \$592,396 |  |
| Total Utility Budget  | \$745,875            | \$745,875 | \$745,875 |  |

#### Cost-Effectiveness

The cost-effectiveness metrics of the Residential Appliance Recycling program are as follows:

|                         |           | Cost Effecti | veness Tests | Mark No.  |
|-------------------------|-----------|--------------|--------------|-----------|
| Program                 | TRC Ratio | UCT Ratio    | PCT Ratio    | RIM Ratio |
| Res Appliance Recycling | 1.42      | 1.21         | -            | 0.75      |

## CHAPTER | 9

## **RESIDENTIAL PEER COMPARISON PROGRAM**

| Program<br>Description         | The Residential Peer Comparison program provides individualized Energy Reports that analyze their energy usage and offer recommendations on how to save energy and money by making small changes to their energy consumption. Reports are sent monthly or quarterly to customers throughout the year. A key component is a peer comparison, where they are shown energy usage relative to similar, nearby households. Peoples' intrinsic social competitiveness thereby increases the energy reductions and effectiveness of this program. |                                      |                    |                        |  |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------|------------------------|--|
| Objectives                     | The purpose of the Residential Peer Comparison program is to reduce energy consumption through socially-driven and information-driven behavioral change.  Another very important objective of the program is to raise general awareness regarding energy efficiency and to cross-sell and market other programs within the portfolio.                                                                                                                                                                                                      |                                      |                    |                        |  |
| Projected Savings              | The estimated energy savings are gings include the impact of measures  Total Net Incremental Energy Saving                                                                                                                                                                                                                                                                                                                                                                                                                                 | still in operation f                 |                    |                        |  |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Total Net Incr                       | emental Energy     | vings (kWh)            |  |
|                                | Measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2015                                 | 2016               | 2017                   |  |
|                                | Peer Comparison Reports                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23,000,000                           | 23,000,000         | 23,000,000             |  |
|                                | TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23,000,000                           | 23,000,000         | 23,000,000             |  |
|                                | Total Net Incremental Demand Savi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |                    |                        |  |
| Harris Harris                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      | emental Deman      | Savings (kW)           |  |
|                                | Measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2015                                 | 2016               | 2017                   |  |
|                                | Peer Comparison Reports  TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6,762                                | 6,762              | 6,762<br>6, <b>762</b> |  |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6,762                                | 6,762              |                        |  |
| Administrative<br>Requirements | IPL will administer the Residential Peer Comparison program through an implementatio contractor. IPL's role will be to ensure that:  • The implementation contractor performs all the activities associated with delivery of all components of the program, and                                                                                                                                                                                                                                                                            |                                      |                    |                        |  |
|                                | <ul> <li>IPL's educational and p<br/>clearly to ensure the e<br/>customer satisfaction</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                          | ffectiveness of prowith the program. | ogram delivery and | d maximize             |  |
|                                | The program is expected to operate utility budget:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | according to the                     | following adminis  | trative and total      |  |
|                                | <u>Total Program Budget</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                    |                        |  |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      | otal Utility Budge |                        |  |
|                                | Total Admin Costs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$101,800                            | \$101,800          | \$101,800              |  |
|                                | Total Incentive Costs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$1,336,000                          | \$1,336,000        | \$1,336,000            |  |
| 1 2 12 197                     | Total Utility Budget                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \$1,437,800                          | \$1,437,800        | \$1,437,800            |  |

18 www.enernoc.com

Cost-Effectiveness The cost-effectiveness metrics of the Residential Behavioral Feedback Tools program are as follows:

|                     | Cost Effectiveness Tests |           |           |           |
|---------------------|--------------------------|-----------|-----------|-----------|
| Program             | TRC Ratio                | UCT Ratio | PCT Ratio | RIM Ratio |
| Res Peer Comparison | 1.04                     | 1.04      | -         | 0.71      |

#### CHAPTER 10

#### **BUSINESS PRESCRIPTIVE PROGRAM**

# Program Description

The Business Prescriptive program is designed to encourage and assist non-residential customers in improving the energy efficiency of their existing facilities through a broad range of energy efficiency options that address all major end uses and processes. This program offers incentives to customers who install high-efficiency electric equipment and engages equipment suppliers and contractors to promote the incentive-eligible equipment. This program, along with the Business Custom program, is likely to provide the bulk of the energy savings from business customers. It should be noted that since business energy efficiency efforts are very project-centric, there are many projects that may fit partially under both the Prescriptive and Custom programs. Therefore, a flexible delivery approach should be employed, with a method to share or allocate projects between the two programs.

The program has the following components to accommodate the variety of customer needs and facilities in this sector:

- Prescriptive Incentives—deemed per-unit savings for itemized measures; easy and appropriate for relatively low-cost or simple measures.
- Specialized outreach to promote and enable prescriptive measures best suited to smaller facilities.
- Customer referrals to qualified energy audit providers who can help customers identify appropriate and cost-effective retrofit opportunities.

#### Prescriptive Measure Incentives

- Quick and easy incentive application for measures with known and reliable energy savings. No pre-approval required.
- Customers purchase and install qualified products from retailers and/or contractors.
- Customers or their contractors submit incentive form to IPL's energy service
  provider with information that documents the qualifying sale/installation. The
  form allows customers to see the exact incentive they can receive. IPL mails
  rebate checks to customers or their contractors.
- The prescriptive incentives are cash-back rebates that generally cover a portion of the incremental cost of the qualifying models; that is, the cost premium of qualifying models over less-efficient models available.

In additional to prescriptive rebates for customers, the program will engage in upstream "buydowns" of certain products such as compact fluorescent lamps so that customers pay a lower price at the point of purchase without needing to apply for a rebate. The upstream buydown activity is a component of the program's focus on market transformation that will increase the demand for high efficiency products, and eventually decrease the availability of lower-efficiency products in the marketplace.

#### **Objectives**

The purpose of the Business Prescriptive program is to increase awareness of energy savings opportunities and assist customers in acting on those opportunities to decrease energy usage in commercial and industrial facilities and in master-metered multifamily residential buildings. This program is designed for retrofit and replacement projects.

The program has several objectives:

- Increase consumers' awareness and understanding of the breadth of energy efficiency opportunities in their facilities.
- Make it easier for customers to adopt more energy-efficient equipment and equipment maintenance.
- Make a significant contribution to attainment of IPL's energy savings achievements.
- Demonstrate IPL's commitment to and confidence in the measures' performance and their ability to reduce business customer energy use.
- · Strengthen customer trust in IPL as their partners in saving energy.

#### **Projected Savings**

The estimated energy savings are given in terms of annual per-unit values. These values were applied to the estimated number of measures rebated under the program each year. The savings noted in each year reflect incremental or annual savings from measures installed by customers through the program in that year. This does <u>not</u> include the impact of measures still in operation from previous years.

#### Total Net Incremental Energy Savings (kWh)

| Total Net Incremental Energy Savings (kV |            |            |            |  |
|------------------------------------------|------------|------------|------------|--|
| Measure                                  | 2015       | 2016       | 2017       |  |
| Bus Prescriptive Measures                | 40,140,145 | 42,147,152 | 44,254,510 |  |
| TOTAL                                    | 40,140,145 | 42,147,152 | 44,254,510 |  |

#### Total Net Incremental Demand Savings (kW)

| Total Net Incremental Demand Savings (kW) |       |       |       |  |  |
|-------------------------------------------|-------|-------|-------|--|--|
| Measure                                   | 2015  | 2016  | 2017  |  |  |
| Bus Prescriptive Measures                 | 7,326 | 7,692 | 8,077 |  |  |
| TOTAL                                     | 7,326 | 7,692 | 8,077 |  |  |

#### Administrative Requirements

Program administrative staff's role will be to ensure that:

- The implementation contractor performs all the activities associated with delivery of all components of the program, and
- Educational and program messages are delivered accurately and clearly to ensure the effectiveness of program delivery and maximize customer satisfaction with the program.

The program is expected to operate according to the following administrative and total utility budget:

#### Total Program Budget

|                       | Total Utility Budget |             |             |  |
|-----------------------|----------------------|-------------|-------------|--|
| Total Admin Costs     | \$1,672,038          | \$1,746,739 | \$1,825,760 |  |
| Total Incentive Costs | \$3,917,596          | \$4,104,348 | \$4,301,899 |  |
| Total Utility Budget  | \$5,589,634          | \$5,851,088 | \$6,127,659 |  |

#### Cost-Effectiveness

The cost-effectiveness metrics of the Business Prescriptive program are as follows:

|                  |           | Cost Effective | eness Tests |           |
|------------------|-----------|----------------|-------------|-----------|
| Program          | TRC Ratio | UCT Ratio      | PCT Ratio   | RIM Ratio |
| Bus Prescriptive | 1.51      | 3.47           | 4.49        | 0.79      |

#### CHAPTER | 11

#### **BUSINESS CUSTOM INCENTIVES PROGRAM**

# Program Description

The Business Custom Incentives program is designed to encourage and assist nonresidential customers to save energy through customizable projects that are too complex to fit in the standard rebate offering. The program will promote the purchase and installation of efficient technologies and/or implementation of process improvements by working directly with key end-use customers and market providers. This program, along with the Business Prescriptive program, is likely to provide the bulk of the energy savings from business customers. It should be noted that since business energy efficiency efforts are very project-centric, there are many projects that may fit partially under both the Prescriptive and Custom programs. Therefore, a flexible delivery approach should be employed, with a method to share or allocate projects between the two programs.

The program has the following components, to accommodate the variety of customer needs and facilities in this sector:

- Custom Incentives—paid on fixed dollar per first-year-kWh-saved basis;
   appropriate for large and complex projects, often with multiple measures.
- Emphasis on flexibility of custom projects to address variety of business and industrial process energy improvements.
- Customer referrals to qualified energy audit providers who can help customers identify appropriate and cost-effective retrofit opportunities.

#### Custom Project Incentives

- Provides financial incentives on projects not suitable for prescriptive incentives because of size or multiple types of equipment involved.
- More complex offering, with the following services and requirements:
  - Review design/specification and savings estimates for completeness and applicability of incentives
  - Pre- and post-project inspections to estimate and verify savings
  - o Incentives paid on a fixed \$/kWh basis
- Examples of custom projects include energy management systems, air compressor system optimization, building envelope improvements, and experimental technologies.

#### **Objectives**

The purpose of the Business Custom Incentives program is to increase awareness of energy savings opportunities and assist customers in acting on those opportunities to decrease energy usage in commercial and industrial facilities and in master-metered multifamily residential buildings. This program is designed for retrofit and replacement projects.

The program has several objectives:

 Increase consumers' awareness and understanding of the breadth of energy efficiency opportunities in their facilities.

- Make it easier for customers to adopt more energy-efficient equipment and equipment maintenance.
- Make a significant contribution to attainment of IPL's energy savings achievements.
- Strengthen customer trust in IPL as their partner in saving energy.

#### **Projected Savings**

The estimated energy savings are given in terms of annual per-unit values. These values were applied to the estimated number of projects rebated under the program each year. This does <u>not</u> include the impact of measures still in operation from previous years.

Total Net Incremental Energy Savings (kWh)

|                         | Total Net Incremental Energy Savings (kWh) |            |            |  |
|-------------------------|--------------------------------------------|------------|------------|--|
| Measure                 | 2015                                       | 2016       | 2017       |  |
| Large Projects >\$5K    | 15,000,000                                 | 15,750,000 | 16,537,500 |  |
| Small Projects - \$1-5K | 2,083,333                                  | 2,187,500  | 2,296,875  |  |
| TOTAL                   | 17,083,333                                 | 17,937,500 | 18,834,375 |  |

#### Total Net Incremental Demand Savings (kW)

| Establish Shake         | Total Net I | emental Demand Savings (kW) |       |  |
|-------------------------|-------------|-----------------------------|-------|--|
| easure                  | 2015        | 2016                        | 2017  |  |
| Large Projects >\$5K    | 3,000       | 3,150                       | 3,308 |  |
| Small Projects - \$1-5K | 417         | 438                         | 459   |  |
| TOTAL                   | 3,417       | 3,588                       | 3,767 |  |

#### Administrative Requirements

Program administrative staff's role will be to ensure that:

- The implementation contractor performs all the activities associated with delivery of all components of the program, and
- Educational and program messages are delivered accurately and clearly to ensure the effectiveness of program delivery and maximize customer satisfaction with the program.

The program is expected to operate according to the following administrative and total utility budget:

#### **Total Program Budget**

|                       | Total Utility Budget |             |             |  |
|-----------------------|----------------------|-------------|-------------|--|
| Total Admin Costs     | \$1,335,000          | \$1,396,500 | \$1,461,075 |  |
| Total Incentive Costs | \$2,050,000          | \$2,152,500 | \$2,260,125 |  |
| Total Utility Budget  | \$3,385,000          | \$3,549,000 | \$3,721,200 |  |

#### Cost-Effectiveness

The cost-effectiveness metrics of the Business Custom Incentives program are as follows:

|                       | Cost Effectiveness Tests |           |           |           |
|-----------------------|--------------------------|-----------|-----------|-----------|
| Program               | TRC Ratio                | UCT Ratio | PCT Ratio | RIM Ratio |
| Bus Custom Incentives | 1.45                     | 2.89      | 4.73      | 0.78      |

#### CHAPTER | 12

#### SMALL BUSINESS DIRECT INSTALL PROGRAM

# Program Description

The Business Direct Install program provides a suite of targeted, highly cost-effective measures to small businesses in a quickly deployable program delivery mechanism, along with education and program support to help business customers reduce their energy bills.

The program will provide several direct-install measures at no additional cost to participants, such as lighting replacements, programmable thermostats, occupancy sensors, vending machine controls, and low-flow water fixtures. The program also connects customers with other programs in the portfolio and a network of qualified trade allies/contractors that can install follow-on measures to provide deeper energy savings.

The Business Direct Install program has several components:

- Walk-Through Audits—These are on-site assessments used to identify energy
  efficiency opportunities; audit reports contain specific recommendations,
  including expected costs, energy savings, and resource referrals.
- Direct Installation of Measures—During the audit visit, the auditor will install a
  package of low-cost energy-saving measures, at no additional charge to the
  customer, to immediately improve the energy performance of the building.
- Assistance with Additional Measure Adoption—IPL will usher participants into
  other business efficiency program offerings to provide cash rebates to
  participants who install additional measures recommended from the audit.

#### **Objectives**

The program is part of a long-term strategy to raise awareness of energy savings opportunities among business customers and to help them take action using incentives offered by IPL's energy efficiency programs. The program will achieve several objectives:

- Improve customer understanding of how their buildings use energy and how they can use it more effectively for less money
- Procure immediate energy savings through installation of energy-saving measures
- Encourage installation of additional energy-saving measures recommendations with additional incentives
- Aid business customers' perception of IPL as their partner in reducing energy use

#### **Projected Savings**

The estimated energy savings are given in terms of annual per-unit values. These values were applied to the estimated number of measures rebated under the program each year. This does <u>not</u> include the impact of measures still in operation from previous years.

#### Total Net Incremental Electricity Savings (kWh)

|                                                  | Total Net Incremental Energy Savings (kWh |           |           |  |
|--------------------------------------------------|-------------------------------------------|-----------|-----------|--|
| Measure                                          | 2015                                      | 2016      | 2017      |  |
| CFL - 18W                                        | 1,400,140                                 | 1,540,154 | 1,617,162 |  |
| LED Exit Sign                                    | 41,500                                    | 45,650    | 47,933    |  |
| Occupancy Sensors                                | 634,100                                   | 697,510   | 732,386   |  |
| Programmable Thermostat                          | 226,333                                   | 248,966   | 261,414   |  |
| Vending Machine Timer                            | 708,390                                   | 779,229   | 818,190   |  |
| T8 lamps                                         | 463,083                                   | 509,391   | 534,860   |  |
| RTU - Maintenance                                | 7,150                                     | 7,865     | 8,258     |  |
| Water Heater - Faucet Aerator<br>Low Flow Nozzle | 1,396,000                                 | 1,535,600 | 1,612,380 |  |
| TOTAL                                            | 4,876,695                                 | 5,364,365 | 5,632,583 |  |

#### Total Net Incremental Demand Savings (kW)

|                               | Total Net Incremental Demand Savings (kW) |       |       |  |
|-------------------------------|-------------------------------------------|-------|-------|--|
| Measure                       | 2015                                      | 2016  | 2017  |  |
| CFL - 18W                     | 435.4                                     | 478.9 | 502.9 |  |
| LED Exit Sign                 | 5.0                                       | 5.5   | 5.8   |  |
| Occupancy Sensors             | 11.5                                      | 12.7  | 13.3  |  |
| Programmable Thermostat       | -                                         | -     | -     |  |
| Vending Machine Timer         |                                           | -     | -     |  |
| T8 lamps                      | 119.6                                     | 131.5 | 138.1 |  |
| RTU - Maintenance             | -                                         | -     | -     |  |
| Water Heater - Faucet Aerator | 116.0                                     | 127.6 | 134.0 |  |
| Low Flow Nozzle               | 110.0                                     | 127.0 | 154.0 |  |
| TOTAL                         | 687                                       | 756   | 794   |  |

#### Administrative Requirements

Program administrative staff's role will be to ensure that:

- The implementation contractor performs all the activities associated with delivery of all components of the program, and
- Educational and program messages are delivered accurately and clearly to ensure the effectiveness of program delivery and maximize customer satisfaction with the program.

The program is expected to operate according to the following administrative and total utility budget:

#### Total Program Budget

|                       | Total Utility Budget |             |             |  |
|-----------------------|----------------------|-------------|-------------|--|
| Total Admin Costs     | \$1,024,600          | \$1,120,060 | \$1,172,563 |  |
| Total Incentive Costs | \$444,000            | \$488,400   | \$512,820   |  |
| Total Utility Budget  | \$1,468,600          | \$1,608,460 | \$1,685,383 |  |

#### Cost-Effectiveness

The cost-effectiveness metrics of the Business Custom Incentives program are as follows:

|                                   | THEXT     | Cost Effecti | veness Tests |           |
|-----------------------------------|-----------|--------------|--------------|-----------|
| Program                           | TRC Ratio | UCT Ratio    | PCT Ratio    | RIM Ratio |
| Bus Small Business Direct Install | 1.04      | 1.04         | -            | 0.49      |

#### **BUSINESS AC LOAD MANAGEMENT PROGRAM**

# Program Description

The Business AC Load Management program typically occurs during times of high peak demand or supply-side constraints. During an event, participants' equipment is controlled by a one-way remote switch

• The one-way remote switch is connected to the condensing unit of an AC. When activated by a control signal, the switch will not allow the equipment to operate for the duration of the event. The compressor is shut down up to 50% of the time in discrete cycles during an event while the fan continues to operate. This allows cool air to be circulated throughout the building while the compressor is disabled. The operation of the switch is usually controlled through a digital paging network.

The program has the following components:

- Switch Installation A small device is installed on the outside of the building near the air conditioner. The switch is connected to the condensing unit of the AC and activated by a control signal.
- Bill Credit Participants receive a credit on their monthly bill from June to September.

#### **Objectives**

The purpose of the Business AC Load Management program is to lower the peak demand usage in the IPL service territory to provide system and grid relief. The program provides financial incentives for customers as a means to not only promote energy efficient behavior, but also lower the cost of peak energy.

#### **Projected Savings**

The estimated energy savings are given in terms of annual per-unit values. These values were applied to the estimated number of participating customers under the program each year. The savings noted in each year reflect incremental or annual savings for the entire participant population.

Total Net Incremental Energy Savings (kWh)

|                                  | Total Net Incre | mental Energy Sa | vings (kWh) |
|----------------------------------|-----------------|------------------|-------------|
| Measure                          | 2015            | 2016             | 2017        |
| C&l ACLM switch (50% True Cycle) | 22,820          | 24,214           | 25,608      |
| TOTAL                            | 22,820          | 24,214           | 25,608      |

#### Total Net Incremental Demand Savings (kW)

|                                  | Total Net Incre | mental Demand S | avings (kW) |
|----------------------------------|-----------------|-----------------|-------------|
| Measure                          | 2015            | 2016            | 2017        |
| C&I ACLM switch (50% True Cycle) | 1,781           | 1,889           | 1,998       |
| TOTAL                            | 1,781           | 1,889           | 1,998       |

26 www.enernoc.com

#### Administrative Requirements

This program will be administered through an implementation contractor. The Utility's role will be to ensure that:

- The implementation contractor performs all the activities associated with delivery of all components of the program, and
- IPL's educational and programmatic messages are delivered accurately and clearly to ensure the effectiveness of program delivery and maximize customer satisfaction with the program.

The program is expected to operate according to the following administrative and total utility budget:

#### Total Program Budget

|                       | Total Utility Budget |           |           |  |  |  |  |  |  |  |
|-----------------------|----------------------|-----------|-----------|--|--|--|--|--|--|--|
| Total Admin Costs     | \$103,032            | \$107,187 | \$111,343 |  |  |  |  |  |  |  |
| Total Incentive Costs | \$123,694            | \$131,250 | \$138,806 |  |  |  |  |  |  |  |
| Total Utility Budget  | \$226,726            | \$238,437 | \$250,149 |  |  |  |  |  |  |  |

#### Cost-Effectiveness

The cost-effectiveness metrics of the Business AC Load Management program are as follows:

|                        |           | Cost Effective | veness Tests |           |
|------------------------|-----------|----------------|--------------|-----------|
| Program                | TRC Ratio | UCT Ratio      | PCT Ratio    | RIM Ratio |
| Bus AC Load Management | 1.40      | 0.73           | -            | 0.72      |

#### **About EnerNOC Utility Solutions Consulting**

EnerNOC Utility Solutions Consulting is part of EnerNOC Utility Solutions group, which provides a comprehensive suite of demand-side management (DSM) services to utilities and grid operators worldwide. Hundreds of utilities have leveraged our technology, our people, and our proven processes to make their energy efficiency (EE) and demand response (DR) initiatives a success. Utilities trust EnerNOC to work with them at every stage of the DSM program lifecycle — assessing market potential, designing effective programs, implementing those programs, and measuring program results.

EnerNOC Utility Solutions delivers value to our utility clients through two separate practice areas – Program Implementation and EnerNOC Utility Solutions Consulting.

- Our Program Implementation team leverages EnerNOC's deep "behind-the-meter expertise" and world-class technology platform to help utilities create and manage DR and EE programs that deliver reliable and cost-effective energy savings. We focus exclusively on the commercial and industrial (C&I) customer segments, with a track record of successful partnerships that spans more than a decade. Through a focus on high quality, measurable savings, EnerNOC has successfully delivered hundreds of thousands of MWh of energy efficiency for our utility clients, and we have thousands of MW of demand response capacity under management.
- The EnerNOC Utility Solutions Consulting team provides expertise and analysis
  to support a broad range of utility DSM activities, including: potential
  assessments; end-use forecasts; integrated resource planning; EE, DR, and
  smart grid pilot and program design and administration; load research;
  technology assessments and demonstrations; evaluation, measurement and
  verification; and regulatory support.

The EnerNOC Utility Solutions Consulting team has decades of combined experience in the utility DSM industry. The staff is comprised of professional electrical, mechanical, chemical, civil, industrial, and environmental engineers as well as economists, business planners, project managers, market researchers, load research professionals, and statisticians. Utilities view our experts as trusted advisors, and we work together collaboratively to make any DSM initiative a success.



| Gross MWh Savings                     |             |          |            |          |            |          |            | Gross kW Savings |            |                          |                           |          |            |          | Program Expenditures (000's) excluding lost revenues and/or performance incentives |          |            |          |            |                          | Verified Gros<br>MWh Savings<br>Program<br>2010-2014 |       |         |         |          |                          |                           |         |
|---------------------------------------|-------------|----------|------------|----------|------------|----------|------------|------------------|------------|--------------------------|---------------------------|----------|------------|----------|------------------------------------------------------------------------------------|----------|------------|----------|------------|--------------------------|------------------------------------------------------|-------|---------|---------|----------|--------------------------|---------------------------|---------|
| CORE PROGRAMS                         | End<br>Note | 20       | 110        | 20       | 011        | 2        | 012        | 2                | 2013       | 2014 YTD thru<br>5/31/14 | 2014 Forecast<br>Year End | 20       | 10         | 2        | 2011                                                                               | 2        | 012        | 2        | )13        | 2014 YTD<br>thru 5/31/14 | 2014 Forecast<br>Year End                            | 2010  | 2011    | 2012    | 2013     | 2014 YTD thru<br>5/31/14 | 2014 Forecast<br>Year End |         |
|                                       |             | Ex-ante* | Verified** | Ex-ante* | Verified** | Ex-ante* | Verified** | Ex-ante*         | Verified** |                          |                           | Ex-ante* | Verified** | Ex-ante* | Verified**                                                                         | Ex-ante* | Verified** | Ex-ante* | Verified** |                          |                                                      |       |         |         |          |                          |                           |         |
| rescriptive Lighting                  | 1           | 1,735    | 1,735      | 12,459   | 17,161     | 20,790   | 16,392     | 31,416           | 28,250     | 10,653                   | 15,993                    | 1,361    | 1,361      | 9,772    | 1,943                                                                              | 3,323    | 2,609      | 5,021    | 3,379      | 1,268                    | 1,798                                                | \$114 | \$409   | \$1,229 | \$1,684  | \$639                    | \$851                     | 79,531  |
| ome Energy Assessment                 | 2           | 678      | 363        | 3,844    | 2,279      | 10,680   | 5,691      | 26,829           | 24,950     | 8,698                    | 16,729                    | 178      | 43         | 1,010    | 271                                                                                | 4,758    | 2,568      | 12,260   | 5,097      | 1,259                    | 5,623                                                | \$127 | \$967   | \$3,690 | \$8,616  | \$2,930                  | \$4,276                   | 50,012  |
| ncome Qualified Weatherization        | 2           | 375      | 375        | 272      | 195        | 1,051    | 446        | 1,454            | 1,154      | 1,337                    | 2,767                     | 66       | 66         | 48       | 14                                                                                 | 454      | 262        | 621      | 371        | 128                      | 723                                                  | \$289 | \$416   | \$717   | \$820    | \$856                    | \$1,206                   | 4,937   |
| nergy Efficient Schools - Kits        | 3           | 1,686    | 1,686      | 1,956    | 1,956      | 4,127    | 3,910      | 5,047            | 4,832      | 2,885                    | 4,127                     | 125      | 125        | 126      | 0                                                                                  | 0        | 0          | 0        | 0          | 0                        | 0                                                    | \$147 | \$119   | \$819   | \$990    | \$764                    | \$540                     | 16,511  |
| C&I Prescriptive                      | 4           | 675      | 675        | 21,602   | 21,602     | 30,397   | 20,785     | 45,620           | 36,600     | 31,463                   | 54,298                    | 138      | 138        | 4,804    | 4,804                                                                              | 6,611    | 3,664      | 6,196    | 6,876      | 5,167                    | 33,210                                               | \$141 | \$1,373 | \$2,079 | \$6,509  | \$6,145                  | \$12,945                  | 133,960 |
| C&I Energy Efficient Schools - Audits |             | 0        | 0          | 0        | 0          | 0        | 0          | 1,492            | 1,459      | 541                      | 793                       | 0        | 0          | 0        | 0                                                                                  | 0        |            | 54       | 89         | 38                       | 56                                                   | \$0   | \$43    | \$294   | \$343    | \$183                    | \$389                     | 2,252   |
| otal Core Programs By Year            |             | 5,149    | 4,834      | 40,134   | 43,193     | 67,046   | 47,224     | 111,858          | 97,245     | 55,577                   | 94,707                    | 1,868    | 1,733      | 15,759   | 7,032                                                                              | 15,146   | 9,103      | 24,152   | 15,812     | 7,860                    | 41,410                                               | \$818 | \$3,326 | \$8,828 | \$18,962 | \$11,517                 | \$20,207                  | 287,203 |

| CORE PLUS PROGRAMS                                    |   | 2        | 010        | 2        | 011        | 29       | )12        | 20       | 113        | 2014 YTD thru<br>5/31/14 | 2014 Forecast<br>Year End | 20       | 10         | 20       | 11         | 20       | )12        | 20       | )13        | 2014 YTD<br>thru 5/31/14 | 2014 Forecast<br>Year End | 2010    | 2011    | 2012    | 2013     | 2014 YTD thru<br>5/31/14 | 2014 Forecast<br>Year End |         |
|-------------------------------------------------------|---|----------|------------|----------|------------|----------|------------|----------|------------|--------------------------|---------------------------|----------|------------|----------|------------|----------|------------|----------|------------|--------------------------|---------------------------|---------|---------|---------|----------|--------------------------|---------------------------|---------|
|                                                       |   | Ex-ante* | Verified** | Ex-ante* | Verified** | Ex-ante* | Verified** | Ex-ante* | Verified** |                          |                           | Ex-ante* | Verified** | Ex-ante* | Verified** | Ex-ante* | Verified** | Ex-ante* | Verified** |                          |                           |         |         |         |          |                          |                           |         |
| Residential-Appliance Recycling                       | 5 | 760      | 760        | 959      | 711        | 2,235    | 2,235      | 2,366    | 2,306      | 524                      | 2,273                     | 168      | 168        | 183      | 113        | 419      | 419        | 397      | 400        | 94                       | 399                       | \$122   | \$161   | \$499   | \$387    | \$105                    | \$516                     | 8,285   |
| Residential-Room AC Pickup and Recycling              | 6 | 0        | 0          | 0        | 0          | 6        | 6          | see note | see note   | see note                 | see note                  | 0        | 0          | 0        | 0          | 32       | 32         | see note | see note   | see note                 | see note                  | \$0     | \$0     | \$5     | see note | see note                 | see note                  |         |
| Residential-New Construction                          |   | 101      | 136        | 353      | 433        | 216      | 210        | 62       | 62         | 0                        | 187                       | 8        | 21         | 29       | 64         | 37       | 38         | 5        | 4          | 0                        | 85                        | \$46    | \$52    | \$114   | \$71     | \$28                     | \$172                     | 1,028   |
| Residential-Energy Assessment                         |   | 1,398    | 2,394      | 2,032    | 1,080      | 668      | 646        | 765      | 667        | 407                      | 1,819                     | 186      | 277        | 316      | 125        | 105      | 89         | 85       | 75         | 41                       | 173                       | \$120   | \$221   | \$214   | \$134    | \$37                     | \$196                     | 6,606   |
| Residential-Renewable Energy Incentives               |   | 5        | 7          | 5        | 17         | 14       | 14         | 52       | 52         | 6                        | 102                       | 3        | 1          | 18       | 3          | 12       | 12         | 9        | 9          | 1                        | 17                        | \$32    | \$14    | \$36    | \$54     | \$12                     | \$111                     | 192     |
| Res-Air Conditioning Load Management                  | 7 | 41       | 41         | 40       | 89         | 23       | 23         | 370      | 370        | 374                      | 429                       | 3,752    | 3,752      | 3,599    | 17,325     | 2,126    | 2,126      | 29,925   | 29,925     | 30,301                   | 34,936                    | \$1,338 | \$1,317 | \$1,309 | \$1,325  | \$215                    | \$2,046                   | 952     |
| Residential-High Efficiency HVAC Incentives           |   | 0        | 0          | 0        | 0          | 658      | 724        | 1,456    | 1,396      | 0                        | 0                         | 0        | 0          | 0        | 0          | 112      | 139        | 247      | 210        | 0                        | 0                         | \$0     | \$0     | \$515   | \$699    | \$0                      | \$0                       | 2,120   |
| Residential-Peer Comparison Energy Reports            | 8 | 0        | 0          | 0        | 0          | 4,724    | 5,580      | 12,958   | 13,420     | 11,465                   | 29,045                    | 0        | 0          | 0        | 0          | 351      | 351        | 1,782    | 1,845      | 0                        | 0                         | \$0     | \$0     | \$293   | \$813    | \$721                    | \$1,785                   | 48,045  |
| Residential-Multi-Family Direct Install               |   | 0        | 0          | 11,616   | 14,194     | 13,845   | 12,763     | 9,340    | 8,544      | 1,866                    | 7,491                     | 0        | 0          | 1,471    | 480        | 1,768    | 1,589      | 1,134    | 993        | 218                      | 908                       | \$0     | \$510   | \$657   | \$871    | \$228                    | \$1,037                   | 42,992  |
| C&I Business Energy Incentive                         |   | 0        | 0          | 7,702    | 6,353      | 13,806   | 13,806     | 18,494   | 18,093     | 6,530                    | 20,071                    | 0        | 0          | 2        | 2,208      | 2,425    | 2,425      | 3,598    | 3,528      | 1,159                    | 3,540                     | \$49    | \$562   | \$1,125 | \$1,750  | \$997                    | \$2,830                   | 58,323  |
| C&I Air Conditioning Load Management                  | 7 | 1        | 1          | 6        | 4          | 6        | 6          | 2        | 2          | 2                        | 29                        | 132      | 132        | 1        | 74         | 497      | 497        | 191      | 191        | 382                      | 2,276                     | \$21    | \$96    | \$134   | \$77     | \$12                     | \$287                     | 42      |
| C&I Renewable Energy Incentives                       |   | 10       | 7          | 14       | 28         | 6        | 6          | 19       | 18         | 19                       | 32                        | 6        | 1          | 0        | 5          | 5        | 5          | 3        | 3          | 3                        | 6                         | \$7     | \$30    | \$16    | \$14     | \$6                      | \$38                      | 91      |
| On-line Energy Feedback                               |   | 0        | 0          | 0        | 0          | 0        | 0          | 0        | 0          | 0                        | 0                         | 0        | 0          | 0        | 0          | 0        | 0          | 0        | 0          | 0                        | 0                         | \$0     | \$0     | \$432   | \$152    | \$7                      | \$136                     | 0       |
| Indirect Costs attributable to all Core Plus programs |   |          |            |          |            |          |            |          |            |                          |                           |          |            |          |            |          |            |          |            |                          |                           | \$212   | \$412   | \$689   | \$807    | \$277                    | \$1,168                   | 0       |
|                                                       |   |          |            |          |            |          |            |          |            |                          |                           |          |            |          |            |          |            |          |            |                          |                           |         |         |         |          |                          |                           |         |
|                                                       |   |          |            |          |            |          |            |          |            |                          |                           |          |            |          |            |          |            |          |            |                          |                           |         |         |         |          |                          |                           |         |
| Total Core Plus Programs By Year                      |   | 2,316    | 3,346      | 22,726   | 22,909     | 36,208   | 36,019     | 45,884   | 44,930     | 21,193                   | 61,478                    | 4,254    | 4,352      | 5,619    | 20,397     | 7,889    | 7,722      | 37,376   | 37,183     | 32,199                   | 42,340                    | \$1,947 | \$3,377 | \$6,038 | \$7,154  | \$2,645                  | \$10,322                  | 168,676 |

| Portfolio Summary                           |          | 10         | 20       |            |          | 12         |          | 13         | 2014 YTD thru<br>5/31/14 | 2014 Forecast<br>Year End | 2010 - 2014<br>Summary View |
|---------------------------------------------|----------|------------|----------|------------|----------|------------|----------|------------|--------------------------|---------------------------|-----------------------------|
|                                             | Ex-ante* | Verified** | Ex-ante* | Verified** | Ex-ante* | Verified** | Ex-ante* | Verified** |                          |                           |                             |
| Total Gross MWh Core & Core Plus            | 7,465    | 8,180      | 62,860   | 66,102     | 103,254  | 83,243     | 157,742  | 142,175    | 76,770                   | 156,185                   | 455,885                     |
| Core & Core Plus MWh Generic Target         | 44,205   |            | 72,224   |            | 98,865   |            | 126,264  |            |                          | 155,079                   | 496,637                     |
| Total Program Expenditures Core & Core Plus | \$2,765  |            | \$6,703  |            | \$14,866 |            | \$26,116 |            | \$14,162                 | \$30,529                  | \$80,978                    |

<sup>\*</sup>Ex-Ante savings are the savings reported by third party administrator and/or utility. Ex-Ante savings are a before the fact engineering review to determine deemed savings, and are used for planning and reported purposes.

\*\*Verified Gross Savings per EM&V reports where available. Ex-ante savings used for programs that have not been evaluated.

| Future A | voided Production an       | d Capacity Costs Used |
|----------|----------------------------|-----------------------|
|          | to Evaluate DSM            | Programs              |
| Year     | <b>Energy Avoided Cost</b> | Capacity Avoided Cost |
| Teal     | \$ per MWh                 | \$ per KW             |
| 2015     |                            |                       |
| 2016     |                            |                       |
| 2017     |                            |                       |
| 2018     |                            |                       |
| 2019     |                            |                       |
| 2020     |                            |                       |
| 2021     |                            |                       |
| 2022     |                            |                       |
| 2023     |                            |                       |
| 2024     |                            |                       |
| 2025     |                            |                       |
| 2026     |                            |                       |
| 2027     |                            |                       |
| 2028     |                            |                       |
| 2029     |                            |                       |
| 2030     |                            |                       |
| 2031     |                            |                       |
| 2032     |                            |                       |
| 2033     |                            |                       |
| 2034     |                            |                       |
|          |                            |                       |

#### Notes:

- 1. All values expressed in real 2014\$.
- 2. Avoided Energy cost from Ventyx Fall 2013 Reference Case MISO-IN .
- 3. Avoided Capacity cost based on Levelized Avoided Cost of CT using Ventyx cost estimates for CT and includes avoided Fixed O&M and adjustment for system losses.
- 4. Avoided Capacity reflects a 10% adder to account for avoided T&D investment.

# **Standard DSM Benefit/Cost Tests**

DSM test objectives and valuation equation and components

|                                                                                                                                                                        | S           | tandard Benef | fit / Cost Tests | <u> </u>    |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|------------------|-------------|-------------|
|                                                                                                                                                                        | RIM         | TRC           | UC               | CBT         | Participant |
| Goal/Impact of test  Minimizes Utility costs Minimizes Customer rate impacts Achieves Customer fairness Minimizes Overall/Societal costs Maximizes Participant benefit | X<br>X      | X             | x                | х           | х           |
| Test Benefit and Cost Components  Benefits                                                                                                                             |             |               |                  |             |             |
| Production Cost Savings (energy) Capacity Cost Savings Participant Bill Savings                                                                                        | X<br>X      | X<br>X        | X<br>X           | X<br>X      | x           |
| Costs                                                                                                                                                                  |             |               |                  |             |             |
| Lost Revenue to Utility (Customer base) Incentives paid by Utility Program Administrative Costs Participant Costs (investment)                                         | X<br>X<br>X | X<br>X        | X<br>X           | X<br>X<br>X | x           |

B/C test ratio (equation)

Benefit/Cost test equation is ratio of marked ("X" above). Benefits and Costs expressed as present values.

# Benefit/Cost Ratios by Program and Market Segment (IURC Cause No. 44497)

| Program                             | RIM  | PCT  | UCT  | TRC  | CBT   |
|-------------------------------------|------|------|------|------|-------|
|                                     |      |      |      |      |       |
| Residential Lighting                | 1.00 | 2.23 | 2.25 | 1.05 | 21.21 |
| Income Qualified Weatherization     | 0.48 |      | 0.61 | 0.61 | -0.59 |
| Residential Air Conditioning Load   |      |      |      |      |       |
| Management                          | 1.56 |      | 1.57 | 2.65 | 1.72  |
| Multi-Family Direct Install         | 0.80 |      | 1.39 | 1.39 | 1.10  |
| Home Energy Assessment              | 0.69 |      | 1.15 | 1.15 | 0.30  |
| School Kits                         | 0.90 |      | 1.90 | 1.90 | 4.24  |
| Online Energy Assessment Kits       | 0.76 |      | 1.33 | 1.33 | 0.78  |
| Appliance Recycling                 | 0.75 |      | 1.21 | 1.42 | 0.91  |
| Peer Comparison Reports             | 0.71 |      | 1.04 | 1.04 | 0.11  |
| Residential Segment                 | 0.82 |      | 1.25 | 1.14 | N/A   |
|                                     |      |      |      |      |       |
| Business Prescriptive               | 0.79 | 3.27 | 3.47 | 1.51 | 1.25  |
| Business Custom                     | 0.78 | 3.32 | 2.89 | 1.45 | 1.08  |
| Small Business Direct Install       | 0.49 |      | 1.04 | 1.04 | 0.04  |
| Business Air Conditioning Load Mgmt | 0.72 |      | 0.73 | 1.40 | 0.75  |
| <b>Business Segment</b>             | 0.75 | 3.49 | 2.81 | 1.44 | N/A   |
|                                     |      |      |      |      |       |
| Total Programs Only                 | 0.80 |      | 2.16 | 1.39 | N/A   |
|                                     |      |      |      |      |       |
| Portfolio Level Including           |      |      |      |      |       |
| Indirect Costs + Shared Savings     | 0.77 | 3.88 | 1.99 | 1.32 | N/A   |

# Net Present Value Of DSM Program Benefits (UCT – Life Cycle)

|                                      | TRC Benefits  | TRC Costs    | zed UCT<br>\$/kWh | elized UCT<br>ost \$/kW |
|--------------------------------------|---------------|--------------|-------------------|-------------------------|
| Res Lighting                         | \$11,931,249  | \$11,312,525 | \$<br>0.018       | \$<br>152.48            |
| Res Renewables                       | \$61,777      | \$652,966    | \$<br>-           | \$<br>-                 |
| Res IQW                              | \$2,142,414   | \$3,538,726  | \$<br>0.077       | \$<br>293.98            |
| Res New Construction                 | \$242,758     | \$1,477,383  | \$<br>-           | \$<br>-                 |
| Res AC Load<br>Management            | \$8,867,246   | \$3,352,050  | \$<br>4.302       | \$<br>52.58             |
| Res MF Direct Install                | \$4,402,647   | \$3,168,412  | \$<br>0.031       | \$<br>227.13            |
| Res HEA                              | \$5,015,531   | \$4,358,481  | \$<br>0.032       | \$<br>345.91            |
| Res School Kit                       | \$3,250,195   | \$1,708,010  | \$<br>0.020       | \$<br>262.89            |
| Res Online Energy<br>Assessment      | \$773,460     | \$582,372    | \$<br>0.030       | \$<br>290.54            |
| Res Appliance<br>Recycling           | \$2,434,207   | \$1,712,353  | \$<br>0.037       | \$<br>210.21            |
| Res Peer Comparison                  | \$4,067,063   | \$3,893,294  | \$<br>0.056       | \$<br>191.92            |
| Bus Prescriptive                     | \$54,939,336  | \$36,456,981 | \$<br>0.012       | \$<br>67.66             |
| Bus Custom Incentives                | \$27,781,730  | \$19,121,551 | \$<br>0.015       | \$<br>74.29             |
| Bus Schools Program                  | \$226,899     | \$1,755,083  | \$<br>-           | \$<br>-                 |
| Bus Small Business<br>Direct Install | \$4,473,780   | \$4,288,469  | \$<br>0.040       | \$<br>278.98            |
| Bus Renewables                       | \$20,934      | \$280,838    | \$<br>-           | \$<br>-                 |
| Bus AC Load<br>Management            | \$468,740     | \$334,717    | \$<br>8.873       | \$<br>113.71            |
|                                      |               |              |                   |                         |
| Portfolio Total:                     | \$131,099,964 | \$97,994,212 | \$<br>0.021       | \$<br>98.82             |

|                                 | Tota   | al Utility Costs (00 | 00\$)  | Total Net Energy Savings (MWh) |         | Total N | et Demand Saving | gs (MW) |      |
|---------------------------------|--------|----------------------|--------|--------------------------------|---------|---------|------------------|---------|------|
| Program                         | 2015   | 2016                 | 2017   | 2015                           | 2016    | 2017    | 2015             | 2016    | 2017 |
| Res Lighting                    | 1,963  | 1,967                | 1,943  | 16,369                         | 16,492  | 16,616  |                  |         |      |
| Res IQW                         | 1,307  | 1,307                | 1,307  | 2,057                          | 2,057   | 2,057   |                  |         |      |
| Res ACLM                        | 2,021  | 2,082                | 2,144  | 425                            | 437     | 448     |                  |         |      |
| Res Multi Family Direct Install | 1,170  | 1,170                | 1,170  | 5,714                          | 5,714   | 5,714   |                  |         |      |
| Res HEA                         | 1,610  | 1,610                | 1,610  | 5,850                          | 5,850   | 5,850   |                  |         |      |
| Res School Kit                  | 631    | 631                  | 631    | 4081                           | 4081    | 4081    |                  |         |      |
| Res Online Energy Assessment    | 201    | 218                  | 227    | 959                            | 1055    | 1107    |                  |         |      |
| Res Appliance Recycling         | 746    | 746                  | 746    | 2282                           | 2282    | 2282    |                  |         |      |
| Res Peer Comparison             | 1,438  | 1,438                | 1,438  | 23,000                         | 23,000  | 23,000  |                  |         |      |
| Bus Prescriptive                | 5,590  | 5,851                | 6,128  | 40,140                         | 42,147  | 44,255  |                  |         |      |
| Bus Custom Incentives           | 3,385  | 3,549                | 3,721  | 17,083                         | 17,938  | 18,834  |                  |         |      |
| Small Business Direct Install   | 1,469  | 1,608                | 1,685  | 4,877                          | 5,364   | 5,633   |                  |         |      |
| Bus AC Load Management          | 227    | 238                  | 250    | 23                             | 24      | 26      |                  |         |      |
|                                 |        |                      |        |                                |         |         |                  |         |      |
| Residential Total:              | 11,087 | 11,169               | 11,216 | 60,737                         | 60,968  | 61,156  |                  |         |      |
| Business Total:                 | 10,670 | 11,247               | 11,784 | 62,123                         | 65,473  | 68,747  |                  |         |      |
| Portfolio Total:                | 21,757 | 22,416               | 23,000 | 122,860                        | 126,441 | 129,903 |                  |         |      |

# Indianapolis Power & Light Company Demand-Side Management Potential Forecast For 2018-2034

October 31, 2014



IPL engaged Applied Energy Group ("AEG") to complete a Demand-Side Management ("DSM") Potential Forecast for 2018-2034 for inclusion in the Company's 2014 Integrated Resource Plan.

#### IPL notes:

- AEG's forecast represents the market potential from a 2014 viewpoint
- IPL's future DSM filings and results will likely vary from the forecast
- Legislation and public policy will help shape future DSM
- Customer behavior including additional large customer opt-outs will affect outcomes
- Programs were included in the forecast based on a Total Resource Cost (TRC) threshold result of 1 or greater, while IPL's DSM portfolio offerings typically have an aggregate TRC value greater than 1

AEG's report is provided herein.



# INDIANAPOLIS POWER & LIGHT DEMAND-SIDE MANAGEMENT POTENTIAL FORECAST FOR 2015-2034

Applied Energy Group 500 Ygnacio Valley Road Suite 450 Walnut Creek, CA 94596 925.482.2000 www.appliedenergygroup.com Prepared for: Indianapolis Power & Light

Presented on: October 15, 2014

This report was prepared by:

Applied Energy Group 500 Ygnacio Valley Blvd., Suite 450 Walnut Creek, CA 94596

- I. Rohmund, Project Director D. Costenaro, Project Manager
- C. Carrera

# **CONTENTS**

| 1-12-12-12-22-22-33-13-2 |
|--------------------------|
| 2-12-12-22-22-32-33-13-2 |
| 2-12-12-22-22-32-33-13-2 |
| 2-12-22-22-33-13-2       |
| 2-22-22-33-13-2          |
| 2-22-33-13-2             |
| 2-2<br>2-3<br>3-1<br>3-2 |
|                          |
|                          |
| <b>3-1</b><br>3-1        |
| 3-1<br>3-2               |
| 3-2                      |
|                          |
| 3-2                      |
|                          |
| 4-3                      |
| 4-3                      |
| 4-5                      |
| 4-6                      |
| 4-8                      |
| 5-1                      |
| 5-3                      |
| 6-1                      |
| 6-1                      |
| 6-2                      |
| 6-5                      |
| 6-5                      |
| 6-8                      |
| 6-9                      |
| A-1                      |
|                          |
|                          |

# **LIST OF FIGURES**

| Figure 3-1  | Sector-Level Electricity Use, 2011                                             | . 3-1 |
|-------------|--------------------------------------------------------------------------------|-------|
| Figure 4-1  | Residential Electricity Baseline Projection by End Use (MWh)                   | 4-4   |
| Figure 4-2  | Residential Electricity Use per Household by End Use (kWh per HH)              | 4-5   |
| Figure 4-3  | Commercial Electricity Baseline Forecast by End Use                            | 4-5   |
| Figure 4-4  | Industrial Electricity Baseline Forecast by End Use                            | .4-7  |
| Figure 4-5  | Electricity Baseline Projection Summary (GWh)                                  | .4-8  |
| Figure 4-6  | Peak Demand Baseline Forecast Summary (MW)                                     | .4-9  |
| Figure 5-1  | Summary of Energy Savings                                                      | .5-1  |
| Figure 5-2  | Forecasts of Potential (GWh)                                                   |       |
| Figure 5-3  | Summary of Electric Peak Demand Savings                                        | .5-3  |
| Figure 5-4  | Realistic Achievable Electric Potential by Sector (GWh)                        | .5-4  |
| Figure 5-5  | Realistic Achievable Peak Demand Potential by Sector (MW)                      | .5-5  |
| Figure 6-1  | Residential DSM Potential Savings                                              | .6-2  |
| Figure 6-2  | Residential Realistic Achievable Potential by End Use in 2034 (Energy Savings) | .6-3  |
| Figure 6-3  | Residential Realistic Achievable Potential by End Use in 2034 (Peak Savings)   | .6-3  |
| Figure 6-4  | Residential % of Cumulative Achievable Potential by End Use Over Time          | .6-4  |
| Figure 6-5  | Residential Cumulative Achievable Potential by End Use Over Time (GWh)         | 6-4   |
| Figure 6-6  | Commercial DSM Potential Savings                                               | .6-5  |
| Figure 6-7  | Commercial Realistic Achievable Potential by End Use in 2034 (Energy Savings)  | .6-6  |
| Figure 6-8  | Commercial Realistic Achievable Potential by End Use in 2034 (Peak Savings)    | .6-7  |
| Figure 6-9  | Commercial % of Cumulative Achievable Potential Savings by End Use in 2034     | .6-7  |
| Figure 6-10 | Commercial Cumulative Achievable Potential Savings by End Use in 2034 (GWh)    | .6-8  |
| Figure 6-11 | Industrial DSM Potential Savings                                               | .6-9  |
| Figure 6-12 | Industrial Realistic Achievable Potential by End Use in 2034 (Energy Savings)6 | 5-10  |
| Figure 6-13 | Industrial Realistic Achievable Potential by End Use in 2034 (Peak Savings)6   | 5-10  |
| Figure 6-14 | Industrial % of Cumulative Achievable Potential Savings by End Use in 20346    | 5-11  |
| Figure 6-15 | Industrial Cumulative Achievable Potential Savings by End Use in 2034 (GWh)6   | 5-11  |

# **LIST OF TABLES**

| Table 1-1 | Explanation of Abbreviations and Acronyms                         | 1-2 |
|-----------|-------------------------------------------------------------------|-----|
| Table 3-1 | Sector-Level Electricity Use, 2011                                |     |
| Table 3-2 | Commercial Electricity Use by End Use and Segment (2011)          | 3-2 |
| Table 3-3 | Industrial Electricity Use by End Use and Segment (2011)          | 3-2 |
| Table 4-1 | Residential Electricity Baseline Projection by End Use (GWh)      | 4-3 |
| Table 4-2 | Residential Electricity Use per Household by End Use (kWh per HH) | 4-4 |
| Table 4-3 | Commercial Electricity Consumption by End Use (GWh)               | 4-6 |
| Table 4-4 | Industrial Electricity Consumption by End Use (GWh)               | 4-7 |
| Table 4-5 | Electricity Projection by Sector (GWh)                            | 4-8 |
| Table 4-6 | Peak Demand Consumption by Sector (MW)                            | 4-9 |
| Table 5-1 | Summary of Overall DSM Potential                                  | 5-1 |
| Table 5-2 | Summary of Peak Demand Potential                                  | 5-2 |
| Table 5-3 | Electric Achievable Potential by Sector (GWh)                     | 5-3 |
| Table 5-4 | Achievable Peak Demand Savings by Sector (MW)                     | 5-4 |
| Table 6-1 | DSM Potential for the Residential Sector                          | 6-1 |
| Table 6-2 | DSM Potential for the Commercial Sector                           | 6-5 |
| Table 6-3 | Electric DSM Potential for the Industrial Sector                  | 6-9 |

# Introduction

This study represents an update to the **prior report "Energy Efficiency Market Potential Study and Action Plan" dated December 21, 2012** (2012 MPS).¹ This report focuses on the work we did to update that analysis for Indianapolis Power & Light (IPL) to create forecasts of demand-side management (DSM) potential from 2015 to 2034 as part of the development of their integrated resource plan (IRP). For a detailed description of the analysis approach for the DSM potential forecasts, please refer to the 2012 MPS. In Chapter 2, Analysis Approach, we focus primarily on updates and revisions to the previous study.

The updated analysis Applied Energy Group (AEG) presents in this report identifies achievable potential based on cost-effectiveness criteria provided by IPL. It also delivers estimates of program costs, energy savings, and demand savings associated with the DSM programs and measures. Further, these estimates are calibrated to align with the DSM Action Plan (2015-2017) that were developed separately for IPL by AEG. IPL is using the Action Plan in its DSM filing to seek approval of DSM programs for 2015-2016.

#### **Definitions of Potential**

Unless otherwise noted, the DSM savings estimates provided in this report represent net savings² developed into three types of potential: technical potential, economic potential, and achievable potential. Technical and economic potential are both theoretical limits to efficiency savings. Achievable potential embodies a set of assumptions about the decisions consumers make regarding the efficiency of the equipment they purchase, the maintenance activities they undertake, the controls they use for energy-consuming equipment, and the elements of building construction. The various levels are described below.

- **Technical potential** is defined as the theoretical upper limit of DSM potential. It assumes that customers adopt all feasible measures regardless of their cost. At the time of existing equipment failure, customers replace their equipment with the most efficient option available. In new construction, customers and developers also choose the most efficient equipment option. Technical potential also assumes the adoption of every other available measure, where applicable. For example, it includes installation of high-efficiency windows in all new construction opportunities and furnace maintenance in all existing buildings with furnace systems. These retrofit measures are phased in over a number of years, which is longer for higher-cost and complex measures.
- **Economic potential** represents the adoption of all **cost-effective** DSM measures. In this analysis, the cost effectiveness is measured by the total resource cost (TRC) test, which compares lifetime energy and capacity benefits to the incremental cost of the measure. If the benefits outweigh the costs (that is, if the TRC ratio is greater than 1.0), a given measure is considered in the economic potential. Customers are then assumed to purchase the most cost-effective option applicable to them at any decision juncture.
- **Realistic Achievable potential** estimates customer adoption of economic measures when delivered through DSM programs under typical market, implementation, and customer preference conditions. The delivery environment in this analysis projects the current state of

Applied Energy Group 1-1

\_

<sup>&</sup>lt;sup>1</sup> The 2012 report was completed by EnerNOC Utility Solutions Consulting Group, which has since been acquired by Applied Energy Group. The same team members completed the analysis in both studies.

<sup>&</sup>lt;sup>2</sup> Savings in "net" terms instead of "gross" means that the savings do not include program "free riders" and that the baseline forecast includes naturally occurring efficiency. In other words, the baseline assumes that natural early adopters continue to make purchases of equipment and measures at efficiency levels higher than the minimum standard.

the DSM market in IPL's service territory and projects typical levels of expansion and increased awareness over time.

#### **Abbreviations and Acronyms**

Throughout the report we use several abbreviations and acronyms. Table 1-1 shows the abbreviation or acronym, along with an explanation.

Table 1-1 Explanation of Abbreviations and Acronyms

| Acronym   | Explanation                                                   |
|-----------|---------------------------------------------------------------|
| ACS       | American Community Survey                                     |
| AEO       | Annual Energy Outlook forecast developed annually by EIA      |
| AHAM      | Association of Home Appliance Manufacturers                   |
| B/C Ratio | Benefit to cost ratio                                         |
| BEST      | AEG's Building Energy Simulation Tool                         |
| CAC       | Central air conditioning                                      |
| C&I       | Commercial and industrial                                     |
| CFL       | Compact fluorescent lamp                                      |
| DEEM      | AEG's Database of Energy Efficiency Measures                  |
| DEER      | State of California Database for Energy-Efficient Resources   |
| DSM       | Demand side management                                        |
| EE        | Energy efficiency                                             |
| EIA       | Energy Information Administration                             |
| EISA      | Energy Efficiency and Security Act of 2007                    |
| EPACT     | Energy Policy Act of 2005                                     |
| EPRI      | Electric Power Research Institute                             |
| EUEA      | Efficient Use of Energy Act                                   |
| EUI       | Energy-use index                                              |
| НН        | Household                                                     |
| HID       | High intensity discharge lamps                                |
| HPWH      | Heat pump water heater                                        |
| IURC      | Indiana Utility Regulatory Commission                         |
| LED       | Light emitting diode lamp                                     |
| LoadMAP   | AEG's Load Management Analysis and Planning <sup>™</sup> tool |
| OUCC      | Indiana Office of Utility Consumer Counselor                  |
| RAP       | Realistic Achievable Potential                                |
| RTU       | Roof top unit                                                 |
| Sq. ft.   | Square feet                                                   |
| TRC       | Total resource cost                                           |
| UEC       | Unit energy consumption                                       |

# **Analysis Approach**

In this section, we summarize our analysis approach and modeling tool, focusing on updates made to the original analysis from the 2012 MPS.

#### **Overview of Analysis Approach**

To develop the DSM potential forecasts, AEG used a bottom-up analysis approach following the major steps listed below. Following this, we describe our modeling tool and then focus briefly on each step, describing the areas where updates or revisions were applied. For a more detailed description of the analysis approach, please refer to the 2012 MPS.

- 1. Performed a market characterization to describe sector-level electricity use for the residential, commercial, and industrial sectors for the base year, 2011 within IPL's service territory. This included existing information contained in prior Indiana studies, specific updates to the IPL customer database since the 2012 MPS, AEG's own databases and tools, and other secondary data sources such as the American Community Survey (ACS) and the Energy Information Administration (EIA).
- 2. Developed a baseline projection of energy consumption and peak demand by sector, segment, and end use for 2011 through 2034. This 20-year timeframe was a requirement for the IPL integrated resource plan, and had not been developed in the 2012 MPS or previous Action Plans, which only focused on years through 2017.
- 3. Defined and characterized several hundred DSM measures to be applied to all sectors, segments, and end uses.
- 4. Estimated the Technical, Economic, and Realistic Achievable potential from the efficiency measures. This involved a step to calibrate the participation, savings, and spending levels of Realistic Achievable potential to align with those filed in IPL's 2015-2017 DSM Action Plan.

#### LoadMAP Model

For the DSM potential analysis, we used AEG's Load Management Analysis and Planning tool (LoadMAP<sup>TM</sup>) version 3.0 to develop both the baseline projection and the estimates of potential. AEG developed LoadMAP in 2007 and has enhanced it over time through application to numerous national, regional, and utility-specific forecasting and potential studies. Built in Excel, the LoadMAP framework is both accessible and transparent and has the following key features.

- Embodies the basic principles of rigorous end-use models (such as EPRI's REEPS and COMMEND) but in a more simplified, accessible form.
- Includes stock-accounting algorithms that treat older, less efficient appliance/equipment stock separately from newer, more efficient equipment. Equipment is replaced according to the measure life and appliance vintage distributions defined by the user.
- Balances the competing needs of simplicity and robustness by incorporating important modeling details related to equipment saturations, efficiencies, vintage, and the like, where market data are available, and treats end uses separately to account for varying importance and availability of data resources.
- Isolates new construction from existing equipment and buildings and treats purchase decisions for new construction and existing buildings separately.
- Uses a simple logic for appliance and equipment decisions. Other models available for this purpose embody complex decision choice algorithms or diffusion assumptions, and the model

Applied Energy Group 2-1

parameters tend to be difficult to estimate or observe and sometimes produce anomalous results that require calibration or even overriding. The LoadMAP approach allows the user to drive the appliance and equipment choices year by year directly in the model. This flexible approach allows users to import the results from diffusion models or to input individual assumptions. The framework also facilitates sensitivity analysis.

- Includes appliance and equipment models customized by end use. For example, the logic for lighting is distinct from refrigerators and freezers.
- Can accommodate various levels of segmentation. Analysis can be performed at the sector level (e.g., total residential) or for customized segments within sectors (e.g., housing type or income level).

Consistent with the segmentation scheme and the market profiles we describe below, the LoadMAP model provides forecasts of baseline energy use by sector, segment, end use, and technology for existing and new buildings. It also provides forecasts of total energy use and DSM savings associated with the various types of potential.

#### **Market Characterization**

AEG used the market characterization from the 2012 MPS for this study as a starting point. It describes electricity consumption for IPL's residential, commercial, and industrial sectors for the base year of 2011, which was developed using prior Indiana studies, in AEG's own databases and tools, and in other secondary data sources such as the American Community Survey (ACS) and the Energy Information Administration (EIA).

To update the market characterization within the LoadMAP files, IPL provided the following data updates that had been completed since the publication of the prior report:

- Historical billing data of customer counts by sector
- Historical billing data of annual energy consumption and system peak demand by sector
- Updates to NAICS codes on the billing system

As a result of these additional data, particularly NAICS codes, we refined the split between commercial and industrial customers. Using the IPL system peak data together with AEG's enduse load shape library, we developed estimates of peak demand by sector, segment and end use. We calibrated the values to IPL's system peak.

# **Baseline Projection**

AEG used the existing LoadMAP model from the 2012 MPS and applied updates we made to the market characterization as the basis for a projection of baseline electricity use by sector, segment, and end use beginning in the base year of 2011 and ending in 2034. AEG applied the latest data sources regarding codes and standards, market conditions, and customer purchase decisions that had evolved since the 2012 MPS. **The model was calibrated to exactly match IPL's** actual sales for 2012 and 2013, and then compared and aligned to the official IPL load forecast through 2034. Similar to the 2012 MPS and most of the potential studies we conduct, the LoadMAP forecast does not exactly match **IPL's official load forecast** in every year, but is within a small, acceptable range that does not materially affect the results of the study.

This current study also developed a baseline end-use projection for peak demand by applying the end-use peak factors to the annual projection by segment and end use. The summary of the peak demand forecast is presented in Chapter 4.

#### **DSM Measure Characterization**

AEG used the measure characterization from the 2012 MPS and updated assumptions that have evolved in the marketplace since the completion of the previous work, primarily the projected cost and performance of LED lighting. Additionally, changes were made to the television market baseline to reflect that more efficient LCD and LED televisions have become available and are

being purchased. Similarly, set-top-boxes have undergone a transformation through a manufacturer agreement and those savings are included in the baseline projection in 2017 and beyond.

We also added measures to represent the residential peer comparison program and air conditioning direct load control programs.

#### **Estimate DSM Potential**

AEG used the LoadMAP model as described above to estimate three levels of DSM potential: Technical, Economic, and Realistic Achievable. The DSM potential estimates incorporated updated avoided cost data and discount rates as provided by IPL.

For this analysis, we excluded potential savings associated with the large commercial and industrial (C&I) customers that have chosen to opt out of DSM programs. This was done by calibrating the participation and savings levels in the DSM potential forecast for the years 2015 through 2017 to the latest DSM Action Plan filed by IPL. In the 2015-2017 Action Plan, participation and savings levels exclude 25% of C&I customers based on current opt-out rates.

#### Calibration to IPL's 2015-2017 DSM Action Plan

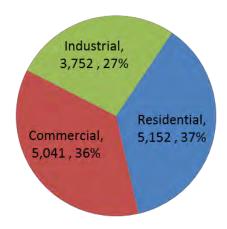
AEG calibrated savings and costs in the first three years of the Achievable Potential forecast to align with the savings and costs in the 2015-2017 DSM Action Plan. This process involved adjusting participation rates by a constant so that measure savings matched the levels of the DSM Action Plan for 2015-2017. Due to variance in market segmentation, measure bundling, naming conventions, and other factors, the specific measures present in the LoadMAP models do not exactly match those in the 2015-2017 DSM Action Plan. As a result, the alignment and calibration of costs and savings do not produce an exact match in every year, but it is within an acceptable range that does not materially affect the results of the study. This process is described in more detail in Appendix A.

Applied Energy Group 2-3

#### **Market Characterization**

This section summarizes how customers in the IPL service territory use electricity in the base year of the study, 2011. It begins with a high-level summary of energy use by sector and then delves into each sector in detail.

#### **Overall Energy Use**


Total electricity use for the residential, commercial and industrial sectors for IPL in 2011 was 13,946 GWh. As shown in Table 3-1 and Figure 3-1, the largest sector is residential, which accounts for 37% of load at 5,152 GWh. Commercial accounts for 36% of the load at 5,041 GWh. The remaining use is in the industrial sector, at 3,752 GWh.

In this study, we used enhanced customer information and updates to NAICS codes in the IPL billing system to reclassify commercial and industrial accounts. This results in a different allocation of energy use to the commercial and industrial sectors. The current analysis shows that the commercial sector, at 36% of total use, is higher than the industrial, with 27% of total use.

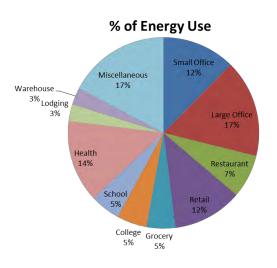
Table 3-1 Sector-Level Electricity Use, 2011

| Segment     | Annual Use<br>(GWh) | % of Sales |
|-------------|---------------------|------------|
| Residential | 5,152               | 37%        |
| Commercial  | 5,041               | 36%        |
| Industrial  | 3,752               | 27%        |
| Total       | 13,946              | 100%       |

Figure 3-1 Sector-Level Electricity Use, 2011



Applied Energy Group 3-1

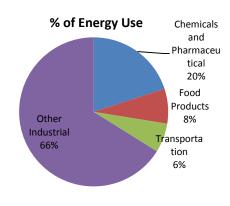

#### **Commercial Sector Use by Building Type**

In addition to revised sector-level control totals for the commercial and industrial sectors, the additional IPL data were used to develop refined energy use estimates for the eleven building-type identified for the analysis: Small Office, Large Office, Restaurant, Retail, Grocery, College, School, Health, Lodging, Warehouse, and Miscellaneous.

The values are shown in Table 3-2 below.

Table 3-2 Commercial Electricity Use by End Use and Segment (2011)

| Segment       | Electricity<br>Use<br>(GWh) | Intensity<br>(kWh/SqFt) | Floor Space<br>(million<br>SqFt) |
|---------------|-----------------------------|-------------------------|----------------------------------|
| Small Office  | 624                         | 15.2                    | 41                               |
| Large Office  | 832                         | 18.0                    | 46                               |
| Restaurant    | 370                         | 38.7                    | 10                               |
| Retail        | 594                         | 13.9                    | 43                               |
| Grocery       | 245                         | 48.9                    | 5                                |
| College       | 257                         | 11.5                    | 22                               |
| School        | 257                         | 8.0                     | 32                               |
| Health        | 701                         | 24.6                    | 29                               |
| Lodging       | 145                         | 13.7                    | 11                               |
| Warehouse     | 145                         | 6.4                     | 23                               |
| Miscellaneous | 870                         | 7.6                     | 114                              |
| Total         | 5,041                       | 13.5                    | 375                              |




# **Industrial Sector Use by Industry**

Similar to the commercial sector, we used the additional IPL data to develop refined energy use estimates for the four industries identified for the analysis: Chemical and Pharmaceutical (considered as one segment due to similarities in energy use and production methods), Transportation, and Food — with the remaining customers classified as Other Industrial. The values are shown in Table 3-3 below.

Table 3-3 Industrial Electricity Use by End Use and Segment (2011)

| Segment                     | Electricity Use<br>(GWh) | Number of<br>Employees |
|-----------------------------|--------------------------|------------------------|
| Chemical and Pharmaceutical | 751                      | 3,079                  |
| Food Products               | 283                      | 3,592                  |
| Transportation              | 238                      | 4,054                  |
| Other Industrial            | 2,481                    | 90,634                 |
| Total                       | 3,752                    | 101,358                |



# **Baseline Projection**

Prior to developing estimates of DSM potential, we developed a baseline end-use projection to quantify what consumption is likely to be in the future in absence of new DSM programs. The baseline projection serves as the metric against which DSM potentials are measured. This chapter presents the baseline forecast for electricity for each sector. As mentioned above, we used the models from the 2012 MPS with a base year of 2011. To calibrate and exactly match the actual sales data from 2012 and 2013 that had become available since the 2012 study, we adjusted for actual weather, trends in exogenous forecast variables, and miscellaneous usage. The remainder of the forecast years, 2014 through 2034, were projected by the LoadMAP forecasting engine.

#### **Residential Sector**

The baseline projection incorporates assumptions about economic growth, electricity prices, equipment standards, building codes and naturally occurring energy efficiency.

Table 4-1 and Figure 4-1 present the baseline projection for electricity consumption for select years at the end-use level for the residential sector as a whole. Overall, residential use increases slightly from 5,152 GWh in 2011 to 6,266 GWh in 2034, an increase of 21.6%, or an average growth rate of 0.9% per year. This reflects the impact of the EISA lighting standard, additional appliance standards adopted in 2011, and modest customer growth. Fluctuations in the early years illustrate the calibration process to actual load data that was available for 2011 to 2013.

Table 4-1 Residential Electricity Baseline Projection by End Use (GWh)

| End Use                                                                      | 2011                                    | 2015                                    | 2016                                    | 2017                                                   | 2020                                            |
|------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------------------------|-------------------------------------------------|
| Cooling                                                                      | 785                                     | 804                                     | 813                                     | 820                                                    | 843                                             |
| Heating                                                                      | 978                                     | 1,021                                   | 1,037                                   | 1,049                                                  | 1,084                                           |
| Water Heating                                                                | 462                                     | 465                                     | 466                                     | 463                                                    | 452                                             |
| Interior Lighting                                                            | 653                                     | 577                                     | 543                                     | 537                                                    | 517                                             |
| Exterior Lighting                                                            | 95                                      | 71                                      | 65                                      | 65                                                     | 58                                              |
| Appliances                                                                   | 1,107                                   | 1,004                                   | 987                                     | 971                                                    | 941                                             |
| Electronics                                                                  | 606                                     | 695                                     | 719                                     | 730                                                    | 771                                             |
| Miscellaneous                                                                | 466                                     | 627                                     | 697                                     | 730                                                    | 834                                             |
| Total                                                                        | 5,152                                   | 5,263                                   | 5,326                                   | 5,365                                                  | 5,500                                           |
|                                                                              |                                         |                                         |                                         |                                                        |                                                 |
| End Use                                                                      | 2025                                    | 2029                                    | 2034                                    | % Change<br>2011-2034                                  | Avg. Growth<br>Rate 2011-2034                   |
| End Use Cooling                                                              | 2025                                    | 2029<br>907                             | 2034<br>931                             |                                                        |                                                 |
|                                                                              |                                         |                                         |                                         | 2011-2034                                              | Rate 2011-2034                                  |
| Cooling                                                                      | 886                                     | 907                                     | 931                                     | 2011-2034                                              | Rate 2011-2034<br>0.7%                          |
| Cooling<br>Heating                                                           | 886<br>1,137                            | 907<br>1,160                            | 931<br>1,189                            | 2011-2034<br>19%<br>22%                                | Rate 2011-2034<br>0.7%<br>0.8%                  |
| Cooling Heating Water Heating                                                | 886<br>1,137<br>435                     | 907<br>1,160<br>420                     | 931<br>1,189<br>420                     | 2011-2034<br>19%<br>22%<br>-9%                         | 0.7%<br>0.8%<br>-0.4%                           |
| Cooling Heating Water Heating Interior Lighting                              | 886<br>1,137<br>435<br>473              | 907<br>1,160<br>420<br>486              | 931<br>1,189<br>420<br>502              | 2011-2034<br>19%<br>22%<br>-9%<br>-23%                 | 0.7%<br>0.8%<br>-0.4%<br>-1.1%                  |
| Cooling Heating Water Heating Interior Lighting Exterior Lighting            | 886<br>1,137<br>435<br>473<br>42        | 907<br>1,160<br>420<br>486<br>42        | 931<br>1,189<br>420<br>502<br>43        | 2011-2034<br>19%<br>22%<br>-9%<br>-23%<br>-55%         | Rate 2011-2034  0.7%  0.8%  -0.4%  -1.1%  -3.5% |
| Cooling Heating Water Heating Interior Lighting Exterior Lighting Appliances | 886<br>1,137<br>435<br>473<br>42<br>934 | 907<br>1,160<br>420<br>486<br>42<br>943 | 931<br>1,189<br>420<br>502<br>43<br>963 | 2011-2034<br>19%<br>22%<br>-9%<br>-23%<br>-55%<br>-13% | 0.7% 0.8% -0.4% -1.1% -3.5% -0.6%               |

Applied Energy Group 4-3

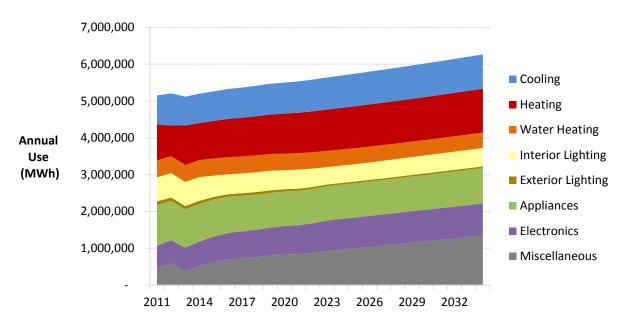



Figure 4-1 Residential Electricity Baseline Projection by End Use (MWh)

Table 4-2 and Figure 4-2 presents the forecast of use per household for select years. Most noticeable is that lighting use decreases significantly throughout the time period as the lighting efficiency standards from EISA come into effect.

Table 4-2 Residential Electricity Use per Household by End Use (kWh per HH)

| End Use                                                                      | 2011                                          | 2015                                          | 2016                                          | 2017                                                   | 2020                                                          |
|------------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------|
| Cooling                                                                      | 1,887                                         | 1,868                                         | 1,864                                         | 1,859                                                  | 1,861                                                         |
| Heating                                                                      | 2,351                                         | 2,371                                         | 2,377                                         | 2,380                                                  | 2,394                                                         |
| Water Heating                                                                | 1,112                                         | 1,081                                         | 1,068                                         | 1,050                                                  | 997                                                           |
| Interior Lighting                                                            | 1,571                                         | 1,341                                         | 1,244                                         | 1,218                                                  | 1,142                                                         |
| Exterior Lighting                                                            | 228                                           | 164                                           | 149                                           | 147                                                    | 128                                                           |
| Appliances                                                                   | 2,664                                         | 2,331                                         | 2,263                                         | 2,201                                                  | 2,077                                                         |
| Electronics                                                                  | 1,458                                         | 1,614                                         | 1,649                                         | 1,656                                                  | 1,702                                                         |
| Miscellaneous                                                                | 1,121                                         | 1,455                                         | 1,599                                         | 1,657                                                  | 1,842                                                         |
| Total                                                                        | 12,392                                        | 12,226                                        | 12,213                                        | 12,169                                                 | 12,145                                                        |
|                                                                              |                                               | ·                                             | •                                             | •                                                      |                                                               |
| End Use                                                                      | 2025                                          | 2029                                          | 2034                                          | % Change<br>2011-2034                                  | Avg. Growth<br>Rate 2011-2034                                 |
| End Use                                                                      | 2025<br>1,889                                 | 2029<br>1,880                                 | 2034<br>1,865                                 | _                                                      | Avg. Growth                                                   |
|                                                                              |                                               |                                               |                                               | 2011-2034                                              | Avg. Growth<br>Rate 2011-2034                                 |
| Cooling                                                                      | 1,889                                         | 1,880                                         | 1,865                                         | 2011-2034                                              | Avg. Growth<br>Rate 2011-2034<br>-0.1%                        |
| Cooling<br>Heating                                                           | 1,889<br>2,425                                | 1,880<br>2,405                                | 1,865<br>2,380                                | 2011-2034<br>-1%<br>1%                                 | Avg. Growth Rate 2011-2034 -0.1% 0.1%                         |
| Cooling Heating Water Heating                                                | 1,889<br>2,425<br>927                         | 1,880<br>2,405<br>871                         | 1,865<br>2,380<br>841                         | 2011-2034<br>-1%<br>1%<br>-24%                         | Avg. Growth Rate 2011-2034 -0.1% 0.1% -1.2%                   |
| Cooling Heating Water Heating Interior Lighting                              | 1,889<br>2,425<br>927<br>1,008                | 1,880<br>2,405<br>871<br>1,007                | 1,865<br>2,380<br>841<br>1,004                | 2011-2034<br>-1%<br>1%<br>-24%<br>-36%                 | Avg. Growth Rate 2011-2034 -0.1% 0.1% -1.2% -1.9%             |
| Cooling Heating Water Heating Interior Lighting Exterior Lighting            | 1,889<br>2,425<br>927<br>1,008                | 1,880<br>2,405<br>871<br>1,007                | 1,865<br>2,380<br>841<br>1,004<br>85          | 2011-2034<br>-1%<br>1%<br>-24%<br>-36%<br>-63%         | Avg. Growth Rate 2011-2034 -0.1% 0.1% -1.2% -1.9% -4.3%       |
| Cooling Heating Water Heating Interior Lighting Exterior Lighting Appliances | 1,889<br>2,425<br>927<br>1,008<br>89<br>1,992 | 1,880<br>2,405<br>871<br>1,007<br>87<br>1,955 | 1,865<br>2,380<br>841<br>1,004<br>85<br>1,929 | 2011-2034<br>-1%<br>1%<br>-24%<br>-36%<br>-63%<br>-28% | Avg. Growth Rate 2011-2034 -0.1% 0.1% -1.2% -1.9% -4.3% -1.4% |

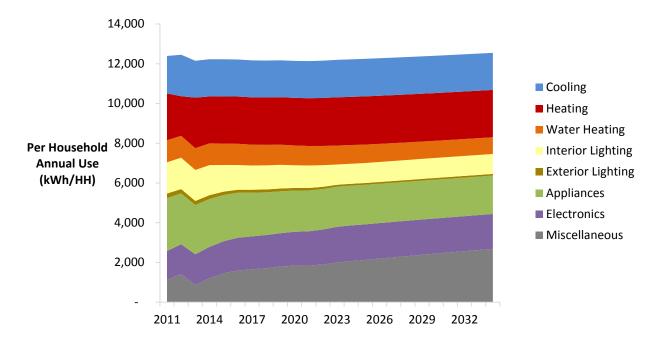



Figure 4-2 Residential Electricity Use per Household by End Use (kWh per HH)

#### **Commercial Sector**

The commercial baseline projection also incorporates assumptions about economic growth, electricity prices, equipment standards, building codes and naturally occurring efficiency.

Figure 4-3 and Table 4-3 present the baseline forecast for electricity for select years at the enduse level for the commercial sector as a whole. Overall, commercial use increases slightly from 5,041 GWh in 2011 to 5,722 GWh in 2034, an increase of 14%, or an average growth rate of 0.6% per year.

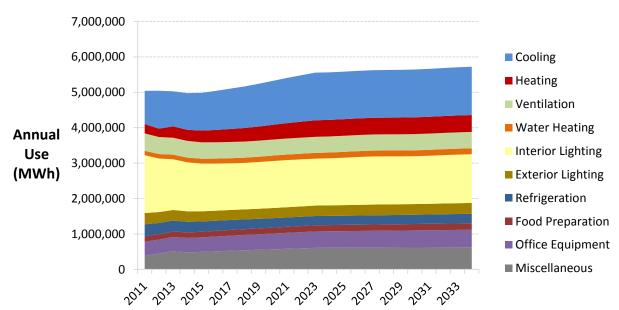
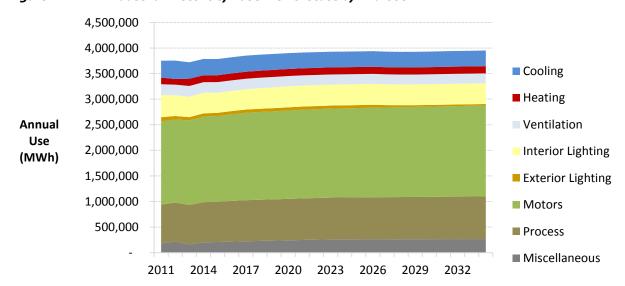



Figure 4-3 Commercial Electricity Baseline Forecast by End Use

Applied Energy Group 4-5

Table 4-3 Commercial Electricity Consumption by End Use (GWh)

| End Use                                                                                              | 2011                                            | 2015                                            | 2016                                            | 2017                                                   | 2020                                                     |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|
| Cooling                                                                                              | 938                                             | 1,066                                           | 1,102                                           | 1,139                                                  | 1,240                                                    |
| Heating                                                                                              | 263                                             | 330                                             | 348                                             | 366                                                    | 416                                                      |
| Ventilation                                                                                          | 492                                             | 465                                             | 461                                             | 459                                                    | 453                                                      |
| Water Heating                                                                                        | 123                                             | 136                                             | 140                                             | 143                                                    | 153                                                      |
| Interior Lighting                                                                                    | 1,633                                           | 1,347                                           | 1,330                                           | 1,318                                                  | 1,327                                                    |
| Exterior Lighting                                                                                    | 319                                             | 287                                             | 284                                             | 283                                                    | 286                                                      |
| Refrigeration                                                                                        | 337                                             | 292                                             | 286                                             | 281                                                    | 267                                                      |
| Food Preparation                                                                                     | 150                                             | 157                                             | 159                                             | 161                                                    | 167                                                      |
| Office Equipment                                                                                     | 396                                             | 410                                             | 418                                             | 425                                                    | 445                                                      |
| Miscellaneous                                                                                        | 390                                             | 495                                             | 511                                             | 527                                                    | 568                                                      |
| Total                                                                                                | 5,041                                           | 4,984                                           | 5,040                                           | 5,102                                                  | 5,322                                                    |
| End Use                                                                                              | 2025                                            | 2029                                            | 2034                                            | % Change                                               | Avg. Growth                                              |
|                                                                                                      |                                                 |                                                 |                                                 | 2011-2034                                              | Rate 2011-2034                                           |
| Cooling                                                                                              | 1,341                                           | 1,347                                           | 1,364                                           | 2011-2034<br>45%                                       | Rate 2011-2034<br>1.6%                                   |
| Cooling<br>Heating                                                                                   | 1,341<br>469                                    | 1,347<br>472                                    | 1,364<br>477                                    |                                                        |                                                          |
|                                                                                                      | -                                               | -                                               | -                                               | 45%                                                    | 1.6%                                                     |
| Heating                                                                                              | 469                                             | 472                                             | 477                                             | 45%<br>81%                                             | 1.6%<br>2.6%                                             |
| Heating<br>Ventilation                                                                               | 469<br>455                                      | 472<br>458                                      | 477<br>462                                      | 45%<br>81%<br>-6%                                      | 1.6%<br>2.6%<br>-0.3%                                    |
| Heating Ventilation Water Heating                                                                    | 469<br>455<br>163                               | 472<br>458<br>165                               | 477<br>462<br>168                               | 45%<br>81%<br>-6%<br>36%                               | 1.6%<br>2.6%<br>-0.3%<br>1.3%                            |
| Heating Ventilation Water Heating Interior Lighting                                                  | 469<br>455<br>163<br>1,339                      | 472<br>458<br>165<br>1,352                      | 477<br>462<br>168<br>1,375                      | 45%<br>81%<br>-6%<br>36%<br>-16%                       | 1.6%<br>2.6%<br>-0.3%<br>1.3%<br>-0.7%                   |
| Heating Ventilation Water Heating Interior Lighting Exterior Lighting                                | 469<br>455<br>163<br>1,339<br>299               | 472<br>458<br>165<br>1,352<br>301               | 477<br>462<br>168<br>1,375<br>306               | 45%<br>81%<br>-6%<br>36%<br>-16%<br>-4%                | 1.6%<br>2.6%<br>-0.3%<br>1.3%<br>-0.7%<br>-0.2%          |
| Heating Ventilation Water Heating Interior Lighting Exterior Lighting Refrigeration                  | 469<br>455<br>163<br>1,339<br>299<br>259        | 472<br>458<br>165<br>1,352<br>301<br>261        | 477<br>462<br>168<br>1,375<br>306<br>267        | 45%<br>81%<br>-6%<br>36%<br>-16%<br>-4%<br>-21%        | 1.6%<br>2.6%<br>-0.3%<br>1.3%<br>-0.7%<br>-0.2%<br>-1.0% |
| Heating Ventilation Water Heating Interior Lighting Exterior Lighting Refrigeration Food Preparation | 469<br>455<br>163<br>1,339<br>299<br>259<br>176 | 472<br>458<br>165<br>1,352<br>301<br>261<br>179 | 477<br>462<br>168<br>1,375<br>306<br>267<br>184 | 45%<br>81%<br>-6%<br>36%<br>-16%<br>-4%<br>-21%<br>23% | 1.6% 2.6% -0.3% 1.3% -0.7% -0.2% -1.0% 0.9%              |


#### **Industrial Sector**

The baseline forecast incorporates assumptions about economic growth, electricity prices, equipment standards, building codes and naturally occurring energy efficiency. Table 4-4 and Figure 4-4 present the baseline forecast for electricity for select years at the end-use level for the industrial sector as a whole. Overall, industrial use increases slightly from 3,752 GWh in 2011 to 3,952 GWh in 2034, an increase of 5%, or an average growth rate of 0.2% per year.

Table 4-4 Industrial Electricity Consumption by End Use (GWh)

| End Use                                                                | 2011                                    | 2015                                    | 2016                                    | 2017                                               | 2020                                             |
|------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|----------------------------------------------------|--------------------------------------------------|
| Cooling                                                                | 330                                     | 317                                     | 316                                     | 315                                                | 310                                              |
| Heating                                                                | 130                                     | 134                                     | 136                                     | 137                                                | 138                                              |
| Ventilation                                                            | 210                                     | 206                                     | 206                                     | 205                                                | 201                                              |
| Interior Lighting                                                      | 434                                     | 394                                     | 395                                     | 397                                                | 410                                              |
| Exterior Lighting                                                      | 83                                      | 61                                      | 62                                      | 62                                                 | 63                                               |
| Motors                                                                 | 1,626                                   | 1,676                                   | 1,694                                   | 1,709                                              | 1,726                                            |
| Process                                                                | 759                                     | 787                                     | 795                                     | 802                                                | 809                                              |
| Miscellaneous                                                          | 180                                     | 208                                     | 216                                     | 223                                                | 242                                              |
| Total                                                                  | 3,752                                   | 3,785                                   | 3,820                                   | 3,851                                              | 3,899                                            |
|                                                                        |                                         |                                         |                                         |                                                    |                                                  |
| End Use                                                                | 2025                                    | 2029                                    | 2034                                    | % Change<br>2011-2034                              | Avg. Growth<br>Rate 2011-2034                    |
| End Use Cooling                                                        | 2025<br>304                             | 2029<br>304                             | 2034<br>306                             | _                                                  |                                                  |
|                                                                        |                                         |                                         |                                         | 2011-2034                                          | Rate 2011-2034                                   |
| Cooling                                                                | 304                                     | 304                                     | 306                                     | 2011-2034<br>-7%                                   | Rate 2011-2034<br>-0.3%                          |
| Cooling<br>Heating                                                     | 304<br>139                              | 304<br>140                              | 306<br>141                              | 2011-2034<br>-7%<br>8%                             | Rate 2011-2034<br>-0.3%<br>0.3%                  |
| Cooling Heating Ventilation                                            | 304<br>139<br>196                       | 304<br>140<br>193                       | 306<br>141<br>194                       | 2011-2034<br>-7%<br>8%<br>-7%                      | Rate 2011-2034 -0.3% 0.3% -0.3%                  |
| Cooling Heating Ventilation Interior Lighting                          | 304<br>139<br>196<br>410                | 304<br>140<br>193<br>406                | 306<br>141<br>194<br>405                | 2011-2034<br>-7%<br>8%<br>-7%<br>-7%               | Rate 2011-2034 -0.3% 0.3% -0.3% -0.3%            |
| Cooling Heating Ventilation Interior Lighting Exterior Lighting        | 304<br>139<br>196<br>410<br>58          | 304<br>140<br>193<br>406<br>33          | 306<br>141<br>194<br>405<br>29          | 2011-2034<br>-7%<br>8%<br>-7%<br>-7%<br>-65%       | Rate 2011-2034  -0.3%  0.3%  -0.3%  -0.3%  -4.5% |
| Cooling Heating Ventilation Interior Lighting Exterior Lighting Motors | 304<br>139<br>196<br>410<br>58<br>1,746 | 304<br>140<br>193<br>406<br>33<br>1,760 | 306<br>141<br>194<br>405<br>29<br>1,777 | 2011-2034<br>-7%<br>8%<br>-7%<br>-7%<br>-65%<br>9% | -0.3% -0.3% -0.3% -0.3% -0.3% -0.3% -0.4%        |

Figure 4-4 Industrial Electricity Baseline Forecast by End Use



Applied Energy Group 4-7

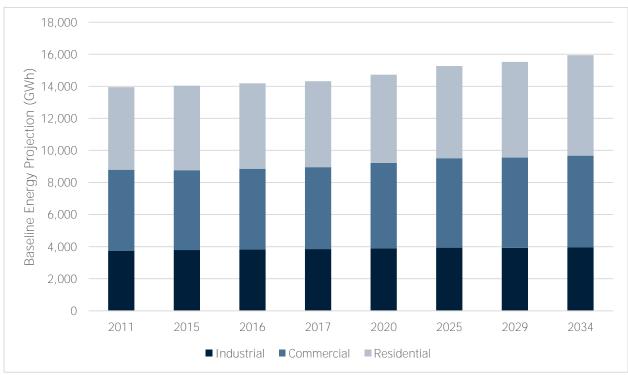

# **Baseline Projection Summary**

Table 4-5 and Figure 4-5 provide a summary of the baseline forecast for electricity by sector for the entire IPL service territory. Overall, the forecast shows a 14.3% increase from 2011 to 2034 with an average annual growth rate of 0.6%. Most of the increase is attributed to the residential sector, followed by commercial, and then industrial. Table 4-6 and Figure 4-6 show the peak demand forecast for each sector.

Table 4-5 Electricity Projection by Sector (GWh)

| Sector      | 2011   | 2015   | 2016   | 2017                  | 2020                          |
|-------------|--------|--------|--------|-----------------------|-------------------------------|
| Residential | 5,152  | 5,263  | 5,326  | 5,365                 | 5,500                         |
| Commercial  | 5,041  | 4,984  | 5,040  | 5,102                 | 5,322                         |
| Industrial  | 3,752  | 3,785  | 3,820  | 3,851                 | 3,899                         |
| Total       | 13,946 | 14,033 | 14,186 | 14,319                | 14,722                        |
| Sector      | 2025   | 2029   | 2034   | % Change<br>2011-2034 | Avg. Growth<br>Rate 2011-2034 |
| Residential | 5,744  | 5,966  | 6,266  | 21.6%                 | 0.9%                          |
| Commercial  | 5,582  | 5,634  | 5,722  | 13.5%                 | 0.6%                          |
| Industrial  | 3,934  | 3,926  | 3,952  | 5.3%                  | 0.2%                          |
| Total       | 15,260 | 15,526 | 15,940 | 14.3%                 | 0.6%                          |

Figure 4-5 Electricity Baseline Projection Summary (GWh)



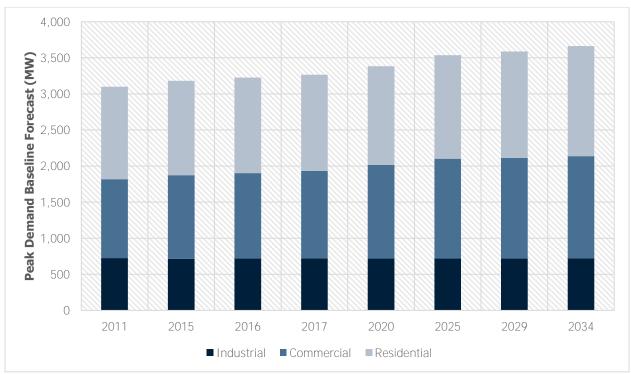

4-8 Applied Energy Group

Table 4-6 and Figure 4-6 show the peak demand forecast for each sector.

Table 4-6 Peak Demand Consumption by Sector (MW)

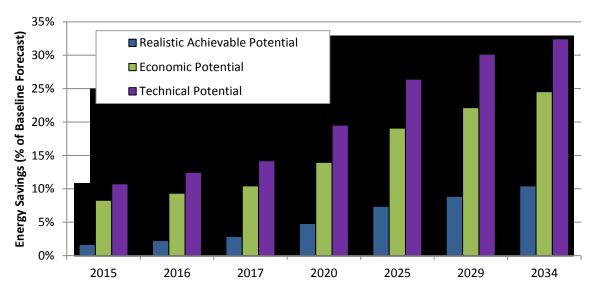
| Sector      | 2011  | 2015  | 2016  | 2017                  | 2020                          |  |
|-------------|-------|-------|-------|-----------------------|-------------------------------|--|
| Residential | 1,282 | 1,309 | 1,323 | 1,333                 | 1,368                         |  |
| Commercial  | 1,094 | 1,158 | 1,185 | 1,213                 | 1,297                         |  |
| Industrial  | 724   | 714   | 717   | 719                   | 718                           |  |
| Total       | 3,100 | 3,181 | 3,225 | 3,265                 | 3,383                         |  |
| Sector      | 2025  | 2029  | 2034  | % Change<br>2011-2034 | Avg. Growth<br>Rate 2011-2034 |  |
| Residential | 1,434 | 1,474 | 1,525 | 19.0%                 | 0.8%                          |  |
| Commercial  | 1,385 | 1,394 | 1,414 | 29.2%                 | 1.1%                          |  |
| Industrial  | 717   | 718   | 723   | -0.2%                 | 0.0%                          |  |
| Total       | 3,535 | 3,586 | 3,662 | 18.1%                 | 0.7%                          |  |

Figure 4-6 Peak Demand Baseline Forecast Summary (MW)



Applied Energy Group 4-9

#### **DSM Potential – Overall Results**


Table 5-1 and Figure 5-1 summarize the DSM savings for the different levels of potential relative to the baseline projection. Figure 5-2 displays the DSM potential forecasts in a line graph representing electricity consumption under the various analysis cases considered here. Potential forecasts in the model begin in 2013, but results here focus on the 2015-2017 time frame that corresponds to the latest IPL Action Plan, as well as milestone years through 2034, which represents the final year of consideration in IPL's IRP development.

By 2034, the cumulative energy savings under the Realistic Achievable Potential case are 10.4% of the baseline projection, or 1,665 net GWh.

Table 5-1 Summary of Overall DSM Potential

|                                | 2015   | 2016   | 2017   | 2020   | 2025   | 2029   | 2034   |
|--------------------------------|--------|--------|--------|--------|--------|--------|--------|
| Baseline Forecast (GWh)        | 14,033 | 14,186 | 14,319 | 14,722 | 15,260 | 15,526 | 15,940 |
| Cumulative Savings (GWh)       |        |        |        |        |        |        |        |
| Realistic Achievable           | 234    | 320    | 412    | 706    | 1,125  | 1,378  | 1,665  |
| Economic Potential             | 1,163  | 1,323  | 1,495  | 2,057  | 2,914  | 3,438  | 3,911  |
| Technical Potential            | 1,509  | 1,770  | 2,034  | 2,877  | 4,030  | 4,681  | 5,172  |
| Energy Savings (% of Baseline) |        |        |        |        |        |        |        |
| Realistic Achievable           | 1.7%   | 2.3%   | 2.9%   | 4.8%   | 7.4%   | 8.9%   | 10.4%  |
| Economic Potential             | 8.3%   | 9.3%   | 10.4%  | 14.0%  | 19.1%  | 22.1%  | 24.5%  |
| Technical Potential            | 10.8%  | 12.5%  | 14.2%  | 19.5%  | 26.4%  | 30.2%  | 32.4%  |

Figure 5-1 Summary of Energy Savings



Applied Energy Group A-1

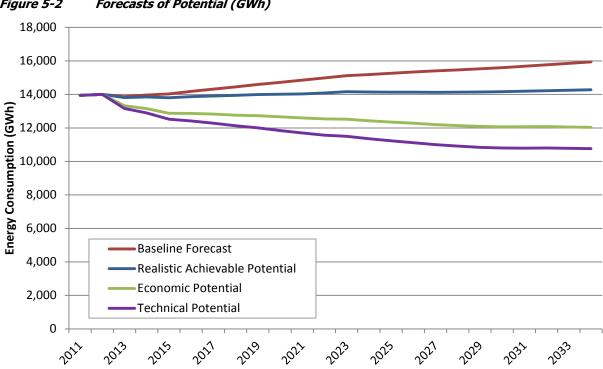



Figure 5-2 Forecasts of Potential (GWh)

Table 5-2 and Figure 5-3 summarize the electric peak demand savings for the different levels of potential relative to the baseline forecast. By 2034, the cumulative peak demand savings under the Realistic Achievable Potential case are 10.8% of the baseline projection, or 396 net MW.

*Table 5-2* Summary of Peak Demand Potential

|                                | 2015  | 2016  | 2017  | 2020  | 2025  | 2029  | 2034  |
|--------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Baseline Forecast (MW)         | 3,181 | 3,225 | 3,265 | 3,383 | 3,535 | 3,586 | 3,662 |
| Cumulative Savings (MW)        |       |       |       |       |       |       |       |
| Realistic Achievable           | 76    | 96    | 117   | 175   | 263   | 322   | 396   |
| Economic Potential             | 254   | 298   | 345   | 497   | 712   | 843   | 983   |
| Technical Potential            | 381   | 464   | 547   | 805   | 1,152 | 1,342 | 1,495 |
| Energy Savings (% of Baseline) |       |       |       |       |       |       |       |
| Realistic Achievable           | 2.4%  | 3.0%  | 3.6%  | 5.2%  | 7.5%  | 9.0%  | 10.8% |
| Economic Potential             | 8.0%  | 9.2%  | 10.6% | 14.7% | 20.1% | 23.5% | 26.8% |
| Technical Potential            | 12.0% | 14.4% | 16.8% | 23.8% | 32.6% | 37.4% | 40.8% |

A-2 Applied Energy Group

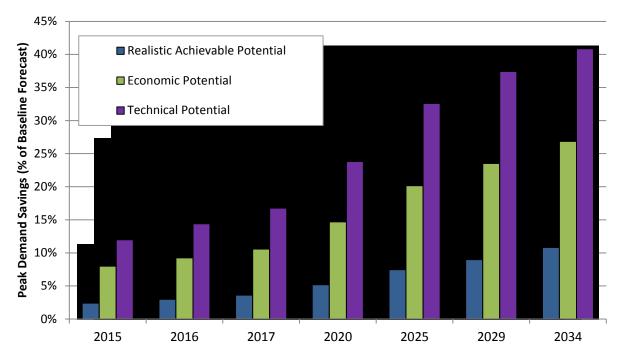



Figure 5-3 Summary of Electric Peak Demand Savings

#### **Overview of DSM Potential by Sector**

Table 5-3 and Figure 5-4 summarize the realistic achievable electric energy savings potential by sector. The commercial sector accounts for the largest portion of the savings, followed by residential, and then industrial.

Table 5-3 Realistic Achievable Energy Savings by Sector (GWh)

|                                    | 2015  | 2016  | 2017  | 2020  | 2025    | 2029    | 2034    |
|------------------------------------|-------|-------|-------|-------|---------|---------|---------|
| Realistic Achievable Savings (GWh) |       |       |       |       |         |         |         |
| Residential                        | 95.5  | 122.6 | 141.3 | 223.2 | 291.7   | 368.9   | 472.5   |
| Commercial                         | 101.2 | 140.9 | 187.3 | 333.1 | 582.5   | 724.0   | 870.4   |
| Industrial                         | 37.2  | 56.3  | 83.2  | 149.8 | 250.5   | 285.2   | 322.0   |
| Total                              | 234.0 | 319.8 | 411.9 | 706.2 | 1,124.8 | 1,378.1 | 1,664.9 |

Applied Energy Group 5-3

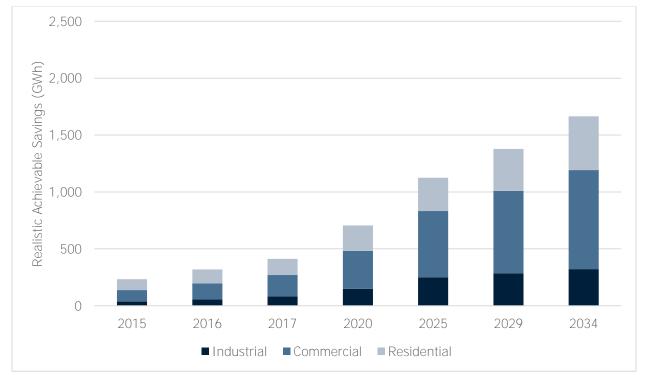



Figure 5-4 Realistic Achievable Energy Savings Potential by Sector (GWh)

Table 5-4 and Figure 5-5 summarize the realistic achievable electric peak demand potential by sector. The commercial and residential sectors account for the largest portion of the savings, followed by industrial.

Table 5-4 Realistic Achievable Peak Demand Savings by Sector (MW)

|                                   | 2015 | 2016 | 2017  | 2020  | 2029  | 2034  |
|-----------------------------------|------|------|-------|-------|-------|-------|
| Realistic Achievable Savings (MW) |      |      |       |       |       |       |
| Residential                       | 49.4 | 54.8 | 57.8  | 68.9  | 120.3 | 163.9 |
| Commercial                        | 18.7 | 28.0 | 40.0  | 71.8  | 140.9 | 165.1 |
| Industrial                        | 8.3  | 13.1 | 19.7  | 34.1  | 60.4  | 67.1  |
| Total                             | 76.4 | 95.9 | 117.5 | 174.8 | 321.6 | 396.1 |

A-2 Applied Energy Group

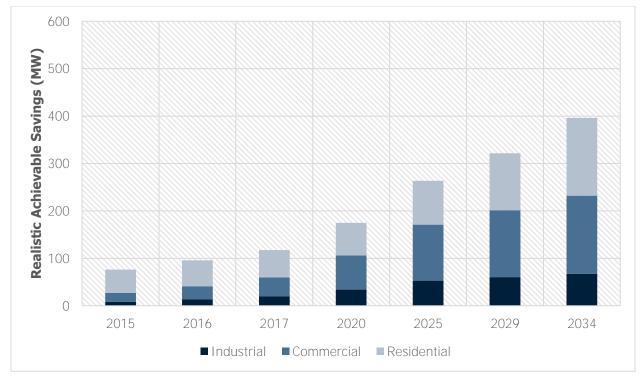



Figure 5-5 Realistic Achievable Peak Demand Savings Potential by Sector (MW)

Detailed potential results for each sector are presented in the following chapter.

Applied Energy Group 5-5

#### **DSM Potential By Sector**

This chapter presents the results of the DSM potential analysis at the sector level. First, the residential potential is presented, followed by the commercial and industrial.

#### **Residential Electricity Potential**

Table 6-1 presents estimates for the three types of energy savings potential for the residential electricity sector. Figure 6-1 depicts these potential energy savings estimates graphically.

- **Realistic Achievable potential** projects 473 GWh of energy savings in 2034, or 7.5% of the baseline forecast at that time.
- **Economic potential,** which reflects a theoretical limit to savings when all cost-effective measures are taken, is 820 GWh in 2034, representing 13.1% of the baseline energy forecast.
- **Technical potential,** which reflects the adoption of all DSM measures regardless of cost, is a theoretical upper bound on savings. By 2034, technical potential reaches 1,695 GWh, 27.1% of the baseline energy forecast.

Table 6-1 DSM Energy Savings Potential for the Residential Sector

|                                 | 2015  | 2016  | 2017  | 2020  | 2025  | 2029  | 2034  |
|---------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Baseline Forecast (GWh)         | 5,263 | 5,326 | 5,365 | 5,500 | 5,744 | 5,966 | 6,266 |
| <b>Cumulative Savings (GWh)</b> |       |       |       |       |       |       |       |
| Realistic Achievable            | 96    | 123   | 141   | 223   | 292   | 369   | 473   |
| Economic Potential              | 396   | 401   | 410   | 405   | 417   | 565   | 820   |
| Technical Potential             | 583   | 645   | 704   | 869   | 1,106 | 1,391 | 1,695 |
| Energy Savings (% of Baseline)  |       |       |       |       |       |       |       |
| Realistic Achievable            | 1.8%  | 2.3%  | 2.6%  | 4.1%  | 5.1%  | 6.2%  | 7.5%  |
| Economic Potential              | 7.5%  | 7.5%  | 7.6%  | 7.4%  | 7.3%  | 9.5%  | 13.1% |
| Technical Potential             | 11.1% | 12.1% | 13.1% | 15.8% | 19.2% | 23.3% | 27.1% |

Applied Energy Group A-1

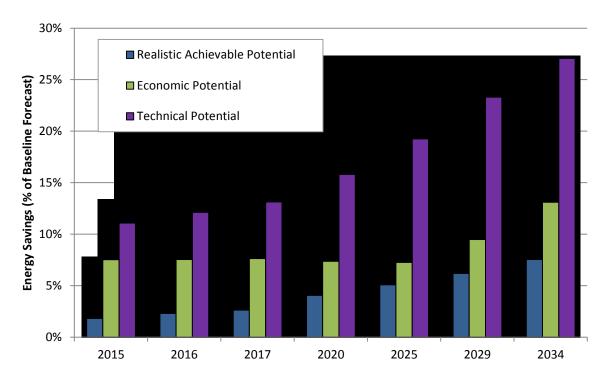



Figure 6-1 Residential DSM Energy Savings Potential

#### **Residential Electric Potential by End Use**

Figure 6-2 focuses on the end-use break out for residential energy savings in 2034 under the Realistic Achievable Potential case. Lighting equipment replacements account for the highest portion of the energy savings, while cooling, heating, and water heating measures also make substantial contributions. Figure 6-3 shows the residential Realistic Achievable peak demand potential in 2034 by end use. It shows how cooling **contributes the lion's share of sav**ings because it is most peak coincident. Figure 6-4 and Figure 6-5 show how the cumulative energy and peak demand potential evolve by end use over time.

The key measures comprising the potential are listed below:

- Lighting: CFL lamps and specialty bulbs in the near term, but LED lamps going forward. While LED technologies are just becoming cost-effective, historic and forward-looking research indicates that performance and cost trends will continue to improve dramatically. We have incorporated these trends in our modeling and show that lighting opportunities will become dominated by LED lamps over the next 20 years.
- Demand Response: Direct load control of central air conditioning equipment is a prominent measure in the portfolio of peak demand savings.
- Removal of second refrigerator
- HVAC: efficient air conditioners, ducting repair/sealing, insulation, behavioral programs and programmable thermostats
- Water heating: efficient water heaters, low-flow showerheads, and faucet aerators.

A-2 Applied Energy Group

Figure 6-2 Residential Realistic Achievable Potential by End Use in 2034 (Energy Savings)

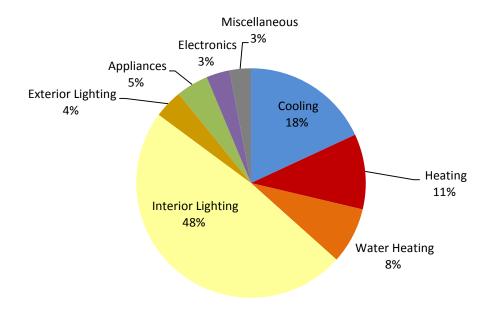
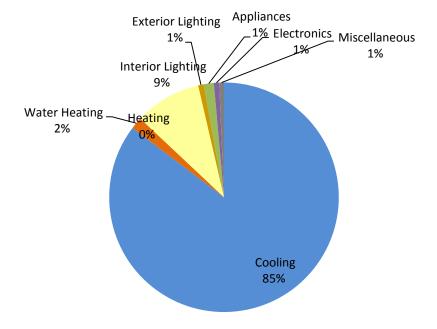




Figure 6-3 Residential Realistic Achievable Potential by End Use in 2034 (Peak Savings)



Applied Energy Group 6-3



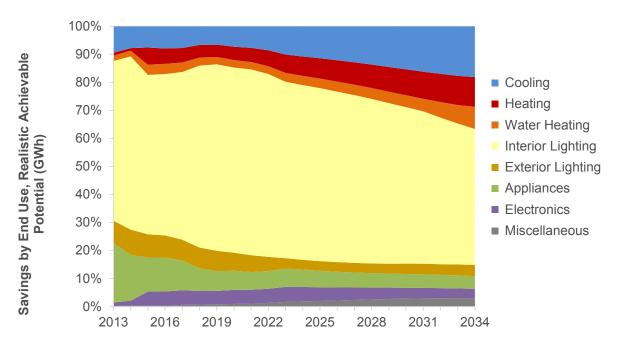
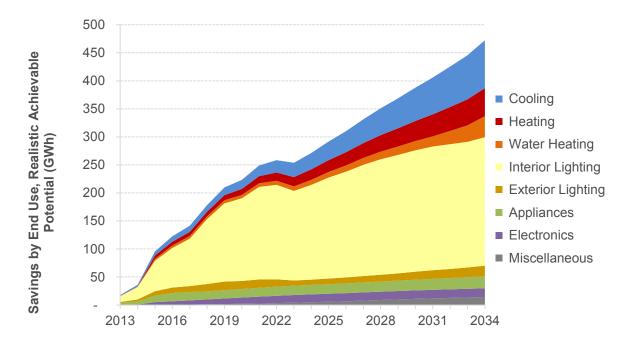
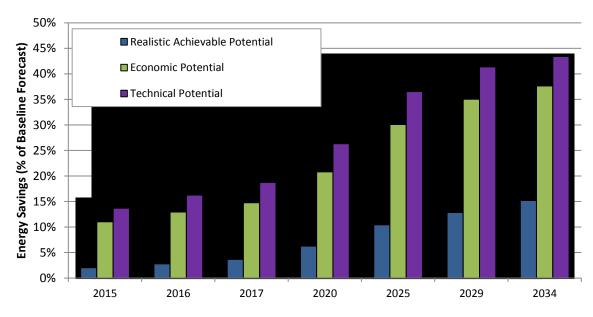




Figure 6-5 Residential Cumulative Achievable Energy Savings Potential by End Use Over Time (GWh)



A-2 Applied Energy Group

#### **Commercial DSM Potential**


The commercial sector accounts for 36% of energy consumption, making for prime efficiency opportunities. Table 6-2 presents estimates for the three types of potential for the commercial electricity sector. Figure 6-6 depicts these potential energy savings estimates graphically.

- **Realistic Achievable potential** projects 870 GWh of energy savings in 2034, or 15.2% of the baseline forecast at that time.
- **Economic potential,** which reflects a theoretical limit to savings when all cost-effective measures are taken, is 2,154 GWh in 2034, representing 37.6% of the baseline energy forecast.
- **Technical potential,** which reflects the adoption of all DSM measures regardless of cost, is a theoretical upper bound on savings. By 2034, technical potential reaches 2,484 GWh, 43.4% of the baseline energy forecast.

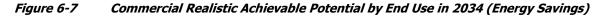
Table 6-2 DSM Energy Savings Potential for the Commercial Sector

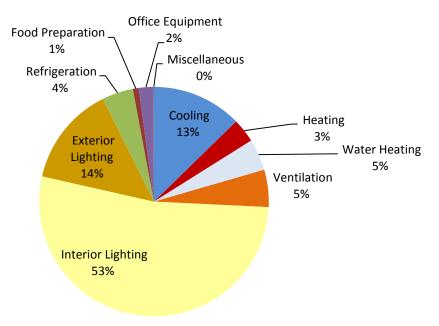
|                                | 2015  | 2016  | 2017  | 2020  | 2025  | 2029   | 2034  |
|--------------------------------|-------|-------|-------|-------|-------|--------|-------|
| Baseline Forecast (GWh)        | 4,984 | 5,040 | 5,102 | 5,322 | 5,582 | 5,634  | 5,722 |
| Cumulative Savings (GWh)       |       |       |       |       |       |        |       |
| Realistic Achievable           | 101   | 141   | 187   | 333   | 583   | 724    | 870   |
| Economic Potential             | 550   | 652   | 752   | 1,107 | 1,679 | 1,973  | 2,154 |
| Technical Potential            | 682   | 820   | 956   | 1,400 | 2,040 | 2,330  | 2,484 |
| Energy Savings (% of Baseline) |       |       |       |       |       |        |       |
| Realistic Achievable           | 2.0%  | 2.8%  | 3.7%  | 6.3%  | 10.4% | 12.9%  | 15.2% |
| Economic Potential             | 11.0% | 12.9% | 14.7% | 20.8% | 30.1% | 35.0%  | 37.6% |
| Technical Potential            | 12 7% | 16 2% | 19 7% | 26.2% | 26.5% | 11 10/ | 13 1% |

Figure 6-6 Commercial DSM Energy Savings Potential



#### **Commercial Potential by End Use**


Figure 6-7 focuses on achievable potential savings by end use. Not surprisingly, interior lighting delivers the highest achievable savings throughout the study period. In 2034, exterior lighting is


Applied Energy Group 6-5

second, and cooling is third. Figure 6-8 shows the peak demand potential in 2034. Cooling and lighting end uses hold the largest shares of peak coincident demand savings. Figure 6-9 and Figure 6-10 show how cumulative energy and peak demand potential evolves by end use over time.

The key measures comprising the potential are listed below:

- Lighting LED lamps in screw-in, linear fluorescent, and high-bay style applications. While LED technologies are just becoming cost-effective, historic and forward-looking research indicates that performance and cost trends will continue to improve. We have incorporated these trends in our modeling and show that lighting opportunities will become dominated by LED lamps over the next 20 years.
- Cooling, HVAC, and Ventilation equipment replacements and controls/optimizations (e.g. variable speed controls)
- Energy management systems
- Refrigeration efficient equipment, control systems, decommissioning





A-2 Applied Energy Group

Figure 6-8 Commercial Realistic Achievable Potential by End Use in 2034 (Peak Savings)

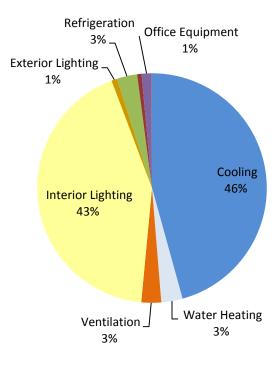
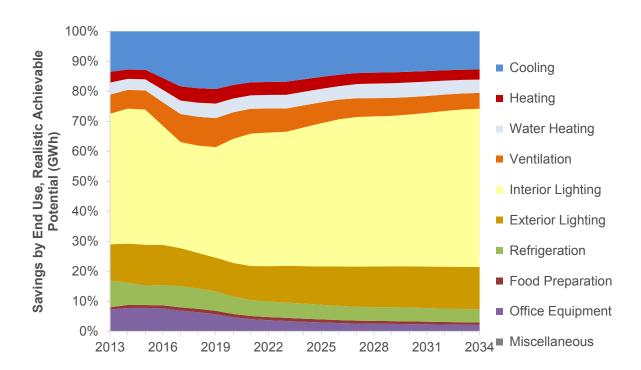




Figure 6-9 Commercial % of Cumulative Achievable Energy Savings Potential by End Use in 2034



Applied Energy Group 6-7

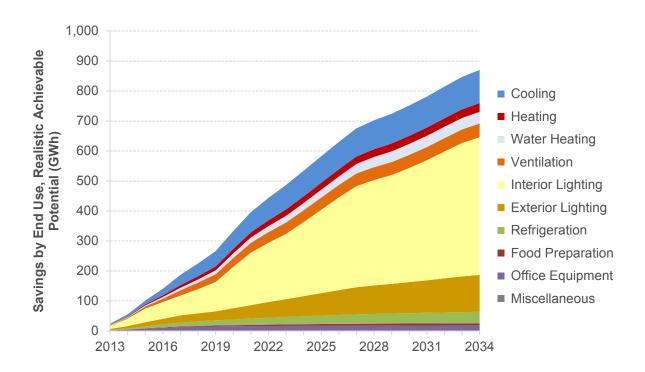
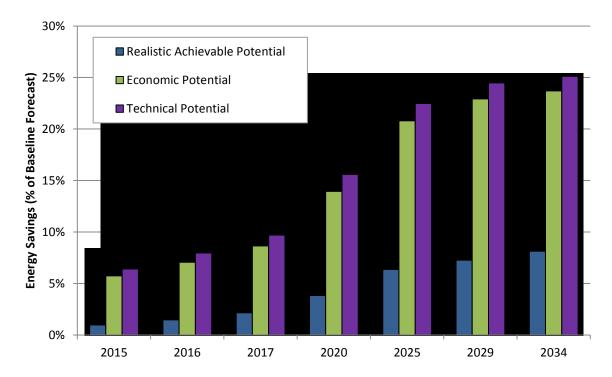



Figure 6-10 Commercial Cumulative Achievable Energy Savings Potential by End Use in 2034 (GWh)

#### **Industrial Electricity Potential**

The IPL industrial sector accounts for 27% of total energy consumption. Table 6-3 and Figure 6-11 present the savings for the various types of potential considered in this study.


- **Realistic Achievable potential** projects 322 GWh of energy savings in 2034, or 8.1% of the baseline forecast at that time.
- **Economic potential,** which reflects a theoretical limit to savings when all cost-effective measures are taken, is 937 GWh in 2034, representing 23.7% of the baseline energy forecast.
- **Technical potential,** which reflects the adoption of all DSM measures regardless of cost, is a theoretical upper bound on savings. By 2034, technical potential reaches 993 GWh, 25.1% of the baseline energy forecast.

A-2 Applied Energy Group

Table 6-3 DSM Energy Savings Potential for the Industrial Sector

|                                | 2015  | 2016  | 2017  | 2020  | 2025  | 2029  | 2034  |
|--------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Baseline Forecast (GWh)        | 3,785 | 3,820 | 3,851 | 3,899 | 3,934 | 3,926 | 3,952 |
| Cumulative Savings (GWh)       |       |       |       |       |       |       |       |
| Realistic Achievable           | 37    | 56    | 83    | 150   | 251   | 285   | 322   |
| Economic Potential             | 217   | 270   | 333   | 544   | 818   | 900   | 937   |
| Technical Potential            | 243   | 305   | 374   | 608   | 884   | 961   | 993   |
| Energy Savings (% of Baseline) |       |       |       |       |       |       |       |
| Realistic Achievable           | 1.0%  | 1.5%  | 2.2%  | 3.8%  | 6.4%  | 7.3%  | 8.1%  |
| Economic Potential             | 5.7%  | 7.1%  | 8.7%  | 13.9% | 20.8% | 22.9% | 23.7% |
| Technical Potential            | 6.4%  | 8.0%  | 9.7%  | 15.6% | 22.5% | 24.5% | 25.1% |

Figure 6-11 Industrial DSM Energy Savings Potential



#### **Industrial Potential by End Use**

Figure 6-12 illustrates the achievable potential savings by electric end use in 2034 for the industrial sector. The largest shares of savings opportunities are in lighting and motors. For fluorescent lighting, efficient T5s and T8s transition to LEDs as the study progresses. For motors, potential savings for equipment replacements at end-of-life have been effectively eliminated due to the National Electrical Manufacturer's Association (NEMA) standards, which now mandate premium efficiency motors as the baseline efficiency unit. As a result, potential savings are incrementally small to upgrade to even more efficient levels. Many of the savings opportunities in this end use come from controls, timers, and variable speed drives, which improve system efficiencies where motors are utilized. Figure 6-13 shows the peak coincident end uses with the majority in cooling, followed by lighting and motors. Figure 6-14 and Figure 6-15 show how cumulative energy and peak demand potential evolve by end use over time.

The key measures comprising the potential are listed below:

Applied Energy Group 6-9

- Efficient lighting technologies, primarily LED, for screw-in, fluorescent-style, high-bay, and HID applications
- Motor drives and controls, optimization
- Process timers and controls
- Application of optimization and controls for fans, pumps, compressed air
- Energy management systems & programmable thermostats

Figure 6-12 Industrial Realistic Achievable Potential by End Use in 2034 (Energy Savings)

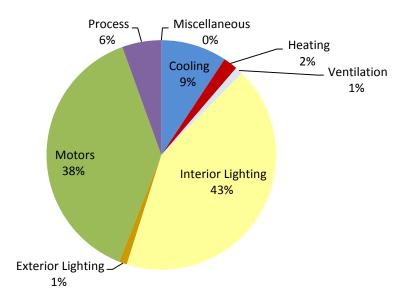
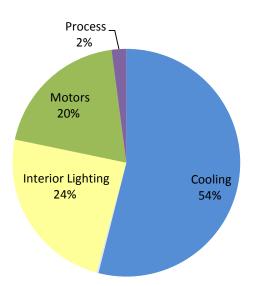




Figure 6-13 Industrial Realistic Achievable Potential by End Use in 2034 (Peak Savings)



A-2 Applied Energy Group



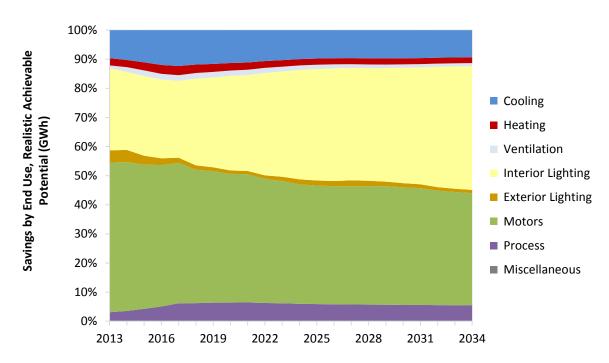
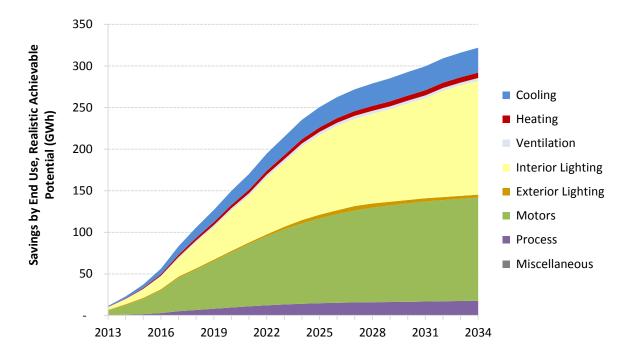




Figure 6-15 Industrial Cumulative Achievable Energy Savings Potential by End Use in 2034 (GWh)



Applied Energy Group 6-11

#### Calibration to Filed 2015-2017 IPL DSM Action Plan

As mentioned in Chapter 2, this analysis also included a step to calibrate participation, savings, and spending levels to those filed in IPL's 2015-2017 Action Plan³. The 2015-2017 DSM Action Plan is based on the best available information from IPL programs currently in the field, as well as appropriate benchmarking information for comparable utility DSM programs. The implication is that we adjusted the participation rates, incentive amounts, and administrative cost assumptions that were in the 2012 MPS to be more specifically aligned with IPL past efforts and projected activity.

Another result of this calibration is that this analysis implicitly includes current opt-out levels of large commercial and industrial customers. In the 2015-2017 Action Plan, the planned levels for C&I programs were reduced relative to planned levels of Residential program activity in order to match current levels of program activity and reflect the amount of C&I customer load that had chosen to opt out of DSM programs. Aligning to the Action Plan means that these participation assumptions are incorporated into the DSM potential forecasts as they continue beyond 2017. This appendix shows the results of the calibration process.

The calibration was conducted on the separate but interconnected variables of energy savings, peak demand savings, and program budget; all of which underwent changes to their bottom-up composition in the modeling as described in previous sections, so an exact match with the 2015 - 2017 DSM Action Plan was neither obtainable nor required.

As shown in Figure A-1 and Figure A-2 below, the DSM Potential Forecasts of energy from the current analysis are a close match to the dotted line of the Action Plan for overlapping years. The first figure illustrates the calibration at the overall portfolio level, while the second shows the sector breakdown. The alignment was obtained by applying a constant scalar factor to participation levels in all years such that all measures within a given sector would align with the Action Plan. We then projected these trends into the future to 2034, which is the timeframe required for support of **IPL's integrated resource planning process.** 

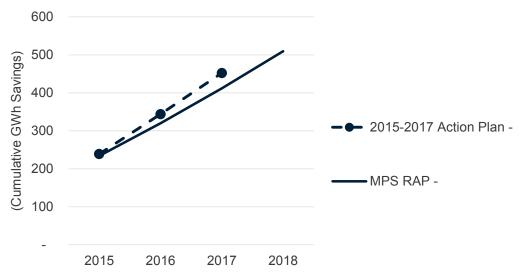



Figure A-1 Comparison of DSM Potential Forecast (RAP) and 2015-2017 Action Plan – Energy

Applied Energy Group A-1

<sup>&</sup>lt;sup>3</sup> See Petitioners Exhibit ZE-2, Cause No. 44497 as filed on May 30, 2014.

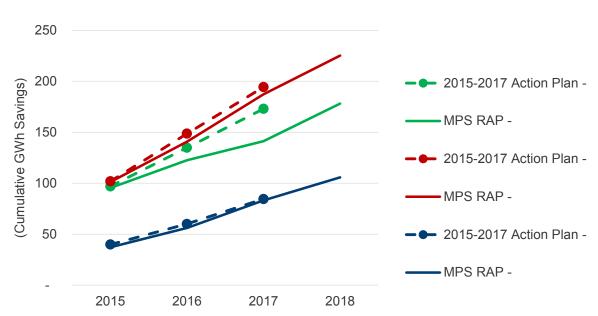



Figure A-2 Comparison of DSM Potential Forecast (RAP) and 2015-2017 Action Plan - Energy by Sector

As shown in Figure A-3 and Figure A-4 below, the DSM Potential Forecasts for peak MW from the current study are a close match to the dotted lines of the Action Plan for overlapping years. We then projected these trends into the future to 2034, which is the timeframe required for support of **IPL's integrated resource planning process.** The first figure illustrates the calibration at the overall portfolio level, while the second shows the sector breakdown.

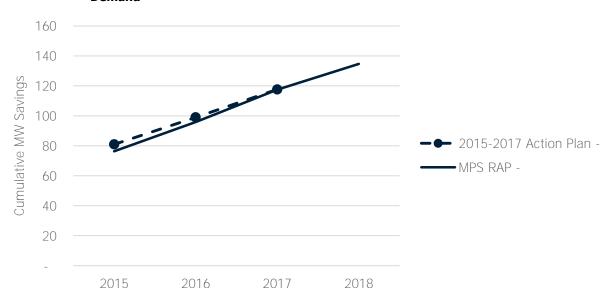



Figure A-3 Comparison of DSM Potential Forecast (RAP) and 2015-2017 Action Plan - Peak Demand

A-4 Applied Energy Group

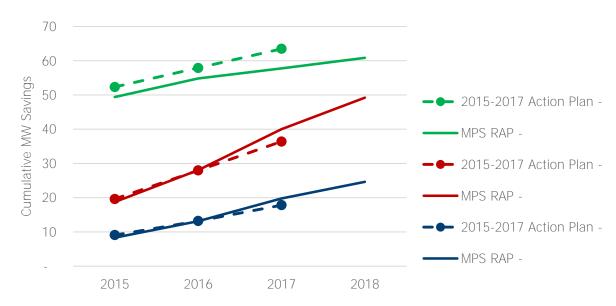
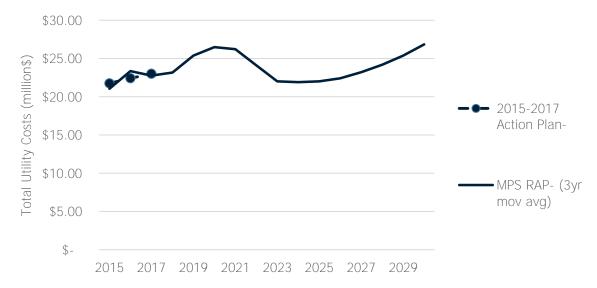




Figure A-4 Comparison of DSM Potential Forecast (RAP) and 2015-2017 Action Plan — Peak Demand by Sector

Finally, as shown in Figure A-5 and Figure A-6 below, utility budgets for the current study are also a close match to the Action Plan for overlapping years. We then project these trends into the future. The first figure illustrates the calibration at the overall portfolio level, while the second shows the sector breakdown. The figures represents a three-year moving average for spending to smooth some of the spikes introduced as an artifact of the modeling process. Dollar figures are given in real terms as of the study base year (2011).





Applied Energy Group A-3

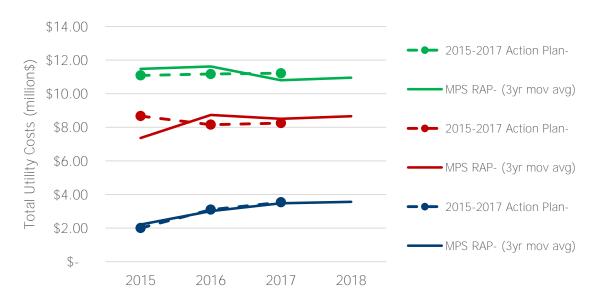
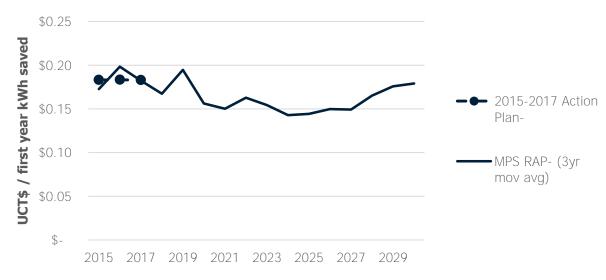




Figure A-6 Comparison of DSM Potential Forecast (RAP) and 2015-2017 Action Plan – Utility Budget by Sector

Figure A-7 below provides a view of the utility spending on a per-unit basis, where the unit is the number of kWh savings in the first year from newly installed measures. The utility budget consists of all program spending, including incentives and non-incentive or administrative costs. The data below represents a 3-year moving average of Utility Cost per first-year kWh saved, again to smooth some of the spikes introduced as an artifact of the modeling process. Dollar figures are given in real terms as of the study base year (2011).





Interpretation of this metric (\$/first-year-kWh-saved) is subject to the following caveats: This metric includes programs with both short lives (like behavioral programs at 1 year) and long lives (like building shell or LED measures at 15+ years), so lifetime effects are difficult to gauge from first-year spending alone. Also, this metric includes spending on demand response programs, whose productivity is aimed at peak kW reductions rather than kWh energy reductions. It is an imperfect metric, but we note that the overall projections represent a rate and productivity of spending that is relatively stable over the 20 year time horizon.

A-4 Applied Energy Group

APPENDIX B

## **Annual Forecast Savings and Program Budgets**

Table B-1 below shows the annual values for net cumulative energy savings, net cumulative peak demand savings, and the total utility program costs. Program costs are given in real terms as of the study base year (2011) on a 3-year moving average basis as explained in Appendix A above.

Table BB-1 Annual Forecast Savings and Program Budgets

|                 | 2013                                    | 2014   | 2015      | 2016     | 2017    | 2018     | 2019              | 2020    | 2021    | 2022    | 2023    | 2024    | 2025    | 2026    | 2027    | 2028    | 2029    | 2030    | 2031    | 2032    | 2033    | 2034    |
|-----------------|-----------------------------------------|--------|-----------|----------|---------|----------|-------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| Net Cumulativ   | e Ener                                  | gy Sav | ings (G   | Wh)      |         |          |                   |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
| Residential     | 18                                      | 36     | 96        | 123      | 141     | 178      | 210               | 223     | 249     | 258     | 254     | 271     | 292     | 310     | 331     | 351     | 369     | 388     | 406     | 426     | 446     | 473     |
| Commercial      | 24                                      | 56     | 101       | 141      | 187     | 225      | 266               | 333     | 396     | 444     | 487     | 534     | 583     | 630     | 676     | 702     | 724     | 752     | 781     | 815     | 847     | 870     |
| Industrial      | 11                                      | 23     | 37        | 56       | 83      | 106      | 127               | 150     | 170     | 195     | 215     | 235     | 251     | 263     | 272     | 279     | 285     | 293     | 300     | 309     | 316     | 322     |
| TOTAL           | 53                                      | 114    | 234       | 320      | 412     | 509      | 603               | 706     | 815     | 897     | 955     | 1,041   | 1,125   | 1,203   | 1,279   | 1,332   | 1,378   | 1,432   | 1,487   | 1,549   | 1,609   | 1,665   |
| Net Cumulativ   | let Cumulative Peak Demand Savings (MW) |        |           |          |         |          |                   |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
| Residential     | 4                                       | 6      | 49        | 55       | 58      | 61       | 66                | 69      | 74      | 78      | 82      | 87      | 92      | 98      | 105     | 113     | 120     | 128     | 137     | 145     | 154     | 164     |
| Commercial      | 5                                       | 10     | 19        | 28       | 40      | 49       | 59                | 72      | 84      | 94      | 103     | 110     | 118     | 125     | 132     | 137     | 141     | 146     | 150     | 156     | 161     | 165     |
| Industrial      | 2                                       | 5      | 8         | 13       | 20      | 25       | 29                | 34      | 38      | 43      | 47      | 50      | 53      | 55      | 57      | 59      | 60      | 62      | 63      | 65      | 66      | 67      |
| TOTAL           | 10                                      | 21     | 76        | 96       | 117     | 135      | 154               | 175     | 197     | 215     | 231     | 248     | 263     | 279     | 295     | 308     | 322     | 336     | 350     | 366     | 382     | 396     |
| Total Utility P | rogram                                  | Cost   | (\$Millio | ns, 3-ye | ar movi | ng avera | age) <sup>4</sup> |         |         |         |         |         |         |         |         |         |         |         |         |         |         |         |
| Residential     | N/A                                     | N/A    | \$11.48   | \$11.61  | \$10.80 | \$10.95  | \$12.74           | \$12.63 | \$11.86 | \$10.65 | \$9.52  | \$9.54  | \$9.71  | \$9.99  | \$10.80 | \$11.67 | \$12.97 | \$13.80 | \$14.80 | \$16.10 | \$18.13 | \$19.42 |
| Commercial      | N/A                                     | N/A    | \$7.36    | \$8.73   | \$8.51  | \$8.66   | \$9.29            | \$10.54 | \$10.83 | \$9.90  | \$8.88  | \$8.95  | \$9.02  | \$9.15  | \$9.16  | \$9.25  | \$9.32  | \$9.82  | \$10.60 | \$11.62 | \$12.34 | \$12.80 |
| Industrial      | N/A                                     | N/A    | \$2.21    | \$3.01   | \$3.47  | \$3.56   | \$3.36            | \$3.33  | \$3.54  | \$3.55  | \$3.60  | \$3.42  | \$3.29  | \$3.28  | \$3.25  | \$3.28  | \$3.09  | \$3.23  | \$3.50  | \$4.05  | \$4.38  | \$4.59  |
| TOTAL           | N/A                                     | N/A    | \$21.05   | \$23.36  | \$22.78 | \$23.17  | \$25.39           | \$26.50 | \$26.23 | \$24.11 | \$22.01 | \$21.92 | \$22.02 | \$22.42 | \$23.20 | \$24.20 | \$25.39 | \$26.85 | \$28.90 | \$31.78 | \$34.85 | \$36.81 |

Applied Energy Group B-1

<sup>&</sup>lt;sup>4</sup> Dollars are in real terms as of the study base year (2011).

#### **About Applied Energy Group (AEG)**

Founded in 1982, AEG is a multi-disciplinary technical, economic and management consulting firm that offers a comprehensive suite of demand-side management (DSM) services designed to address the evolving needs of utilities, government bodies, and grid operators worldwide. Hundreds of such clients have leveraged our people, our technology, and our proven processes to make their energy efficiency (EE), demand response (DR), and distributed generation (DG) initiatives a success. Clients trust AEG to work with them at every stage of the DSM program lifecycle – assessing market potential, designing effective programs, supporting the implementation of the programs, and evaluating program results.

The AEG team has decades of combined experience in the utility DSM industry. We provide expertise, insight and analysis to support a broad range of utility DSM activities, including: potential assessments; end-use forecasts; integrated resource planning; EE, DR, DG, and smart grid pilot and program design and administration; load research; technology assessments and demonstrations; project reviews; program evaluations; and regulatory support.

Our consulting engagements are managed and delivered by a seasoned, interdisciplinary team comprised of analysts, engineers, economists, business planners, project managers, market researchers, load research professionals, and statisticians. Clients view **AEG's** experts as trusted advisors, and we work together collaboratively to make any DSM initiative a success.



Attachment 4.8 (2012 MPS) is provided electronically.

## Appendix B \_\_\_\_\_

# Summary of Equations and Glossary of Symbols

## **Basic Equations**

### **Participant Test**

```
\begin{array}{lll} NPVP & = & BP - CP \\ NPVavp & = & (BP - CP) / P \\ BCRP & = & BP/CP \\ DPP & = & min j such that Bj > Cj \end{array}
```

## **Ratepayer Impact Measure Test**

```
 \begin{array}{lll} LRIRIM &=& (CRIM - BRIM) \, / \, E \\ FRIRIM &=& (CRIM - BRIM) \, / \, E & for \, t = 1 \\ ARIRIMt &=& FRIRIM & for \, t = 1 \\ &=& (CRIMt - BRIMt) / Et & for \, t = 2, ... & , N \\ NPVRIM &=& BRIM - CRIM \\ BCRRIM &=& BRIM / CRIM \\ \end{array}
```

#### **Total Resource Cost Test**

```
NPVTRC = BTRC - CTRC
BCRTRC = BTRC / CTRC
LCTRC = LCRC / IMP
```

#### **Program Administrator Cost Test**

```
NPVpa = Bpa - Cpa
BCRpa = Bpa / Cpa
LCpa = LCpa / IMP
```

#### **Benefits and Costs**

#### **Participant Test**

$$Bp = \sum_{t=1}^{N} \frac{BR_{t} + TC_{t} + INC_{t}}{(1+d)^{t-1}} + \sum_{t=1}^{N} \frac{AB_{at} + PAC_{at}}{(1+d)^{t-1}}$$

$$Cp\sum_{t=1}^{N} \frac{PC_{t} + BI_{t}}{(1+d)^{t-1}}$$

#### **Ratepayer Impact Measure Test**

$$B_{RIM} = \sum_{t=1}^{N} \frac{UAC_{t} + RG_{t}}{(1+d)^{t-1}} + \sum_{t=1}^{N} \frac{UAC_{at}}{(1+d)^{t-1}}$$

$$C_{RIM} = \sum_{t=1}^{N} \frac{UIC_{t} + RL_{t} + PRC_{t} + INC_{t}}{(1+d)^{t-1}} + \sum_{t=1}^{N} \frac{RL_{at}}{(1+d)^{t-1}}$$

$$E = \sum_{t=1}^{N} \frac{E_t}{(1+d)^{t-1}}$$

#### **Total Resource Cost Test**

$$B_{TRC} = \sum_{t=1}^{N} \frac{UAC_{t} + TC_{t}}{(1+d)^{t-1}} + \sum_{t=1}^{N} \frac{UAC_{at} + PAC_{at}}{(1+d)^{t-1}}$$

$$C_{TRC} = \sum_{t=1}^{N} \frac{PRC_{t} + PCN_{t} + UIC_{t}}{(1+d)^{t-1}}$$

$$L_{TRC} = \sum_{t=1}^{N} \frac{PRC_{t} + PCN_{t} - TC_{t}}{(1+d)^{t-1}}$$

$$IMP = \sum_{t=1}^{n} \left[ \left( \sum_{i=1}^{n} \Delta E N_{it} \right) or \left( \Delta D N_{it} \text{ where } I = peak \text{ period} \right) \right]$$

$$(1+d)^{t-1}$$

#### **Program Administrator Cost Test**

$$B_{pa} = \sum_{t=1}^{N} \frac{UAC_{t}}{(1+d)^{t-1}} + \sum_{t=1}^{N} \frac{UAC_{at}}{(1+d)^{t-1}}$$

$$C_{pa} = \sum_{t=1}^{N} \frac{PRC_{t} + INC_{t} + UIC_{t}}{(1+d)^{t-1}}$$

$$LCPA = \sum_{t=1}^{N} \frac{PRC_t + INC_t}{(1+d)^{t-1}}$$

## **Glossary of Symbols**

Abat = Avoided bill reductions on bill from alternate fuel in year t

AC:Dit = Rate charged for demand in costing period i in year t AC:Eit = Rate charged for energy in costing period i in year t

ARIRIM = Stream of cumulative annual revenue impacts of the program per unit of

energy, demand, or per customer. Note that the terms in the ARI formula are not discounted, thus they are the nominal cumulative revenue impacts. Discounted cumulative revenue impacts may be calculated and submitted if

they are indicated as such. Note also that the sum of the discounted stream of cumulative revenue impacts does not equal the LRIRIM\*

BCRp = Benefit-cost ratio to participants BCRRIM = Benefit-cost ratio for rate levels

BCRTRC = Benefit-cost ratio of total costs of the resource

BCRpa = Benefit-cost ratio of program administrator and utility costs

BIt = Bill increases in year t

Bj = Cumulative benefits to participants in year j

Bp = Benefit to participants

BRIM = Benefits to rate levels or customer bills

BRt = Bill reductions in year t BTRC = Benefits of the program Bpa = Benefits of the program

Cj = Cumulative costs to participants in year i

Cp = Costs to participants

CRIM = Costs to rate levels or customer bills

CTRC = Costs of the program Cpa = Costs of the program

D = discount rate

 $\Delta$ Dgit = Reduction in gross billing demand in costing period i in year t

 $\Delta Dnit$  = Reduction in net demand in costing period i in year t

DPp = Discounted payback in years

E = Discounted stream of system energy sales-(kWh or therms) or demand

sales (kW) or first-year customers

 $\Delta$ Egit = Reduction in gross energy use in costing period i in year t  $\Delta$ Enit = Reduction in net energy use in costing period i in year t

Et = System sales in kWh, kW or therms in year t or first year customers FRIRIM = First-year revenue impact of the program per unit of energy, demand, or

per customer.

IMP = Total discounted load impacts of the program

INCt = Incentives paid to the participant by the sponsoring utility in year t First

year in which cumulative benefits are > cumulative costs.

Kit = 1 when  $\triangle$ EGit or  $\triangle$ DGit is positive (a reduction) in costing period i in year

t, and zero otherwise

LCRC = Total resource costs used for levelizing

LCTRC = Levelized cost per unit of the total cost of the resource LCPA = Total Program Administrator costs used for levelizing

Lcpa = Levelized cost per unit of program administrator cost of the resource

LRIRIM = Lifecycle revenue impact of the program per unit of energy (kWh or therm)

or demand (kW)-the one-time change in rates-or per customer-the change

in customer bills over the life of the program.

MC:Dit = Marginal cost of demand in costing period i in year t MC:Eit = Marginal cost of energy in costing period i in year t

NPVavp = Net present value to the average participant

NPVP = Net present value to all participants

NPVRIM = Net present value levels

NPVTRC = Net present value of total costs of the resource NPVpa = Net present value of program administrator costs

OBIt = Other bill increases (i.e., customer charges, standby rates)

OBRt = Other bill reductions or avoided bill payments (e.g., customer charges,

standby rates).

P = Number of program participants

PACat = Participant avoided costs in year t for alternate fuel devices

PCt = Participant costs in year t to include:

• Initial capital costs, including sales tax

Ongoing operation and maintenance costs

Removal costs, less salvage value

• Value of the customer's time in arranging for installation, if significant

PRCt = Program Administrator program costs in year t

PCN = Net Participant Costs

RGt = Revenue gain from increased sales in year t

RLat = Revenue loss from avoided bill payments for alternate fuel in year t

(i.e., device not chosen in a fuel substitution program)

RLt = Revenue loss from reduced sales in year t

TCt = Tax credits in year t

UACat = Utility avoided supply costs for the alternate fuel in year t

UACt = Utility avoided supply costs in year t
PAt = Program Administrator costs in year t
UICt = Utility increased supply costs in year t

## Indianapolis Power & Light Company Annual Estimate - Based on 2015-2017 Action Plan (Cause No. 44497) Reflects 2015 Annual Information - which is representative for each of the 3 years in the planning period

|                                                 |                                                 |                      | Pe     | er Pa | articipant               |                     |                    |                                  |
|-------------------------------------------------|-------------------------------------------------|----------------------|--------|-------|--------------------------|---------------------|--------------------|----------------------------------|
| Program                                         | Estimated<br>rticipant Annual<br>Bill Reduction | Participant<br>Costs |        |       | Participant<br>Incentive | Net Energy<br>(kWh) | Net Demand<br>(kW) | Estimated<br>Penetration<br>Rate |
| Residential Lighting                            | \$<br>41                                        | \$                   | 61     | \$    | 41                       | 452                 | 0.1                | 8.6%                             |
| Residential Income Qualified Weatherization     | \$<br>75                                        |                      | NA     | \$    | 125                      | 823                 | 0.2                | 0.6%                             |
| Residential Air Conditioning Load Management    | \$<br>1                                         |                      | NA     | \$    | 20                       | 10                  | 0.9                | 9.7%                             |
| Residential Multi Family Direct Install         | \$<br>52                                        |                      | NA     | \$    | 39                       | 571                 | 0.1                | 2.4%                             |
| Residential Home Energy Assessment              | \$<br>133                                       |                      | NA     | \$    | 67                       | 1462                | 0.1                | 0.9%                             |
| Residential School Kits                         | \$<br>41                                        |                      | NA     | \$    | 25                       | 453                 | 0.0                | 2.1%                             |
| Residential Online Energy Assessment            | \$<br>37                                        |                      | NA     | \$    | 37                       | 409                 | 0.0                | 0.6%                             |
| Residential Appliance Recycling                 | \$<br>74                                        |                      | NA     | \$    | 212                      | 815                 | 0.1                | 0.7%                             |
| Residential Peer Comparison Reports             | \$<br>10                                        |                      | NA     | \$    | 7                        | 115                 | 0.0                | 47.5%                            |
| Business Energy Incentives – Prescriptive - PER |                                                 |                      |        |       |                          |                     |                    |                                  |
| MEASURE                                         | \$<br>17                                        | \$                   | 39     | \$    | 21                       | 218                 | 0.0                | Varies                           |
| Business Energy Incentives – Custom             | \$<br>4,136                                     | \$                   | 10,311 | \$    | 6,308                    | 52564               | 10.5               | <0.1%                            |
| Small Business Direct Install - PER MEASURE     | \$<br>17                                        |                      | NA     | \$    | 20                       | 222                 | 0.0                | Varies                           |
| Business Air Conditioning Load Management       |                                                 |                      |        |       |                          |                     |                    |                                  |
| (TONS)                                          | \$<br>0                                         |                      | NA     | \$    | 28                       | 5                   | 0.4                | <0.1%                            |



Confidential Attachment 5.1 (Ventyx IPL – IRP 2014 Report) is only available in the Confidential IRP.



Attachment 6.1 (10 Yr Energy and Peak Forecast) is provided electronically.



Attachment 6.2 (20 Yr Energy and Peak Forecast) is provided electronically.



Confidential Attachment 6.3 (End Use Modeling Technique) is only available in the Confidential IRP.



Confidential Attachment 6.4 (EIA End Use Data) is provided electronically.



Confidential Attachment 6.5 (Energy – Forecast Drivers) is provided electronically.



Attachment 6.6 (Energy – Input Data Set 1) is provided electronically.



Attachment 6.7 (Energy – Input Data Set 2) is provided electronically.



Attachment 6.8 (Energy – Input Data Set 3) is provided electronically.



Attachment 6.9 (Peak – Forecast Drivers and Input Data) is provided electronically.



## Confidential Attachment 6.10 (Model Performance – Statistical Measures) is only available in the Confidential IRP.



Attachment 6.11 (Forecast Error Analysis) is provided electronically.



**INDIANAPOLIS POWER & LIGHT COMPANY** 

2014 Integrated Resource Plan Public Summary

#### What's Inside

- **Existing Generation**
- **♦ Public Advisory Process**
- **Capacity Position**
- **♦ IRP Scenarios**
- **Planning Assumptions**
- > Preferred Portfolio
- **♦ Short Term Action Plan**

October 31, 2014

2014 IRP Attachment 7.1

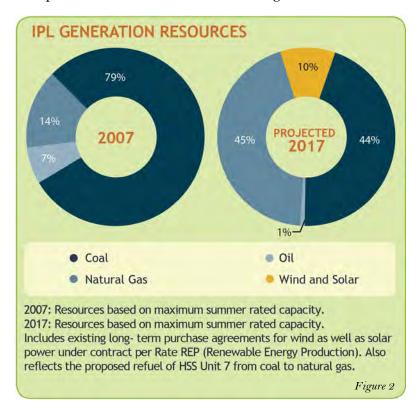
### Existing Generation

IPL participates in an Integrated Resource Planning (IRP) process as required by the Indiana Administrative Code<sup>1</sup> (IAC) to identify a resource plan to reliably serve its customers for a forward looking twenty year period. Biannually, the IRP is filed with the Indiana Utility Regulatory Commission (IURC). The combination of projected customer load, existing resources, projected operating costs, anticipated environmental and other regulatory requirements, potential supply options and demand side resources are analyzed within the context of the risks of uncertain future landscapes to plan to provide electricity service in the most cost-effective and reliable way possible.



- 1PL serves approximately 470,000 households and businesses in ten counties in Central Indiana, mainly in Marion County and adjoining counties.
- ♦ About 88% of IPL's customers are residential, yet the largest percentage of the Company's energy usage is from the Large Commercial and Industrial customers.

IPL owns and efficiently operates approximately 3,089 MW<sup>2</sup> of generation at four plants, over 800 miles of transmission lines, and over 11,600 miles of distribution lines as a vertically integrated investor owned utility.




See *Figure 1* for generation sites and IPL's service territory. IPL also has purchase power agreements for approximately 98 MW of local solar generation and approximately 300 MW of wind generation.

1http://www.in.gov/legislative/iac/T01700/A00040.PDF

#### **Projected 2017 Resource Portfolio**

IPL has made great strides to diversify its portfolio by changing the fuel mix from 79% coal and 14% natural gas in 2007 to the projected mix of 44% coal and 45% natural gas in 2017. The Company has also added 10% wind and solar resources to its portfolio since 2007. See *Figure* 2 for detail. The shift in IPL's generation mix is due to the Company's new 671 MW Eagle Valley CCGT and the refueling of Harding Street units 5 through 7¹ from coal to natural gas to ensure compliance with new environmental regulations.









As part of a new public advisory process with our stakeholders, IPL conducted three stakeholder workshops to discuss the IRP process with interested parties and gather feedback. With the guidance of a third party facilitator, IPL provided information to and gathered information from stakeholders. After the first workshop, the Company responded to 112 comments and questions and an additional 29 comments and questions following the second meeting. The modifications made as a result of stakeholder participation are highlighted in the second presentation and incorporated in the third presentation. The three workshops and related agendas are summarized below:

#### May 16, 2014

- ♦ Introduction to IPL and Integrated Resource Planning Process
- ♦ Energy and Peak Forecasts
- Demand Side Management: Energy Efficiency and Demand Response
- ♦ Planning Reserve Margin
- ♦ Generation Overview
- ♦ Environmental Overview
- ♦ Distributed Energy Resources
- ♦ Proposed Modeling Assumptions

#### July 18, 2014

- ♦ Demand Side Management Update
- ♦ Environmental Update
- ♦ Incorporating Stakeholder Input
- ♦ Presentation of Initial Scenario Results

#### October 10, 2014

- ♦ Waste Water Analysis Results
- ♦ Updated Modeling Assumptions
- ♦ Presentation of Scenario Results
- Short Term Action Plan

Meeting materials, stakeholder comments and questions, and meeting summaries are available at <a href="https://www.iplpower.com/irp/">https://www.iplpower.com/irp/</a>.







### Capacity Position

IPL's energy and peak load requirements are expected to grow at a compound annual growth rate of 0.8% and 0.9%, respectively, through 2033. IPL is required to maintain an adequate reserve margin to satisfy its load obligation as a retail jurisdictional utility in Indiana and as a member of the Midcontinent Independent System Operator (MISO).

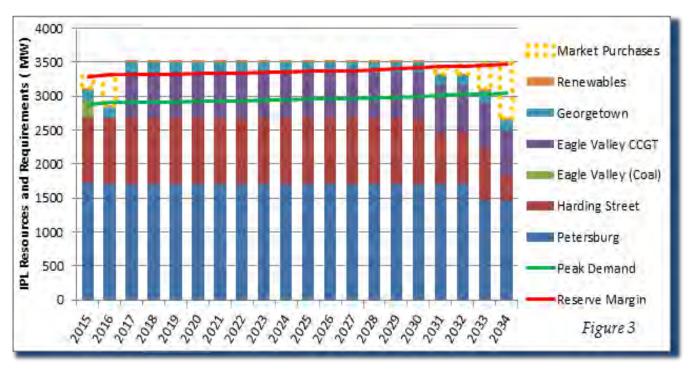



Figure 3 shows IPL's projected reserve margin compared to the available resources, assuming no resource additions other than those proposed and approved by the IURC as described on page 3. The capacity deficit prior to 2017 is met by market purchases. Once refueling and new generation construction is complete in 2017, IPL does not experience a capacity shortfall until 2030.







The electric utility industry continues to evolve through technology advancements, fluctuations in customer consumption, changes in state and federal energy policies, uncertainty of long-term fuel supply and prices, and a multitude of other factors. Since the impacts these factors will have on the future utility industry landscape remains largely uncertain, IPL models multiple possible scenarios to evaluate various futures.

IPL, with assistance from its stakeholders and consultants, created eight scenarios (depicted below in *Figure 4*) to target three major resource drivers– potential Greenhouse Gas regulation, natural gas prices, and load variation. Potential Greenhouse Gas regulation is quantified using four distinct CO<sub>2</sub> costs: IPL-EPA Shadow price (Moderate-EPA), Federal legislation Ventyx Fall 2013 price (High), Mass Cap ICF price (Moderate-ICF), and a zero cost scenario (Low). Additionally, high, low, and base forecasts were used for natural gas and load forecasts.

The use of multiple scenarios allows IPL to identify a Preferred Portfolio that will be competitive in a wide range of future landscapes.

| No. | Scenario Name         | Gas/Market<br>Price | CO <sub>2</sub> Price | Load<br>Forecast |
|-----|-----------------------|---------------------|-----------------------|------------------|
| 1   | Base                  | Base                | Moderate-EPA          | Base             |
| 2   | High Load             | Base                | Moderate-EPA          | High             |
| 3   | Low Load              | Base                | Moderate-EPA          | Low              |
| 4   | High Gas              | High                | Moderate-EPA          | Base             |
| 5   | Low Gas               | Low                 | Moderate-EPA          | Base             |
| 6   | High<br>Environmental | Environmental       | High                  | Base             |
| 7   | Environmental         | Mass Cap            | Moderate-ICF          | Base             |
| 8   | Low<br>Environmental  | Base                | Low                   | Base             |

Figure 4

The future impacts on IPL's resource plan continue to be uncertain amidst anticipated regulations pertaining to waste, water, air and emissions coupled with dynamic fuel cost forecasts, electricity market structural change and variable electricity price forecasts. In addition to the future landscapes, the selection of a Preferred Portfolio is dependent on a variety of input assumptions, including the customer growth rate and the cost assumptions in *Figure 5*.

#### **Modeling Cost Inputs**

- 1. Natural gas costs
- 2. Coal costs, by region
- 3. Energy costs, peak and off-peak
- 4. Capacity costs purchased on the open market
- 5. Demand side management costs and benefits
- 6. Costs of constructing or retrofitting generation
- 7. Costs of future environmental regulations

Figure 5

Assumptions 1 through 4 were provided to IPL by Ventyx, a consulting firm known nationwide to produce reliable forecasts. Assumption 5 was guided by Applied Energy Group ("AEG"), a consulting firm with energy efficiency and demand response expertise. Assumptions 6 through 8 were developed internally by IPL experts based on current and future regulations and market research and trends.

IPL assumed that there will be a cost associated with emitting CO<sub>2</sub> in seven of its eight scenarios due to the EPA's proposed Clean Power Plan rule. This cost will result in coal generation being partially replaced with natural gas fired generation resulting in higher off-peak energy prices (as coal generation normally sets the off-peak price). It may also result in additional renewable generation.

Aside from the planned retirement of Eagle Valley coal fired units 3 through 6 in 2016 and the planned refuel of Harding Street units 5 through 7<sup>1</sup> from coal to natural gas in 2016, the model was allowed to choose optimal unit retirement dates based on production costs.

#### IPL's Preferred Portfolio



From the eight scenarios, IPL used sophisticated modeling techniques to develop five resource expansion plans and their corresponding cost to customers. Plans one and two included no early retirements while plans three through five included the early retirement of Petersburg units 1 and 2. At the conclusion of modeling, the Base Case, or plan one, provided the reasonable least cost to customers over the planning period and was identified as the Preferred Portfolio.

Plan one is expected to provide the lowest reasonable cost of power to IPL's customers while meeting environmental and reliability constraints and reflecting emerging preference for, and the viability of customer self-generation. Plan one only adds new generation when an IPL unit is retired, which is reflective of the projected moderate energy growth rate for Indianapolis. As seen in *Figure 6*, IPL has sufficient resources to meet its load requirements until 2031 when Harding Street units 5 and 6 are planned to retire and be replaced with new natural gas generation.

 $^1\mbox{IPL's}$  request to refuel HSS 7 is pending with the IURC in Cause No. 44540.

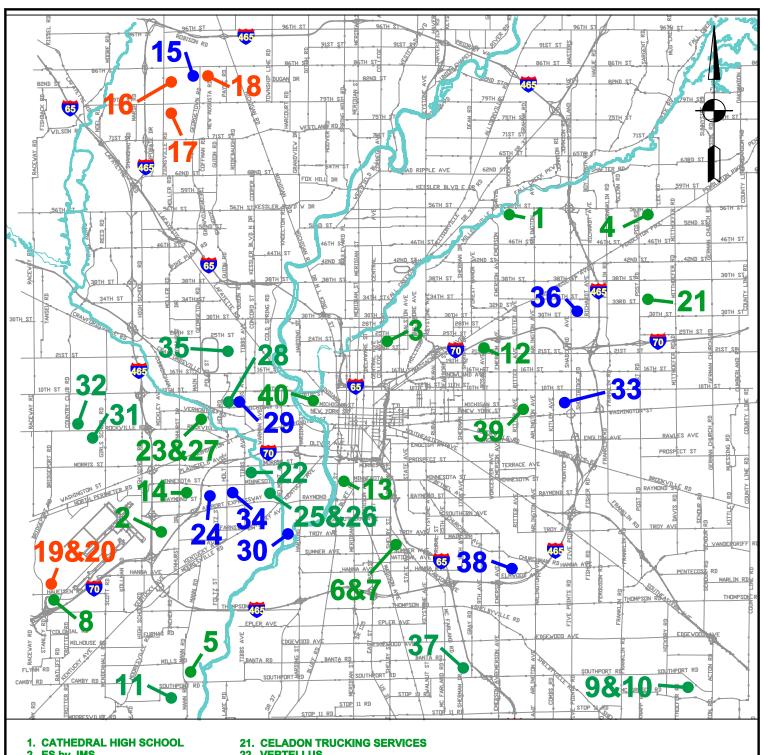
Plan one provides reliable electric utility service, at a reasonable cost, through a combination of existing resources, new resources and demand-side management programs. IPL will maintain adequate capacity resources to serve its customers' peak demand and required MISO reserve margin needs throughout the planning period.

The following *Figure 6* provides a long–term yearly description of the Preferred Portfolio—Plan one.

| YEAR      | Retirements                  | New Resource                         |
|-----------|------------------------------|--------------------------------------|
| 2015-2030 | None                         | None                                 |
| 2031      | Harding Street Units 5 and 6 | Combined Cycle Natural Gas<br>200 MW |
| 2032      | None                         | None                                 |
| 2033      | Petersburg Unit 1            | Combined Cycle Natural Gas 200 MW    |
| 2034      | Harding Street Unit 7        | Combined Cycle Natural Gas<br>400 MW |

Figure 6

#### **Short Term Action Plan**


IPL's short-term action plan covering 2015 through 2017 identifies the initial steps toward the Company's longer-term resource strategy, as described in the Preferred Portfolio. The short term action plan focuses on managing the impacts of implementing the recommendations that resulted from the 2011 IRP. The following recommendations from the 2011 and 2014 IRP are in the process of being implemented over the 2015-2017 period:

- Continue to offer Commission approved cost-effective DSM programs (See IURC Cause No. 44497)
- ♦ Retire Eagle Valley Units 3 through 6
- ♦ Construct the new 671 MW Eagle Valley CCGT (See IURC Cause No. 44339)
- ♦ Refuel Harding Street Units 5 and 6 from coal to natural gas (See IURC Cause No. 44339)
- ♦ Install environmental control equipment to comply with MATS regulations (See IURC Cause No. 44242)
- ♦ Plan for the refueling of Harding Street Unit 7 from coal to natural gas to comply with NPDES permits—pending Commission approval (See IURC Cause No. 44540)
- ♦ Complete construction of transmission facilities
- ♦ Purchase capacity for MISO planning years 2015-2016 and 2016-2017

Because Integrated Resource Planning is an iterative process, IPL will complete another IRP in 2016 incorporating updated and/or new assumptions. IPL thanks stakeholders for their involvement in the 2014 IRP. Please visit <a href="https://www.iplpower.com/irp/">https://www.iplpower.com/irp/</a> to access detailed presentations and the IRP document.

#### FINAL RATE REP PARTICIPANTS

| Count | Customer                                    | Address                                   | Nameplate<br>Capacity (kW, AC) | Ground /<br>Roof |
|-------|---------------------------------------------|-------------------------------------------|--------------------------------|------------------|
| 1     | Cathedral High School                       | 5525 E. 56th St.                          | 50                             | R                |
| 2     | ES by JMS                                   | 5925 Stockberger Place                    | 90                             | R                |
| 3     | Indiana Veneers                             | 1121 E. 24 <sup>th</sup> Street           | 85                             | R                |
| 4     | GSA Bean Finance Center                     | 8899 E. 56th Street                       | 1,800                          | R                |
| 5     | Melloh Enterprises                          | 6627 Mann Road                            | 39                             | G                |
|       | L&R #1 (Laurelwood Apts.)                   | Building #6, 3340 Teakwood Dr             | 30                             | R                |
|       | L&R #2 (Laurelwood Apts.)                   | Building #16, 3340 Teakwood Dr            | 28                             | R                |
|       | Airport I                                   | 7800 Col. H. Weir Cook Memorial Drive     | 9,800                          | G                |
|       | Indy Solar I                                | 10321 East Southport Road                 | 10,000                         | Ğ                |
|       | Indy Solar II                               | 10321 East Southport Road                 | 10,000                         | Ğ                |
|       | Indy Solar III                              | 5800 West Southport Road                  | 8,640                          | Ğ                |
|       | Indy DPW                                    | 3915 E 21st Street                        | 95                             | R                |
|       | Indy DPW                                    | 1737 S. West St                           | 95                             | R                |
|       | Schaefer Technologies                       | 4901 W. Raymond St, 46241                 | 500                            | G                |
|       | Citizens Energy (LNG North)                 | 4650 W. 86th                              | 1,500                          | G                |
|       | Duke Realty #98                             | 8258 Zionsville Rd, 46278                 | 3,000                          | R                |
|       | Duke Realty #87                             | 5355 W. 76th St., Indpls., 46268          | 3,000                          | R                |
|       | Duke Realty #129                            | 4925 W. 86th St. Indianapolis, IN 46268   | 4,000                          | R                |
|       | Airport Phase IIA                           | Intersection of Haueisen Rd& Bridgeport F | 2,500                          | G                |
|       | Airport Phase IIB                           | 4250 W Perimeter Rd                       | 7,500                          | G                |
|       | Celadon Trucking Services                   | 9503 E. 33rd Street, 46235                | 82                             | R                |
|       | Vertellus                                   | 1500 S. Tibbs Ave, 46241                  | 8,000                          | G                |
|       | Merrell Brothers                            | 4251 W. Vermont ST                        | 96                             | R                |
|       | Grocers' Supply Co.                         | 4310 Stout Field Dr. North                | 1,000                          | R                |
|       | A-Pallet Co.                                | 1225 S. Bedford St.                       | 1,000                          | G                |
| -     | A-Pallet Co.                                | 1305 S. Bedford St.                       | 96                             | R                |
| _     | Town of Speedway, IN                        | 4251 W. Vermont ST                        | 750                            | G                |
|       | GenNx Properties VI, LLC (Maple Creek Apts) |                                           | 20                             | R                |
|       |                                             | 3800 W. Michigan Street (Bldg 17)         | 20                             | R                |
|       | GenNx Properties VI, LLC (Maple Creek Apts) | 3800 W. Michigan Street (Bldg 1)          |                                |                  |
|       | CWA Authority                               | 2700 S. Belmont (WWTF)                    | 3,830                          | G<br>G           |
|       | Rexnord Industries                          | 7601 Rockville Road                       | 2,800                          |                  |
|       | Equity Industrial A-Rockville LLC           | 7900 Rockville Road                       | 2,725                          | R                |
|       | Lifeline Data Centers                       | 401 N. Shadeland Ave                      | 4,000                          | R                |
|       | Omnisource                                  | 2205 S. Holt                              | 1,000                          | G                |
|       | Indianapolis Motor Speedway                 | 3702 W 21 <sup>st</sup> Street            | 9,594                          | G                |
|       | DEEM                                        | 6900 E. 30th Street                       | 500                            | R                |
|       | Indy Southside Sports Academy               | 4150 Kildeer Dr                           | 200                            | R                |
|       | Marine Center of Indiana                    | 5701 Elmwood Ave                          | 500                            | R                |
|       | 5855 LP                                     | 5855 E. Washington St.                    | 78                             | R                |
| 40    | IUPUI                                       | 801 W. Michigan Rd                        | 48                             | R                |
|       |                                             | Total                                     | 98,138                         |                  |
| 4     | 10/2/2014                                   | Under Construction                        | 17,500                         |                  |
| 27    |                                             | Operating                                 | 65,816                         |                  |
| 9     |                                             | In Development                            | 14,823                         |                  |
|       |                                             |                                           | ,==0                           |                  |



- 2. ES by JMS
- 3. INDIÁNA VENEERS
- **GSA BEAN FINANCE CENTER**
- **5. MELLOH ENTERPRISES**
- 6. L&R #1 (LAURELWOOD APTS.)
- 7. L&R #2 (LAURELWOOD APTS.)
- AIRPORT I
- 9. INDY SOLAR I
- 10. INDY SOLAR II
- 11. INDY SOLAR III
- 12. INDY DPW
- 13. INDY DPW
- 14. SCHAEFER TECHNOLOGIES
- 15. CITIZENS ENERGY (LNG NORTH)
- **16. DUKE REALTY #98**
- 17. DUKE REALTY #87
- **18. DUKE REALTY #129** 19. AIRPORT PHASE IIA
- 20. AIRPORT PHASE IIB

- 22. VERTELLUS
- 23. MERRELL BROTHERS
- 24. GROCERS' SUPPLY CO.
- 25. A-PALLET CO.
- 26. A-PALLET CO.
- TOWN OF SPEEDWAY, IN GenNx PROPERTIES VI, LLC. (MAPLE CREEK APTS.)
- 29. GenNx PROPERTIES VI, LLC. (MAPLE CREEK APTS.) **CWA AUTHORITY**
- 31. **REXNORD INDUSTRIES**
- 32. EQUITY INDUSTRIAL A-ROCKVILLE LLC.
- 33. LIFELINE DATA CENTERS
- **OMNISOURCE**
- 35. **INDIANAPOLIS MOTOR SPEEDWAY**
- 37. INDY SOUTHSIDE SPORTS ACADEMY
- **MARINE CENTER OF INDIANA** 38.
- 39. 5855 LP
- 40. IUPUI

#### **LEGEND**

- **OPERATING**
- # UNDER CONSTRUCTION
- # IN DEVELOPMENT



INDIANAPOLIS POWER & LIGHT CO.

**SOLAR FACILITIES** 

solar-REP-GIS-map

#### **Indianapolis Power & Light Company**

### **Attachment 9.1 (IRP Public Advisory Process Presentations)**

Meeting #1: May 16, 2014 Meeting #2: July 18, 2014 Meeting #3: October 10, 2014





# IRP Public Advisory Meeting #1

Workshop with IRP Stakeholders

May 16, 2014

The Hall 202 N. Alabama St



# Welcome and Introductions



# Meeting Agenda and Guidelines

Presented by Marty Rozelle, PhD, Meeting Facilitator



#### IRP Public Advisory Meeting #1

#### **Agenda Topics**

- Introduction to IPL and Integrated Resource Planning Process
- Energy and Peak Forecasts
- Demand Side Management: Energy Efficiency and Demand Response
- Planning Reserve Margin
- Generation Overview
- Environmental Overview
- Distributed Energy Resources
- Proposed Modeling Assumptions



#### Meeting Objectives

- Enhance understanding of IPL's IRP process and IPL's resource portfolio
- Gather comments and feedback
- Continue relationship built on trust, respect and confidence



#### **Meeting Guidelines**

- Time for clarifying questions at end of each presentation
- Parking lot for items to be addressed later
- The phone line will be muted. During the allotted question time frames, you may press \*6 to un-mute yourself.
- To inquire about confidential information please contact Teresa Nyhart with Barnes & Thornburg, LLP at <a href="mailto:teresa.nyhart@btlaw.com">teresa.nyhart@btlaw.com</a>



#### **Written Comments and Feedback**

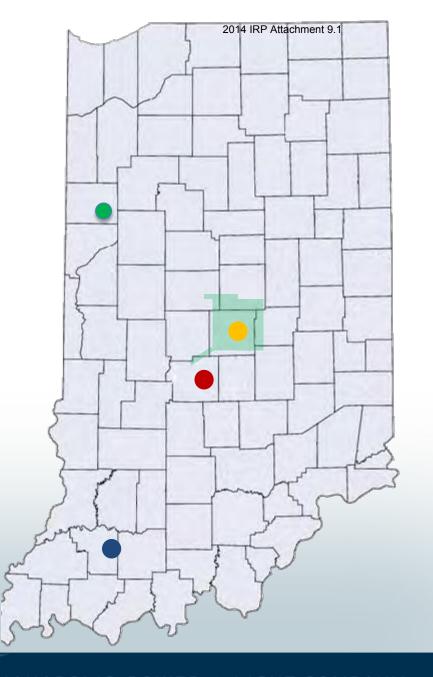
- The email, <a href="IPL.IRP@aes.com">IPL.IRP@aes.com</a>, will be open for a period of two weeks after this meeting, until May 30, for additional comments and feedback
- All IPL responses will be posted on the IPL IRP website on June 13



#### **Questions?**

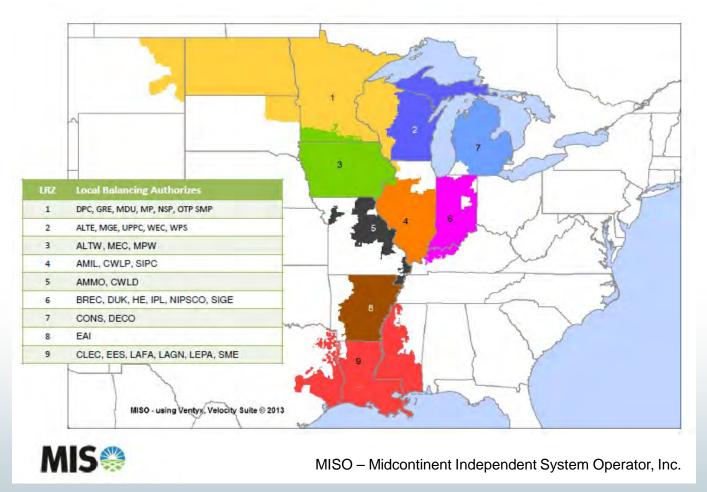


#### Introduction to IPL


Presented by Herman Schkabla, Director of Resource Planning

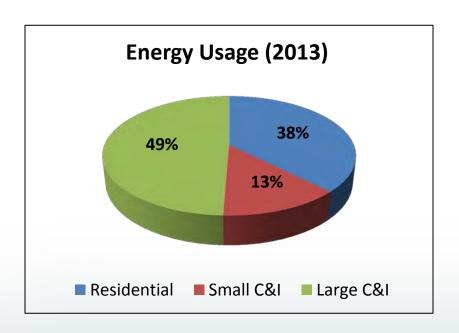


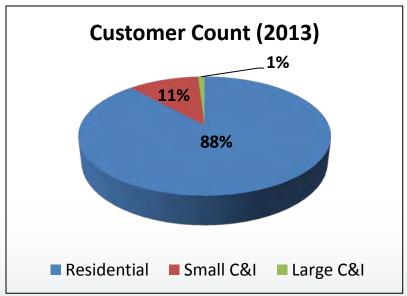
### • Profile


- 470,000 customers\*
- 1,400 employees\*
- 528 sq. miles territory
- 144 substations
- Harding Street Station, Georgetown
   Station, Solar REP Projects 1,322 MW\*\*
- Eagle Valley Generating Station 263 MW\*\*
- Petersburg GeneratingStation 1,760 MW\*\*
- Hoosier Wind Park PPA 100 MW\*\*
- Lakefield Wind Park PPA 201 MW\*\* (In Minnesota – Not pictured)

\*approximate numbers \*\*nameplate capacity

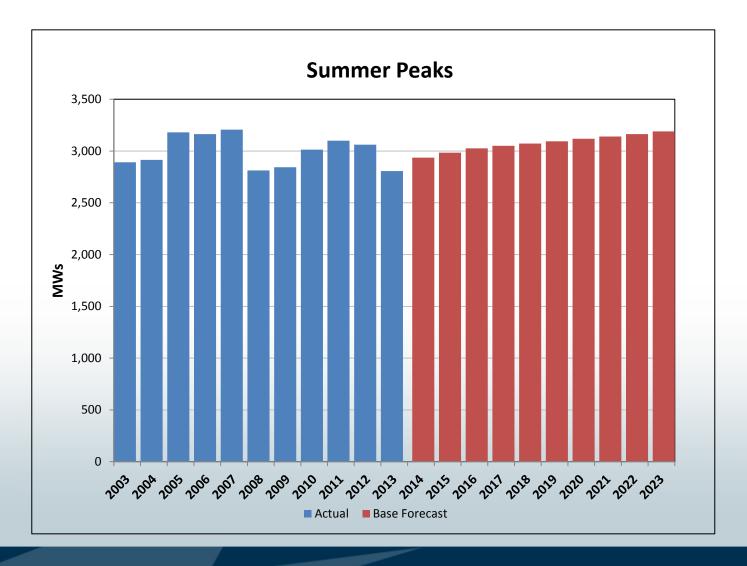






### IPL Is In MISO Load Resource Zone (LRZ) 6






### Retail Energy Usage is Well Balanced between Residential and C&I Customer Classes







### IPL Summer Peaks – Slow Recovery<sup>2014 IRP Attachment 9.1</sup> from Post-Recession Levels

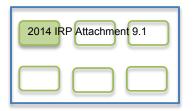




# Integrated Resource Planning Process

Presented by Herman Schkabla, Director of Resource Planning




#### **IRP Process Overview**

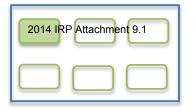
Develop IPL's Total Determine IPL's **Identify Key Risk Supply Resource New** Supply **Parameters** Needs **Resource Needs** Identify IPL's Identify and **Evaluate Resource** Reference and Screen Resource **Expansion Plans Short Term Action Technologies** 

**Plans** 



#### **IPL's Total Resource Needs**



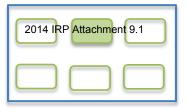

#### **Net Load Forecast and Reserve Margin Requirement**

- Net Load Forecast includes:
  - Load Forecast economic driven
  - Less the projected Demand Side Management (DSM): Energy Efficiency (EE) and Demand Response (DR) resources
- Reserve Margin Requirement amount of generation capacity needed to meet expected demand in a planning horizon
  - Percentages set by MISO 1 year in advance
  - Impacted by IPL's generating unit availability
- These two components make up the Total Resource Needs

Net Load Forecast *times* (1 + Reserve Margin)



#### **IPL's Total Supply Resource Needs**



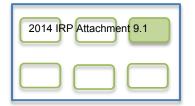

#### **Demand Response Programs and Distributed Generation Projects**

- Demand Response (DR) Programs and Distributed Generation (DG) Projects are subtracted from the Total Resource Needs to yield the Total Supply Resource Needs
  - DR Programs are primarily focused on reducing electric demand at peak times
  - DG Projects generate electricity from many small energy sources and are generally non-dispatchable



#### **IPL's New Supply Resource Needs**



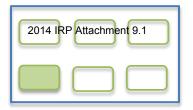

#### **Compare Projected Resources with Total Supply Resource Needs**

- To determine if IPL needs any New Supply Resources, IPL evaluates its existing generation plan as needed based on environmental compliance
  - Existing generation plan includes projects approved and/or pending at the IURC (e.g. Replacement Generation CPCN)
  - IPL will also apply any portfolio mandates such as DSM/EE or RPS, if required
- Then, IPL can compare its projected resources with its forecasted Total Supply Resource Needs to see if there is a shortfall

CPCN – Certificate of Public Convenience and Necessity RPS – Renewable Portfolio Standard



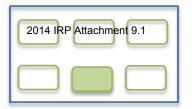
#### **Identify Key Risk Parameters**




#### **Ventyx Screening Model Inputs**

- Define key risk parameters for modeling and portfolio evaluation
- Stakeholder feedback on key risk parameters

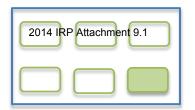



# **Identify and Screen Resource Technologies**



- Identify supply technologies for modeling
  - Input from Ventyx, IPL, and stakeholders
  - Subject to environmental constraints
- For defined scenarios, the Ventyx Capacity Expansion Screening Model will identify the top resource plan with the lowest Present Value Revenue Requirement (PVRR) to meet IPL's New Supply Resource Needs
- If appropriate, IPL may also select other resource alternatives that were not chosen by the Ventyx Capacity Expansion Screening Model for further evaluation




# **Evaluation of Resource Expansion Plans**



- Resource(s) identified in the Capacity Expansion Screening Model will be used to:
  - Construct resource portfolios that will be evaluated using the more detailed Midas Gold Portfolio Simulation Production Cost model
    - → Determine cost effectiveness



# Identify IPL's Reference and Short Term Action Plans



 Select the plan that best meets the company's projected need for additional resources while balancing reliability, environmental responsibility, efficiency and cost.

#### **IURC** Mission

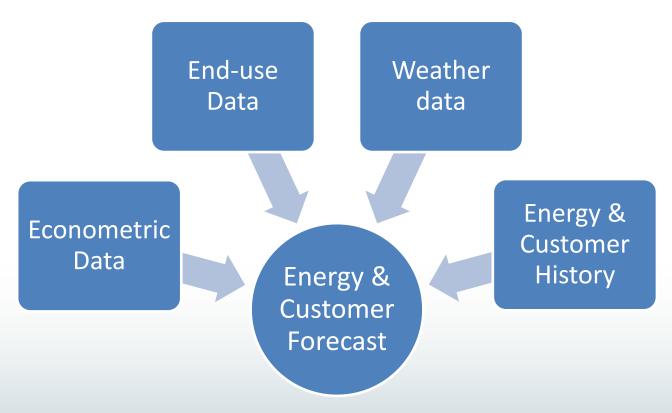
Assure that utilities and others use adequate planning and resources for the provision of safe and reliable utility services at reasonable cost.

#### **IPL** Mission

Improving lives by providing safe, reliable and affordable energy solutions in the communities we serve.



### **Questions?**




# **Energy and Peak Forecasts**

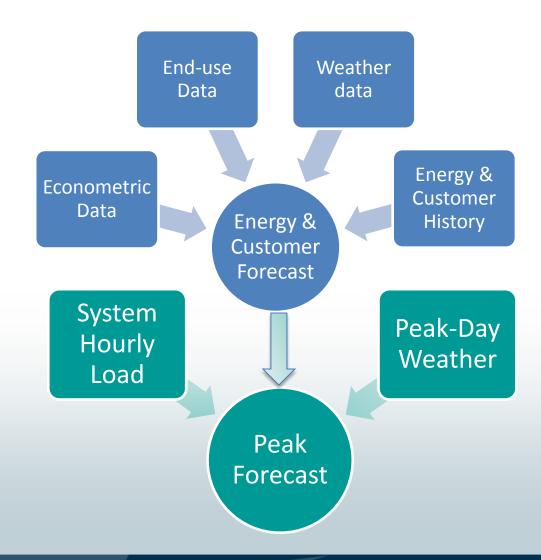
Presented by Swetha Sundar, Resource Planning Analyst



### **Energy Forecast Model**



Hybrid model captures economic effects as well as energyefficiency trends.




### Energy Forecast Process

- 10-year historical data used as starting point
- 30-year average monthly degree-days used as normals
- Residential forecast:
  - Hybrid average-use model; customer-growth trend model
  - Average Use times Customer Count = Energy
- Small Commercial & Industrial forecast:
  - Hybrid energy model
- Large Commercial & Industrial forecast:
  - Econometric energy model



### Peak Forecast Model – Linked to Energy forecast for consistency





### **Peak Forecast Process**

- 10-year historical actual data used as starting point
- 15-year average peak-producing degree-days used as normals
- Peak forecast:
  - Hybrid model tied to energy forecast
  - Developed based on integrated econometric and enduse variables

### The Drivers -



#### Reflect economic and technological changes

#### Economic

(Source: Moody's)

No. of households; Household income; Employment

**Updated quarterly** 

#### **End-Use**

(Source: EIA/Itron Inc.)

EIA forecast for appliance saturation and efficiency

**Updated Annually** 



### **Residential Economic Drivers –**

#### No. of households to grow at 1%

#### **Marion County No. of Households**



#### **Marion County Household Income**



Projected Growth rates (2014 – 2023)

# of households: 1%

Household income: 1.2%
 Source: Moody's Analytics



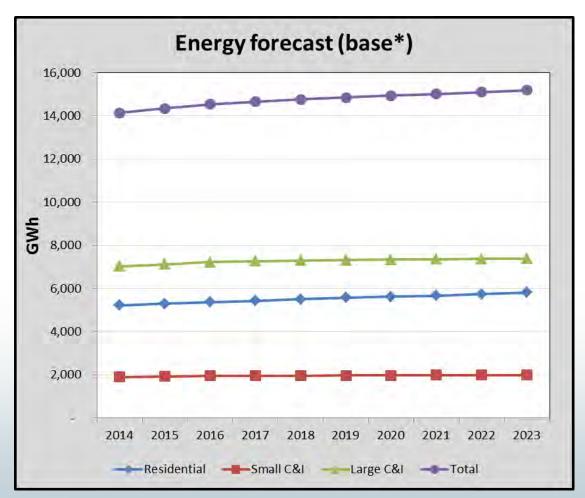
# Commercial & Industrial Economic Drivers – Employment to grow at 1%

#### **Indianapolis Total Employment**



Projected Growth rates (2014 – 2023)

- Manufacturing employment: 0.1%
- Non-Manufacturing employment: 1.1%
   Source: Moody's Analytics




# Federal standards reflected in EIA data (examples)

| Product                                 | Compliance Date for Original Standard and Updates | Authorizing Legislation* |
|-----------------------------------------|---------------------------------------------------|--------------------------|
| RESIDENTIAL PRODUCTS                    |                                                   |                          |
| Clothes Washers (Water and Energy)      | 1988, 1994, 2004/2007, <mark>2015/2018</mark>     | NAECA 1987               |
| Clothes Dryers                          | 1988, 1994, <mark>2014</mark>                     | NAECA 1987               |
| Dishwashers (Water and Energy)          | 1988, 1994, 2010, <mark>2013</mark>               | NAECA 1987               |
| Refrigerators and Refrigerator-Freezers | 1990, 1993, 2001, <mark>2014</mark>               | NAECA 1987               |
| Freezers                                | 1990, 1993, 2001, <mark>2014</mark>               | NAECA 1987               |
| Room Air Conditioners                   | 1990, 2000, <mark>2014</mark>                     | NAECA 1987               |
| Central Air Conditioners and Heat Pumps | 1992/1993, 2006, <mark>2015</mark>                | NAECA 1987               |
| Water Heaters                           | 1990, 2004, <mark>2015</mark>                     | NAECA 1987               |
| Furnaces                                | 1992, 2013                                        | NAECA 1987               |
| Boilers                                 | 1992, 2012                                        | NAECA 1987               |
| Direct Heating Equipment                | 1990, 2013                                        | NAECA 1987               |
| Cooking Products                        | 1990, 2012                                        | NAECA 1987               |
| Pool Heaters                            | 1990, 2013                                        | NAECA 1987               |
| Ceiling Fans and Ceiling Fan Light Kits | 2007                                              | EPACT 2005               |
| Torchieres                              | 2006                                              | EPACT 2005               |
| Dehumidifiers                           | 2007, 2012                                        | EPACT 2005               |
| External Power Supplies                 | 2008                                              | EISA 2007                |



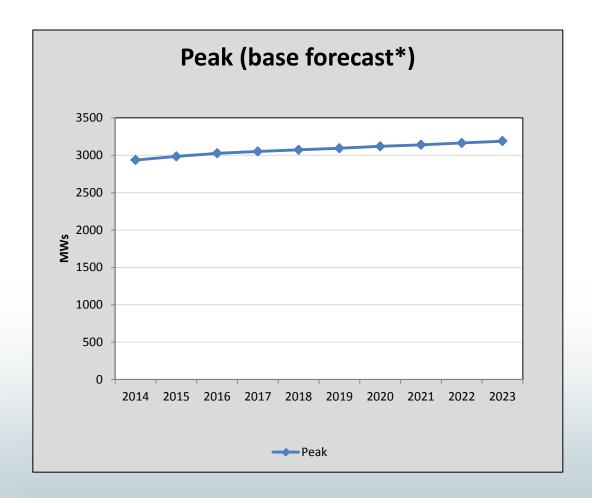
### The Forecast: Energy



### Average **Energy** growth rates (2014-23):

Residential: 1.2%

• SCI: 0.6%


• LCI: 0.6%

Total: 0.8%

<sup>\*</sup> The forecast does not reflect company-sponsored DSM savings.



### The Forecast: Peak



Average **Peak** growth rate (2014-23): **0.9%** 

<sup>\*</sup> The forecast does not reflect company-sponsored DSM savings.



### **IPL Forecast Is Consistent with Other Sources**

- Itron, Inc. reviewed and updated models and forecasting practices
- Observed forecast-trend consistent with industry-wide expectations
- Impact of large C&I customers' changes are monitored and reflected in forecast



### **Questions?**



### Demand Side Management: Energy Efficiency and Demand Response

Presented by Jake Allen, DSM Program Development Manager



### What is Demand Side Management (DSM)?

- Per Indiana Administrative Code (170 IAC 4-7-1 (g)):
  - "Demand-side management" or "DSM" means the planning, implementation, and monitoring of a utility activity designed to Influence customer use of electricity that produces a desired change in a utility's load. DSM includes only an activity that involves deliberate intervention by a utility to alter load.
- Includes conservation, energy efficiency and demand response



### **DSM** Rules and Requirements

- Historically, utilities have followed the Integrated Resource Planning rules (170 IAC 4-7) requiring that:
  - The utility shall consider alternative methods of meeting future demand for electric service
  - Include consideration of demand-side resources as a source of new supply in meeting future electric service requirements
  - For DSM programs, a cost-benefit analysis is performed using the four standard cost-benefit tests



### **Evolving DSM Rules and Requirements**

- In December 2009, the Indiana Utility Regulatory Commission (IURC) established DSM targets for all Indiana jurisdictional electric utilities (Cause No. 42693-S1)
  - Targets increased in annual increments from 0.3% in 2010 to 2.0% in 2019
  - Established a set of "Core" DSM programs to be administered by a statewide 3<sup>rd</sup> party administrator
  - Utilities supplemented the Core Programs with Additional Core Plus programs
- In March 2014, the Indiana General Assembly passed legislation which modified DSM requirements in Indiana
  - Removes requirement to deliver statewide "Core" DSM programs and to meet the savings targets after 2014
  - Allows for opt-out by large customers (if greater than 1 MW demand)



### **Program Savings Are Verified Annually**

- Both demand response programs and DSM programs are subject to cost-effectiveness testing as outlined by the Indiana Administrative Code
  - Used to gauge the costs versus benefits of each program
- All DSM programs are evaluated annually to verify the energy saving impacts
  - Programs are evaluated by an independent statewide evaluator: TecMarket Works



### **Current Demand Response Programs**

- IPL's Demand Response programs are primarily focused on reducing electric demand at peak times
  - Load Displacement and Interruptible Contracts: contracts with large commercial and industrial customers that are willing to reduce electrical consumption at peak times
    - IPL has approximately 44 MW of Load Displacement and Interruptible Contracts
  - Cool Cents: a voluntary energy management program for residential and commercial customers that cycles cooling equipment during periods of peak electricity demand
    - IPL has approximately 40,000 participants
    - Cool Cents program participants can earn bill credits up to \$20 per cooling system over June through September
    - Approximately 30 MW of peak load reduction





### **Current DSM Programs**

### **Core Programs** (Energizing Indiana)



- Residential Lighting
- Home Energy Assessment
- Income Qualified Weatherization
- School Education & Assessment
- Commercial & Industrial Prescriptive

### Core Plus Programs (By IPL)

#### Residential

- Appliance Recycling
- Multi-Family Direct Install
- Residential New Construction
- Peer Comparison Report
- Air Conditioning Load Management
- Online Energy Assessment w Kit
- Renewables

#### **Commercial & Industrial**

- Business Energy Assessment
  - Prescriptive
  - Custom
- Air Conditioning Load Management
- Renewables



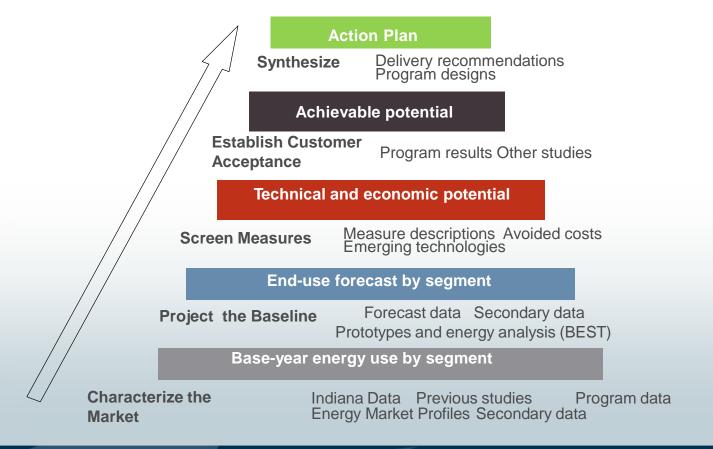


### **Recent DSM Achievement**





# **2015 to 2017 DSM Action Plan Is Being Finalized**


- In 2012, IPL completed a DSM Market Potential Study (MPS) in cooperation with the DSM Oversight Board to identify the potential savings from energy efficiency programs
  - The Oversight Board is comprised of IPL, the OUCC, and the CAC
  - IPL contracted with EnerNOC to perform the MPS
  - The EnerNOC MPS ultimately provided a low and high Achievable Potential for DSM program savings as well as an Action Plan
- IPL is in the process of working with EnerNOC to update this Action Plan
  - Factor in changes that have occurred since 2012, including the opt-out opportunity for the large Commercial and Industrial customers and the completion of the Indiana Technical Resource Manual

Updated Action Plan = key evidence in IPL's anticipated May 30, 2014 filing for approval of future DSM programs



## 2018 to 2034 DSM Forecast Will Be Created

Next step after the update of the Action Plan → Have EnerNOC provide a forecast of IPL DSM for the period 2018 through 2034





### **Key Assumptions for the 2014 IRP**

- IPL will continue to offer cost-effective DSM to assist customers in managing their energy bills and meet future energy requirements
- The load forecast also includes an ongoing level of energy efficiency related to codes and standards embedded in the load forecast projections
  - Natural occurring savings includes the impacts of new appliance efficiencies, changes in Federal standards regarding appliance efficiency, new building codes
- Demand Response impacts are an important part of resource planning but are generally customer driven



# **DSM Integration into IPL's Planning and Portfolio**

- IPL has offered DSM programs on essentially a continuous basis since 1993
- IPL expects to continue to provide cost effective DSM programs to help our customers reduce their energy use and better manage their energy bills
- IPL considers an ongoing level of DSM in preparation of our base case load forecast, which helps mitigate the need for future generation

IPL WILL CONTINUE TO OFFER A BROAD PORTFOLIO OF DSM PROGRAMS



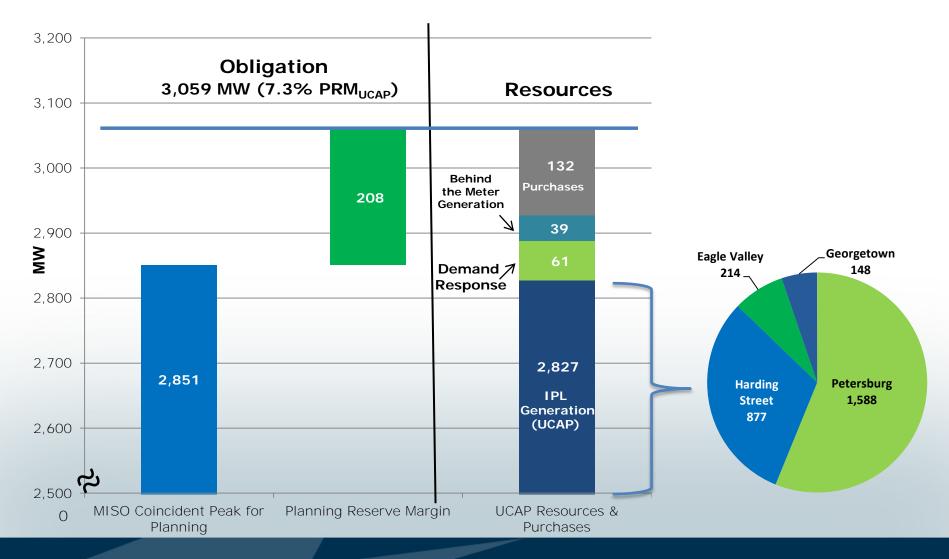
### **Questions?**



# Planning Reserve Margin

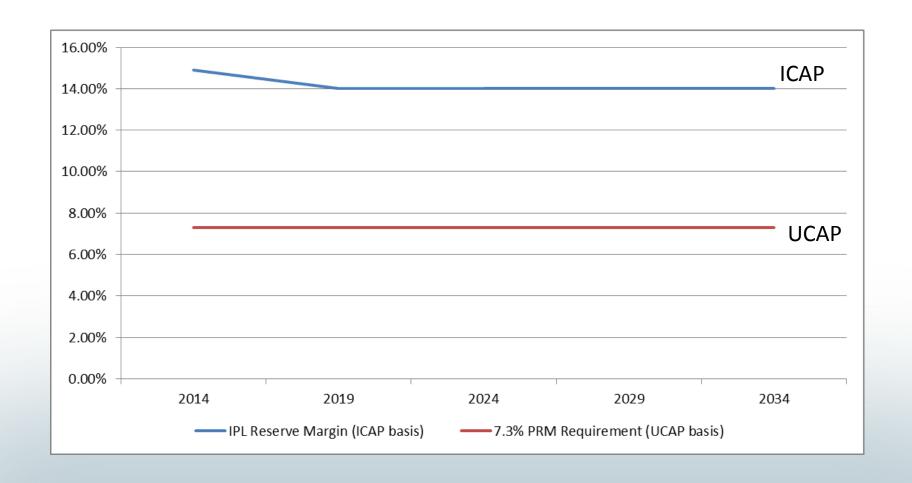
Presented by Herman Schkabla, Director of Resource Planning




### **MISO Capacity Construct -Installed Capacity vs. Unforced Capacity**

- The Unforced or "UCAP" capacity is what can be counted at the time of the annual peak load
- For thermal generating units, it reflects Installed Capacity rating adjusted for past three year average availability performance
- For wind and solar, IPL currently does not receive UCAP credit from MISO
  - Wind Purchase Power Agreement's do not have NRIS
  - Criteria for behind the meter solar credit yet to be established by MISO, IPL assumes 30% of nameplate as credit for IRP planning

NRIS - Network Resource Integration Service




# IPL MISO Obligation vs. Capacity Resources Summer 2014





### **IPL Planning Reserve Margin (PRM)**





### **Questions?**

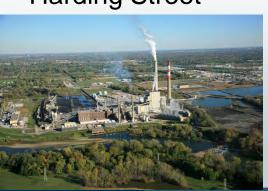


### **Generation Overview**

Presented by Herman Schkabla, Director of Resource Planning






Hoosier and Lakefield Wind Parks

#### Georgetown



## Generation

**Harding Street** 



**Solar Projects** 



**Eagle Valley** 



## **IPL Generating Stations - Coal Fired Units**



|                   | Unit # | Fuel | Commercial<br>Date | Age | MW  |
|-------------------|--------|------|--------------------|-----|-----|
|                   | 1      | Coal | Jun-67             | 46  | 232 |
|                   | 2      | Coal | Dec-69             | 44  | 435 |
| Petersburg        | 3      | Coal | Nov-77             | 36  | 540 |
|                   | 4      | Coal | Apr-86             | 28  | 545 |
| Harding<br>Street | 5      | Coal | Jun-58             | 55  | 106 |
|                   | 6      | Coal | May-61             | 53  | 106 |
|                   | 7      | Coal | Jul-73             | 40  | 427 |
|                   | 3      | Coal | Dec-51             | 62  | 43  |
| Eagle Valley      | 4      | Coal | Jan-53             | 61  | 56  |
|                   | 5      | Coal | Dec-53             | 60  | 62  |
|                   | 6      | Coal | Oct-56             | 57  | 99  |

## IPL Generating Stations – Oil and Gas Units



|              | Unit # | Fuel    | Commercial Date | Age | MW  |
|--------------|--------|---------|-----------------|-----|-----|
| Petersburg   | DG     | Diesel  | Aug-67          | 46  | 8   |
|              | CT-1   | Oil     | May-73          | 40  | 20  |
|              | CT-2   | Oil     | May-73          | 40  | 20  |
| Harding      | CT-4   | Oil/Gas | Apr-94          | 20  | 82  |
| Street       | CT-5   | Oil/Gas | Jan-95          | 19  | 82  |
|              | CT-6   | Gas     | May-02          | 12  | 158 |
|              | DG     | Diesel  | Apr-67          | 47  | 3   |
| Eagle Valley | DG     | Diesel  | Apr-67          | 47  | 3   |
| Georgetown   | GT-1   | Gas     | May-00          | 14  | 79  |
|              | GT-4   | Gas     | Feb-02          | 12  | 79  |



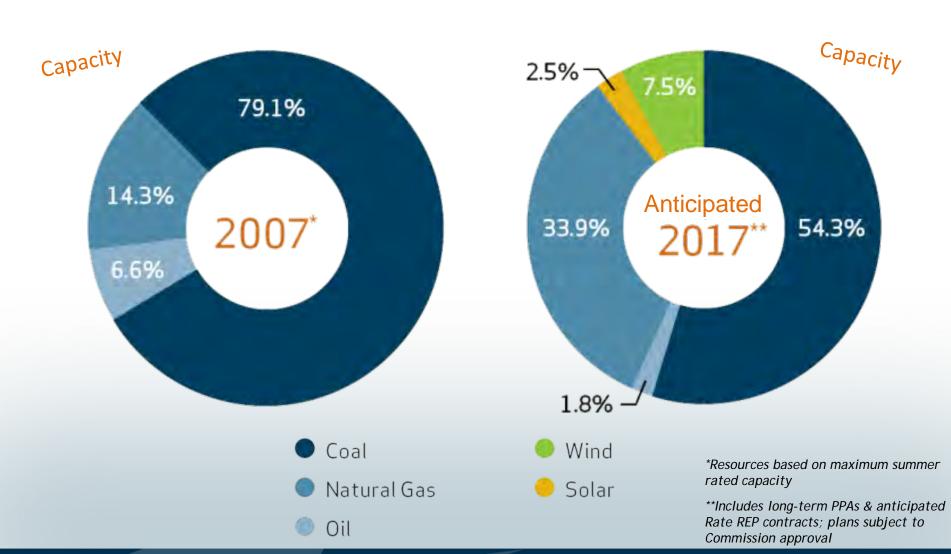
## **IPL Generating Stations—** Wind and Solar

|                            | Fuel    | Commercial<br>Date | Age | MW  |
|----------------------------|---------|--------------------|-----|-----|
| Hoosier Wind<br>Park PPA   | Wind    | Nov-09             | 4   | 100 |
| Lakefield Wind<br>Park PPA | Wind    | Sep-11             | 2   | 201 |
| Rate REP<br>Solar Projects | l Solar |                    | N/A | 98* |



<sup>\*</sup>As of 5/16/2014, approximately 53 MW are in service




### **Planning for the Future | Generation**

- Diversifying portfolio by retiring or refueling less efficient coal & oil units and replacing with CCGT
- Investment in wind and solar resources





## Adapting our Generation Portfolio to to EPA Rules and Market Dynamics





## **Questions?**



# **Environmental Overview**

Presented by Angelique Oliger, Director of Environmental Policy



### **Current Environmental Controls**

| Unit             | In Service<br>Date | Generating<br>Capacity | SO <sub>2</sub> Control | NO <sub>x</sub> Control              | PM Control |
|------------------|--------------------|------------------------|-------------------------|--------------------------------------|------------|
| Eagle Valley 3   | 1951               | 43 MW                  |                         |                                      | ESP (1975) |
| Eagle Valley 4   | 1953               | 56 MW                  |                         | LNB, SOFA (2004)                     | ESP (1973) |
| Eagle Valley 5   | 1953               | 62 MW                  |                         | LNB, SOFA (2004)                     | ESP (1972) |
| Eagle Valley 6   | 1956               | 99 MW                  |                         | LNB, COFA (1996), NN (2002)          | ESP (1971) |
| Harding Street 5 | 1958               | 106 MW                 |                         | LNB (1993), NN, SNCR (2004)          | ESP (1968) |
| Harding Street 6 | 1961               | 106 MW                 |                         | LNB (1996), NN, SNCR (2004)          | ESP (1975) |
| Harding Street 7 | 1973               | 427 MW                 | Scrubber (2007)         | LNB (1978), NN (2001), SCR<br>(2005) | ESP (1978) |
| Petersburg 1     | 1967               | 232                    | Scrubber (1996)         | LNB (1995)                           | ESP (1967) |
| Petersburg 2     | 1969               | 435                    | Scrubber (1996)         | LNB (1994), SCR (2004)               | ESP (1977) |
| Petersburg 3     | 1977               | 540                    | Scrubber (1977)         | SCR (2004)                           | ESP (1986) |
| Petersburg 4     | 1986               | 545                    | Scrubber (1986)         | LNB (2001)                           | ESP (1986) |

SO<sub>2</sub> = Sulfur dioxide NO<sub>x</sub> = Nitrogen oxides

MW = Mega Watts

ESP = Electricstatic Precipitator SCR = Selective catalytic reduction

LNB = Low NO<sub>x</sub> Burners

SOFA = Separated Overfire Air

COFA = Closed Coupled Overfire Air

SNCR = Selective Noncatalytic Reduction



## **Environmental Regulations**

- Current Environmental Regulations/Environmental Projects
  - Mercury and Air Toxics Standard (MATS)
  - NPDES Water Discharge Permits
- Future Environmental Regulations
  - Coal Combustion Residuals (CCR)
  - 316(b) Cooling water intake structures
  - Greenhouse Gas (GHG) New Source Performance Standards (NSPS)
  - National Ambient Air Quality Standards (NAAQS)
  - o Clean Air Interstate Rule (CAIR) Replacement Rule

NPDES= National Pollutant Discharge Elimination System



## **Mercury and Air Toxics Standard (MATS)**

- Regulates mercury and other air toxics from utilities
- Status
  - Compliance Date of April 16, 2015
  - One-year extensions obtained
  - Potential Agreed Order with EPA for one additional year
- Impact
  - \$511 million in controls approved by IURC in 2013
  - Retire or repower older, smaller coal-fired units
  - 80% reduction in Mercury emissions



## **Mercury and Air Toxics Standard (MATS)**

| Plant          | Unit | Mercury (Hg)             |                         | Metal HAPs<br>(PM)  | Acid Gas (HCI)            | Monitoring                     | Complete<br>Installation |
|----------------|------|--------------------------|-------------------------|---------------------|---------------------------|--------------------------------|--------------------------|
|                | 1    | ACI<br>SI                | NA                      | ESP<br>Enhancements | Scrubber<br>Upgrade       | PM CEMs<br>HCl CEMs<br>Hg CEMs | Spring 2015              |
|                | 2    |                          | Full – size<br>Baghouse |                     |                           |                                | Summer 2015              |
| Petersburg     | 3    |                          | Polishing<br>Baghouse   |                     | No Additional<br>Controls |                                | Spring 2016              |
|                | 4    |                          | NA                      |                     |                           |                                | Spring 2016              |
|                | 5    | Convert to Natural Gas*  |                         |                     |                           |                                | Spring 2016              |
| Harding Street | 6    |                          |                         |                     |                           |                                |                          |
|                | 7    | ACI<br>SI System Upgrade |                         | ESP Upgrade         | Scrubber<br>Upgrade       | HCl CEMs<br>Hg CEMs            | Spring 2016              |
|                | 3    | Retire                   |                         |                     |                           |                                | Spring 2016              |
| Eagle Valley   | 4    | Retire                   |                         |                     |                           |                                | Spring 2016              |
|                | 5    | Retire                   |                         |                     |                           |                                | Spring 2016              |
|                | 6    | Retire                   |                         |                     |                           |                                | Spring 2016              |

<sup>\*</sup> Pending IURC Approval

ESP = Electrostatic Precipitator ACI = Activated Carbon Injection

SI = Sorbent Injection

PM = Particulate Matter

CEMs = Continuous Emissions Monitors

Hg = Mercury

HCl = Hydrchloric Acid

CCGT = Combined Cycle Gas Turbine



### **NPDES Water Discharge Permits**

- NPDES compliance date: September 2017
   new metal limits for Harding Street and Petersburg
- IPL is now in the final stages of evaluating compliance options
- Costs are still under development but expected to be material



## Future Environmental Regulations — Coal Combustion Residuals Rule

- Currently a majority of fly-ash and scrubber product is beneficially used in encapsulated concrete and synthetic gypsum applications
- Ash is currently treated in on-site ponds
- New regulations proposed in May 2010
  - Hazardous (Subtitle C) vs. solid waste (Subtitle D)
  - Timing for Final Rule: December 2014
  - Beneficial use (encapsulated uses) allowed in both Subtitle C and D proposals
  - Timing and costs of existing pond closures unknown.



## Future Environmental Regulations 2014 IRP Attachment 9.1 Cooling Water Intake Structures Rule

- 316(b) of the Clean Water Act regulates environmental impact from cooling water intake structures (CWIS) associated with impingement and entrainment of fish at the intake structure.
- Based on the proposed rule closed cycle cooling systems may be required.
- Three of IPL's five Units are already equipped with this technology.
- Timing
  - o Final Rule: May 16, 2014
  - Compliance required in 2020 or later depending on final rule



## Future Environmental Regulations – Greenhouse Gas Regulations

- Greenhouse Gas Rulemakings driven by Administration's Climate Action Plan
- New Source Performance Standards for new sources (CAA Section 111(b))
  - o Comments due on May 9, 2014
  - Emission standards for coal-fired and natural gas combined cycle units
  - Emission standard for new coal-fired units would require at least partial carbon capture and sequestration (CCS)



## Future Environmental Regulations – Greenhouse Gas Regulations (cont'd.)

- New Source Performance Standards for existing sources (CAA Section 111(d))
  - EPA to issue emission guidelines for states to implement through State Implementation Plans
    - Proposed June 2014: Finalized June 2015
    - State Implementation Plans due June 2016
  - Standard based on emission limit achievable by best system of emission reduction adequately demonstrated
    - taking into consideration costs, environmental impacts, energy requirements, remaining useful life of unit
  - Based on IPL's current plans, GHG emissions reduced by 20% in 2017 over 2005



## Future Environmental Regulations —2014 IRP Attachment 9.1 NAAQS and CAIR Replacement Rule

- National Ambient Air Quality Standards (NAAQS)
  - o SO2
    - Compliance required in 2017
    - Unscrubbed units would likely be unable to comply
  - o PM2.5
    - Compliance required by 2020
    - EPA believes most areas will be in attainment by 2020 due to other requirements
  - o Ozone
    - Lowered standard expected to be proposed in 2014 with compliance required as early as 2019
    - Could require SCR installation
- Clean Air Interstate Rule Replacement
  - Cross State Air Pollution Rule vacatur overturned by Supreme Court
  - Impact under evaluation

NAAQS = National Ambient Air Quality Standards
CAIR = Clean Air Interstate Rule
PM<sub>2.5</sub> = Particulate Matter less than 2.5 microns in diameter

SO<sub>2</sub> = Sulfur Dioxide SCR = Selective catalytic reduction EPA = Environmental Protection Agency



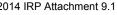
## **Model Assumptions and Inputs**

#### **Potential Impacts of Pending Environmental Regulations**

| Regulation                             | Expected<br>Implementation<br>Year | Cost Range<br>Estimate*<br>(\$MM) |
|----------------------------------------|------------------------------------|-----------------------------------|
| Coal Combustion Residuals              | 2019                               | 50-80                             |
| Cooling Water Intake Structure         | 2020                               | 10-160                            |
| Effluent Limitations Guidelines        | 2018                               | 50-80                             |
| National Ambient Air Quality Standards | 2019                               | 0-150                             |

### **Pending Regulations Requirements are Being Monitored**

\* Subject to change as data is updated.




## **Questions?**



# Distributed Generating Resources

Presented by John Haselden, Principal Engineer, Regulatory Affairs





## **Examples of Distributed Generating** 2014 IRP Attachment 9.1 Resources

- **Customer-Sited Emergency** Generators
- Combined Heat and Power
- Wind
- **Biomass**
- Solar
- Other Distributed Energy Resources

#### **IUPUI**





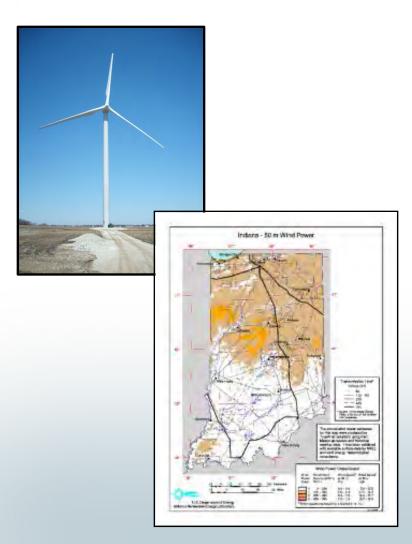
## **Characteristics of the Technologies**

- Size
- Location
- Fuel
- Cost
- Operating characteristics
- Contribution to capacity



## Characteristics – Customer-Sited<sup>2014 IRP Attachment 9.1</sup> Emergency Generation

- Typically diesel generators
- Usually not synchronous with IPL
- New EPA regulations restrict availability to run during non-emergencies
  - o 2014: 31.7 MW
  - o 2010: 40.1 MW
- Size: 0.1 MW 16 MW
- Quick start, high variable cost




## **Combined Heat and Power (CHP)**

- Combined Heat and Power
  - Usually customer sited and owned
  - Heat requirements
- Technology options
  - Conventional
    - Natural gas reciprocating engines
    - Natural gas turbines
  - Advanced
    - Fuel cell
    - Microturbine
    - Micro-CHP



### **Characteristics - Wind**

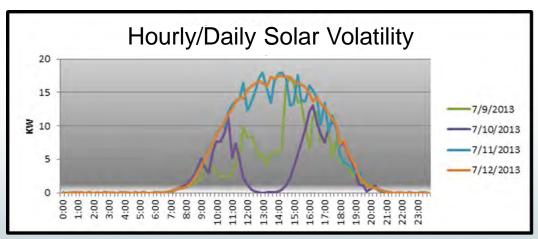


- Poor wind resources in IPL's service territory – low energy output
- Height is important for production
- Siting/zoning issues
- Noise
- Low coincidence with system peak, intermittent production
- Consequently few installations in the IPL territory despite available incentives



### **Characteristics - Biomass**

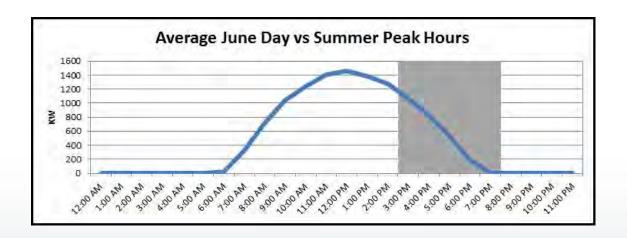
- Includes anaerobic digesters and combustion of organic products
- Siting and zoning issues
- Usually base load generation
- Customer choice to install
- Consequently no installations in the IPL territory despite available incentives




### **Characteristics - Solar Photovoltaic**

- Permitting and construction are usually quick and not complicated
- Location determined by others
- Requires large space
- Low capacity factor 15%. Intermittent production

#### Johnson Melloh








## Characteristics - Solar Photovoltaic (continued)

Some coincidence with system peak



High relative costs and subsidization

## **IPL Experience with Solar PV**

#### Indianapolis Airport

### Net metering

- Small projects Total capacity 0.45 MW
- Solar Rate REP (Feed-In Tariff)
  - 53 MW operating
  - 98 MW total
  - 1.8% estimated rate increase
     as a result of Rate REP
  - Approx. 25 MW contribution to capacity
  - Not the least cost resource





Maywood Solar Farm



### **Other Distributed Energy Resources**

- IPL recognizes technology innovation is impacting the industry
- "Distributed Energy Resources" go beyond
   "Distributed Generation" and will be considered as they mature
  - Microgrids
  - Energy storage
  - Voltage controls
  - Electric vehicles



- Distributed generation can be difficult to implement on a large scale
- Solar has the best opportunity for growth but is currently challenging as a least cost resource
- Actively monitoring trends in Distributed
   Generation and Distributed Energy Resources



## **Questions?**



## Indianapolis Power & Light

## 2014 Integrated Resource Plan (IRP) Proposed Modeling Assumptions

Presented by Diane Crockett, Ventyx Lead Consultant









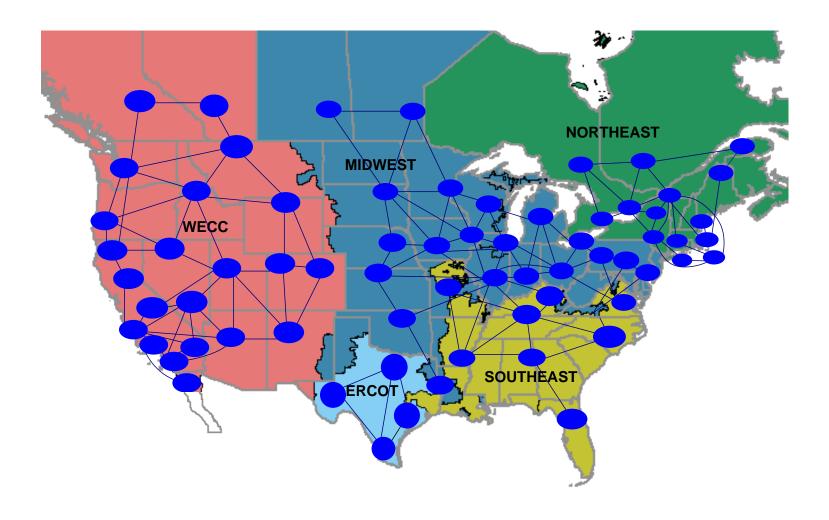
## Agenda

#### Introduction to North American Power Reference Case

- Load and Resources
- Natural Gas
- Coal Forecast
- Emissions Market
- Renewables
- Scenarios

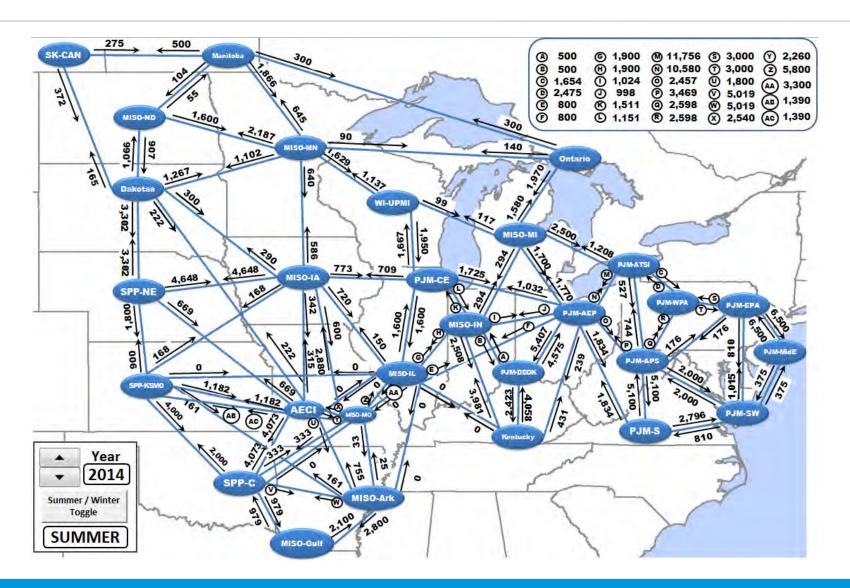
### Proposed IPL Modeling Assumptions

- Natural Gas Prices
- Market Power Prices
- Carbon Policy
- Modeling




## What is the Ventyx North American Power Political Reference Case?

- Assessment of conditions and trends in North American and regional markets: power, fuels, and environmental
- Forecast of future conditions in these markets
  - Based on fundamentals of demand and supply in these markets
  - Independent and un-conflicted used by all types of market participants to make decisions
  - Utilizes Ventyx's market-leading software and intelligence products
- Created twice a year Spring case and Fall case
  - IPL will be using the most recent case Fall 2013




### Region and Market Area Definitions





## Midwest Transaction Groups



#### Methodology Overview

#### **Data**

- Loads
- Generating unit characteristics
- Gas/coal supply and non-power demand curves
- Non-gas/coal fuel prices
- Transmission topology

- Non-power emission reduction supply curves
- Power market, emission, and renewables rules

#### **Horizons Interactive Capacity Emissions** Gas Additions Retirements Retrofits **Electric Electric Prices Capacity** Energy Electric capacity Fuel Emissions **Renewables** Coal • RECs



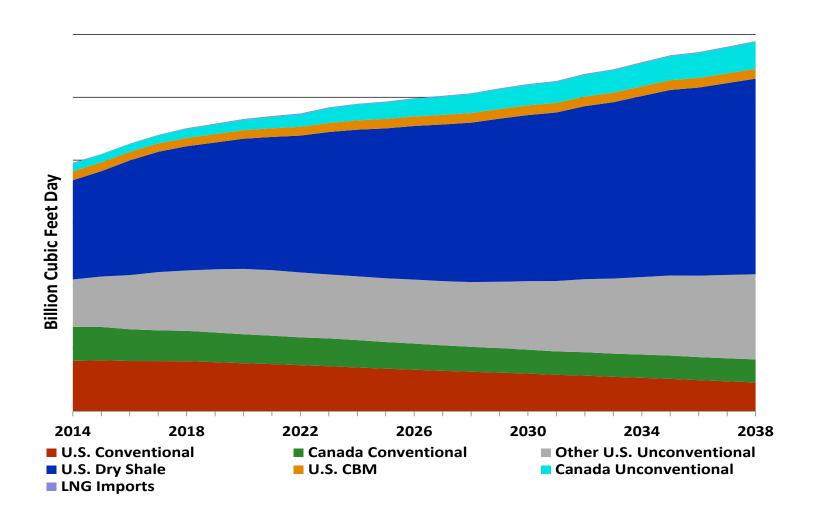
• Final electric energy prices



#### Compound Annual Energy Growth (%)

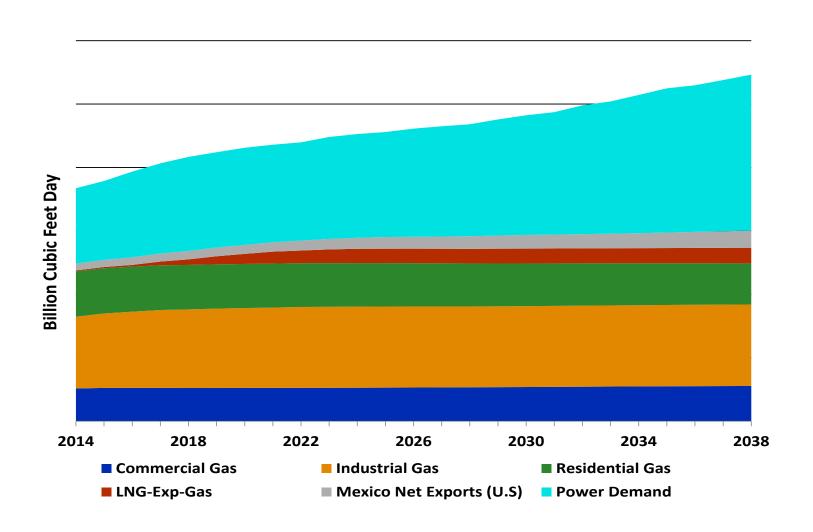
|             | 2014 - | 2019 - | 2024 - |
|-------------|--------|--------|--------|
|             | 2019   | 2024   | 2038   |
| ERCOT       | 2.0    | 0.9    | 0.7    |
| NWPP        | 2.1    | 1.2    | 1.0    |
| California  | 0.7    | 1.0    | 0.8    |
| DSW+RMPA    | 1.4    | 1.4    | 1.2    |
| NYISO       | 0.5    | 0.5    | 0.4    |
| ISONE       | 0.4    | 0.1    | 0.3    |
| NPCC Canada | 0.3    | 0.6    | 0.5    |
| SERC        | 1.2    | 1.1    | 0.9    |
| FRCC        | 1.5    | 1.1    | 0.9    |
| MISO/MRO    | 1.0    | 0.9    | 8.0    |
| PJM         | 1.5    | 1.1    | 0.8    |
| SPP         | 0.5    | 0.7    | 0.7    |
| Total       | 1.2    | 1.0    | 0.8    |

Please note the forecast does not reflect company-sponsored DSM savings.



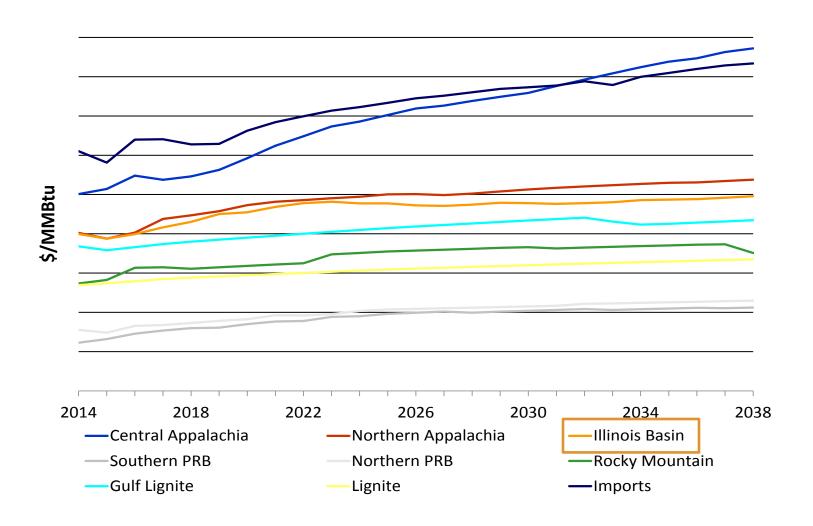

# Reference Case Supply Side Technology Options<sup>9.1</sup>

|                                 | Summer Capacity<br>(MW) | On-Line Year |
|---------------------------------|-------------------------|--------------|
| Nuclear                         | 1,000                   | 2018         |
| <b>Combined Cycle F-Class</b>   | 450                     | 2014         |
| <b>Combined Cycle G-Class</b>   | 350                     | 2014         |
| <b>Combined Cycle H-Class</b>   | 400                     | 2020         |
| <b>Combustion Turbine</b>       | 160                     | 2014         |
| <b>Geothermal Steam Turbine</b> | 10                      | 2014         |
| Landfill Gas                    | 10                      | 2014         |
| Biomass                         | 10                      | 2014         |
| Photovoltaic                    | 10                      | 2014         |
| Wind Turbine                    | 10                      | 2014         |




## North America Gas Supply Forecast (Bcfd)<sup>2014 IRP Attachment 9.1</sup>






# North America Gas Demand Forecast (Bcfd) (Bcfd) (Bcfd)

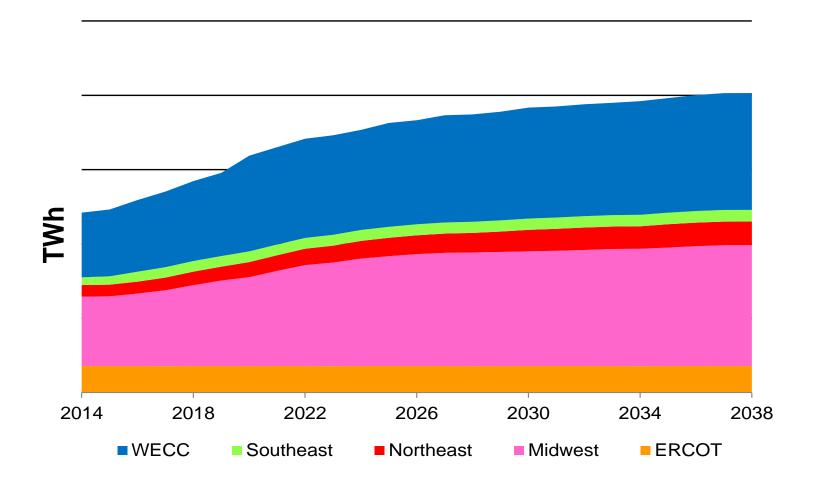




### FOB Mine Coal Price Forecast (2013 \$/MAPEtter)






#### **Emissions Markets**

#### Included in Fall 2013 Reference Case

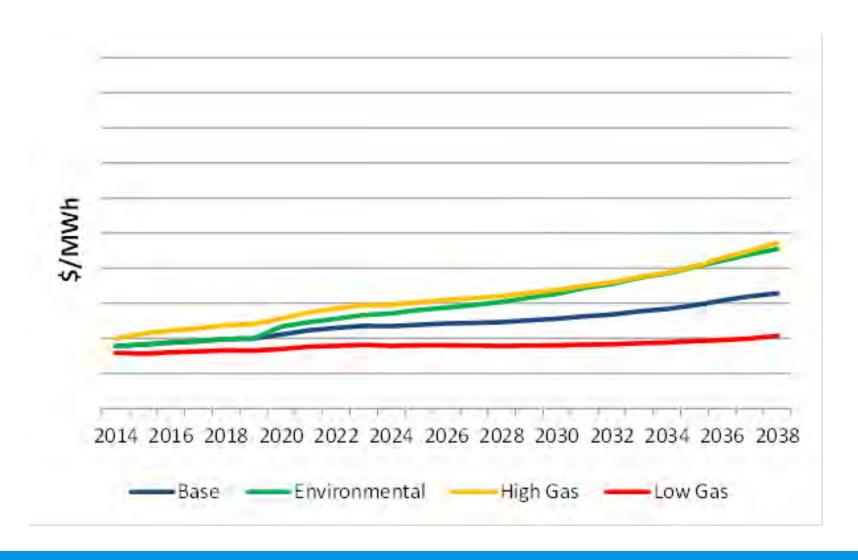
- Clean Air Act (CAIR) for NO<sub>x</sub> and SO<sub>2</sub>
- MATS related coal retirements
- California AB32 starting in 2013
- CO<sub>2</sub> taxes in British Columbia and Alberta Only
- RGGI in Northeastern State (excl. NJ)



#### U.S. Renewable Energy Generation Forecast (TWh)

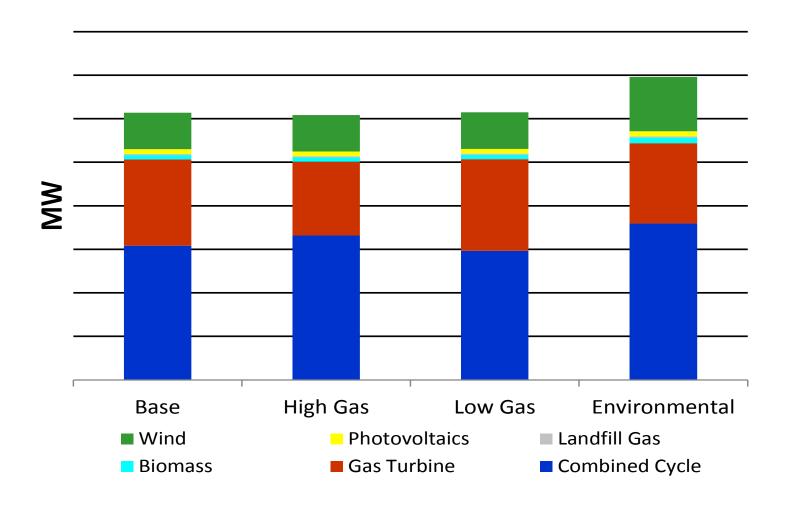





#### Reference Case Scenario Descriptions

#### Base Gas Price

- Base Reference Case assumptions
- NoCO2 emissions cap
- Low gas price
  - Ventyx subjective view of 10th percentile of probability distribution
  - Corresponds to production costs for best shale plays
- High gas price
  - Ventyx subjective view of 90th percentile of probability distribution
  - Corresponds to limited shale supply scenario
- Federal environmental legislation
  - CO2 emissions cap 2020 start, 80% below 2005 levels by 2050
  - RPS begins in 2020 and later target is 12% of retail sales by utilities with load greater than 4 Terawatt hours (TWh)




#### **National Scenario Price Comparison** 2014 IRP Attachment 9.1 (7x24)(Fall 2013 Reference Case \$/MWh)

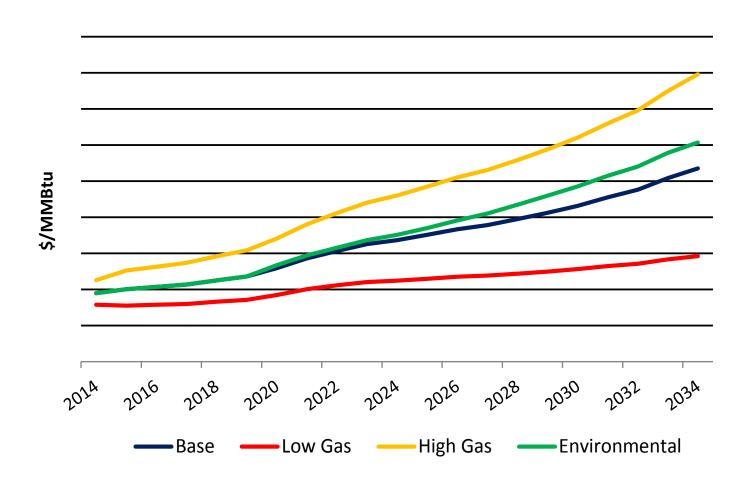




# Midwest Reference Case Scenario 2034 Resource Mix Comparison

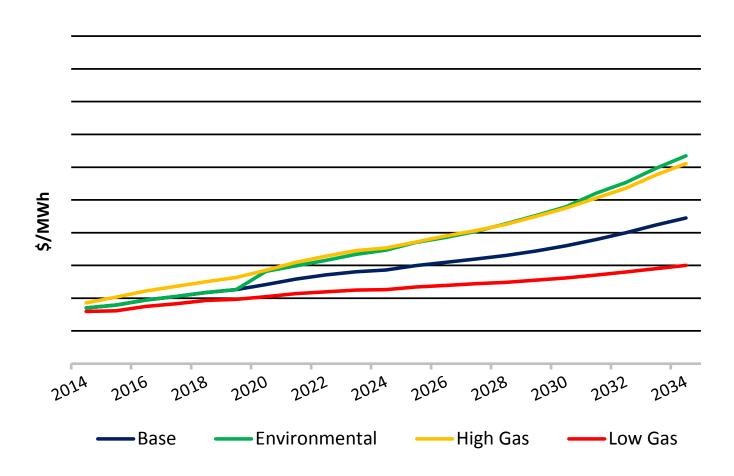





**Proposed IPL Modeling Assumptions** 

# Strategic Planning powered by Midas Gold®

- Strategic Planning includes multiple modules for an enterprise wide strategic solution. The following modules will be used for IPL's IRP:
  - Capacity Expansion (Optimization Screening Model)
  - Portfolio Simulation
  - Financial (Incremental only)




## Henry Hub Proposed Annual Gas Price Forger (Fall 2013 Reference Case \$/MMBtu)



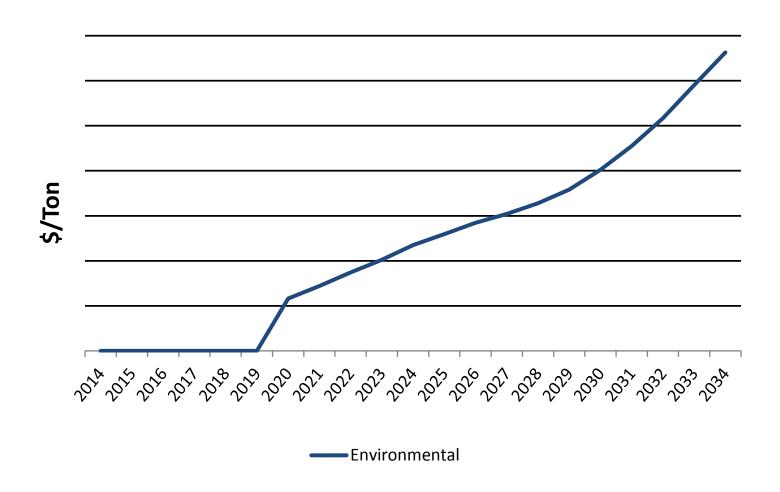


# Proposed Annual MISO-Indiana Market Prices (7x24)(Fall 2013 Reference Case \$/MWh)





#### IPL's Proposed Carbon Policy Assumption<sup>2014 IRP Attachment 9.1</sup>


#### Base Case

No Carbon Tax

#### Future CO<sub>2</sub>

- Ventyx Environmental Scenario with Carbon Tax beginning in 2020
- IPL also evaluating other 3<sup>rd</sup> party CO<sub>2</sub> policy scenarios

#### Proposed Carbon Prices (\$/Ton)





#### **Modeling Considerations**

- Critical Key Risk Parameters to be included:
  - Fuel and market prices
  - Load growth/DSM/EE
  - Carbon policy
  - Others based on evaluation of stakeholder feedback
- Alternate Resource Plans
  - Include any portfolio mandates such as DSM/EE or RPS, if required
  - Various utility/stakeholder specified plans may also select other resource alternatives that were not chosen by the Ventyx Capacity Expansion Screening Model for further evaluation



## **Questions?**





# Additional Feedback and Comments

Facilitated by Marty Rozelle, PhD, Meeting Facilitator



# **Next Steps**

Presented by Marty Rozelle, PhD, Meeting Facilitator



#### **Next Steps**

#### Schedule for the Rest of 2014

| May 23, 2014       | IRP Public Advisory Meeting #1 Notes Posted to IPL Website         |
|--------------------|--------------------------------------------------------------------|
| May 30, 2014       | Deadline to Submit Comments/Questions to IPL.IRP@aes.com           |
| June 13, 2014      | IPL's Response to Comments/Questions Will be Posted to IPL Website |
| July 18, 2014      | IRP Public Advisory Meeting #2                                     |
| September 23, 2014 | IRP Public Advisory Meeting #3                                     |
| October 31, 2014   | Submit IRP Document to the IURC                                    |

Give us your feedback. IPL is here to listen to you.



# **Thank You!**



# IRP Public Advisory Meeting #2

Workshop with IRP Stakeholders

July 18, 2014

Barnes & Thornburg

11 South Meridian St.



# Welcome and Introductions



# Meeting Agenda and Guidelines

Presented by Marty Rozelle, PhD, Meeting Facilitator



#### **Meeting Objectives**

- Continue conversation on the Integrated Resource Plan, including providing new information and incorporating stakeholder feedback
- Gather comments and feedback specifically on the four Ventyx Scenario results presented
- Continue relationship built on trust and respect



#### IRP Public Advisory Meeting #2

#### **Agenda Topics**

- Summary of IRP Public Advisory Meeting #1
- Demand Side Management Update
- Environmental Update
- Overview of Stakeholder Comments and Questions
- Incorporating Stakeholder Input
- Presentation of Ventyx Scenario Results
- Stakeholder Feedback and Comments



#### **Meeting Guidelines**

- Time for clarifying questions at end of each presentation
- Parking lot for items to be addressed later
- The phone line will be muted. During the allotted question time frames, you may press \*6 to un-mute yourself or type a question through the web-chat function.
- To inquire about confidential information please contact Teresa Nyhart with Barnes & Thornburg, LLP at <a href="mailto:teresa.nyhart@btlaw.com">teresa.nyhart@btlaw.com</a>



#### **Written Comments and Feedback**

- Please email comments and questions to IPL.IRP@aes.com
- All comments and questions received by August 1 will have responses posted on the IPL IRP website by August 15



#### **Questions?**



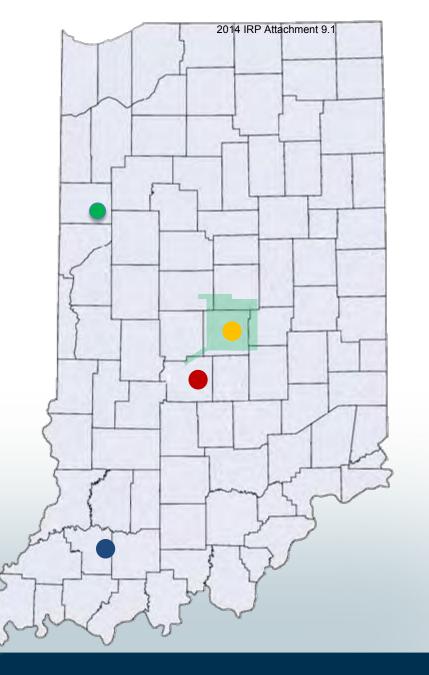
# **Summary of IRP Public Advisory Meeting #1**

Presented by Herman Schkabla, Director of Resource Planning



#### **IRP Public Advisory Meeting #1**

#### May 16, 2014 --- Agenda Topics


- Introduction to IPL and Integrated Resource Planning Process
- Energy and Peak Forecasts
- Demand Side Management: Energy Efficiency and Demand Response
- Planning Reserve Margin
- Generation Overview
- Environmental Overview
- Distributed Energy Resources
- Proposed Modeling Assumptions

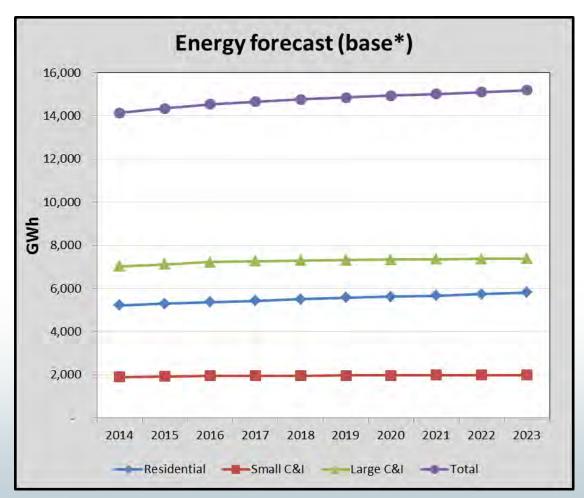


#### **Company Profile**

- 470,000 customers\*
- 1,400 employees\*
- 528 sq. miles territory
- 144 substations
- Harding Street Station, Georgetown
   Station, Solar REP Projects 1,322 MW\*\*
- Eagle Valley Generating Station 263 MW\*\*
- Petersburg GeneratingStation 1,760 MW\*\*
- Hoosier Wind Park PPA 100 MW\*\*
- Lakefield Wind Park PPA 201 MW\*\* (In Minnesota – Not pictured)

\*approximate numbers \*\*nameplate capacity






#### **IRP Process Overview**

Develop IPL's Total Determine IPL's **Identify Key Risk Supply Resource New** Supply **Parameters** Needs **Resource Needs** Identify IPL's Identify and **Evaluate Resource** Reference and Screen Resource **Expansion Plans Short Term Action Technologies Plans** 



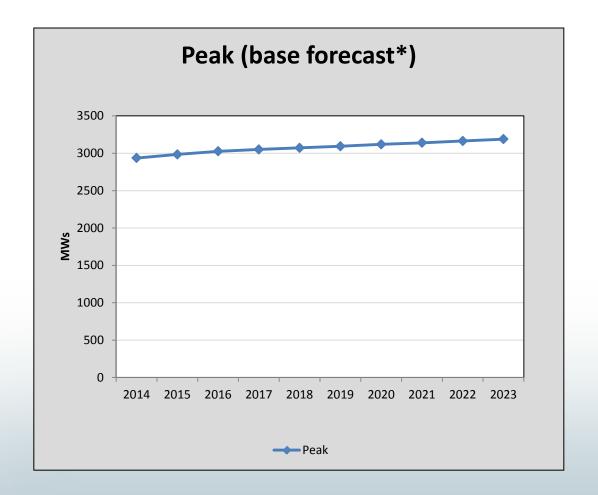
#### The Forecast: Energy



Average **Energy** growth rates (2014-23):

Residential: 1.2%

• SCI: 0.6%


• LCI: 0.6%

Total: 0.8%

<sup>\*</sup> The forecast does not reflect company-sponsored DSM savings.

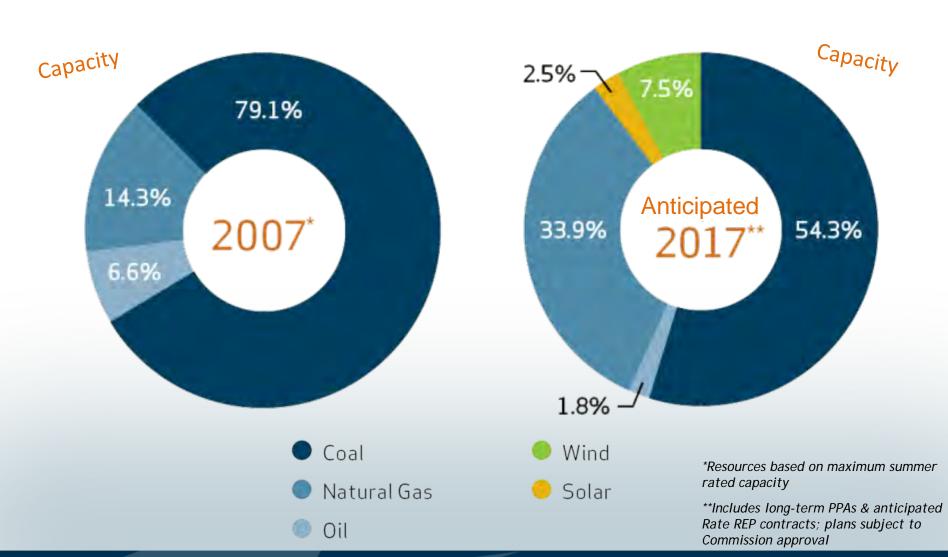


#### The Forecast: Peak



Average **Peak** growth rate (2014-23): **0.9%** 

<sup>\*</sup> The forecast does not reflect company-sponsored DSM savings.




### **DSM Integration into IPL's Planning and Portfolio**

- IPL has offered DSM programs on essentially a continuous basis since 1993
- IPL expects to continue to provide cost effective DSM programs to help our customers reduce their energy use and better manage their energy bills
- IPL reflects an ongoing level of end-use Energy Efficiency (ex. home appliance improvements) in preparation of our base case load forecast
- The 2015-2017 DSM Action Plan is being finalized
- The 2018 and beyond DSM forecast will be developed with the support of EnerNOC



## Adapting our Generation Portfolio to to EPA Rules and Market Dynamics





#### **Environmental Regulations**

- Current Environmental Regulations/Environmental Projects
  - Mercury and Air Toxics Standard (MATS)
  - NPDES Water Discharge Permits
- Future Environmental Regulations
  - Coal Combustion Residuals (CCR)
  - 316(b) Cooling water intake structures
  - Greenhouse Gas (GHG) New Source Performance Standards (NSPS)
  - National Ambient Air Quality Standards (NAAQS)
  - o Clean Air Interstate Rule (CAIR) Replacement Rule

NPDES= National Pollutant Discharge Elimination System



#### **Distributed Generation**

- Distributed generation can be difficult to implement on a large scale
- Solar has the best opportunity for growth in the IPL service territory but is currently challenging as a least cost resource
- Actively monitoring trends in Distributed
   Generation and Distributed Energy Resources

#### Ventyx's Agenda

- Introduction to North American Power Reference Case
  - Load and Resources
  - Natural Gas
  - Coal Forecast
  - Emissions Market
  - Renewables
  - Scenarios
- Proposed IPL Modeling Assumptions
  - Natural Gas Prices
  - Market Power Prices
  - Carbon Policy
  - Modeling



#### Reference Case Scenario Descriptions –

2014 IRP Attachment 9

#### Modeling results were not presented at the May 16, 2014 meeting

#### Base Gas Price

- Base Reference Case assumptions
- No CO2 emissions cap
- Low gas price
  - Ventyx subjective view of 10th percentile of probability distribution
  - Corresponds to production costs for best shale plays
- High gas price
  - Ventyx subjective view of 90th percentile of probability distribution
  - Corresponds to limited shale supply scenario
- Federal environmental legislation
  - CO2 emissions cap 2020 start, 80% below 2005 levels by 2050
  - RPS begins in 2020 and later target is 12% of retail sales by utilities with load greater than 4 Terawatt hours (TWh)





#### **Questions?**



## Demand Side Management Update

Presented by Jake Allen, DSM Program Development Manager



#### **Recent Developments**

- IPL has made a filing for approval of a DSM Plan for 2015/2016 in Cause No. 44497
- Testimony filed in Cause No. 44441 regarding large customer's ability to opt-out of DSM
  - First window for opt-out (July 1, 2014) has closed
- Numerous comments on the IURC General Administrative Order have been made, providing recommendations for future DSM in Indiana



## 2015-2016 DSM Plan Filed - Cause No. 44497

- Cause No. 44497 seeks Commission approval of a 2 Year Plan (2015-2016); however, a 3 Year Action Plan (2015-2017) was included in the prepared filing
- Petition filed on May 30, 2014
- Plan includes 13 DSM Programs (9 Residential; 4 Business)
- Target EE Savings approx. 1.2% of sales (total sales before large customer opt-out)
- Expect to continue collaboration with Citizens Gas



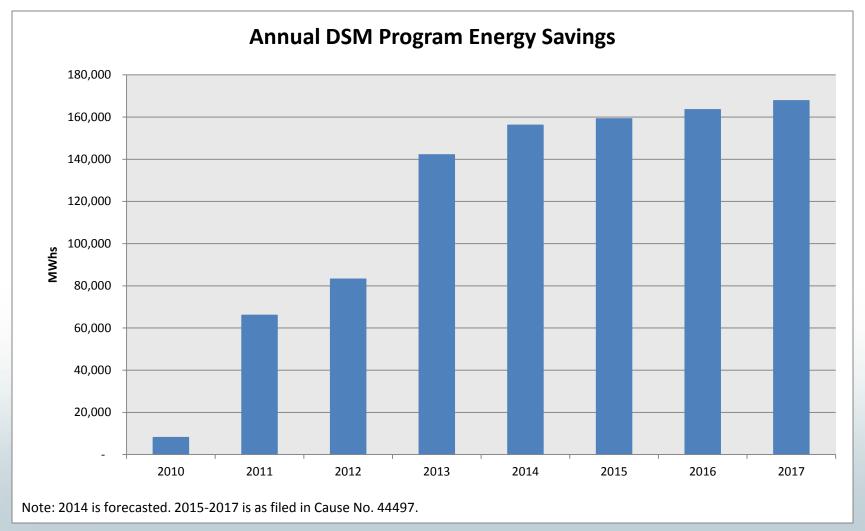
## IPL's Proposed DSM Programs <sup>2014 IRP Attachment 9.1</sup> Cause No. 44497

| Segment | 2015/2016 Proposed Programs      | Program Description                                                                       |
|---------|----------------------------------|-------------------------------------------------------------------------------------------|
| RES     | Lighting                         | Prescriptive lighting buy down                                                            |
| RES     | Income Qualified Weatherization  | Audit with direct install measures including air sealing and insulation                   |
| RES     | Home Energy Assessment           | Walk through assessment with direct install measures and energy efficient recommendations |
| RES     | School Education – Kits          | Energy efficient kits and education to eligible students                                  |
| RES     | Multifamily                      | Direct install measures delivered in multifamily housing units                            |
| RES     | Online Energy Assessment         | Online assessment with kit delivery as fulfillment                                        |
| RES     | Appliance Recycling              | Recycling of inefficient refrigerators, freezers, and window AC units                     |
| RES     | Peer Comparison                  | Home energy reports                                                                       |
| RES     | Air Conditioning Load Management | Direct load control                                                                       |
| BUS     | Prescriptive Rebates             | Prescriptive rebates for qualifying measures                                              |
| BUS     | Custom Rebates                   | Custom rebates for qualifying measures                                                    |
| BUS     | Small Business Direct Install    | Walk through assessment with direct install measures and energy efficient recommendations |
| BUS     | Air Conditioning Load Management | Direct Load Control                                                                       |



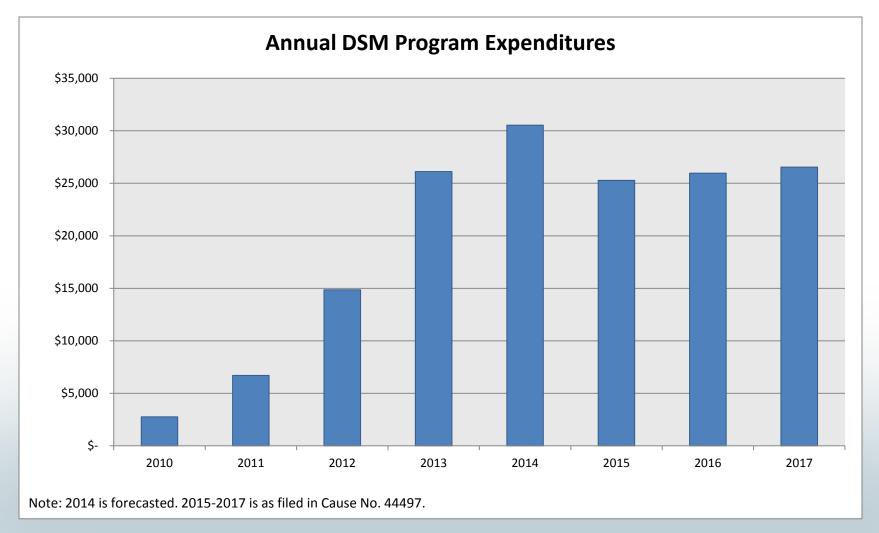
## **Proposal for Current Offerings - RESIDENTIAL**

| Current Residential Programs                            | 2015/2016 Proposal              |
|---------------------------------------------------------|---------------------------------|
| Home Energy Assessment (was Energizing Indiana Program) | IPL will begin to administer    |
| Income Qualified Weatherization (was El Program)        | IPL will begin to administer    |
| Residential Lighting (was El Program)                   | IPL will begin to administer    |
| Energy Efficient Schools – Education (was El Program)   | IPL will begin to administer    |
| Residential New Construction                            | Program not continued           |
| Online Energy Assessment w/ Kit                         | IPL will continue to administer |
| Multifamily Direct Install                              | IPL will continue to administer |
| Appliance Recycling                                     | IPL will continue to administer |
| Peer Comparison Report                                  | IPL will continue to administer |
| CoolCents® Residential ACLM                             | IPL will continue to administer |
| Residential Renewables                                  | Program not continued           |




## **Proposal for Current Offerings - BUSINESS**

| Current Business Programs                               | 2015/2016 Proposal                                                                      |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Energy Efficient Schools - Audit & DI (was El Program)  | Program discontinued; Schools will continue to have EE opportunities                    |
| C&I Prescriptive – Core (was El Program)                | IPL will administer moving forward; measures merged with IPL Business Energy Incentives |
| C&I Renewables                                          | Program not continued                                                                   |
| CoolCents® C&I ACLM                                     | IPL will continue to administer                                                         |
| C&I Renewables Multifamily Direct Install               | IPL will continue to administer                                                         |
| Business Energy Incentive Program – Prescriptive/Custom | IPL will continue to administer. Combined with Prescriptive Measures from El Core       |




#### **DSM Energy Savings**





#### **DSM Spending**





#### Other DSM Considerations

- Update on Large Commercial & Industrial Customer opt-out of participation in IPL DSM Programs
  - First opt-out opportunity was July 1, 2014
  - Next opt-out opportunity is January 1, 2015
  - 41 IPL customers opted out
  - These 41 customers had 231 services
  - Annual sales to these customers are about 1,800 GWH or about 13% of total IPL sales
- Working with Applied Energy Group (formerly known as EnerNOC) on 2018-2034 DSM potential
- EPA Clean Power Plan
  - Proposed rule issued June 2, 2014



#### Other DSM Considerations

- Commission Report to Legislature
  - Recommendations on future DSM
  - Due not later than August 15, 2014 pursuant to SEA 340
  - Review of recent DSM efforts in Indiana
- Procurement of Energy Service Providers
  - For Program Delivery (2015-2016)
  - Collaboration with Citizens Gas and Oversight Board



## IPL Remains Committed to Providing Cost Effective DSM to Our Customers

- In Cause No. 44497, IPL is requesting approval to spend about the same amount as the current level for DSM, while achieving...
- ...About the same amount of annual savings in 2015/2016 as the current level for DSM
- IPL is retaining most of the existing programs and adding a new program – Small Business Direct Install



#### **Questions?**



#### **Environmental Update**

Presented by Angelique Oliger, Director of Environmental Policy



#### **Environmental Updates**

- 316(b)
  - Final Rule Released May 19, 2014
  - Consistent with Proposed Rule
- Clean Power Plan
  - Proposed Rule Released June 2, 2014



#### **Clean Power Plan**

- EPA's Clean Power Plan would reduce Carbon emissions from the power sector nationwide by 30% by 2030 from 2005 levels
- State-specific rate-based (lbs CO2/MWhr) goals for carbon intensity
  - 1,607 lb/MWh 2020-2029 average
  - o 1,531 lb/MWh 2030+
- Best System of Emission Reductions
  - o cost
  - technical feasibility
  - other factors
- States must develop plans to achieve these reductions
- State Plan or Multi-state Plan



- 120 day comment period begins after publication in Federal Register
- Four public hearings will be held
- Final Rule expected June 1, 2015
- State Plans due June 30, 2016 with potential for 1-2 year extension
- Compliance with "interim goal" on average over the tenyear period from 2020-2029
- Compliance with "final goal" in 2030 and thereafter



#### **EPA's Building Blocks**

- EPA based required reductions on "building blocks" which States may incorporate into State Plans
  - Heat Rate improvements at EGUs;
  - Substituting generation from coal-fired EGUs with generation from existing NGCCs;
  - Substituting generation from coal-fired EGUs with generation from renewables;
  - Demand Side Energy Efficiency; and/or
  - State may elect to use some or all of these measure to varying degrees in their State regulations or they may use other measures

EGU-Electric Generating Unit NGCC- Natural Gas Combined Cycle



#### **Potential Impacts**

- Impacts will be heavily dependent upon State Plans and remain largely uncertain at this time, but may include:
  - Required heat rate improvements
  - Decreased dispatch of coal-fired units
  - Increased dispatch of renewables and existing NGCCs
  - Additional demand side EE measures
- Eagle Valley CCGT is not subject to the Rule because construction will commence after January 2014



#### **Questions?**



# Overview of Stakeholder Comments and Questions

Facilitated by Marty Rozelle, PhD Explanations by IPL Team



#### **IPL's Feedback Response Table**

- IPL responded to 112 stakeholder comments and questions
- All questions and responses were posted in IPL's Feedback Response Table on the IPL IRP webpage on June 20
- Today, IPL will briefly review selected questions and responses



#### **Energy and Demand Forecast**

- 10 year forecast but 20 year plan?
- DSM assumptions in the forecast?
- Forecast consistent with industry-wide forecasts?



#### **Demand Side Management**

- How will IPL meet future DSM goals?
- Status of Applied Energy Group's 2018 and beyond DSM forecast?



#### Renewables/ Environmental

- Keep Renewable Energy Certificates ("REC") in Indiana?
- Combined heat and power opportunities?
- Many questions addressed the proposed EPA rule on CO2. An update will be provided today.



#### IPL's Modeling

- Define base case and reference case?
- Regional model vs. company specific model?
- Does IPL's model compare the cost of running generating units to the cost of purchasing or selling energy on the market?



#### IPL's Modeling (cont.)

- How are off system sales treated within the model?
- Retirement dates of all IPL plants?
- What would motivate an earlier retirement?
- Harding St 7 upgrades cost vs. Harding St 7 replacement generation costs?



## **Modeling Assumptions/Inputs**

- Many of the questions asked how DSM and CO2 will be treated in the model. An update on both will be provided today.
- There were also detailed modeling questions that can be addressed as we cover the initial modeling results today

Please see the Feedback Response Table on IPL's IRP webpage for all questions and answers.



## **Questions?**



# Incorporating Stakeholder Input

Presented by Herman Schkabla, Director of Resource Planning



## **Results from Public Advisory Meeting #1**

| Key Risk Factor                                                                                          | Number of<br>Responses |
|----------------------------------------------------------------------------------------------------------|------------------------|
| Amount and cost of energy generated by natural gas                                                       | 4                      |
| Amount and cost of energy generated by coal                                                              | 6                      |
| Amount and cost of energy generated by wind turbines                                                     | 7                      |
| Amount and cost of energy generated by solar facilities                                                  | 5                      |
| Amount and cost of energy generated by other renewable sources (biomass, landfill gas, geothermal, etc.) | 7                      |
| Amount and cost of consumer-initiated energy generation ("rooftop solar" / net metering)                 | 10                     |
| Level of federal "carbon tax" imposed on power plant emissions                                           | 11                     |
| Level of government environmental regulations for air and water quality                                  | 10                     |
| Level of consumer energy conservation through voluntary programs (energy efficiency, etc.)               | 8                      |
| Load forecast                                                                                            | 2                      |
| Cost of electricity delivered to the consumer (\$ / megawatt hour)                                       | 5                      |

Other Key Risk Factors Identified: (1) Level of energy conservation through mandatory programs, (2) Cost of climate change resulting in weather calamities,

(3) Effects of water scarcity, (4) Health effects of emissions, (5) Industrial customers dropping load through constructing own generation or co-generation



## **Addressing Top Stakeholder Risk Factors**

- Cost assumptions for wind turbines
  - Reduced the Ventyx reference case cost assumption for new wind resources by \$200/KW to reflect declining costs for wind generation
- Carbon/GHG Assumptions
  - Included in the Ventyx environmental scenario
  - Will incorporate the "EPA Clean Power Plan" into the IPL base case scenario



## **Addressing Top Stakeholder Risk Factors**

### DSM/EE

- Will incorporate updated projections from Applied Energy Group analysis
- Provide transparency on cost/benefit analysis evaluated on a consistent basis with supply-side options
- Ventyx Model is not the best tool for DSM cost/benefit analysis
- Distributed Generation Impact
  - Will reduce energy forecast to reflect increasing level of customer dis gen (e.g. 2% by 2020, 4% by 2030)



## **Retirement Timing of Remaining Coal Units**

- IPL is conducting a detailed parallel assessment of continued operation of its big 5 coal units
  - Part of upcoming IURC regulatory filing to develop a compliance plan for waste water rules (NPDES)
  - Unable to provide results at this time
- The NPDES compliance plan and supporting analysis will be integrated into the final 2014 IRP

NPDES - National Pollutant Discharge Elimination System



## **Questions?**



## Presentation of Ventyx Scenario Results

Presented by Diane Crockett, Ventyx and Herman Schkabla, Director of Resource Planning



## **Reference Case Scenario Descriptions**

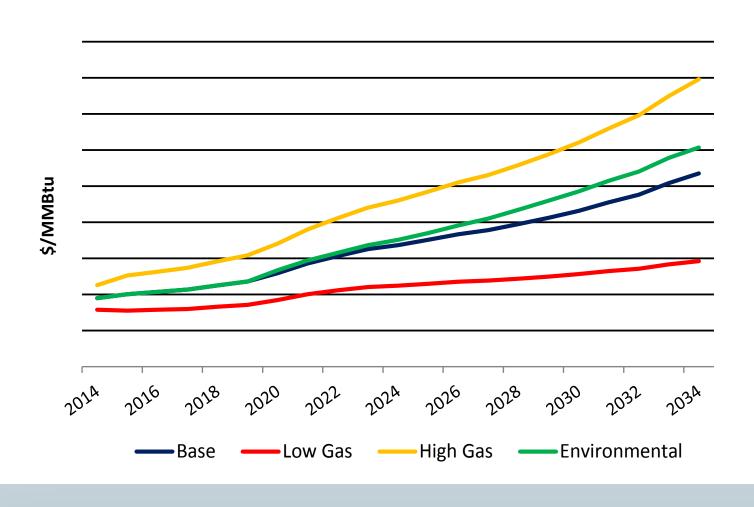
### Base Gas Price

- Base Reference Case assumptions
- No CO2 emissions cap

### Low gas price

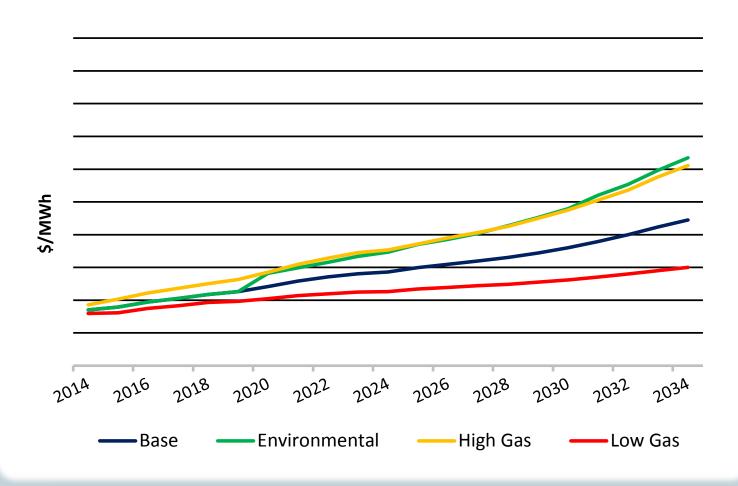
- Ventyx subjective view of 10th percentile of probability distribution
- Corresponds to production costs for best shale plays

### High gas price


- Ventyx subjective view of 90th percentile of probability distribution
- Corresponds to limited shale supply scenario

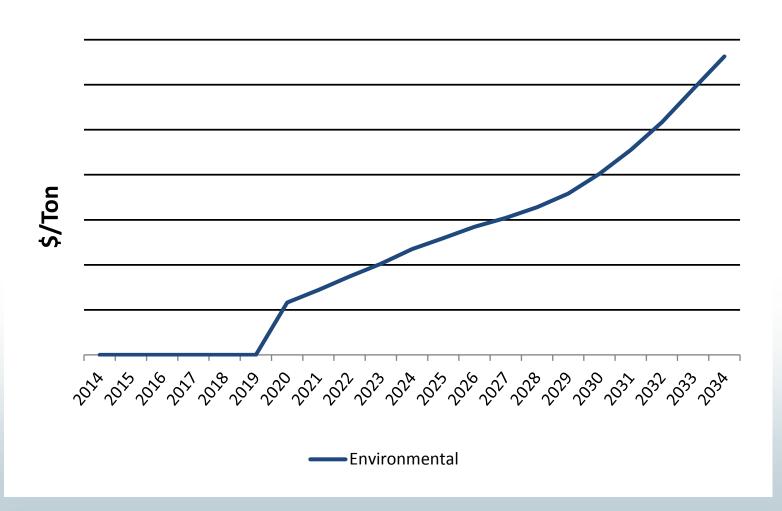
### Federal environmental legislation

- CO2 emissions cap 2020 start, 80% below 2005 levels by 2050
- RPS begins in 2020 and later target is 12% of retail sales by utilities with load greater than 4 Terawatt hours (TWh)




# Henry Hub Proposed Annual Gas Price Forecast (Fall 2013 Reference Case \$/MMBtu)





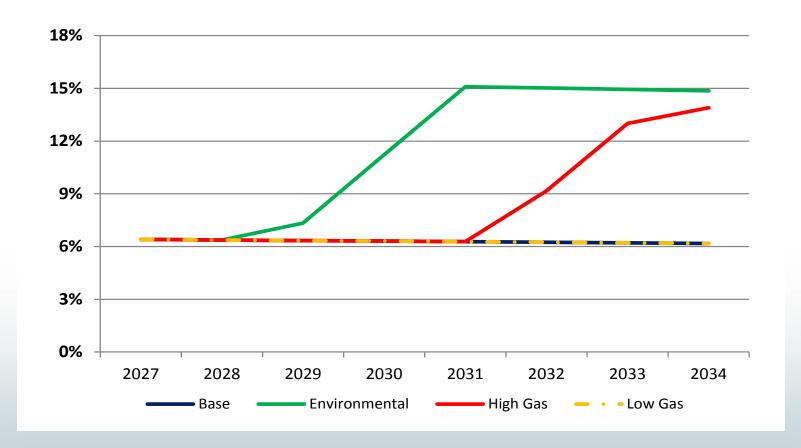

# Proposed Annual MISO-Indiana Market Prices (7x24)(Fall 2013 Reference Case \$/MWh)





## **Proposed Carbon Prices (\$/Ton)**

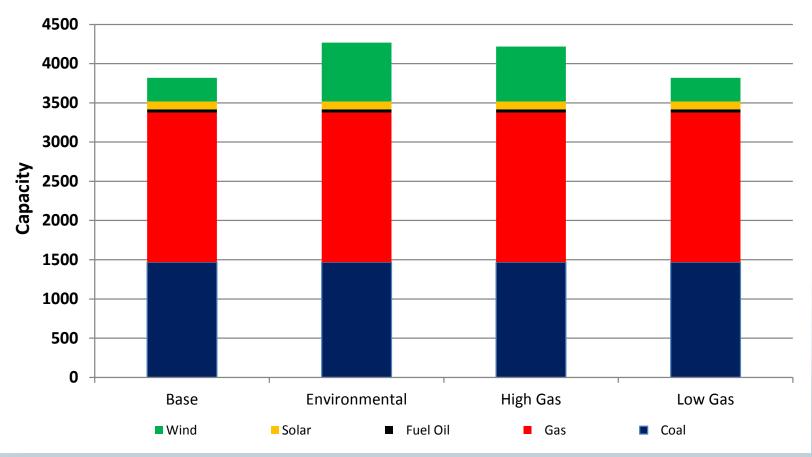





## **Results - Expansion Plans**

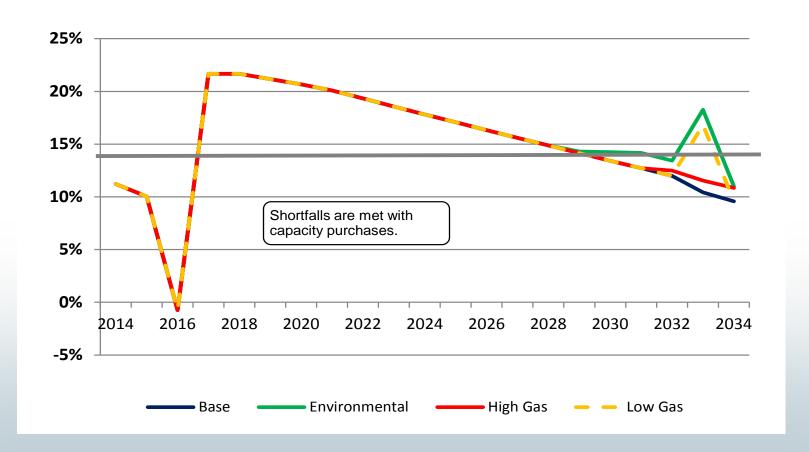
| YEAR           | Base                       | Environmental              | High Gas                                  | Low Gas                    | Unit<br>Retirements               |
|----------------|----------------------------|----------------------------|-------------------------------------------|----------------------------|-----------------------------------|
| 2015           | Market 150 MW              | Market 150 MW              | Market 150 MW                             | Market 150 MW              |                                   |
| 2016           | Market 450 MW              | Market 450 MW              | Market 450 MW                             | Market 450 MW              |                                   |
| 2017           | EV CCGT 644 MW             | EV CCGT 644 MW             | EV CCGT 644 MW                            | EV CCGT 644 MW             |                                   |
| 2018 -<br>2028 |                            |                            |                                           |                            |                                   |
| 2029           |                            | Wind 50 MW                 |                                           |                            |                                   |
| 2030           | Market 50 MW               | Wind 200 MW                | Market 50 MW                              | Market 50 MW               |                                   |
| 2031           | CC 200 MW<br>Market 50 MW  | CC 200 MW<br>Wind 200 MW   | CC 200 MW<br>Market 50 MW                 | CC 200 MW<br>Market 50 MW  | HS ST5 100<br>MW HS ST6 100<br>MW |
| 2032           | Market 100 MW              | Market 50 MW               | Wind 150MW<br>Market 50 MW                | Market 100 MW              |                                   |
| 2033           | CC 200 MW<br>Market 150 MW | CC 400 MW                  | Wind 200 MW<br>CC 200 MW<br>Market 100 MW | CC 400 MW                  | Pete1 220 MW                      |
| 2034           | CC 400 MW<br>Market 150 MW | CC 200 MW<br>Market 100 MW | Wind 50 MW<br>CC 400 MW<br>Market 100 MW  | CC 200 MW Market<br>150 MW | HS7 405 MW                        |




## Wind/Solar Generation as Percent of Load



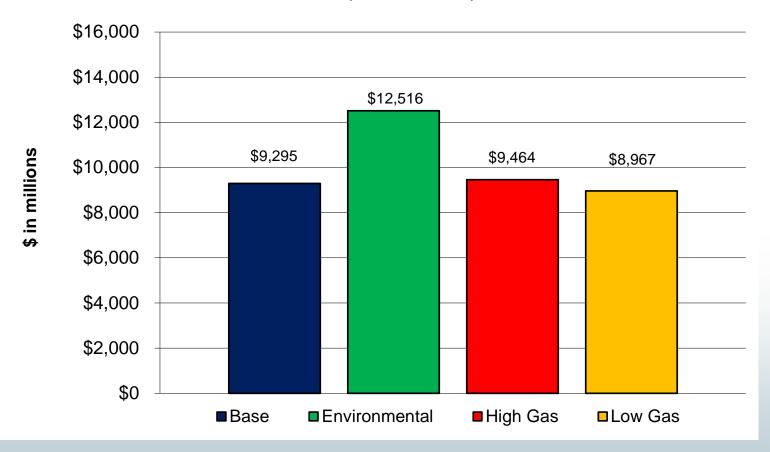



## **Generation Mix in 2034**

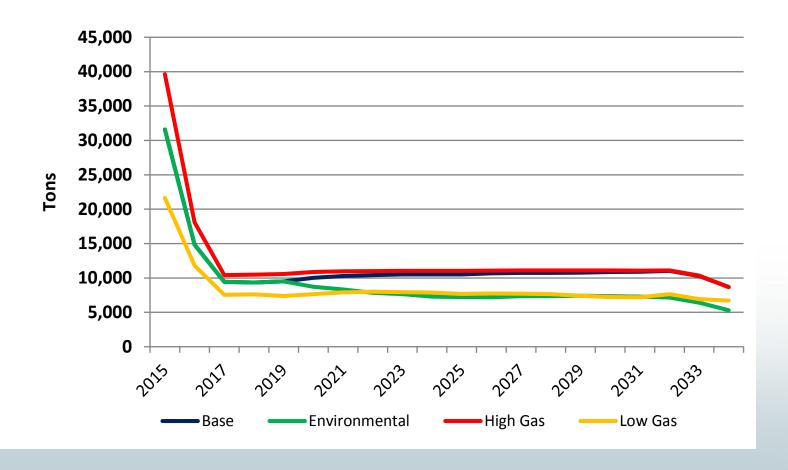
### **Generation Mix in 2034**





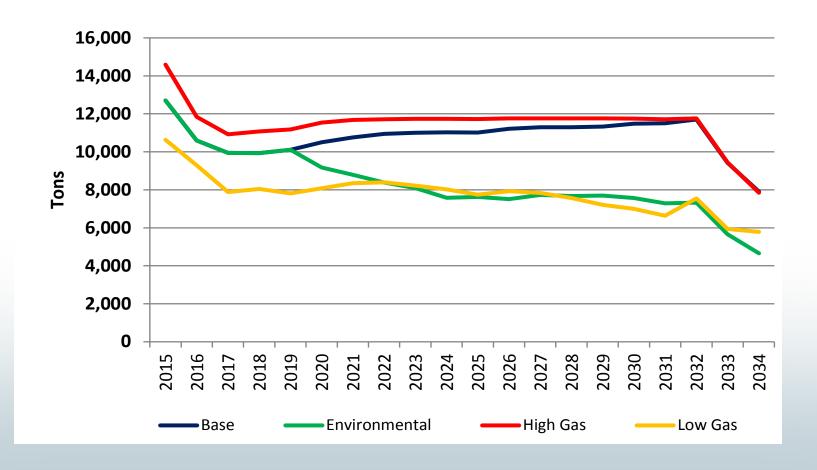

## **Reserve Margins**






## **Present Value of Revenue Requirements**

PVRR (2015-2034)











## NO<sub>x</sub> Emissions





## CO<sub>2</sub> Emissions





## **Conclusions from IPL's Initial Modeling**

- IPL does not have a need for new capacity resources for the next 15 years
  - Eagle Valley CCGT in 2017
  - Low load growth + DSM/EE
  - Subject to change if NPDES evaluation indicates earlier retirement of big 5 coal units
- Combined cycle is a preferred capacity resource addition in all scenarios
- Wind is added in the environmental and high gas scenarios



## **Questions?**



# Stakeholder Feedback and Comments

Facilitated by Marty Rozelle, PhD



## **Next Steps**

Presented by Marty Rozelle, PhD



| Schedule for the Rest of 2014 |                                                                                               |  |  |  |
|-------------------------------|-----------------------------------------------------------------------------------------------|--|--|--|
| July 25, 2014                 | IRP Public Advisory Meeting #2 Notes Posted to IPL Website                                    |  |  |  |
| August 1, 2014                | Deadline to Submit Comments/Questions to <a href="mailto:IPL.IRP@aes.com">IPL.IRP@aes.com</a> |  |  |  |
| August 15, 2014               | IPL's Response to Comments/Questions Will be Posted to IPL Website                            |  |  |  |
| September 23, 2014            | IRP Public Advisory Meeting #3 – Final modeling results presented                             |  |  |  |
| October 31, 2014              | Submit IRP Document to the IURC                                                               |  |  |  |

Give us your feedback. IPL is here to listen to you.



## **Thank You!**



# IRP Public Advisory Meeting #3

Workshop with IRP Stakeholders

October 10, 2014

Barnes & Thornburg

11 South Meridian St.



# Welcome and Introductions



# Meeting Agenda and Guidelines

Presented by Marty Rozelle, PhD, Meeting Facilitator



## **Meeting Guidelines**

- Time for clarifying questions at end of each presentation
- Parking lot for items to be addressed later
- The phone line will be muted. During the allotted question time frames, you may press \*6 to un-mute yourself or type a question through the web-chat function.
- To inquire about confidential information please contact Teresa Nyhart with Barnes & Thornburg, LLP at <a href="mailto:teresa.nyhart@btlaw.com">teresa.nyhart@btlaw.com</a>



## **Meeting Objectives**

- Provide the NPDES analysis results driving the conversion of Harding Street Unit 7 to natural gas
- Provide updated IRP modeling assumptions and inputs
- Explain the resource modeling scenarios and preferred resource portfolio
- Present the Short Term Action Plan

NPDES – National Pollutant Discharge Elimination System



## IRP Public Advisory Meeting #3

## **Agenda Topics**

- Summary of IRP Public Advisory Meeting #1 and #2
- NPDES Analysis
- Updated Modeling Assumptions and Inputs
- Presentation of Scenario Results
- Short Term Action Plan
- Next Steps



## **Questions?**



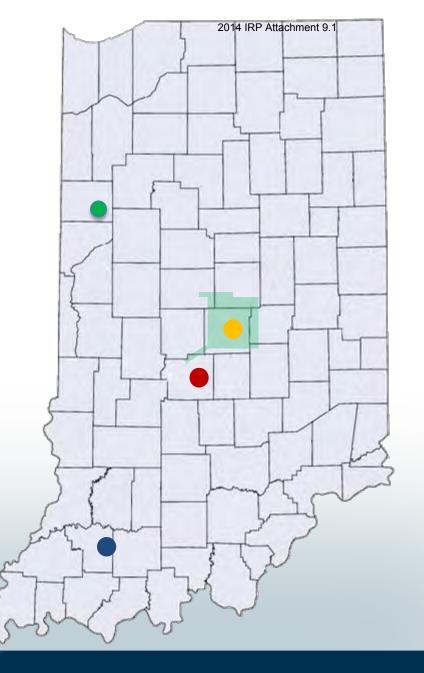
## Summary of IRP Public Advisory Meetings #1 and #2

Presented by Joan Soller, Director of Resource Planning



## **IRP Public Advisory Meeting #1**

## May 16, 2014 --- Agenda Topics


- Introduction to IPL and Integrated Resource Planning Process
- Energy and Peak Forecasts
- Demand Side Management: Energy Efficiency and Demand Response
- Planning Reserve Margin
- Generation Overview
- Environmental Overview
- Distributed Generation
- Proposed Modeling Assumptions



#### **Company Profile**

- 470,000 customers\*
- 1,400 employees\*
- 528 sq. miles territory
- 144 substations
- Harding Street Station, Georgetown
   Station, Solar REP Projects 1,322 MW\*\*
- Eagle Valley Generating Station 263 MW\*\*
- Petersburg GeneratingStation 1,760 MW\*\*
- Hoosier Wind Park PPA 100 MW\*\*
- Lakefield Wind Park PPA 201 MW\*\* (In Minnesota – Not pictured)

\*approximate numbers \*\*nameplate capacity





#### **IRP Process Overview**

Develop IPL's **Total** Supply Resource Needs

New Supply
Resource Needs

Identify Key Risk
Parameters

Identify and Screen Resource Technologies

Evaluate Resource Expansion Plans

Identify IPL's
Reference and
Short Term Action
Plans



#### **Environmental Regulations**

- Current Environmental Regulations/Environmental Projects
  - Mercury and Air Toxics Standard (MATS)
  - NPDES Water Discharge Permits
- Future Environmental Regulations
  - Coal Combustion Residuals (CCR)
  - 316(b) Cooling water intake structures
  - Clean Power Plan (Greenhouse Gas (GHG) Rule)
  - National Ambient Air Quality Standards (NAAQS)
  - Cross State Air Pollution Rule (CSAPR)

NPDES - National Pollutant Discharge Elimination System



#### **Distributed Generation**

- Distributed generation can be difficult to implement on a large scale
- Solar has the best opportunity for growth in the IPL service territory but is currently challenging as a least cost resource
- Actively monitoring trends in Distributed Generation and Distributed Energy Resources



#### IRP Public Advisory Meeting #2

#### July 18, 2014 --- Agenda Topics

- Summary of IRP Public Advisory Meeting #1
- Demand Side Management Update
- Environmental Update
- Overview of Stakeholder Comments and Questions
- Incorporating Stakeholder Input
- Presentation of Scenario Results
- Stakeholder Feedback and Comments



#### Recent DSM Developments

- IPL has made a filing for approval of a DSM Plan for 2015/2016 in Cause No. 44497
- Testimony filed in Cause No. 44441 regarding large customer's ability to opt-out of DSM
- Numerous comments on the IURC General Administrative Order have been made, providing recommendations for future DSM in Indiana



## 2015-2016 DSM Plan Filed - Cause No. 44497

- Cause No. 44497 seeks Commission approval of a 2 Year Plan (2015-2016); however, a 3 Year Action Plan (2015-2017) was included in the prepared filing
- Petition filed on May 30, 2014
- Plan includes 13 DSM Programs
  - 9 Residential and 4 Business
- Forecast EE Savings approx. 1.12% of sales (total sales before large customer opt-outs)
- Expect to continue collaboration with Citizens Gas



#### **Proposed Clean Power Plan**

- EPA's Proposed Clean Power Plan would reduce carbon emissions from the power sector nationwide by 30% by 2030 from 2005 levels
- Compliance with "interim goal" on average over the ten-year period from 2020-2029. Compliance with "final goal" in 2030 and thereafter.
- Impacts will be heavily dependent upon the final rule (expected June 1, 2015) and State Implementation Plans and remain largely uncertain at this time, but may include:
  - Required heat rate improvements
  - Decreased dispatch of coal-fired units
  - Increased dispatch of renewables and existing NGCCs
  - Additional demand side EE measures



#### **Addressing Top Stakeholder Risk Factors**

- Cost assumptions for wind turbines
  - Reduced the Ventyx reference case cost assumption for new wind resources by \$200/KW to reflect declining costs for wind generation
- Carbon/GHG Assumptions
  - Included in the Ventyx environmental scenario
  - Will incorporate the "EPA Clean Power Plan" into the IPL base case scenario



#### **Addressing Top Stakeholder Risk Factors**

#### DSM/EE

- Incorporate updated projections from Applied Energy Group analysis
- Provide transparency on cost/benefit analysis evaluated on a consistent basis with supply-side options
- Ventyx Model is not the best tool for DSM cost/benefit analysis
- Distributed Generation Impact
  - Will reduce energy forecast to reflect increasing level of customer dis gen (e.g. 2% by 2020, 4% by 2030)



#### **Conclusions from IPL's Initial Modeling**

- IPL does not have a need for new capacity resources for the next 15 years
  - Refuel HS units in 2015/2016
  - o Eagle Valley CCGT in 2017
  - Low load growth + DSM/EE
  - Subject to change if NPDES evaluation indicates earlier retirement of big 5 coal units
- Combined cycle is a preferred capacity resource addition in all scenarios
- Wind is added in the environmental and high gas scenarios



#### **IPL's Feedback Response Tables**

|                                                  | May 16, 2014<br>IRP Meeting | July 18, 2014<br>IRP Meeting |
|--------------------------------------------------|-----------------------------|------------------------------|
| Number of Comments and Questions Received        | 112                         | 29                           |
| Date IPL's Response Was<br>Posted on IRP Webpage | June 20, 2014               | August 15, 2014              |

- IPL responded to all stakeholder comments and questions received
- The Feedback Response Tables are posted on the IPL IRP webpage (<a href="https://www.iplpower.com/IRP/">https://www.iplpower.com/IRP/</a>)



## Stakeholder Comments and Questions from IPL's July 18<sup>th</sup> IRP Public Advisory Meeting

#### Feedback topics included:

- DSM 2018-2034 Forecast
- Future Environmental Cost Estimates
- Clean Power Plan Evaluation
- NPDES Analysis Results
- Wind Congestion Assumptions
- Flexible Retirement Dates within the Model



#### **Questions?**





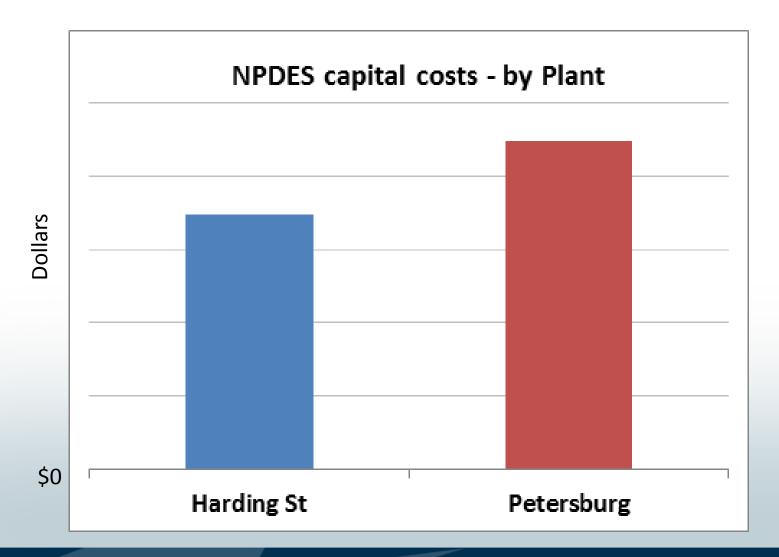
### **NPDES Analysis**

Presented by Tate Ayers, Director Corporate Planning and Analysis



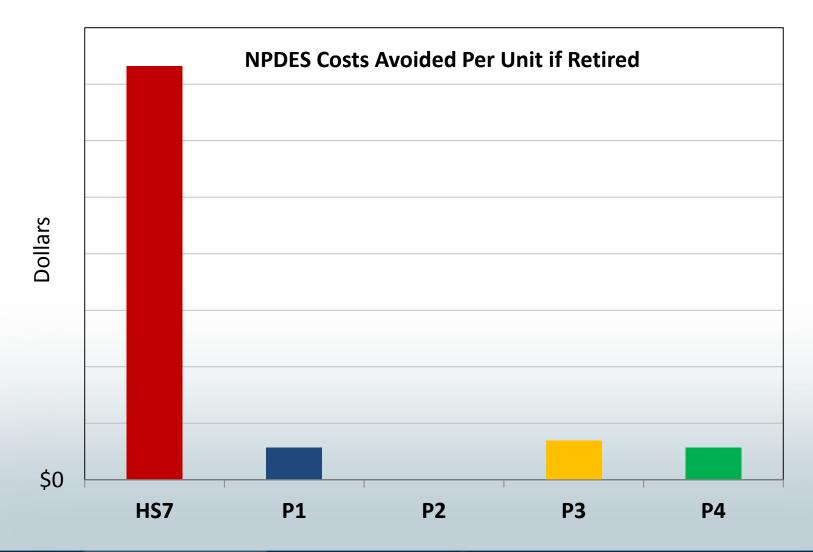
## IPL Maintains NPDES Permits on Each RP Attachment 9.1 of its Power Plants

- The NPDES permits require compliance with the following:
  - Technology based and water quality based effluent limitations
  - Monitoring and reporting requirements
- On August 28, 2012, the IDEM issued NPDES permit renewals to IPL's Petersburg and Harding Street generating plants
  - The permit includes new technology based and water quality based effluent limitations
  - These new limitations and requirements drive the need for additional wastewater treatment technologies
  - Compliance due by September 2017


NPDES - National Pollutant Discharge Elimination System IDEM- Indiana Department of Environmental Management CWA – Clean Water Act



- Performed for IPL Coal units: HS 7 and Petersburg 1-4
- Full life-cycle evaluation to capture impact of potential future risks
  - Multiple composite risk-scenarios were used to perform decision-tree analysis
  - Probabilities and costs applied to risks to derive an overall 'expected' revenue-requirement
  - Simple payback assessment
- Evaluated against alternative resource-options



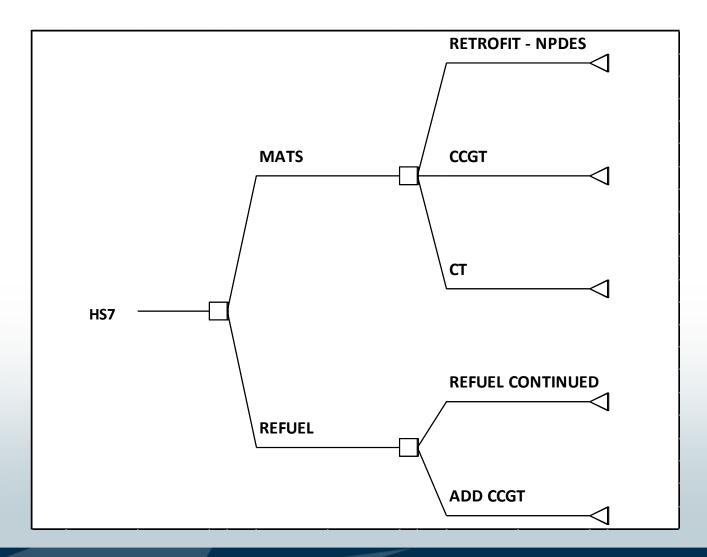

## Petersburg Plant Costs Compared to Harding St Plant Costs with HS 7 on Coal





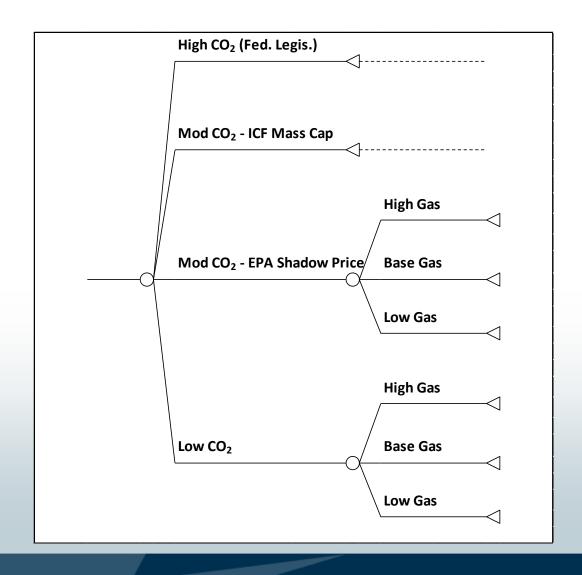
#### **IPL Coal Unit Incremental Capital Costs**





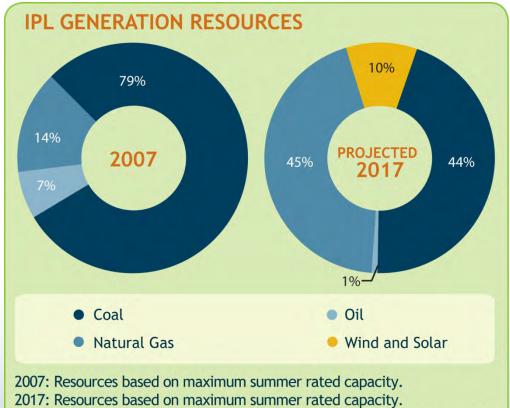

#### **Future Risks Considered**

- Natural Gas prices
- GHG/CO<sub>2</sub> requirements
  - Clean Power Plan
  - Federal Legislation
- Other Environmental regulations including:
  - Coal Combustion Residuals (CCR)
  - 316(b) Cooling water intake structures
  - National Ambient Air Quality Standards (NAAQS)
- Reliability (HS7)




### HS7 Decision Tree Resource Options






## Decision Tree – CO2 and Natural Gas Risk Scenarios





## Converting Harding Street Unit 7 to Matural Gas is the Reasonable Least Cost Plan



IPL modeled HS 7 as a natural gas unit in the IRP and as shown here in the 2017 projection

2007: Resources based on maximum summer rated capacity.
2017: Resources based on maximum summer rated capacity.
Includes existing long- term purchase agreements for wind as well as solar power under contract per Rate REP (The Indiana Utility Regulatory Commission recently approved the REP Agreement.) Also reflects proposed unit retirements of certain coal and oil fired units.



#### **Questions?**



# **Updated Modeling Assumptions and Inputs**

Presented by:

Joan Soller, Director of Resource Planning Dave Costenaro, Applied Energy Group John Haselden, Principal Engineer, Regulatory Affairs Lake Hainz, Resource Planning Analyst Angelique Oliger, Director of Environmental Policy

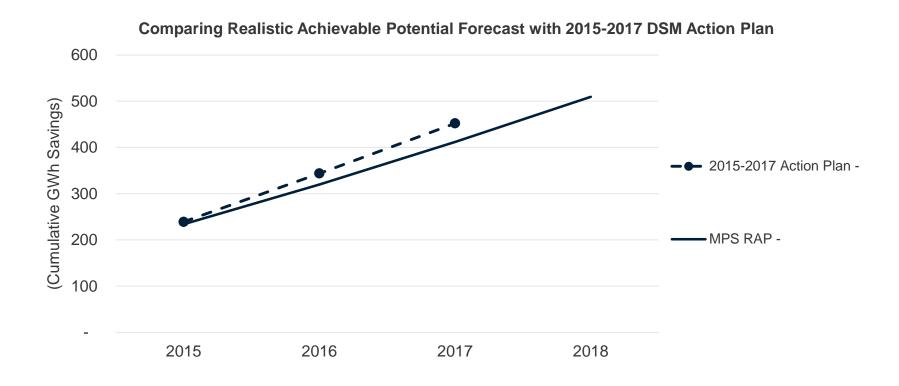


# Additional Modeling Adjustments †\*\*DRP Attachment 9.1 Incorporate New Information and Stakeholder Feedback

- 1. DSM Forecast was developed for the full 20-year planning period
  - Developed and presented today by AEG
- Load sensitivities were included (high/low/base)
- 3. IPL modeled a sensitivity for wind
- 4. IPL estimated possible future environmental cost ranges
- 5. Possible environmental effects of the Clean Power Plan were included in most scenarios through CO<sub>2</sub> costs
- 6. Modeled economic generation retirements vs full planning life



## Indianapolis Power & Light DSM Potential Forecast


Prepared for IRP Stakeholder Meeting

#### Forecasting DSM Potential for IPL

- Began with AEG's LoadMAP Model from 2012 DSM Potential Study\* and made the following updates:
  - 1.Refined base year energy use based on improved IPL customer data
  - 2. Calibrated kWh sales to match 2012 and 2013 actual sales
  - Updated forecast variables such as avoided costs and discount rates
  - 4. Aligned measure mix to Filed IPL 2015-2017 DSM Action Plan (added Residential Peer Comparison Program, Residential & Business AC Management Programs)
  - Updated measure & baseline assumptions for LED lamps, TVs, and Set-top boxes
  - 6. Tuned market adoption rates, impacts, and budget to align with Filed IPL 2015-2017 DSM Action Plan

#### Forecasting DSM Potential for IPL

DSM Potential Forecasts are a close match to the Action Plan.
 We then project trends into the future, to 2024 (last year of previous MPS) and beyond to 2034 (timeframe required to support current IRP).

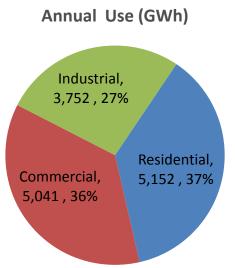


<sup>\* &</sup>quot;Energy Efficiency Market Potential Study and Action Plan" dated December 21, 2012 was completed by EnerNOC Utility Solutions Consulting Group, which has since been acquired by Applied Energy Group. The same core team members completed the analysis in both the previous and present work.

#### Forecasting DSM Potential for IPL

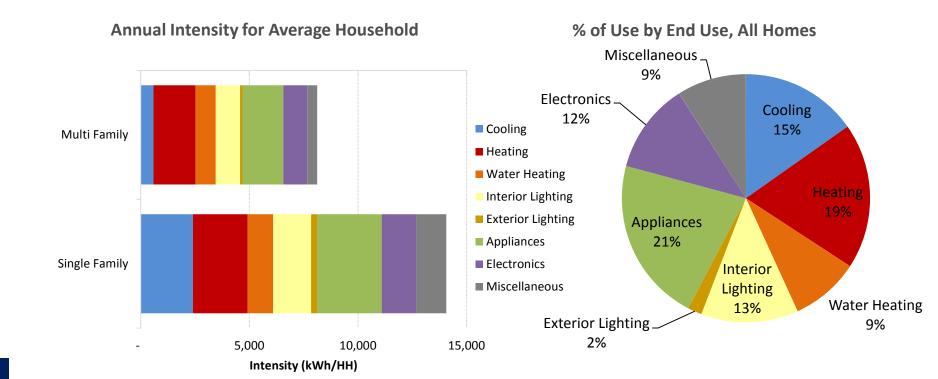
 Customer segment breakdown of the DSM Potential Forecasts are a close match to the Action Plan.




<sup>\* &</sup>quot;Energy Efficiency Market Potential Study and Action Plan" dated December 21, 2012 was completed by EnerNOC Utility Solutions Consulting Group, which has since been acquired by Applied Energy Group. The same core team members completed the analysis in both the previous and present work.

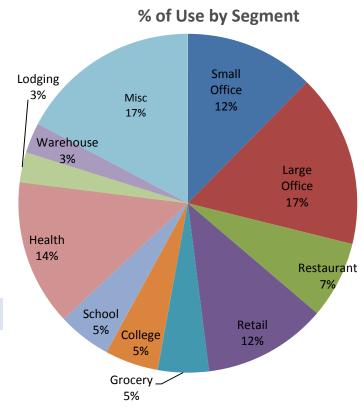
#### **Overall Market Characterization**

All Sectors in 2011 (Base Year)


| Segment     | Annual Use<br>(GWh) | % of Sales |
|-------------|---------------------|------------|
| Residential | 5,152               | 37%        |
| Commercial  | 5,041               | 36%        |
| Industrial  | 3,752               | 27%        |
| Total       | 13,946              | 100%       |

- Relative to the 2012 MPS, the split between commercial and industrial usage has shifted.
- Estimated 27% commercial and 36% industrial usage in 2012 MPS based on regional averages and investigation of IPL's top 30 customers
- Updates to NAICS codes in the IPL billing system refined this split to be the opposite: 36% commercial and 27% industrial.
- The residential control totals were not affected.

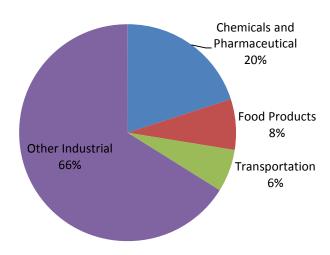



#### Residential Market Profile, 2011

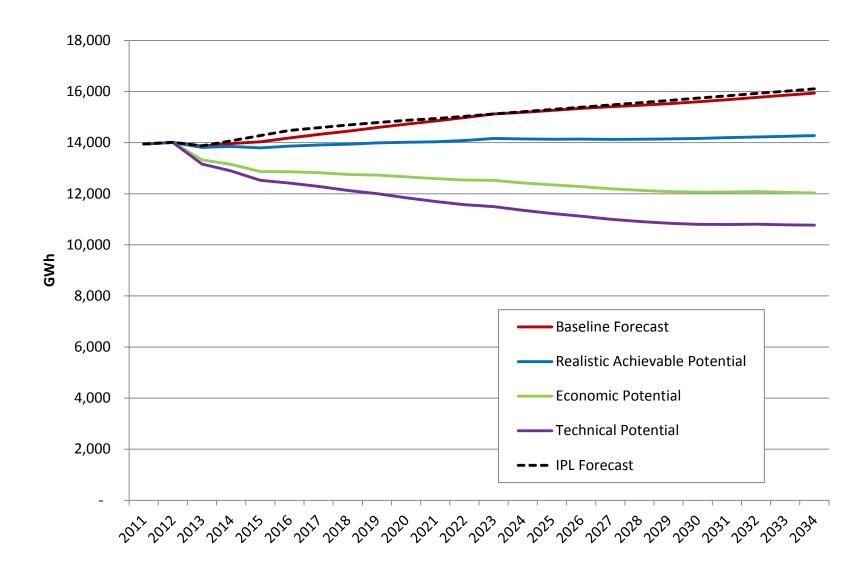
| Segment       | Households | Intensity<br>(kWh/HH) | 2011<br>Electricity<br>Use (GWh) |  |
|---------------|------------|-----------------------|----------------------------------|--|
| Single Family | 298,461    | 14,071                | 4,200                            |  |
| Multi Family  | 117,307    | 8,120                 | 952                              |  |
| Total         | 415,768    | 12,392                | 5,152                            |  |



#### **Commercial Market Profile, 2011**

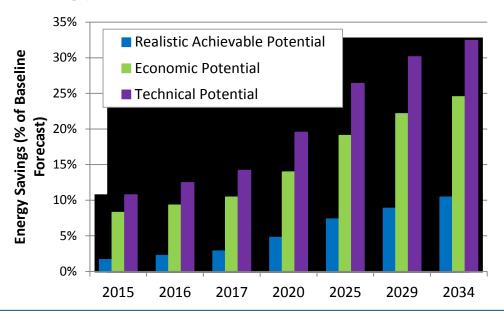

| Segment       | Floor Space (1,000<br>Sq.Ft.) | 2011<br>Electricity<br>Use (1,000 MWh) | Summer<br>Peak Demand<br>(MW) |  |
|---------------|-------------------------------|----------------------------------------|-------------------------------|--|
| Small Office  | 41,023                        | 624                                    | 186                           |  |
| Large Office  | 46,263                        | 832                                    | 125                           |  |
| Restaurant    | 9,571                         | 370                                    | 63                            |  |
| Retail        | 42,648                        | 594                                    | 135                           |  |
| Grocery       | 5,023                         | 245                                    | 88                            |  |
| College       | 22,259                        | 257                                    | 61                            |  |
| School        | 31,959                        | 257                                    | 67                            |  |
| Health        | 28,537                        | 701                                    | 106                           |  |
| Lodging       | 10,609                        | 145                                    | 21                            |  |
| Warehouse     | 22,553                        | 145                                    | 49                            |  |
| Miscellaneous | 114,106                       | 870                                    | 193                           |  |
| Total         | 374,553                       | 5,041                                  | 1,094                         |  |




#### **Industrial Market Profile, 2011**

| Segment                      | Number of<br>Employees | 2011<br>Electricity<br>Use (GWh) | Summer<br>Peak Demand<br>(MW) |  |
|------------------------------|------------------------|----------------------------------|-------------------------------|--|
| Chemicals and Pharmaceutical | 3,079                  | 751                              | 100                           |  |
| Food Products                | 3,592                  | 283                              | 38                            |  |
| Transportation               | 4,054                  | 238                              | 46                            |  |
| Other Industrial             | 90,634                 | 2,481                            | 540                           |  |
| Total                        | 101,358                | 3,752                            | 724                           |  |

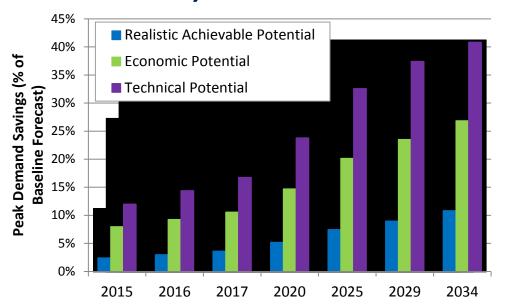
#### % of Use by Segment




#### Impact of DSM Potential on Load Forecast



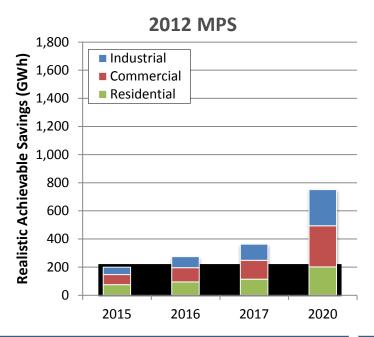
#### **Overall DSM Potential (Energy)**

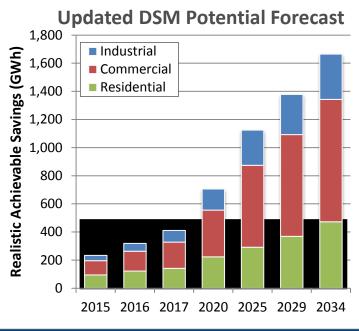

For 2015 to 2034, 20-year Realistic Achievable Potential savings are 10.4% of the baseline forecast. This is 1,665 net\* GWh.



|                                | 2015   | 2016   | 2017   | 2020   | 2025   | 2029   | 2034    |
|--------------------------------|--------|--------|--------|--------|--------|--------|---------|
| Baseline Forecast (GWh)        | 14,033 | 14,186 | 14,319 | 14,722 | 15,260 | 15,526 | 15,940  |
| Net Cumulative Savings (GWh)   |        |        |        |        |        |        |         |
| Realistic Achievable Potential | 234    | 320    | 412    | 706    | 1,125  | 1,378  | 1,665   |
| Economic Potential             | 1,163  | 1,323  | 1,495  | 2,057  | 2,914  | 3,438  | 3,911   |
| Technical Potential            | 1,509  | 1,770  | 2,034  | 2,877  | 4,030  | 4,681  | 5,172   |
| Net Energy Savings (% of       |        |        |        |        |        |        |         |
| Baseline)                      |        |        |        |        |        |        |         |
| Realistic Achievable Potential | 1.7%   | 2.3%   | 2.9%   | 4.8%   | 7.4%   | 8.9%   | (10.4%) |
| Economic Potential             | 8.3%   | 9.3%   | 10.4%  | 14.0%  | 19.1%  | 22.1%  | 24.5%   |
| Technical Potential            | 10.8%  | 12.5%  | 14.2%  | 19.5%  | 26.4%  | 30.2%  | 32.4%   |

### **Overall DSM Potential (Peak Demand)**


For 2015 to 2034, 20-year Realistic Achievable Potential savings are 10.8% of the baseline forecast. This is 396 net\* MW.




|                                | 2015  | 2016  | 2017  | 2020  | 2025  | 2029  | 2034    |
|--------------------------------|-------|-------|-------|-------|-------|-------|---------|
| Baseline Forecast (MW)         | 3,181 | 3,225 | 3,265 | 3,383 | 3,535 | 3,586 | 3,662   |
| Net Cumulative Savings (MW)    |       |       |       |       |       |       |         |
| Realistic Achievable Potential | 76    | 96    | 117   | 175   | 263   | 322   | 396     |
| Economic Potential             | 254   | 298   | 345   | 497   | 712   | 843   | 983     |
| Technical Potential            | 381   | 464   | 547   | 805   | 1,152 | 1,342 | 1,495   |
| Net Energy Savings (% of       |       |       |       |       |       |       |         |
| Baseline)                      |       |       |       |       |       |       |         |
| Realistic Achievable Potential | 2.4%  | 3.0%  | 3.6%  | 5.2%  | 7.5%  | 9.0%  | (10.8%) |
| Economic Potential             | 8.0%  | 9.2%  | 10.6% | 14.7% | 20.1% | 23.5% | 26.8%   |
| Technical Potential            | 12.0% | 14.4% | 16.8% | 23.8% | 32.6% | 37.4% | 40.8%   |

### 2012 MPS vs Updated Potential Forecast (by sector)

Allocation of cumulative achievable potential over time





|                   | 2015  | 2016  | 2017  | 2020  |
|-------------------|-------|-------|-------|-------|
| RAP Savings (GWh) |       |       |       |       |
| Residential       | 75.5  | 95.7  | 114.8 | 202.5 |
| Commercial        | 71.8  | 100.2 | 133.7 | 292.6 |
| Industrial        | 52.4  | 79.4  | 115.5 | 256.6 |
| Total             | 199.7 | 275.3 | 364.0 | 751.7 |

| 2015  | 2016                  | 2017                                   | 2020                                                    | 2025                                                                      | 2029                                                                                        | 2034                                                                                                          |
|-------|-----------------------|----------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
|       |                       |                                        |                                                         |                                                                           |                                                                                             |                                                                                                               |
| 95.5  | 122.6                 | 141.3                                  | 223.2                                                   | 291.7                                                                     | 368.9                                                                                       | 472.5                                                                                                         |
| 101.2 | 140.9                 | 187.3                                  | 333.1                                                   | 582.5                                                                     | 724.0                                                                                       | 870.4                                                                                                         |
| 37.2  | 56.3                  | 83.2                                   | 149 8                                                   | 250.5                                                                     | 285.2                                                                                       | 322.0                                                                                                         |
| 234.0 | 319.8                 | 411.9                                  | (706.2)                                                 | 1,124.8                                                                   | 1,378.1                                                                                     | 1,664.9                                                                                                       |
|       | 95.5<br>101.2<br>37.2 | 95.5 122.6<br>101.2 140.9<br>37.2 56.3 | 95.5 122.6 141.3<br>101.2 140.9 187.3<br>37.2 56.3 83.2 | 95.5 122.6 141.3 223.2<br>101.2 140.9 187.3 333.1<br>37.2 56.3 83.2 149.8 | 95.5 122.6 141.3 223.2 291.7<br>101.2 140.9 187.3 333.1 582.5<br>37.2 56.3 83.2 149.8 250.5 | 95.5 122.6 141.3 223.2 291.7 368.9<br>101.2 140.9 187.3 333.1 582.5 724.0<br>37.2 56.3 83.2 149.8 250.5 285.2 |

- In 2020, Updated forecast of 706 GWh is slightly lower than previous study at 751 GWh
- Updated potential includes the estimated effects of C&I customers opting out of DSM programs, based on current levels of opt-out. 2012 MPS does not.

# **Thank You!**

#### **David M Costenaro**

Senior Project Manager <a href="mailto:dcostenaro@appliedenergygroup.com">dcostenaro@appliedenergygroup.com</a>



### IPL's View on AEG's 20 Year DSM Forecast

- AEG's forecast represents the market potential from a 2014 viewpoint
- IPL's future DSM filings and results will likely vary from the forecast
  - Legislation and public policy will help shape future DSM
  - Customer behavior including additional large customer opt-outs will affect outcomes
  - Programs were included in the forecast based on a Total Resource Cost (TRC) threshold result of 1 or greater, while IPL's DSM portfolio offerings typically have an aggregate TRC value greater than 1



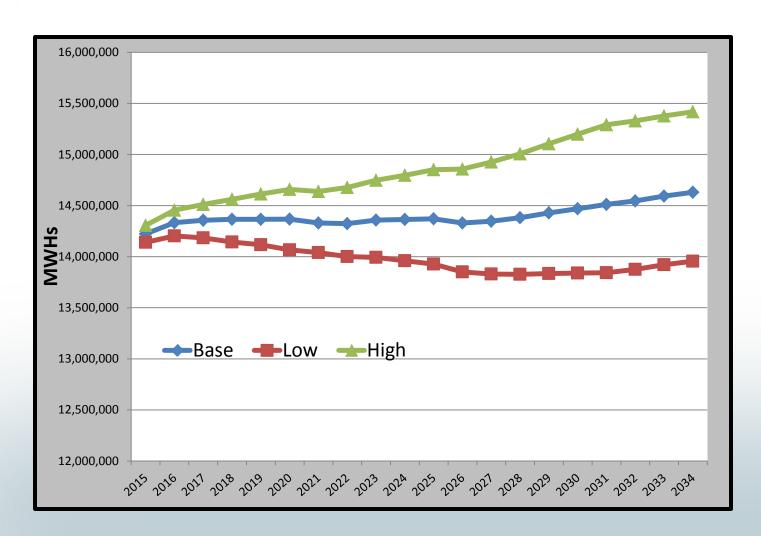
# IPL has Created its High, Low, and Base Load Forecasts

- AEG's Realistic Potential DSM Savings Forecast was deducted from the Gross Internal Demand ("GID") to establish the Base Forecast
- High and Low Forecast were developed using range from IPLspecific State Utility Forecasting Group ("SUFG") forecast

 Range reflects uncertainty stemming from the following factors:

#### **Factors Causing Potential Variance**

**Economic Activity** 


Changes in Technology

**Consumer Behavioral Changes** 

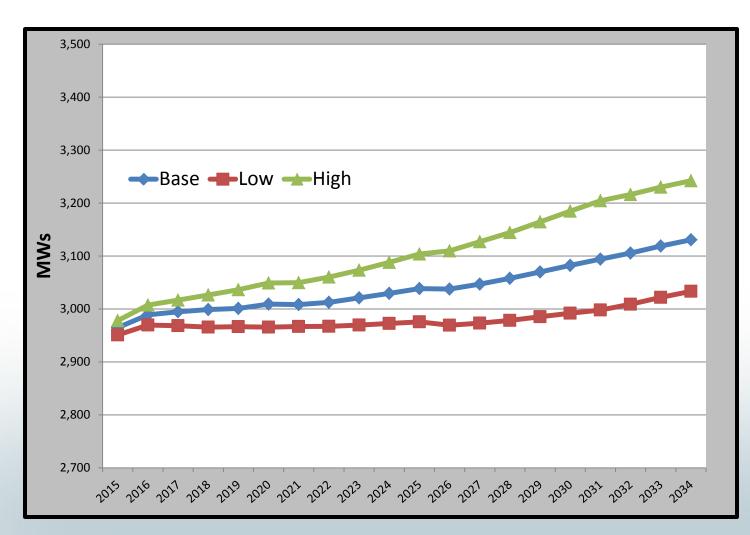
State and Federal Energy Policies



## **Energy Forecast (Net of DSM)**



Average **Energy** Growth Rates (2015-2034):


Base: 0.1%

Low: -0.1%

• High: 0.4%



## Peak Forecast (Net of DSM)



Average **Peak** Growth Rates (2015-2034):

• Base: 0.3%

• Low: 0.1%

• High: 0.4%



## **IPL** has Modeled a Sensitivity for Wind

- New Wind Resources are modeled using a 35% Capacity Factor and Locational Marginal Price (LMP) equivalent to MISO-IN Market Prices
- Sensitivities focus on applying present characteristics of wind along with potential wind improvements to new wind resources
  - Current Transmission Congestion Characteristics
    - 1. Market price differences
    - 2. Current Capacity Factors(≈25%)
  - Potential Improvements
    - 3. Pair with batteries to relieve transmission congestion
    - 4. 50% Capacity Factor



# **IPL has Estimated Possible Future Environmental Compliance Costs**

 The potential Rules in the table below could possibly require IPL to incur additional expenses for compliance

| Potential Rule | Earliest Expected<br>Compliance Date | Preliminary<br>Estimated<br>Capital | Preliminary<br>Estimated<br>Annual O&M |
|----------------|--------------------------------------|-------------------------------------|----------------------------------------|
| CSAPR          | January 2015                         | \$0                                 | \$0                                    |
| CCR*           | Late 2019                            | \$21M-\$30M                         | \$3M-\$35M                             |
| CWA 316(b)     | 2020                                 | \$6M-\$154M                         | \$0M-\$6M                              |
| ELG            | 2018                                 | \$0M-\$43M                          | \$0M-\$1M                              |
| GHG            | 2020                                 | TBD                                 | TBD                                    |
| NAAQS          | 2017                                 | \$27M-\$174M                        | \$13M-\$15M                            |

<sup>\*</sup>Includes estimated pond closure costs.

Please see slide 12 for potential Rule explanations.



# IPL has Evaluated Potential Impacts of Attachment 9.1 Greenhouse Gas Requirements

- Five (5) scenarios include the EPA's shadow price for CO<sub>2</sub> starting in 2020
- The environmental scenario includes ICF's Mass Cap CO<sub>2</sub> price starting in 2020
- The high environmental scenario is based on federal legislation modeled after Waxman-Markey in Ventyx's Fall 2013 CO<sub>2</sub> price starting in 2025
- The low environmental scenario does not include a CO<sub>2</sub> price



# **Questions?**



# Presentation of Scenario Results

Presented by Joan Soller, Director of Resource Planning and Swetha Sundar, Resource Planning Analyst

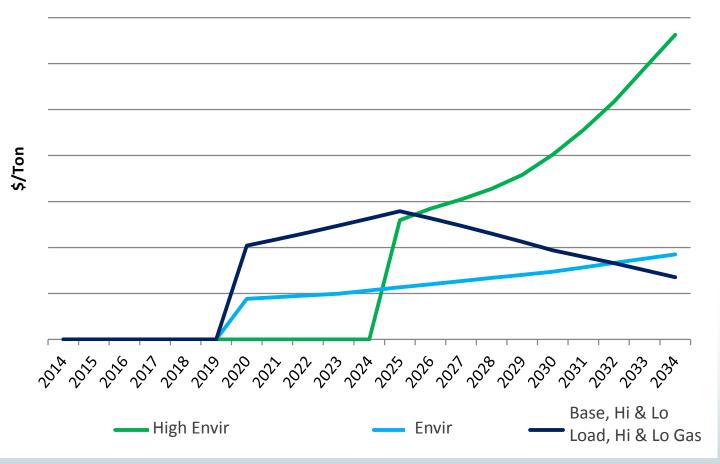


# Supply and Demand Resource Alternatives -Costs & Performance Attributes

| IRP Resource Technology Options                |             |                           |                                             |  |  |
|------------------------------------------------|-------------|---------------------------|---------------------------------------------|--|--|
|                                                | MW Capacity | Performance<br>Attributes | Representative Cost per Installed KW*       |  |  |
| Simple Cycle Gas Turbine                       | 160         | Peaker                    | \$676                                       |  |  |
| Combined Cycle Gas Turbine - H-Class           | 200         | Base                      | \$1,023                                     |  |  |
| Nuclear                                        | 200         | Base                      | \$5,530                                     |  |  |
| Wind                                           | 50          | Intermittent              | \$2,213                                     |  |  |
| Solar                                          | 10          | Intermittent              | \$3,873                                     |  |  |
| Demand Response/Interruptibles                 | 62          | Peak Use                  | Varies by Program                           |  |  |
| Smart Grid - Conservation<br>Voltage Reduction | 20          | Peak Use                  | Field assets are in place for this capacity |  |  |

http://www.eia.gov/forecasts/capitalcost/pdf/updated\_capcost.pdf

<sup>\*</sup>These costs from EIA Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants Report (published April 2013) are shared as proxies for IPL's confidential costs.

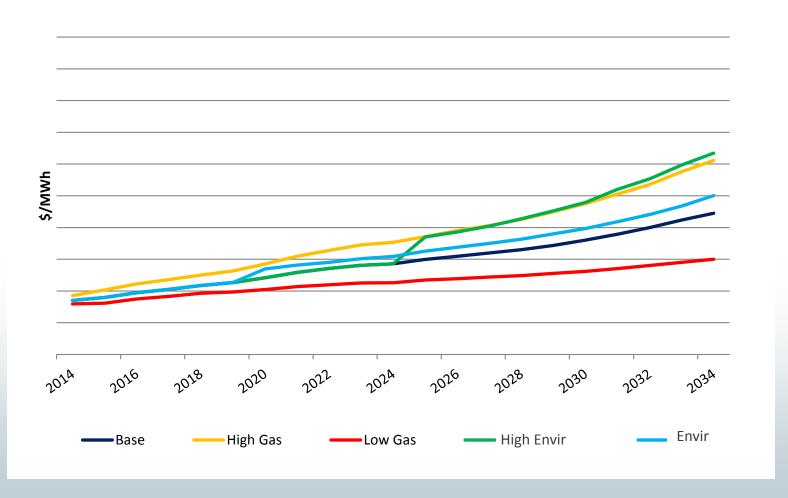



# **IPL's Eight IRP Scenarios**

| Scenario<br>No | Scenario Name         | Gas/Market Price        | CO2 Price                                                 | Load Forecast |
|----------------|-----------------------|-------------------------|-----------------------------------------------------------|---------------|
| 1              | Base                  | Ventyx Base             | IPL-EPA Shadow price starting 2020                        | Base          |
| 2              | High Load             | Ventyx Base             | IPL-EPA Shadow price starting 2020                        | High          |
| 3              | Low Load              | Ventyx Base             | IPL-EPA Shadow price starting 2020                        | Low           |
| 4              | High Gas              | Ventyx High             | IPL-EPA Shadow price starting 2020-                       | Base          |
| 5              | Low Gas               | Ventyx Low              | IPL-EPA Shadow price starting 2020-                       | Base          |
| 6              | High<br>Environmental | Ventyx<br>Environmental | Waxman-Markey proxy Ventyx Fall 2013 prices starting 2025 | Base          |
| 7              | Environmental         | Ventyx Mass Cap         | Mass Cap ICF Prices beginning in 2020                     | Base          |
| 8              | Low<br>Environmental  | Ventyx Base             | None                                                      | Base          |

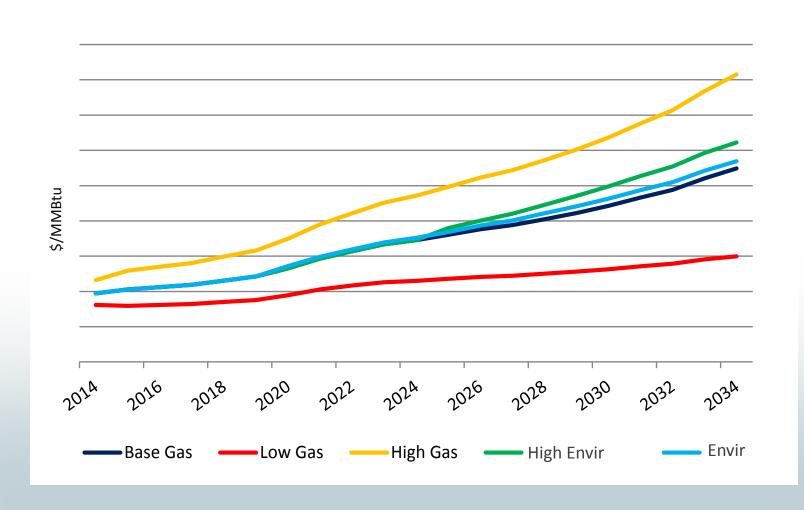


## Carbon Prices (\$/Ton)




NOTE: These carbon costs are applied differently to the scenarios and not directly comparable. Although, the shape shows the carbon costs' projection.

\*Coal Units Only




# Annual MISO-Indiana Market Prices 2014 IRP Attachment 9.1 (7x24)(Fall 2013 Reference Case/Ventyx Advisors \$/MWh)





# Henry Hub Annual Gas Price Forecast (Fall 2013 Reference Case/Ventyx Advisors \$/MMBtu)



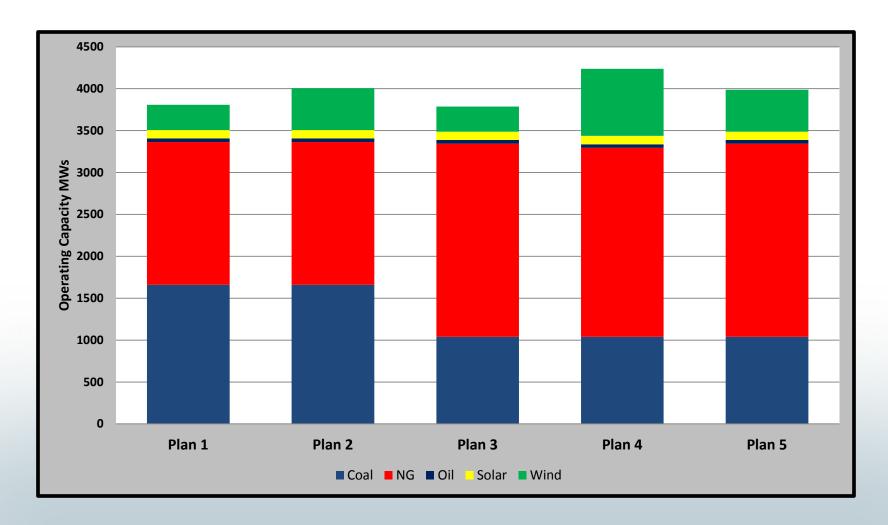


# **Capacity Expansion Plan Results**

2014 IRP Attachment 9.1

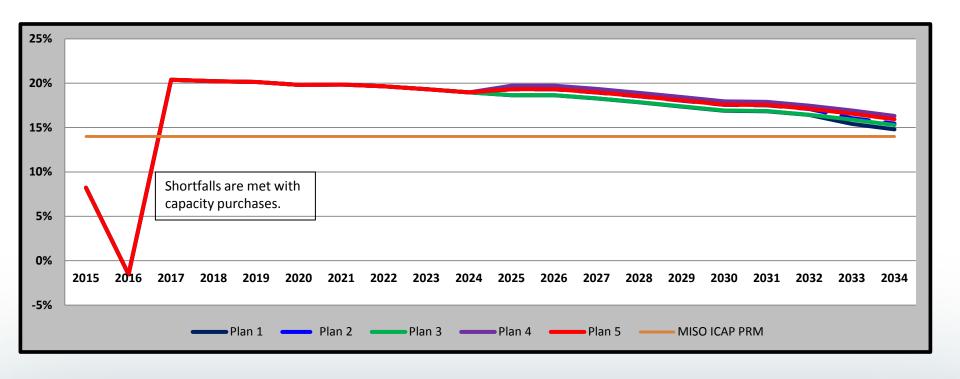
| YEAR       | Base                                           | High Gas                                                 | Low Gas                                  | High Load                                  | Low Load                                             | High<br>Environmental                                        | Environmental                                  | Low<br>Environmental                           |
|------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------|--------------------------------------------|------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------|------------------------------------------------|
| 2015       | Market 200 MW                                  | Market 200 MW                                            | Market 200 MW                            | Market 200 MW                              | Market 200 MW                                        | Market 200 MW                                                | Market 200 MW                                  | Market 200 MW                                  |
| 2016       | Market 450 MW                                  | Market 450 MW                                            | Market 450 MW                            | Market 500 MW                              | Market 450 MW                                        | Market 450 MW                                                | Market 450 MW                                  | Market 450 MW                                  |
| 2017 -2019 |                                                |                                                          |                                          |                                            |                                                      |                                                              |                                                |                                                |
| 2020       |                                                |                                                          | Retire Pete 1,2,<br>and 4<br>CC 200 MW   |                                            |                                                      |                                                              |                                                |                                                |
| 2021       |                                                |                                                          | CC 800 MW<br>Market 100 MW               |                                            |                                                      |                                                              |                                                |                                                |
| 2022       |                                                |                                                          | CC 200 MW                                |                                            |                                                      |                                                              |                                                |                                                |
| 2023       |                                                |                                                          |                                          |                                            |                                                      |                                                              |                                                |                                                |
| 2024       |                                                |                                                          |                                          | Market 50 MW                               |                                                      | Retire Pete 1                                                |                                                |                                                |
| 2025       |                                                |                                                          |                                          | Market 50 MW                               |                                                      | CC 200 MW                                                    |                                                |                                                |
| 2026       |                                                |                                                          |                                          | Market 50 MW                               |                                                      |                                                              |                                                |                                                |
| 2027       |                                                |                                                          |                                          | CC 200 MW                                  |                                                      |                                                              |                                                |                                                |
| 2028       |                                                |                                                          |                                          |                                            |                                                      | Wind 100 MW                                                  |                                                |                                                |
| 2029       |                                                |                                                          |                                          |                                            |                                                      | Wind 150 MW                                                  |                                                |                                                |
| 2030       | Market 50 MW                                   | Wind 100 MW                                              |                                          |                                            |                                                      | Wind 100 MW                                                  | Market 50 MW                                   | Market 50 MW                                   |
| 2031       | Retire HS 5 and 6<br>CC 200 MW<br>Market 50 MW | Retire HS 5 and 6<br>CC 200 MW<br>Wind 150 MW            | Retire HS 5 and 6<br>CC 200 MW           | Retire HS 5 and 6<br>CC 200 MW             | Retire HS 5 and 6<br>CC 200 MW                       | Retire HS 5 and 6<br>CC 200 MW<br>Market 50 MW<br>Wind 50 MW | Retire HS 5 and 6<br>CC 200 MW<br>Market 50 MW | Retire HS 5 and 6<br>CC 200 MW<br>Market 50 MW |
| 2032       | Market 50 MW                                   | Wind 100 MW                                              |                                          |                                            |                                                      | Market 50 MW                                                 | Market 50 MW                                   | Market 50 MW                                   |
| 2033       | Retire Pete 1<br>CC 200 MW<br>Market 100 MW    | Retire Pete 1<br>CC 200 MW<br>Wind 50 MW<br>Market 50 MW | Market 50 MW                             | Retire Pete 1<br>CC 200 MW<br>Market 50 MW | Retire Pete 1<br>CC 200 MW                           | Market 50 MW                                                 | Retire Pete 1<br>CC 200 MW<br>Market 100 MW    | Retire Pete 1<br>CC 200 MW<br>Market 100 MW    |
| 2034       | Retire HS7<br>CC 400 MW<br>Market 150 MW       | Retire HS7<br>CC 400 MW<br>Market 100 MW                 | Retire HS7<br>CC 400 MW<br>Market 100 MW | Retire HS7<br>CC 400 MW<br>Market 50 MW    | Retire HS7<br>GT 180 MW<br>CC 200 MW<br>Market 50 MW | Retire HS7<br>CC 400 MW<br>Market 100 MW                     | Retire HS7<br>CC 400 MW<br>Market 150 MW       | Retire HS7<br>CC 400 MW<br>Market 150 MW       |




#### **IPL Selected Plans**

 Based on the Capacity Expansion Plan Results, the following five build out plans were created and modeled each in six of the eight scenarios:

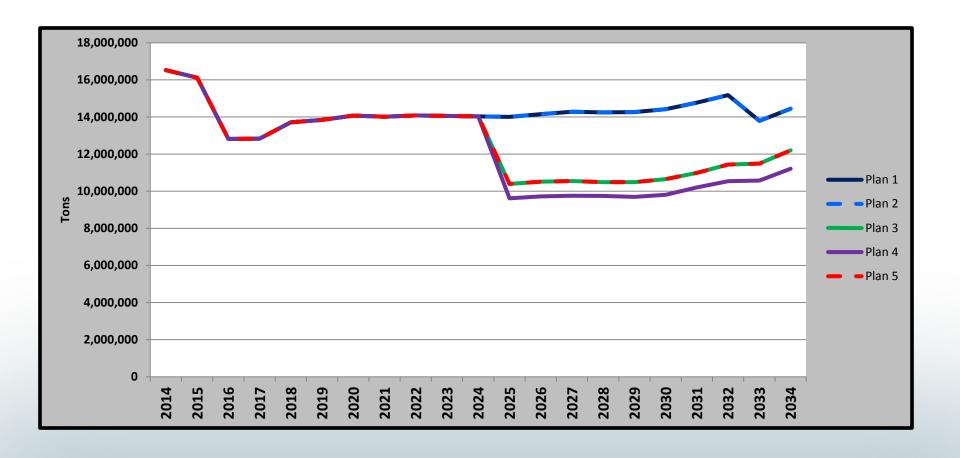
|        | No Early Retirements               |
|--------|------------------------------------|
| Plan 1 | Base Case Expansion Plan           |
| Plan 2 | Additional 200 MW Wind (2025)      |
|        | Pete 1 and 2 Retire in 2024        |
| Plan 3 | 600 MW CCGT (2025)                 |
| Plan 4 | 550 MW CT and 500 MW Wind (2025)   |
| Plan 5 | 600 MW CCGT and 200 MW Wind (2025) |




## **Generation Mix in 2025**



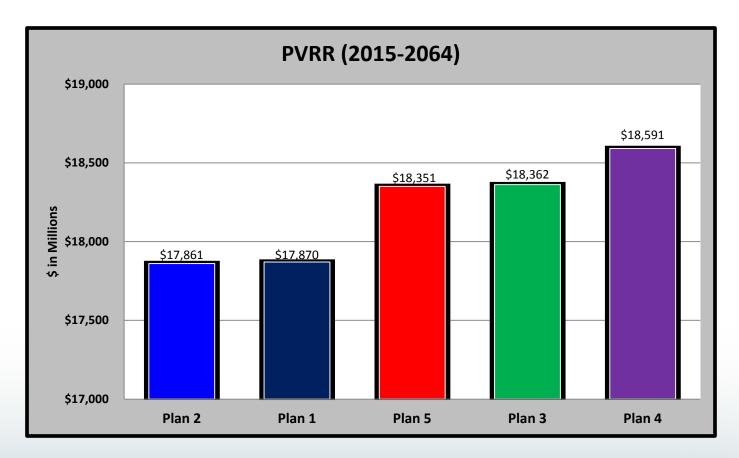



## Reserve Margin Per Plan



IPL meets its projected 14% reserve margin without capacity purchases for all years after 2017.



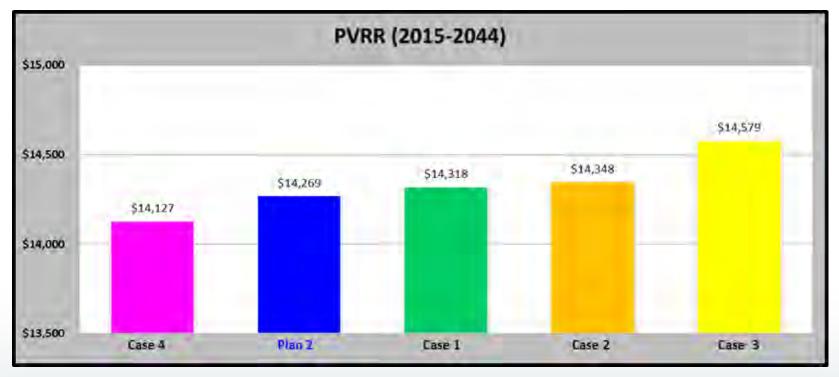

# **CO<sub>2</sub> Emissions Per Plan**





**Base** 

IPL's existing portfolio is cost effective.



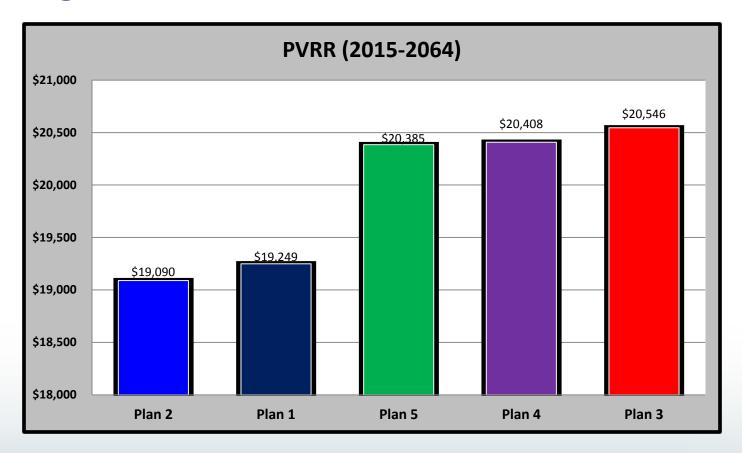

| Plan 1 | Base Case Expansion Plan      |
|--------|-------------------------------|
| Plan 2 | Additional 200 MW Wind (2025) |

| Plan 3 | 600 MW CCGT (2025)                 |
|--------|------------------------------------|
| Plan 4 | 550 MW CT and 500 MW Wind (2025)   |
| Plan 5 | 600 MW CCGT and 200 MW Wind (2025) |



# **Wind Sensitivity Results**




Wind resources are less cost-effective under current market-characteristics

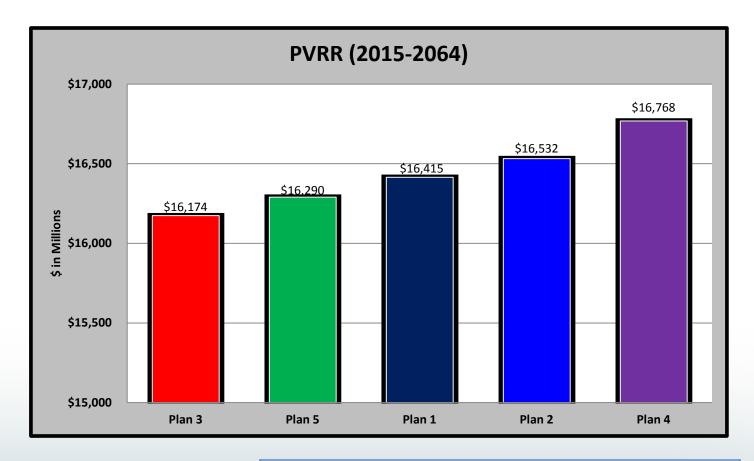
| Case 1 | LMP Differential Applied |
|--------|--------------------------|
| Case 2 | 25% Capacity Factor      |
| Case 3 | Wind with 12 MW Battery  |
| Case 4 | 50% CF Wind PPA          |



# **High Gas**

IPL's existing portfolio is cost effective.




| Plan 1 | Base Case Expansion Plan      |
|--------|-------------------------------|
| Plan 2 | Additional 200 MW Wind (2025) |

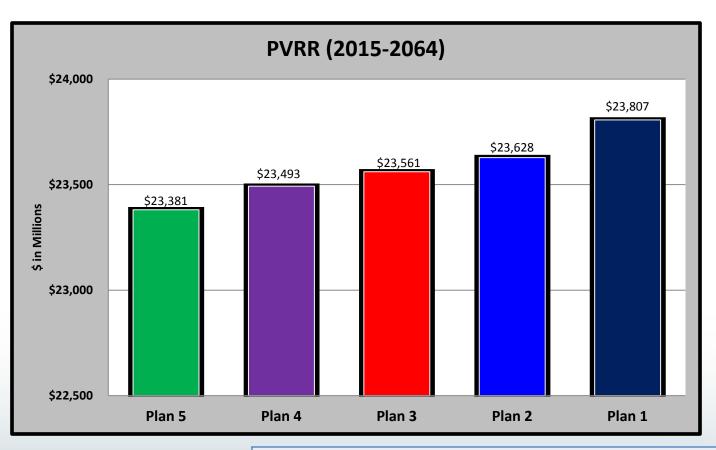
| Plan 3 | 600 MW CCGT (2025)                 |
|--------|------------------------------------|
| Plan 4 | 550 MW CT and 500 MW Wind (2025)   |
| Plan 5 | 600 MW CCGT and 200 MW Wind (2025) |



#### **Low Gas**

Plans with more gas-fired generation are cost effective.




| Plan 1 | Base Case Expansion Plan      |
|--------|-------------------------------|
| Plan 2 | Additional 200 MW Wind (2025) |

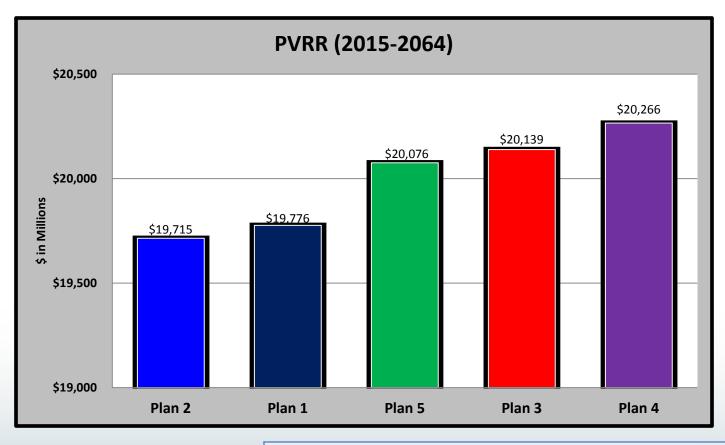
| Plan 3 | 600 MW CCGT (2025)                 |
|--------|------------------------------------|
| Plan 4 | 550 MW CT and 500 MW Wind (2025)   |
| Plan 5 | 600 MW CCGT and 200 MW Wind (2025) |



# **High Environmental**

Significantly higher costs exist for all plans.




| Plan 1 | Base Case Expansion Plan      |
|--------|-------------------------------|
| Plan 2 | Additional 200 MW Wind (2025) |

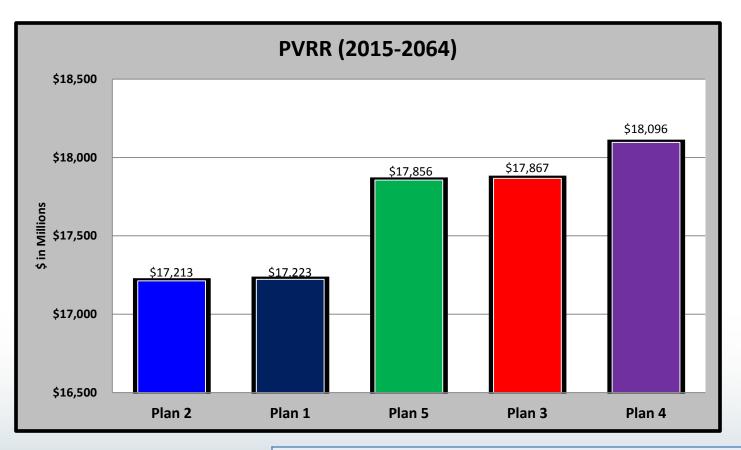
| Plan 3 | 600 MW CCGT (2025)                 |
|--------|------------------------------------|
| Plan 4 | 550 MW CT and 500 MW Wind (2025)   |
| Plan 5 | 600 MW CCGT and 200 MW Wind (2025) |



#### **Environmental**

IPL's existing portfolio is cost effective.




| Plan 1 | Base Case Expansion Plan      |
|--------|-------------------------------|
| Plan 2 | Additional 200 MW Wind (2025) |

| Plan 3 | 600 MW CCGT (2025)                 |
|--------|------------------------------------|
| Plan 4 | 550 MW CT and 500 MW Wind (2025)   |
| Plan 5 | 600 MW CCGT and 200 MW Wind (2025) |



#### **Low Environmental**

IPL's existing portfolio is cost effective.



| Plan 1 | Base Case Expansion Plan      |
|--------|-------------------------------|
| Plan 2 | Additional 200 MW Wind (2025) |

| Plan 3 | 600 MW CCGT (2025)                 |
|--------|------------------------------------|
| Plan 4 | 550 MW CT and 500 MW Wind (2025)   |
| Plan 5 | 600 MW CCGT and 200 MW Wind (2025) |



# Rationale for Determining Preferred Resource Portfolio

- IPL's base case reflects a combination of the most likely inputs and risks
- Risk management strategies were also incorporated into the development of seven (7) additional scenarios
- The preferred supply-side resource portfolio is the most reasonable cost option based on the lowest Present Value Revenue Requirement (PVRR)



### **IPL's IRP Preferred Resource Portfolio**

- Plan 1 Base Case Expansion Plan with no additional build is the Company's preferred resource portfolio
- IPL will continue to monitor risks associated with resource planning
- Additional resources may be added to mitigate CO<sub>2</sub> risks
- Since IPL files an IRP every two years, subsequent IRPs will re-analyze future options



## **Risks Associated with Resource Planning**

IPL manages the following risks as a part of everyday business operations and in the IRP planning process

- Weather
- Load Variation
- Workforce Availability
- Reliability
- Technology Advancements
- Construction
- Fuel Supply
- Fuel Costs

- Production Cost Risk
- Generation Availability
- Environmental Regulation
- Access to Capital
- MISO Market Changes
- Regulatory
- Miscellaneous Catastrophic Events

Risk mitigation will be discussed further in the IRP filing



# **Questions?**



# **Short Term Action Plan**

Presented by Joan Soller, Director of Resource Planning



# **Short Term Action Plan Criteria Proposed in 170 IAC 4-7**

- Explanation of the previous short term action plan and differences based on what actually transpired
- 3 year view (2015 through 2017)
- Description of preferred resource portfolio elements
- Implementation schedule

IAC – Indiana Administrative Code



### **IPL's 2011 IRP Short Term Action Plan**

| Summary                                                                                                                | Implementation as of Sept 2014                                                                                                                                                                                    |  |
|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <ul> <li>Retire the six (6) small unscrubbed coal-fired units by<br/>2016 (EV Units 3-6 and HSS 5 and 6)</li> </ul>    | <ul> <li>Eagle Valley Units 3-6 will be retired by April 16, 2016</li> <li>Harding Street Station Units 5 and 6 will be refueled to natural gas</li> </ul>                                                        |  |
| <ul> <li>Retire four (4) oil-fired units by 2015 (HSS Units 3 and<br/>4 and EV Units 1 and 2)</li> </ul>               | <ul> <li>In 2013, IPL retired the four oil-fired units (HSS Units 3<br/>and 4 and EV 1 and 2) mentioned along with HSS GT 3</li> </ul>                                                                            |  |
| <ul> <li>Retrofit "Big 5" to comply with EPA MATS regulation<br/>(Pete 1 through 4 and HSS 7)</li> </ul>               | <ul> <li>IPL received IURC approval to proceed to retrofit<br/>Petersburg units and construction is underway</li> <li>IPL will seek approval to refuel HS7 to natural gas</li> </ul>                              |  |
| Meet IURC established DSM targets (Cause No. 42693)                                                                    | <ul> <li>IPL expects to be at or near cumulative targets at the<br/>end of 2014. IURC targets have been suspended with<br/>the passage of SEA 340. IPL will continue to offer cost-<br/>effective DSM.</li> </ul> |  |
| <ul> <li>Select and implement preferred resource to replace retirements</li> </ul>                                     | • IPL received approval to construct 671 MW EV CCGT (Cause No. 44339)                                                                                                                                             |  |
| <ul> <li>Reduce capacity exposure resulting from IPL shortage<br/>in Planning Years 2015-2016 and 2016-2017</li> </ul> | <ul> <li>IPL has purchased 100 MWs of Capacity for the two<br/>stated planning periods and continues to negotiate<br/>future needs</li> </ul>                                                                     |  |
| <ul> <li>Complete Distributed Automation and Advanced<br/>Metering Infrastructure Projects</li> </ul>                  | <ul> <li>Projects have been completed and are fully operational</li> </ul>                                                                                                                                        |  |



# **2014 Short Term Action Plan Generation Portfolio**

- Existing Generation
  - Refuel HSS Units 5-7 to natural gas in 2016
  - Retire EV Units 3-6 by April 16, 2016
  - Retrofit Petersburg Units to comply with MATS and NPDES regulations by the end of 2017
- New Generation
  - 671 MW Eagle Valley CCGT expected to be in-service by summer 2017
  - Additional generation is not needed to supply energy in the short term action plan



# 2014 Short Term Action Plan Demand Side Management

- Continue to offer cost-effective DSM
- 2015-2017 Action Plan has been filed and is pending IURC approval (Cause No. 44497)
- Possible programs from BlueIndy Case settlement are pending IURC approval (Cause No. 44478)
  - LED street lighting
  - Demand response study with electric vehicle batteries
  - Energy management pilot program using ISO 50001



# **2014 Short Term Action Plan Capacity Needs**

- Purchased 100 MW of capacity for MISO Planning Years 2015-2016 and 2016-2017
- Waiting for FERC Waiver order for remaining PY 15-16 requirements
- Evaluate purchase options for PY 16-17 capacity shortage
  - Bi-lateral agreements
  - MISO auction purchases

FERC – Federal Energy Regulatory Commission



# **2014 Short Term Action Plan Transmission and Distribution**

#### Transmission

- Install Static VAR system for voltage regulation & VAR support
- Improve import capability using the following:
  - Upgraded and new circuits (138 kV and 345 kV)
  - Upgraded autotransformers
  - New 345 kV breakers
  - New 138 kV breakers

#### Distribution

- Utilize & expand Smart Grid (SG) technology for operations
- Complete distributed solar integration (~67 MW on line as of Sept 2014 plus additional 30 MW planned)
- Utilize SG data for asset management planning

VAR – Volt-Ampere Reactive



# **2014 Short Term Action Plan** Research, Development, and Technology **Applications**

- IPL will continue exploring new technologies and resources that are safe, reliable, and efficient such as:
  - Energy Storage (Batteries)
  - Enhanced Combustion Turbine Output (Fogging)
  - Transportation Electrification
  - Leverage AMI Metering Technology

AMI – Advanced Metering Infrastructure



# **Questions?**



# **Next Steps**

Presented by Marty Rozelle, PhD



### **Next Steps**

October 17, 2014 IRP Public Advisory Meeting #3 Notes Will Be

Posted to the IPL IRP Website

By November 1, 2014 IPL to Submit IRP Document to the IURC

90 days after filing: Interested Party Deadline to Submit Comments to

~February 1, 2015 the IURC. See 170 IAC 4-7-2\* for details.

120 days after filing: IURC Director's Draft Report will be Published

~March 1, 2015

IAC - Indiana Administrative Code

#### IPL.IRP@aes.com

<sup>\*</sup>The draft proposed rule is available at: http://www.in.gov/iurc/2674.htm



# **Thank You!**