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REPLY COMMENTS OF DUKE ENERGY INDIANA REGARDING THE 
COMPANY’S 2015 INTEGRATED RESOURCE PLAN 

I. Introduction 

On November 2, 2015, Duke Energy Indiana submitted its 2015 Integrated Resource Plan 
(“IRP”).  Although the IURC’s proposed IRP rules are not yet final, Duke Energy Indiana has 
attempted to follow the process and requirements embodied in the draft rules.  The Company’s 
process included a four-meeting stakeholder engagement process in which the Company and 
participants discussed the methodologies and assumptions utilized in the IRP modeling and the 
results of that modeling prior to finalizing the IRP.  Duke Energy Indiana seriously considered 
and responded to stakeholder comments throughout the process, as documented in the IRP.  In 
accordance with the proposed IRP rules, additional comments have been received from the 
IURC’s Director of Research, Policy and Planning, Dr. Bradley Borum, and a group of 
stakeholders – the Citizens Action Coalition of Indiana, Earthjustice, Indiana Distributed Energy 
Alliance, Michael A. Mullett, the Sierra Club and Valley Watch.  Duke Energy Indiana is 
providing responses to both sets of comments in this document. 

II. Duke Energy Indiana’s responsive comments to Dr. Brad Borum’s May 20, 2016 
Draft Report 

Dr. Borum’s Draft Report sets forth specific issues and questions for Duke Energy Indiana to 
address.  

A. Risk Assessment 

Commission Questions – p. 5-7: 

1.  Are we correct that only three scenarios were fully optimized (page 111 and page 130 of the 
Technical appendix)?  

2.  Could the second three scenarios, where combined cycle units were substituted for 
combustion turbines, be characterized as sensitivities rather than scenarios [page 111]?  If our 
characterization is accurate, then in retrospect, would Duke agree the selection of just three true 
scenarios for optimization may not have been sufficient to robustly reflect the risks Duke 
identified?  

3. After the IRP modeling was done and Duke selected a preferred case (page 19) based on the 
carbon tax, which is different from the no carbon regulation case that might have normally been 
regarded as a base case (Business as Usual), were either of these scenarios initially optimized 
with some customer-owned resources such as combined heat and power, wind and solar 
renewables, and additional EE hardwired?  Was any further optimization conducted? 

4.  Given that the first combined cycle generating unit in the preferred plan would be constructed 
in the relatively near-term (4 to 5 years or so – see page 13), does Duke anticipate any changes 
or actions to influence the timing or operating characteristics of the combined cycle, such as 
more EE, more demand response, or encouraging more customer-owned resources? 
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5.  It appears that Duke may have unduly constrained the amount of EE prior to being analyzed 
in the System Optimizer.  If the perception is accurate, it raises the concern that Duke might not 
have been able to deploy additional cost-effective EE and demand response to influence the 
timing and size of future resources such as the potential for a combined cycle unit in the near 
term and in the longer term as Duke’s need for resources increases.  That is, it appears that 
Duke limited the amount of EE and demand response by assuming the composition and size of 
the future annual EE portfolio impacts were the same after 2018 (page 76-77 of the IRP).  Is this 
an accurate characterization? 

6.   If Duke believes our understanding of the treatment and characterization of EE and demand 
response are not accurate, we would welcome Duke’s response.  For future IRPs, and to be 
consistent with concerns raised by the Joint Commenters [on page 2], involving stakeholders in 
the development of scenarios, assumptions, review of data, methodological treatment of EE, and 
other resources might avoid misunderstandings and unnecessary controversy.  The director also 
agrees with Joint Commenters that involving stakeholders in more in-depth reviews of the results 
may improve confidence in the credibility of the results.  A better understanding by all also 
would benefit proceedings before the Commission. 

7.  The IRP States on page 9 that retirement analysis for the generation fleet was included in the 
overall optimization modeling.  What is meant by “included in the overall optimization 
modeling?”  How was this done?  The description of the portfolios on pages 137-139 indicates 
that many retirements of generation units were assumed rather than optimized by the model.  So, 
is this a contradiction? 

8.  On pages 104-105, Duke notes the assumed retirement date for Wabash River units 2-5 is 
2016.  Duke then goes on to say Unit 6 continues to be evaluated for natural gas conversion and 
that no decision has been made.  However, all the Scenarios considered by Duke on pages 137-
139 show Unit 6 retiring in 2016.  Question:  If no decision has yet been made regarding Unit 6, 
then why do all the scenarios show Unit 6 as retiring in 2016? 

Duke Energy Indiana Response to Risk Assessment Issues: 
 

1.  To respond to the concerns about optimization , it may be helpful to revisit how Duke 
Energy Indiana defines Scenarios and Portfolios for resource planning purposes: 

o Scenarios are plausible views of what the world might look like over the next 20 
years centered on Economic, Policy/Regulatory, Customer and Technology 
trends.  Key modeling inputs associated with each scenario are load growth, fuel 
and power prices, emission allowance prices, as well as the capital costs and 
operating characteristics of new resource options. 

o Portfolios are the mix of resources, both existing and new, required to serve 
customer energy needs 

 
Given these definitions, in the 2015 IRP, Duke Energy Indiana utilized seven different 
scenarios:  (1) No Carbon Regulation, (2) Carbon Tax, (3) Proposed Clean Power Plan, 
(4) Delayed Carbon Regulation, (5) Repealed Carbon Regulation, (6) Climate Change 
and (7) Increased Customer Choice.  These seven scenarios and a stakeholder portfolio 
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development exercise were used to produce nine portfolios:  (1) No Carbon Regulation 
Portfolio, (2) Carbon Tax Portfolio, (3) Proposed Clean Power Plan Portfolio, (4) No 
Carbon Regulation Portfolio with additional CC, (5) Carbon Tax Portfolio with additional 
CC, (6) Proposed Clean Power Plan Portfolio with additional CC, (7) Stakeholder 
Distributed Generation Portfolio, (8) Stakeholder Green Utility Portfolio, and (9) High 
Renewables Portfolio.     

The first three portfolios were the result of fully optimizing the model using the model 
inputs for the first three scenarios.  Full optimization included selection of new 
conventional and renewable generation, energy efficiency programs and retirement of 
existing assets.   

The second three portfolios substituted 448MW of combined cycle (“CC”) capacity for 
416MW of combustion turbine (“CT”) capacity.  This was done in order to examine the 
tradeoffs between cost, dependence on market purchases to serve customer energy needs 
and total CO2 emissions when selecting a CC resource versus a CT resource for meeting 
capacity needs. 

The two stakeholder defined portfolios were created using the results of the portfolio 
design exercise during our June 4, 2015 meeting.  As the mix of assets was specified by 
stakeholders, these portfolios could not be optimized by the capacity expansion model. 

The high renewables portfolio was fully optimized using a 25% lower cost for wind and 
solar technologies with the remaining inputs tied to the Carbon Tax Scenario. 

2. As discussed in the response to question 1, the first three portfolios were fully optimized 
as was the high renewables portfolio.  The two stakeholder specified portfolios and the 
three portfolios with the additional CC included were not fully optimized by the capacity 
expansion model.  We believe that testing the performance of the nine portfolios across 
all seven scenarios does reflect a robust risk analysis effort.  Additionally, multiple 
sensitivity runs were performed by varying individual model inputs within each scenario.  
In total, the 63 model runs of each scenario-portfolio pair as well as over 120 sensitivity 
runs provide an in depth analysis of the uncertainty Duke Energy Indiana faces in future 
resource decisions. 
 

3. The initial portfolios for both the Carbon Tax Scenario and No Carbon Regulation 
Scenario were fully optimized with regard to combined heat and power, wind and solar, 
and EE.  The portfolios with added combined cycle capacity took these optimized 
portfolios and simply substituted ½ of a combined cycle plant (448MW) for 2 
combustion turbines (416MW).  As the size and timing of resource substitution was 
closely maintained, further optimization was not performed.  As discussed in the IRP 
document and during the stakeholder meetings, the purpose of these modified portfolios 
was to observe the tradeoffs between total cost (PVRR) and the degree to which the 
portfolios depended on market purchases to serve customer load.  It is our view that a 
high dependence on market purchases to serve customer energy needs could represent a 
significant risk of price volatility to customers. 
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4. We continue to evaluate the key drivers behind the identified need for combined cycle 
capacity on an ongoing basis.  Many factors will influence the exact size and timing of 
any potential request to add this capacity including updated load forecasts, changes to DR 
and EE projections, renewable assumptions and new customer-owned resources.  
Retirement plans for existing resources is also of significance.  The net impact of all these 
factors will determine the size and timing of any proposed resource addition. 

5. The Duke Energy Indiana IRP model did not limit the amount of EE and demand 
response in any year of the analysis.  To lessen any confusion, the group of lowest cost 
EE bundles will be collectively referred to as the Base DSM Portfolio and the higher cost 
EE bundles will be collectively referred to as the Incremental DSM Portfolio.  The first 
bundle of the Base DSM Portfolio was used to seed the process, but it was not hardwired 
into the plan.  The IRP analysis was allowed to determine if the first bundle would be 
selected for inclusion (and it was in all portfolios).  Future bundles of the Base DSM 
Portfolio, which the model selected in all cases, were also based on a  combination of the 
2015 approved DSM portfolio, the 2016-18 proposed DSM portfolio and an expectation 
that the EE programs in 2019 would provide the same overall EE impacts as 2018.  
However, and this needs to be emphasized, the model was also presented with additional 
EE in the Incremental DSM Portfolio, which the model did not always choose.  The fact 
that the bundles in the Base DSM Portfolio were created using an assumption of 
continuing the same general composition and size of the 2018 DSM Portfolio did not in 
any way limit the IRP model’s ability to choose more EE if the Incremental DSM Bundle 
was a better alternative than other resources.   

Because these underlying DSM portfolios, 2015 and 2016-18, were required to be cost-
effective per the IRP rules, this proxy portfolio was evaluated for cost effectiveness, but 
this was not used as a means to reduce the ability of the IRP to select EE programs.  As 
explained in the IRP, this first Base Bundle was only a starting point for the creation of a 
set of additional EE bundles to be evaluated by the IRP.  In order to create a starting point 
for the IRP analysis, Duke Energy Indiana used the currently approved 2015 and the 
proposed 2016-18 portfolio as a proxy for a reasonable portfolio that was proven to be 
accepted in the marketplace and was feasible to implement.   However, this proxy 
portfolio was only one out of multiple bundles of EE from which the IRP process was 
allowed to select in the analytical process.  As stated, it was not hardwired into the plan.  
In addition, the use of a portfolio that was based on the proposed 2016-18 portfolio had 
no impact on limiting the amount of EE that was ultimately chosen by the IRP, because 
other incremental bundles were also available for selection by the IRP process.  By 
letting the IRP model determine if it would select the existing portfolio of proven and 
proposed programs, Duke Energy Indiana is able to confirm that the portfolio is cost-
effective within the context of the IRP.  This is information that would be important to 
the Company as a check on the current portfolio.  Then, once that portfolio is selected by 
the IRP process, as a starting point, it makes sense to provide additional incremental 
proposed bundles of EE that represent similar overall programs and technologies, but not 
specific measures.  Due to the uncertainty around future changes in technology, changes 
in efficiency baselines, etc., it is not reasonable to focus on any specific measure that 
might, or might not, be implemented as part of an incremental proposed bundle of EE.  
Rather, it is important to focus on the overall impact that a bundle of measures will have 



Duke Energy Indiana Reply to 2015 IRP Comments  
June 20, 2016 

 

5 
 

on future energy and demand forecasts.  These incremental proposed bundles were 
created and provided as additional EE options for the IRP to choose, or not.      

6. As stated above, Duke Energy Indiana does not believe that the understanding of the 
treatment and characterization of EE and demand response by the Joint Commenters is 
accurate.  The IRP modeling was not constrained from choosing additional EE resources, 
therefore, the objective of modeling EE as a resource on an equal basis with other 
resources was met in this IRP.  Duke agrees that additional stakeholder involvement in 
future IRP processes might improve the understanding of the assumptions and treatment 
of EE as a resource and this recommendation will be incorporated into the future IRP 
stakeholder process.   

7. For the 2015 IRP, the model runs were conducted to allow economic retirement of 
existing generating units if the software (System Optimizer) determined that to be the 
least cost option during optimization runs.  This was accomplished by including 
avoidable ongoing capital, fixed and variable O&M, and fuel costs.  The model was then 
allowed to continue to run the existing units or retire and replace them with generating 
resources it determined to have a lower total cost over the modeled study period.  The 
portfolio descriptions identifying the retirements “as assumed” is accurate for the oil-
fired CTs (Miami-Wabash and Connersville) and Gallagher Units 2 and 4.  The 
retirement date of the CTs was determined by previous regulatory settlements and the 
potential retirement of Gallagher Station was assumed through a separate retirement 
analysis conducted prior to IRP modeling relying on assumptions around future 
environmental rules and regulations.  For the remainder of the existing units, the 
description as “assumed” is an incorrect characterization as these retirements (or not) 
were determined through the model optimization process as described above. 

8. At the time of the 2015 IRP, no decision on the Wabash River Unit 6 natural gas 
conversion had been made.  The reason that all portfolios showed Unit 6 as retiring was 
because Unit 6 had to stop burning coal as of April 15, 2016 under the MATS rule 
(Wabash River received a one year extension from the MATS compliance date).  Given 
that Unit 6 could not continue burning coal and no decision had been made regarding a 
conversion to natural gas, it was shown as retired.  In addition, the natural gas conversion 
of Wabash River Unit 6 was a resource option in the 2015 modeling, but was not selected 
as part of an optimized portfolio.  

 
B. Constructing, Evaluation, and Integrating DSM Bundles 

Commission Comment – p. 7: 
 
It was not clear how Duke constructed the bundles of EE and demand response resources.  
Moreover, because many of the resource portfolios were predetermined, meaning they were not 
the result of optimization, it is not clear how the EE and demand response bundles would have 
been optimized to treat EE and demand response as resources on as comparable a basis as 
possible to any other resource. 
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Duke Energy Indiana Response: 
 
Simultaneous optimization did occur in the modeling because the IRP model was given the 
opportunity to select from multiple bundles of EE.  Said another way, the IRP model had the 
option to choose bundles of EE from the Base DSM Portfolio, which the modeling results show 
that the IRP model always selected in every scenario.  The IRP model was also given the option 
of choosing additional bundles from the Incremental DSM Portfolio and the modeling results 
show that, in general, the model did not choose additional EE in the first 10 years of the IRP; 
however, the model did choose incremental additional EE in the later years in most cases. 
Duke Energy Indiana does agree that the modeling process could potentially be modified in the 
next IRP process by offering the model additional granularity in the Incremental DSM Bundles, 
i.e. the ability to select additional EE at the Program level rather than the Portfolio level and that 
potential modification is discussed further below. 
 
Commission Comment – p. 8 

1. Duke’s explanation of the “Measure of Life” treatment of existing EE (“roll off”) seems 
to be an improvement in the 2015 IRP.  However, the write-up is not as detailed or as clear as it 
could be to allow the reader to better understand how the roll off effects are modeled and how 
this method impacts the load forecast and the resource analysis.  Additional clarity about how 
the statistically adjusted end-use (SAE) models (and other analysis) capture the roll off effects; 
how these effects are replaced with the naturally occurring EE, and how new EE is incorporated 
without the potential for over-estimating (double counting) or underestimating is necessary.  
(page 35). 

a.  A specific numerical example would help to clarify how Utility EE effects are being 
rolled off.  What is an accelerated benefit (page 35)?  How is the accelerated benefit 
calculated or estimated?  How is it determined when the energy reduction would have 
otherwise occurred? 

b. What are naturally occurring appliance efficiency trends that replace the rolled-off 
UEE benefits (page 35)?  How are these naturally occurring trends determined or 
developed?  Is it always the result of new appliance or equipment standards going 
into effect, or can there be another driver? 

c. Page 135 contains a section titled “Identify and Screen Resource Options for Future 
Consideration.”  However, the section includes this sentence:  “Projected impacts 
from both Core and Core Plus EE programs were included.”  What does this 
sentence mean?  How were these projected impacts included? 

Duke Energy Indiana Response: 
 
a. “Accelerated benefits” refer to energy usage reductions achieved as a result of the Utility 

Energy Efficiency (“UEE”) efforts.  Absent these efforts, the efficiency reductions would 
not have occurred for a period of years later as a result of natural increases in efficiency.  
Accelerated benefits are based on program activity estimates.  The naturally occurring 
energy reductions are based on the efficiencies forecast by the EIA for the West North 
Central region.  An example is charted below (labeled “Figure 1”) in which there is an 
assumed 100 MWh “savings” as a result of UEE programs.  Assuming an approximate 7 
year average measure life for this example, the UEE savings is “rolled off” in years 5 
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through 9, as the naturally occurring efficiencies are expected to “roll-on” by means of 
incorporating the naturally occurring efficiencies in the end use models (i.e., SAE and the 
load forecast).  

 
b. Natural trends are based on forecast data for end-use efficiency (and market penetration) 

as provided by the EIA. They reflect increasing efficiency trends. EIA is capturing these 
efficiency trends resulting from new motor standards, building codes, etc., and reflect the 
efficiencies in lighting, heating and cooling end uses, as well as “miscellaneous” end-uses 
that are meant to incorporate ever-changing technologies to the extent that they can be 
predicted.  As shown in the example below, naturally occurring efficiencies replace the 
“rolled-off” UEE efficiencies. 

 
c. After review, Duke Energy Indiana reasonably believes that the sentence noted above 

was inadvertently retained from a prior version of the IRP.  It was an error and impacts 
from “Core and Core Plus EE programs” were not included. 

 
Year 0 1 2 3 4 5 6 7 8 9 ∑ 
Accelerated 
UEE 
Benefit 

 <100>          

“Roll Off”   0 0 0 10 20 40 20 10 100 
Cumulative 
EIA 
Efficiency 
relative to 
trend 

     <10> <30> <70> <90> <100>  

Mwh effect 
on Forecast 

0 <50> <100> <100> <100> <100> <100> <100> <100> <100>  

Figure 1: Example of UEE achievement and roll-off of benefits in ensuing years, expressed in 
terms of impact to MWH forecast.  

Commission Comment – p. 8 

2. The IRP notes on page 45, for the period 2016-2018, that the portfolio reflects the EE 
programs that were filed for approval in Cause No. 43955-DSM3 for the period 2016-
2018 and were locked-in. 
a.  Would Duke agree that, because these programs were not yet approved, these EE 

programs were too speculative to be hardwired? 
b. If so, would Duke also agree that, as a result of hardwiring these programs, the 

models were prevented from objectively selecting and optimizing these EE programs 
in relation to other resources? 

c. Even if the objective was merely to see how much results changed, would it be useful 
to Duke and stakeholders to examine the optimized results? 
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Duke Energy Indiana Response: 

a. As noted above, the EE programs were not “locked-in”, but rather were permitted to be 
selected as part of an optimized model run.   

In order to create a portfolio of DSM measures to be evaluated in the IRP process, Duke 
Energy Indiana chose to include the proposed set of measures, along with the approved 
measures for 2015, as a starting point for the process; however, the inclusion of these 
measures was only intended to be an initial Base bundle of DSM to introduce into the process 
to be evaluated in the IRP models.   
 
The selection of this particular set of measures was based on a detailed understanding of the 
impacts and program costs created for the purpose of the Company’s DSM3 filing.  The use 
of the term “hardwired” or “locked-in” in this context is not accurate because this proposed 
portfolio represented a set of measures that the IRP process was allowed to evaluate on an 
equal basis with other resources.  Further, additional bundles of measures were also 
presented to the IRP process for evaluation.  The fact that the IRP process models chose the 
original proposed Base bundle in all cases indicates that this portfolio was an acceptable part 
of a cost effective resource portfolio.  To characterize it as being “hardwired” or “locked-in” 
would imply that this was the only DSM or other resource alternative presented to the IRP 
process for selection.  That was not the case. 
 
By letting the IRP model determine if it would select the existing portfolio of proven and 
proposed programs, Duke Energy Indiana is able to confirm that the current portfolio is cost-
effective within the context of the IRP.  Then, once that portfolio is selected by the IRP 
process, as a starting point, it makes sense to provide additional similar proposed Incremental 
bundles of EE; although, they were not identified as specific measures.  The Incremental 
bundles of EE were created and provided as additional EE options for the IRP to choose, or 
not, based on its optimization process. 
 
At some level, a Base DSM portfolio with a certain minimum size must be selected as a 
starting point DSM resource that the model could select or not select depending on 
economics, and Duke Energy Indiana chose to use the existing and proposed portfolios as 
that starting point.    

b. The concept of “optimized” results is confusing in this context.  If the intent of the IRP 
exercise was to allow the model to choose as much DSM as possible, then the Duke Energy 
Indiana approach accomplished that objective by using the concept of a Base DSM Portfolio 
(which happened to be the same as the existing and proposed portfolios) and an Incremental 
DSM Portfolio, each of which were available to be selected by the IRP assuming it was 
preferable to building new generation.   

 
c. Duke Energy Indiana does not object to the concept of sharing the modeling results with 

stakeholders as long as the process does not interfere with the timely completion of the final 
IRP. 
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Commission Comment – p. 9 

3. The director agrees with the Joint Commenters (page 2) that Duke should provide more 
detail on the assumptions used and the data supporting the EE effects on Duke’s load shapes.  
The written discussion of how the new DSM bundles were constructed, analyzed, and integrated 
into the IRPs (in a manner that is comparable to other resources) would benefit from more detail 
and clarity including, as the Joint Commenters observed, information as to how the screening 
process was conducted.  Also, it is awkward to have to go back and forth between the 
information contained in the IRP and the Technical Appendix to try to understand how the 
bundles were created. 

a.  For future IRPs and recognizing the difficulties, would Duke consider providing 
sufficient relevant information contained in the public version of the IRP to enable the 
reader to have a basic understanding and provide more detailed information in an 
appendix? 

b. Would Duke please provide additional detail on how Duke gets from Potential DSM, as 
reflected in a market potential study, to the DSM that is included in the IRP analysis? 

Duke Energy Indiana Response: 

a. Yes, Duke Energy Indiana appreciates this feedback and will include more detail in 
future IRPs 
 

b. The Economic Potential DSM from the Market Potential Study was used as an upper 
limit to the overall size of all of the Base and Incremental Bundles combined, which was 
not reached by any of the IRP model scenarios.  The methodology used by Duke Energy 
Indiana was not to start with the overall Technical Potential and work backwards, but 
rather to start with a well-known set of programs and build upwards.  By starting with a 
set of bundles in the Base DSM Portfolio, allowing the IRP to decide if it would choose 
those bundles and then also providing, at the same time, a set of Incremental DSM 
Bundles and allowing the IRP to determine if those Incremental DSM Bundles would be 
chosen, the IRP model was allowed to solve for an overall portfolio of DSM that was 
properly sized relative to other resources. 

Commission Comment – p. 9 

4. Because of the increased importance of DSM and in advance of the rulemaking, there is a 
need for added clarity. 
a.  What is the basis or rationale for using the assumption that Duke will be implementing 

the currently approved and proposed portfolio of EE programs throughout the IRP 
analysis period (on page 76)? 

b. How were the sub-portfolios developed?  There is no discussion of how this was done, 
such as the data, assumptions, costs, etc. 

c. What are the implications of this assumption? 
d. Did Duke consider alternative assumptions?  If yes, what were they, and why were they 

not used?  How was technological change considered in developing the sub-portfolios? 
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Duke Energy Indiana Response: 

a. As stated before, the assumption of continuing to implement the approved and proposed 
portfolios was simply a starting point for the purpose of providing a portfolio of DSM 
measures for the IRP to evaluate on the same basis as other resources.  Duke Energy 
Indiana fully expects that the composition of the programs and measures that are 
eventually implemented in the future will be different than what was included in the 
proposed portfolios; however, it would be difficult to impossible to attempt to project a 
more granular level or composition of individual DSM measures beyond the first 3-5 
years of the current filing period.  It is important to note that the goal of the modeling 
exercise should be to provide a set of DSM programs that are reasonable and properly 
valued rather than to attempt to project an exact set of expected DSM measures up to 
20 years in the future. 

 
b. Base DSM Portfolio.  The Base DSM sub-portfolios were created using the assumption 

that the Company would be implementing the same types of programs and measures as 
the currently approved portfolio of EE programs in 2015 and the portfolio of EE 
programs proposed in Cause 43955 DSM3 for the period of 2016-18.  For periods 
beyond 2018, the assumption was made that the composition and size of the future 
annual DSM portfolio impacts were similar to the 2018 portfolio.  For the analysis 
period, the 25 year projected Base DSM Portfolio was also divided into 5 sub-
portfolios, each with five years of new additional program participants.  The impacts 
from each of the sub-portfolios and the revenue requirements necessary to achieve 
those impacts were treated as stand-alone resources available to  be chosen in the IRP 
process.   

The reason for selecting a 5 year minimum period for each bundle was that, as a 
practical matter, DSM programs cannot be started and stopped on short notice and the 5 
year period is a logical period of time for designing and implementing a bundle of DSM 
programs. 

Incremental DSM Portfolio.  In order to create an Incremental DSM Portfolio for 
potential selection by the IRP, the programs in the Base DSM Portfolio were assumed 
to be augmented with additional participants through increased program expenditures to 
achieve additional KWh savings. 
 
The Incremental DSM sub-portfolios were created using the assumption that additional 
participation would be obtained for the same types of programs that exist in the Base 
DSM Portfolio, with the exception of programs that are already designed to reach the 
entire eligible population in the Base DSM sub-portfolio (e.g., My Home Energy 
Report program) or programs where the market is expected to become fully saturated in 
the Base DSM sub-portfolio (e.g., certain CFL lighting measures).  During the IRP 
analysis period, the Incremental DSM portfolio was divided into 5 sub-portfolios, each 
with 5 years of new additional program participants.  Impacts from each of the sub-
portfolios and the revenue requirements necessary to achieve those impacts were 
treated as stand-alone resources available to be chosen in the IRP process.  
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The Incremental DSM Portfolio was initially sized to include additional impacts equal 
to 50% of the Base DSM Portfolio for each program and/or measure with the exception 
of those listed above.  Analysis of this proposed “50% bigger” Incremental DSM 
Portfolio showed that the IRP models did not choose it in any of the scenarios.  
Therefore, another smaller, less expensive Incremental DSM Portfolio, structured in the 
same manner as the original Incremental DSM Bundles, was created to include 25% of 
the impacts of the Base DSM Portfolio with correspondingly lower revenue 
requirements, including lower expected cost growth rates in future years, for potential 
selection by the IRP process.  This smaller, less expensive Incremental DSM Bundle 
was chosen in some of the optimized portfolios in the later years of the IRP study 
period. 

 
Revenue Requirements.  In order to estimate the revenue requirements necessary to 
implement both the Base and Incremental DSM Portfolios, one issue that needed to be 
addressed was whether the program implementation costs are affected by the level of 
market penetration.  In other words, as more of the market potential is achieved through 
the implementation of the EE programs, one would expect that the unit cost to achieve 
the next increment would increase.  Information in the EE literature defining the 
relationship between program costs and market penetration is lacking. 
  
Recently, the Company obtained a research study1 authored by Dr. Richard Stevie of 
Integral Analytics that relies on state level data from the Energy Information 
Administration.  The study examined the relationship between spending on energy 
efficiency programs and the level of first year impacts from the implementation of 
energy efficiency programs as well as the cumulative level of impacts.  The study 
concluded that energy efficiency program costs per kWh increase with increases in 
cumulative achievement of market potential as measured by the percent of retail kWh 
sales.  Based upon this study, annual rates of growth in the unit Program Costs were 
estimated at 3.79% for the Base DSM Portfolio and 0.72% to be applied to a stepped up 
starting unit cost for the Incremental DSM Portfolio.  The stepped up starting unit cost 
for the Incremental DSM Portfolio reflects an expected higher cost to acquire additional 
program participants.   
 
In addition to the cost increases required to increase participation in existing programs, 
a significant component of current Base DSM Portfolio, the CFL lighting measures in 
the Portfolio, is expected to be fully depleted (meaning the market will be saturated) in 
the Base DSM Portfolio, and therefore not available in the Incremental DSM Portfolio.  
With the change in standards due to the Energy Independence and Security Act and the 
market transformation that has already occurred, and is expected to continue in the 
future, programs that incentivize the installation of CFL bulbs will no longer be viable 
at levels above the current Base DSM Portfolio and will not be offered in the 
Incremental DSM Portfolio.  The Company has already begun replacing CFL bulbs 
with LEDs in several programs; however, the incremental savings gained by moving 
from a CFL to an LED are much lower than moving from an incandescent to a CFL. 

                                                           
1 The research study is included as Attachment 1. 
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Because these CFL programs are very low cost and will no longer be available, the 
incremental difference in impacts required to reach higher levels of impacts set forth in 
the Incremental DSM Portfolio must be made up through increased participation in 
more expensive measures, also resulting in an increase in the average incremental cost 
per KWh at the portfolio level.  
 
Finally, the My Home Energy Report was designed to reach the entire available market 
in the Base DSM Portfolio and incremental participation and impacts are not projected 
to be available from these programs.  
 

c. By assuming a set of Base DSM Portfolio bundles that are based on current experience 
Duke Energy Indiana was able to better project the cost of these Base DSM Bundles 
into the future using the methods described above.  Further, by treating the Incremental 
DSM Bundles as an extension of these Base DSM Bundles, Duke Energy Indiana was 
better able to project the costs of implementing additional amounts of EE.  Using any 
other method would have introduced a level of uncertainty related to program design, 
cost and customer acceptance that could not be analytically justified. 

 
d. The initial approach that was considered by Duke Energy Indiana was to attempt to 

model each bundle as a stand-alone set of measures on an annual basis; however, this 
approach was not chosen based on further consideration of the practical implications of 
deploying a set of DSM programs in the marketplace.  For example, assume that the 
IRP analysis had chosen a particular DSM program in a given future year, say 2021.  
However, if that same analysis had determined that that same program was not selected 
for 2022 but then was again selected in 2023, the actual deployment of a DSM measure 
using that schedule would be highly impractical, because the program would have to be 
deployed in 2021, suspended in 2022, and then re-deployed in 2023.  This type of 
schedule would result in significant extra costs for starting and stopping a program as 
well as a poor customer experience when, simply due to the timing of their interest in 
participating, a customer could potentially be told that a program was no longer 
available, or that they would have to wait another few months or years to participate.   

 
As for technological changes, Duke Energy Indiana used a methodology that assumes a 
bundle of DSM measures at a particular cost per unit in some future year.  However, 
this methodology was never intended to imply that the exact same measures that are 
currently offered would always be exactly the same measures offered in the future.  By 
choosing to model a generic set of programs with a commitment to a certain level of 
impacts at a certain cost, this methodology inherently accommodates expected changes 
in technologies in the future. 
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Commission Comment – p. 9-10 

5. Duke states on page 77 that the incremental sub-portfolios were created using the 
assumption that additional participation would be obtained for the same programs that exist 
in the base portfolio but that there are exceptions. 
a. What were the exceptions? 
b. When exceptions did occur, what was done in the alternative? 

Duke Energy Indiana Response: 

a. As described above, certain programs in the Base DSM Portfolio (e.g., My Home Energy 
Report) are designed to reach all eligible customers; therefore, it is not reasonable to assume 
additional participation in this program in an Incremental DSM Portfolio. 

In addition, based on recent changes in the marketplace for residential lighting, the 
expectation is that the customer demand for CFLs will be met through the programs offered 
in the base DSM portfolio so it was not reasonable to assume additional market penetration 
in the Incremental DSM portfolio.  It should be pointed out that alternative residential 
lighting programs, LEDs, are included in both the Base and Incremental DSM Bundles. 
 

b.  No alternative actions are necessary.  The Incremental DSM Bundles were sized and priced 
based on a set of technologies that did not include these two programs.  The Incremental 
DSM bundles were introduced to the IRP models for potential selection on an equal basis to 
other resources. 

 
Commission Comment – p. 10 

6. Please describe the use and interrelationships among the “System Optimizer,” “Planning 
and Risk (PaR),” and “DSMore” in more detail (pages 126, Chapter 8). 
a. Are there incongruities in the modeling inputs (e.g., all 8,760 hours for the PaR versus 

usually significantly less than 8,760 hours for production costing models) that may affect 
the credibility of the results?  For example, without retaining the chronology of hour (or 
sub-hour) use during peak periods, the credibility of demand response is questionable. 

b. Please provide more detail on how DSMore calculates and utilizes avoided cost in the 
consideration of EE. 

Duke Energy Indiana Response: 

a. While the capacity expansion model (System Optimizer) does not utilize the full 8760 
hours, it does retain all peak hours each month within the subset of hours utilized for the 
portfolio optimization process.  The demand response resources provided as inputs are 
then deployed by the model according to their operating characteristics to reduce demand 
in the subset of hours analyzed.  Because all peak hours of the month are utilized in the 
analysis, the lack of chronology does not meaningfully reduce the credibility of the 
demand response resources’ performance in the model results. 
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b. The DSMore tool has been used in Indiana for many years by the majority of the Indiana 
utilities.  Please refer to Testimony provided by Roshena Ham in Cause 43955 – DSM3 
for a detailed explanation of the DSMore tool.  At a high level the tool requires the user 
to input specific information regarding the energy efficiency measure or program to be 
analyzed, as well as the program cost, avoided costs, and rate information of the utility.  
Using these inputs, the DSMore tool models the expected savings from a given DSM 
measure on an hourly basis and calculates a corresponding Avoided Cost Value on an 
hourly basis over the expected useful life of that measure.  For the purpose of calculating 
Cost Effectiveness, the NPV of those hourly Avoided Costs is compared to the program 
costs, participant costs and other costs as recommended by the Cost Effectiveness Tests 
described in the California Standard Practice Manual. 

In addition, DSMore outputs an hourly savings profile for each measure that is 
aggregated across all of the DSM programs and this hourly savings profile is provided to 
the Load Forecasting and IRP group for the purpose of modeling DSM savings on an 
equivalent basis to other resources. 
 

Commission Comment – p. 10 

7. Duke, like other Indiana utilities, is commended for surveying how other utilities construct 
there DSM bundles to treat them on a comparable basis to other resources. 
a.  What are the lessons learned that Duke might utilize to enhance its consideration of 

DSM? 
b. To what extent, if at all, was this information from other utilities’ processes incorporated 

into Duke’s IRP? 
c. Does Duke intend to make any changes in its DSM bundling process in future IRPs? 

Duke Energy Indiana Response: 

a. During the Stakeholder review and Contemporary Issues process, but too late for 
incorporation into the 2015 IRP modeling process, Duke Energy Indiana had discussions 
with other utilities about various techniques for Bundle construction that it intends to 
investigate for future implementation in the next IRP analysis, including modeling the 
Incremental DSM Bundles with more granularity related to individual Programs and 
potentially shortening the operating period of each Bundle (i.e. instead of assuming a 5 
year minimum period for offering programs within the base or incremental bundle). 
 

b. As mentioned above, the alternative ideas for creation and modeling of bundles were not 
discussed in detail until after the modeling process for the 2015 IRP was already well 
underway; therefore, it was not possible to fully investigate these alternative methods in 
time for the 2015 IRP.  However, discussions have occurred with other utilities at a high 
level about Bundle construction that will be considered in Duke Energy Indiana’s IRP 
process going forward. 
 

c. Yes.  As mentioned above, the most significant modification that Duke Energy Indiana 
intends to investigate is the concept of modeling the Incremental DSM Bundles at a 
higher level of granularity rather than assuming that the Incremental DSM Bundle should 
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include all programs currently being deployed in the Base DSM Bundle.  This technique 
will require significantly more modeling effort on the part of the IRP process but could 
allow for certain programs to be selected or rejected individually rather than assuming 
that an entire portfolio of programs must be selected. 
 
Duke Energy Indiana will also investigate using bundles that are 3 years in duration 
rather than 5 years to better align with the current rules in Indiana which require approval 
of a DSM portfolio every 3 years and because this modeling period would better align 
with the actual implementation and deployment of approved DSM programs. 

Commission Comment – p. 10 

8.  On page 155, Duke states, “Customer behavior may not align with economic incentives 
further complicating efforts to accurately model EE as a supply-side resource.” 
a. What does this sentence mean? 
b. How is this observation about customer behavior and economic incentives derived from 

the EE sensitivities? 

Duke Energy Indiana Response: 

a. Experience with the deployment of DSM programs has proven that, just because the 
installation of a particular DSM measure makes economic sense from the customer’s 
perspective, customers cannot always be counted on to adopt such measures.  This 
behavior is clearly acknowledged by the fact that Market Potential Studies include an 
Economic Potential, which means that a particular measure makes economic sense to 
adopt, but these same studies also include a Market Potential (sometimes called 
Achievable Potential) which clearly indicates that customers will not fully participate in 
100% of the measures identified in the Economic Potential. 

b. This observation of customer behavior is not derived from the EE sensitivities but from 
real world experience with DSM programs.  This observation of actual historical 
customer behavior was used as the basis for creating the EE sensitivities in the model.   
 
In modeling the EE sensitivities, we made the impact of each program larger or smaller 
for the same cost in PVRR terms.  This was an effort to model a higher or lower than 
expected adoption rate by customers.  Because the model chose the EE bundles 
economically, this sensitivity lead to an increase or decrease in bundle selection due to 
the increased or decreased cost effectiveness of each bundle due to the variation in 
assumed adoption rate. 

C. Avoided Costs 

Commission Comment – p. 11 
 
Without violating trade secrets and proprietary concerns, additional clarity would be helpful to 
detail how avoided costs were calculated and how the models used avoided costs in the IRP. 
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a.  If the avoided cost of the potential combined cycle affected the avoided costs, how did it 
change the cost effectiveness of DSM, demand response, and other resources? 

b. In general terms, how does Duke integrate avoided cost calculations in all its scenarios? 

Duke Energy Indiana Response: 

a. As stated previously, DSM programs were not screened out prior to submission to the 
modeling process based on cost effectiveness so any changes in the expected Avoided 
Costs from the IRP model were not applied to the DSM bundles prior to submitting them 
to the model for comparison to other resources. 

The models used for IRP analysis do not use avoided cost in the traditional sense as an 
input for the selection of resources; rather, avoided cost is a model output based on a 
specific scenario/portfolio combination.  The models iterate though multiple 
combinations and timing of resource additions and retirements, refining them until the 
lowest cost combination is determined which meets the reserve margin requirement and 
customer demand and energy needs.   
 
With regard to the addition of the combined cycle plant, the associated increase in PVRR 
of the portfolio would generally serve to make DSM, demand response and other 
resources more cost effective and more likely to be selected by the model for additional 
resource needs. 
 

b. As described in part a. of this response, explicit avoided cost calculations (in $/MWh) are 
not utilized as inputs to the planning models for resource screening or selection.  The 
iterative analysis done by the planning models provides a similar effect to using avoided 
costs to screen and select resources but using a significantly different methodology.   

D. Weather Normalization 

Commission Comment – p. 11 

a. Could Duke please explain the weather normalization process? 
b. Is our reading of the IRP correct that there are no longer any details on how the weather 

normalization is done in the IRP?  The math would also be helpful. 

Duke Energy Indiana Response: 

a. Normal weather is computed based on an arithmetic mean of the Heating Degree Days 
(“HDD’s”) and Cooling Degree Days (“CDD’s”) for the ten prior calendar years to when 
the forecast was done, (i.e., 2005-2014).  This calculation is performed on a monthly 
basis to determine the weather normal HDD’s and CDD’s for sales, and on a daily basis 
to determine the average daily temperature during the summer and winter peaks.  Duke 
Energy cares greatly about properly predicting this weather series through its weather 
normalization process; and will subsequently be transitioning to a thirty year period for 
calculating normal weather for future IRP submissions. 
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b. Yes, it is correct that in the 2013 Duke Energy Indiana IRP there was a small section that 
described the weather normalization process (p. 28) that was omitted in 2015.  While the 
weather normalization details were not included in the 2015 IRP, the process followed is 
described above.   
 
E. Derivation of Peak Demand Estimates 

Commission Comment – pp. 11-12 

1. It is not clear how Duke calculated the system peak demand.  The peak load methodology 
seems to have changed from separate summer and winter econometric models to some kind 
of hybrid econometric/end-use approach.  However, the write-up does not have enough 
details to make it clear what is being done.  The weighting of the month’s discussion is 
particularly confusing.  The peak models used to be estimated on days that could produce a 
peak: 90 degrees and above for summer and below a certain temperature for winter.  
However, now, Duke’s IRP just states that it is a “predetermined threshold” without 
specifying what that temperature is. 

a. Why? 
b. What threshold was used? 
c. Would Duke please provide additional information to explain how it developed its 

peak demand?  Again, a mathematical example would be helpful. 

Duke Energy Indiana Response: 

a. The change in peak estimation was made for two reasons:  first was to employ the 
statistically adjusted end-use (“SAE” or “end-use”) data to better link the peak 
methodology with the SAE approach for estimation of MWH sales forecasts.  Secondly, 
the old method also carried an implicit assumption of a constant load factor, which was 
problematic after a year of high energy sales combined with very weak summer peak 
results (i.e., 2014, in which a particularly cold winter resulted in substantial accumulated 
energy sales coincident with a mild summer and summer peak).  By incorporating 
changing energy and peak predictions through monthly data, the new method allows load 
factor to change throughout the sample, while also using more data points to estimate the 
relationship between weather and peak sales. 
 

b. The peak day in July—which is reported as the peak for the year—depends on an 
average daily temperature of approximately 85 degrees Fahrenheit. 
 

c. The new model for retail peak demand is estimated from monthly data on retail peak. 
Independent variables in this model are a measure of heating end uses, a measure of 
cooling end uses, and a measure of base load end uses (i.e., water heating, cooking, 
lighting, etc.)  The measures of heating and cooling end uses are built from appropriate 
SAE data for both residential- and commercial-class customers.  The measure of base 
load end uses combines some of residential and commercial sales with Industrial, OPA, 
and streetlight-class sales.  After this estimation, anticipated loads for contracted 
wholesale relationships can be added to produce a final system peak.  To display this with 
a mathematical example would be difficult and further confusing, so if the explanation 
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above leads to further clarifying questions, we welcome additional discussion regarding 
this issue.   

Commission Comment – p. 12 

2. Consistent with EIA’s forecasts, Duke’s forecast on page 39 shows peak demand growing 
more quickly than the rate of energy sales. 
a.  Does Duke anticipate a reexamination of the economic warrant for increased demand 

response, the value of peak demand reductions due to EE, and incentives for increased 
customer-owned generation to reduce Duke’s peak demand? 

b. Because Duke may add a combined cycle (CC) in the relatively near term, the cost of 
alternative resource solutions seems certain to increase in cost-effectiveness over the 20-
year planning horizon.  Does Duke agree? 

Duke Energy Indiana Response: 

a. Duke Energy Indiana considers demand response, peak demand reductions due to EE and 
customer owned generation as viable methods to reduce Duke Energy Indiana’s peak 
demand and all of these options are already considered as part of the IRP modeling 
process.   
 

b. The potential addition of a combined cycle plant in the near term would potentially serve 
to make DSM, demand response and other alternative resource solutions relatively more 
cost effective due to the increase in system PVRR from the additional capital costs.  This 
would generally increase the likelihood that the planning models would select additional 
alternative resources in the later years of the planning period.  

Commission Comment – pp. 12-13 

3. The high and low scenarios were developed using statistical bands at the 95% confidence 
level.  This represents a change from the methodology used in the 2013 IRP in which the first 
five years were based on high and low economics with statistical bands applied for the 
remainder of the forecast period. 
a. Why did this change occur? 
b. Intuitively, Duke must have concluded the risk bands better assessed risk.  However, it 

seems the previous approach is arguably better than purely statistical bands.  Would 
Duke please provide its rationale and perspective? 

Duke Energy Indiana Response: 

a. In adopting the ITRON modeling tool for the new end-use models, this statistical 
calculation was made readily available to determine the high and low bands.  At times, 
Duke Energy Indiana has used privately-prepared forecasts adjusting the macroeconomic 
variables to determine a high and low case, however much judgment was needed to 
produce these cases.  Often these scenarios are the issuer’s guess as to possible future 
economic trends, and how they may vary from their base case, but there is little guidance 
about the probability of the scenario.  Additionally, the scenarios may result in 
discrepancies in their ordering, for example a “low” scenario may demonstrate weakness 
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in the short-term, however as the growth reverts to a “normal”, the same scenario can 
show a higher long-term equilibrium level of activity.  Therefore, ranking the scenarios 
as “high” and “low” would depend upon articulating a time frame within the planning 
period in which this ranking is to be maintained.  Because of the judgment calls and the 
availability of providing a statistically high and low within the modeling tool, Duke 
Energy Indiana chose this newer method. 
 

b. Please see the response to subpart (a) above.   

F. Changes in Load Forecasting Methodology 

Commission Comment – p.13 
1. 

a. Because Duke’s projections of low load growth are not likely to be a significant driver of 
resource decisions, would it have been useful for Duke to have a broader risk band on 
load forecasting?  In other words, would a relatively high and low load growth scenario 
provide additional information about the potential ramifications of over- or under-
estimating load growth? 

b. Is our understanding correct that the high and low range of the load forecast was 
determined by applying the standard error of the FERC-class estimation models using a 
95% confidence interval? (page 39) 

c. Why did the change from the past practice of having forecast ranges based in part on 
macroeconomic drivers occur? 

d. Does the use of statistical bands assume the macroeconomic forecast is correct and all 
load forecast error is entirely statistical error?  In other words, could any errors be 
driven by inaccurate macroeconomic variable/driver forecasts? 

e. Is there any concern that reliance on statistical bands might obscure problems in the 
model specifications which, if they occur, would not be corrected? 

Duke Energy Indiana Response: 

a. Yes, Duke Energy Indiana will be exploring such high and low load growth scenarios or 
sensitivities when making resource decisions and in its next IRP. 
 

b. This understanding is correct (see response to “Derivation of Peak Demand Estimates” #3 
above). 
 

c. Please see response to “Derivation of Peak Demand Estimates” #3 above.  
 

d. Yes, the statistical approach is subject to both statistical error as well as input “errors” 
covering inaccurate macroeconomic variables. 
 

e. Duke Energy Indiana shares this concern. To address this, our internal procedures involve 
consideration of many different models and balancing across a variety of model statistics, 
as well as cross-validations to prevent spurious relationships from driving model 
conclusions. 



Duke Energy Indiana Reply to 2015 IRP Comments  
June 20, 2016 

 

20 
 

Commission Comment – pp. 13-14 

2.  The residential forecast.  Duke made several changes to the load forecast methodology 
[beginning on page 30 of the IRP] 
a.  Residential load is modeled with two equations – residential customers and use per 

customer (UPC) – and the results are then multiplied together to get the residential sales 
forecast.  Residential customers now appears to be an explanatory variable in the UPC 
model itself.  Is this accurate? 

b. Does the residential customer model no longer include real per capita income as a 
driver? 

c. The UPC model also includes a driver called “Residential Appliance Intensity.”  Is this 
what Duke refers to on page 31 of the IRP as the “combined impact of numerous other 
determinants tracked by the Energy Information Administration (EIA) that include the 
saturation and efficiency of air conditions, electric space heating, other appliances, the 
efficiency of those appliances?”  It is not completely clear how this information was 
included in the load forecast.  Would Duke please provide a discussion about the 
rationale for these changes? 

Duke Energy Indiana Response: 

a. Yes, it is accurate that residential customers are used as an explanatory variable in the 
Usage-Per-Customer model. 
 

b. Indiana population in households is the current economic driver in the residential 
customer model.  Real per capita income is not an economic driver in the current model. 
 

c. Yes.  The incorporation of Utility Energy Efficiency (UEE) and naturally occurring 
efficiencies as provided by EIA on an annual basis was discussed earlier under the 
“Construction, Evaluating, and Integrating DSM bundles”  To incorporate the EIA-
provided naturally occurring efficiencies, ITRON provides an input file which is 
informed by EIA’s Annual Energy update, which identifies the rate at which efficiencies 
are expected to be adopted.  This efficiency adoption is used in the end use models to 
recognize the expected future reductions to sales and load. 

Commission Comment – p. 14 

3. As part of continual improvements envisioned by the IRP rule and given the increased 
deployment of advanced metering infrastructure (AMI) and smart grid, Duke’s thoughts on 
how the information from these new systems would be integrated into various aspects of the 
IRP would be appreciated. 
a.  How does Duke anticipate utilizing the information to enhance load forecasts?  For 

example, will this be used to enhance load research? 
b. How does Duke anticipate using the information from AMI, in particular for 

consideration of EE, demand response, and customer-owned resources? 
c. What enhancements, if any, does Duke anticipate making to its future residential load 

forecasts? 
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Duke Energy Indiana Response: 

a. Yes, it will.  Load research currently studies a sample of the universe of data to inform 
load forecasting of load shapes by customer class.  With a full build out of the AMI 
meters, forecasting would be able to review load shapes from all customers, enabling 
better shapes, as well as the ability to look at subsets of customer data to determine if 
different customers react differently and should therefore be modeled separately.  Usage 
of the data to enhance estimates of load shapes will produce peak estimates that are 
subject to narrower confidence intervals. 
 

b. Duke Energy Indiana expects that information from AMI will facilitate the deployment of 
certain types of future DSM programs that are enabled by real-time knowledge of 
customer usage and, as that technology develops over time, those programs will be 
included in the portfolio of DSM to be modeled in the IRP. 
 

c. Our internal procedures involve consideration of many different models and balancing 
across a variety of model statistics, as well as cross-validations to prevent spurious 
relationships from driving model conclusions.  Specific to the Residential forecast, 
updated EIA data on efficiency and penetration of technologies will lead to constant 
improvement of forecasts. 

Commission Comment – pp. 14-15 

4. The industrial forecast has changed to include “billing day.”  In previous forecasts, 
“industrial sales” was the lone dependent variable. 
a. What is the rationale for the change? 
b. Why are “Regional manufacturing GDP,” “Electric price relative to other fuels,” and 

weather no longer drivers in the model?  (page 31) 
c. Is any significant part of the production process, for any industrial customer, sensitive to 

weather changes? 

Duke Energy Indiana Response: 

a. The model was estimated on a per-billing-day basis so as to tighten parameter estimates 
regarding the impact of economic drivers on sales.  Confidence intervals around the 
model coefficients improved substantially upon making this change. 
 

b. On page 31 of the Indiana IRP, we mention that the primary drivers to the industrial 
forecast are industrial production, employment, and the impact of electricity prices.  
“Regional Manufacturing GDP” was replaced by a measure of output called the Industrial 
Production Index.  Cross-validation of randomly removed sample observations showed 
that a model with these predictors forecast within sample sales with less error.  Therefore, 
an economic indicator (replacing regional manufacturing GDP), electric price and 
weather all drive the industrial sales model. 
 

c. When we examine how changes in weather affect changes in electric sales, the industrial 
class of customers is not as sensitive to weather changes as other classes of customers. 
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Commission Comment – p. 15 

5. Given the increasing importance of the industrial class to the load forecast to the IRP, 
Duke’s perspective would be appreciated. 
a. What steps does Duke intend to consider to improve the insights and credibility of the 

industrial forecast? 
b. Has Duke considered having its industrial representatives and other experts getting more 

detailed information? 

Duke Energy Indiana Response: 

a. Duke Energy Indiana continually looks to improve upon its load forecasting practices.  
With regard to the industrial class, we try to gain insight into the health of this class, and 
to specific customers through discussion with our large account representatives and 
listening to some of the customers’ quarterly earnings calls to gain insight as to their 
operational expectations. 
  

b. Yes – see above. 

Commission Comment – p. 15 

6. The commercial forecast now appears to be hybrid end-use model instead of the econometric 
model Duke used for many years.  This may be appropriate, but we would like to have Duke’s 
rationale for the changes. 
a. By way of examples, why is commercial employment no longer a driver? 
b. Saturations and efficiencies are scaled by square footage for different commercial 

activity sectors in the model; however, nothing is listed in the model equation.  Would 
Duke please explain? 

Duke Energy Indiana Response: 

a. For this particular model, cross-validation within sample showed that a model based on 
non-manufacturing GDP more accurately forecast sales than one based on commercial 
employment.  Employment is typically seen as a trailing economic indicator when 
compared with output-based measures, so this result was unsurprising. 
 

b. Surveys of commercial use categories (examples are “Lodging”, “Large Office”, 
“Warehouse”…) are combined with EIA data on end-use per square foot to produce an 
aggregate estimate of the amount of each end-use within the DEI service territory.  These 
historical estimates can be scaled through future years using the annual change-numbers 
in end-use penetration and efficiency from the EIA. 

Commission Comment – p. 15 

7. For future IRPs, recognizing that the commercial class is very diverse, what steps is Duke 
considering to improve the explanatory value of the commercial forecast.  For example: 
a. Has Duke considered grouping the commercial class into more homogeneous subgroups 

to improve the insights and credibility of the commercial forecasts? 
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b. Especially with the potential for higher avoided costs, would greater granularity in the 
information about the various types of customers provide information to better target 
demand response, EE, and customer-owned resources? 

Duke Energy Indiana Response: 

a. Duke Energy Indiana is not actively considering this and not aware of any major utilities 
who are having significant success through this type of endeavor.  It is Duke Energy 
Indiana’s opinion that the end-use methodology already gives substantial measurement of 
heterogeneous customer types.  The Company would, however, welcome Commission 
suggestions in this regard. 
 

b. While greater granularity would help in many planning facets, from a forecasting 
perspective greater granularity is typically achieved through employing lower-level data 
(which are subject to additional measurement error) and multiplying the number of 
parameter estimates which are then re-added.  Duke Energy Indiana looks at appropriate 
levels to forecast in order to balance these risks and rewards. 

Commission Comment –p. 16 

8. Regarding agricultural use, stakeholders expressed strong opposition to Duke’s use of North 
Carolina examples (e.g., poultry waste being used to produce fuel on page 97).  Stakeholders 
suggested that the IRP’s credibility would be enhanced if Indiana examples were used.   
a. Has Duke considered using Indiana-specific research to assess the potential? 
b. What Indiana data sources might be used to provide the Indiana-specific data? 

Duke Energy Indiana Response: 

a. The use of North Carolina based examples of agricultural power generation projects was 
due to the ready availability of known and verifiable data related to these projects 
because of a specific allocation for these types of projects within the North Carolina 
Renewable Portfolio Standard.  While Indiana-specific projects likely differ than the 
examples studied, it is unlikely that these projects would screen favorably in comparison 
to other renewable resources such as wind or solar.  We are open to utilizing Indiana-
based projects for the screening evaluation if valid and verifiable data can be obtained for 
analysis. 
 

b. Potential data sources for Indiana-specific projects would be current and historical data 
from existing projects operating within the state.  Identification of these candidate 
projects for evaluation is an area where ongoing stakeholder engagement would be of 
value to Duke Energy Indiana. 

Commission Comment – p. 16 

9. Governmental (OPA) model.  As with the industrial forecast, the OPA forecast has changed 
to “sales per billing day.”  In the past, OPA sales alone was used as the dependent variable. 
a. Why did this change occur? 
b. Does Duke plan to make any enhancements to the OPA? 
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Duke Energy Indiana Response: 

a. Duke Energy Indiana modified the model for MWh sales to OPA-class customers 
because recent trends in sales and government employment caused problems in the fit of 
the model once the most recent data were added.  The predictors in this model—both 
weather-related and economic-related—were recalculated to fit the billing schedule, 
which can often result in individual months differing by 1-2 days in length from their 
calendar lengths. 
 

b. Duke Energy Indiana maintains a consistent program of re-evaluating the forecasting 
models as part of its routine forecast cycle.  At this point, no known changes are being 
proposed, but as we evaluate and develop more current forecasts every year, further 
improvements may be identified and incorporated. 

Commission Comment – p. 16 

10. With the substantial change in the resource mix over the next 30 years, there is an 
expectation that Indiana utilities will give increased consideration to regional developments. 

a.  How does Duke anticipate working with the MISO on enhancements to its load 
forecasts and long-term resource planning in an effort to improve the credibility and, 
hopefully, have a positive effect on resource adequacy requirements and provide 
other benefits? 

Duke Energy Indiana Response: 
 
Over the past three years, MISO and OMS (Organization of MISO States) have conducted a 
resource adequacy survey of market participants in order to develop a MISO footprint-wide view 
of aggregate load forecasts, generation resource retirement plans and future construction, 
wholesale transactions and other considerations related to resource adequacy.  This survey is a 
forward looking 10 year view which will assist MISO in identifying potential capacity shortfalls 
on a zonal or footprint-wide basis.  Duke Energy Indiana will continue to participate in this 
survey and other resource adequacy initiatives to ensure adequate capacity resources are 
available to serve Duke Energy Indiana’s native load retail and wholesale obligations.  Our 
continued participation in these initiatives will also assist MISO and the IURC in ensuring 
resource adequacy for all of MISO Zone 6 (Indiana). 

III. Duke Energy Indiana’s responsive comments to stakeholder comments 

Stakeholder comments were received from the Citizens Action Coalition of Indiana, Earthjustice, 
Indiana Distributed Energy Alliance, Michael A. Mullett, Sierra Club, and Valley Watch 
(collectively, “Commenters”).   
 
Modeling of Renewables 
 
Contrary to Commenters’ concern, Duke Energy Indiana did not assume that solar costs would 
remain unchanged throughout the 20-year planning period.  The rapid decline in solar costs 
noted in the stakeholder comments has begun to slow and is generally projected to level off in 
future years.  To model this slowing decline, we held the price constant in real terms for several 
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years, which equals a 2.5% decrease per year in nominal terms based on the 2.5% general 
inflation rate assumed in our planning models.  After the period where solar cost was held 
constant in real terms, it was allowed to inflate at 2.5% similar to the cost of other mature 
technologies. 
 
The capacity factor applied to wind in the planning models was actually significantly higher than 
our historical capacity factors for the Benton County facility.  The first 300 MW was modeled at 
a 44% capacity factor, reflecting the potential availability of certain optimal siting locations.  The 
remaining wind resources were modeled at a 30% capacity factor which is in line with historical 
performance at the Benton County facility and other well-sited wind farms in Indiana. 
The extension of renewable energy tax credits was not certain or approved as of the date of 
filling the IRP, let alone during the time period when modeling occurred.  Once the extension 
was finalized, it was and will continue to be incorporated in planning model runs for internal 
planning purposes, as well as modeling to support any future regulatory filings. 
 
Modeling of Existing Units 
 
The stakeholder contention that Gallagher Units 2 and 4 will incur fixed and variable costs 
exceeding their market revenues is flawed in that the stakeholder analysis only takes into account 
projected energy market revenues.  The units will also generate significant capacity market 
revenues (or avoidance of significant replacement capacity costs) during their remaining years of 
operation.  Duke Energy Indiana does not agree that unit costs exceed the energy and capacity 
revenues.   
 
In addition, the results of the MISO capacity auction for planning year 2016/2017 generated a 
capacity value more than 5x higher than that assumed in prior analyses.  This indicates that 
Gallagher’s capacity and energy revenues will exceed the units’ costs by an even larger amount 
than the Company previously anticipated.  Capacity value is a significant revenue stream in the 
analysis of any generating resource and especially so for conventional, dispatchable resources 
and thus, should always be considered in evaluating the economics of a plant’s continued 
operation or retirement.   
 
The stakeholder concern about a constraint placed on System Optimizer was previously 
addressed in Duke Energy Indiana’s response to questions 1 and 2 of the Risk Analysis section 
of the Duke Energy Indiana Reply to 2015 IRP Comments.  Duke Energy Indiana had intended 
to make clear in the stakeholder meetings and the IRP document that the substitution of 
combined cycle capacity in 2020 for combustion turbine capacity was by design and done to 
examine market purchase mitigation, CO2 reduction and improved fuel diversity.  To accomplish 
this in the applicable portfolios (denoted by “with additional CC” in the portfolio title), Duke 
Energy Indiana placed a ‘MinAnnualUnits’ constraint of ‘1’ in 2020 for a 448MW combined 
cycle unit, as this would be how to create the intended portfolio when all other optimization 
parameters are unconstrained. 
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Assumed Reserve Margin 
 
MISO establishes its planning reserve margin requirements (PRMR) annually for the MISO 
Capacity Planning Year which runs from June 1 through the following May 31.  For the 2015 
IRP, we utilized the MISO PRMR of 7.1% applicable to Planning Year ‘15/’16.  The MISO 
PRMR is stated on a UCAP basis.  To convert this to an ICAP basis (which is used by Duke 
Energy Indiana’s resource planning models), the UCAP PRMR is utilized in the following 
formula as stated in footnote 8 on page 26 of the IRP: RMICAP = Coincidence Factor * 
[(PRMUCAP+1)/(1- DEI average XEFORd)]-1 = 98.74% * [(7.1% + 1)/(1 – 6.94%)] – 1 = 13.6% 
This calculation is explained on pages 26-27 of the IRP.  The following additional details may be 
helpful: 
 

1. The coincidence factor is determined by the ratio of the Duke Energy Indiana non-
coincident peak demand to Duke Energy Indiana’s MISO-coincident peak demand (Duke 
Energy Indiana peak at time of MISO peak).  
 

2. The MISO calculated Duke Energy Indiana average XEFORd for planning year ‘15/’16 is 
7.98% which would have resulted in a 14.9% RMICAP.  Because this Duke Energy 
Indiana average XEFORd changes annually and can be significantly influenced by 
performance anomalies at individual units, Duke Energy Indiana believes it is prudent to 
make adjustments to reflect the typical long term performance of generating units.  This 
adjustment resulted in the 6.94% XEFORd used to calculate the 13.6% RMICAP. 

 
Load Forecast 

In terms of sales, many macro-economic indicators are forecast to continue a robust recovery 
from the recession of 2007-2009.  The forecasting models, while incorporating sales reducing 
activities such as energy efficiencies, are still very reliant on third party economic forecasts.  By 
review of the data in table 3-B, growth rates from 2012 to 2015 have been at or above 1%.  That 
strength is expected to continue for a short timeframe (2015-2020 compounded average growth 
rate ~1.0%), and then revert to a slower more “normal” growth rate of around 0.5% as the 
economy closes the gap between potential GDP and current GDP. 
 
Regarding the peak, there are many similarities to the sales trends described above. However, 
there have been a string of summers where the weather at time of peak was weaker than normal, 
often implying substantial weather adjustments.  We assume a normal or average weather for 
purposes of forecasting peak (as is done for sales), so much of the near term growth in the 
forecast is the effect of returning to normal weather.  Again, after the short term growth, the 
longer term trend growth rate is close to 0.5%, very similar to the anticipated sales growth rates. 

Energy Efficiency: 

1. As explained in response the IURC Draft Report Comments, Duke Energy Indiana did 
not “pre-screen” for cost effectiveness 

a. As stated in the IRP, the first Base DSM Bundle (2015-19) was based on a 
combination of the 2015 approved portfolio, the 2016-18 proposed portfolio and 
an expectation that the EE programs in 2019 would provide the same overall EE 
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impacts as 2018.  Because these underlying portfolios, 2015 and 2016-18, were 
required to be cost-effective per the IRP rules, this proxy portfolio was evaluated 
for cost effectiveness but this was not used as a means to reduce the ability of the 
IRP to select EE programs.  This first Base DSM Bundle was only a starting point 
for the creation of a set of EE bundles to be evaluated by the IRP.   
 

b. There was no pre-screening performed to eliminate programs.  In fact, no cost-
effectiveness testing was performed on any of the other nine bundles prior to 
analyzing the bundles in the IRP process. 

 
2. Duke Energy Indiana did not “hardwire” only the 2016-18 DSM portfolio 

 
a. In order to create a starting point for the IRP analysis, Duke Energy Indiana used 

the currently approved 2015 DSM portfolio and the proposed 2016-18 DSM 
portfolio as a proxy for a reasonable portfolio that was proven to be accepted in 
the marketplace and was feasible to implement.   However, this proxy DSM 
portfolio was only one out of multiple bundles of EE that the IRP process was 
allowed to select in the analytical process.  It was not hardwired into the plan.  In 
addition, the use of a portfolio that was based on the 2016-18 DSM portfolio had 
no impact on limiting the amount of EE that was ultimately chosen by the IRP, 
because other incremental DSM bundles were also available for selection by the 
IRP process. 
 

b. By letting the IRP model determine if it would select the existing portfolio of 
proven and proposed programs, Duke Energy Indiana is able to confirm that the 
portfolio is cost-effective within the context of the IRP.  Then, once that portfolio 
is selected by the IRP process, as a starting point, it makes sense to provide 
additional similar proposed bundles of EE, not specific measures.  These were 
created and provided as additional EE options for the IRP to choose, or not.   

 
3. Duke Energy Indiana does not agree that DSM should be modeled from the Technical 

Potential down but rather from the current programs up. 
 

a. As explained above, Duke Energy Indiana did not constrain the EE bundles or cap 
the potential for the IRP process to select them. 
 

b. The Incremental DSM bundles allowed the opportunity for the IRP process to 
choose additional EE impacts if economically justified. 
 

c. While it may be desirable, in the opinion of Commenters, to start with the overall 
Technical Potential, it is not relevant to the IRP process because the IRP was 
given the opportunity, through the Incremental DSM Bundles, to choose 
additional EE over and above the Base DSM Bundles and it did not choose more 
EE in most scenarios.   
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IV. Conclusion 

Duke Energy Indiana’s IRP process, assumptions, and methodologies were reasonable, 
especially in light of the fact that the IRP is a planning document meant to provide insights into 
the future rather than acting as decisional document.  Duke Energy Indiana appreciates the 
opportunity to address comments provided by Dr. Borum and stakeholders to further the 
understanding of the Company’s 2015 IRP.   
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Energy Efficiency Program Costs, Program Size, and Market Penetration 

 

By 

Richard Stevie1 

 

1. Introduction 

Utility sponsored2 energy efficiency programs have been implemented in varying degrees 

for over 20 years across numerous customer segments.  Demand response programs, however, have 

been around for decades beginning with interruptible or off-peak type rate offerings that existed in 

the 1940’s and expanded to include cycling of end-use equipment and more sophisticated dynamic 

pricing structures.   

Besides the fact that the implementation of energy efficiency and demand response 

programs involves significant complexity in marketing, communication, and cost-effectiveness 

analysis, information on the costs to implement are very difficult to unravel due to the multi-year 

life of measures in the portfolio of programs.  The major source of historical data on costs and 

impacts is the Energy Information Administration (EIA) which is part of the Department of Energy.  

Using Form 861, the EIA has been collecting cost and load impact data, among other items, for 

energy efficiency and demand response efforts for all utility service areas in the United States since 

1990.   

This paper focuses only on the costs and load impacts associated with implementation of 

energy efficiency (EE) programs.  Investigation of demand response costs is reserved for future 

                                                           
1
 Richard Stevie is Vice President, Forecasting with Integral Analytics, Inc. located at 123 Walnut St. Suite 1600 

Cincinnati, OH 45202. E-mail:  Richard.stevie@integralanalytics.com.  Previous position was with Duke Energy as 
Chief Economist. 
2
 For purposes here, utility sponsored includes programs implemented by third parties, including third party 

administration efforts. 
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study.  The energy efficiency cost and impact information available on the EIA web site includes 

current year direct program spending, indirect spending (e.g., administrative costs not directly 

associated with a program), current year energy efficiency MWH and MW impacts, as well as 

cumulative MWH and MW impacts for each utility service area for the period over which the EIA has 

been collecting the data3.  However, the cost and impact data represent totals for the portfolio of 

energy efficiency programs.  Values at the individual program level are not available from the EIA 

data.  For the year 2012, the EIA data on direct plus incentive expenditures for the 50 states plus 

District of Columbia totaled $4.4 billion.  Through this level of spending, the current year retail 

energy impacts were 21,478,470 MWH which results in a first year4 cost of $0.205 per kWh.  

Furthermore, the cumulative5 EE load impacts reported total 138,524,613 MWH.  These on-going 

cumulative impacts represent the sum of the historical impacts achieved by the programs as 

reported to EIA. 

The issue here is the cost.  The value of $.205/kWh represents the total program spending 

per kWh in one year to gain a stream of kWh savings over the life of the installed measures.  If one 

knew the life of the measures being implemented as well as the relevant discount rate, one could 

calculate a levelized cost in order to compute a levelized cost per kWh, a commonly used metric for 

comparing costs across supply-side and demand-side options.  For example, for the $0.205/KWh 

first year costs cited above, if the discount rate were 8% and the measure life averaged to five years, 

the levelized cost per kWh converts to 5.1 cents/kWh.   

To benchmark current costs and project future costs, there are three issues with this 

analysis.  One, the discount rate and relevant measure life are unknown.  Changes to either or both 

                                                           
3
 EIA stated in the past that the cumulative impacts should represent total impacts since 1992.  However, this may 

change in the future as the EIA has indicated it wants to incorporate measure life into these load impact estimates.   
4
 First year cost is defined as the total program spending divided by the load impacts achieved in the first year of 

program implementation. 
5
 For clarity, cumulative load impacts, defined as Annual by the EIA, represents the sum of the incremental load 

impacts. 
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significantly impact the resulting cost estimate.  Two, the number represents an average.  The cost 

for a specific program can vary substantially from this average estimate.  And three, the level of 

historical penetration of EE in any one utility service area can be quite different from the average.  In 

some utility service areas, the cumulative impacts can be large, exceeding 10% of retail sales.  In 

other service areas, the cumulative impacts have been minor, less than 1%.  Using an average cost 

estimate from the EIA data ignores all of the utility specific details that could affect cost.  This raises 

a critical question.  As the cumulative market penetration of EE rises, does the cost to achieve 

further incremental energy efficiency impacts rise or fall or stay the same?  One typically expects the 

marketing cost to attract the early adopters to be somewhat elevated due to the cost of the startup.  

Then, as the program size expands, there can be some marketing economies of scale driving down 

the unit cost.  But, as the cumulative market penetration rises, the marketing cost per unit to attract 

additional interest could be expected to rise. 

This paper takes a new look at the EIA data in an effort to glean how the level of market 

penetration could affect unit implementation costs.  By examining how the cost of implementing EE 

programs changes across the states, one can begin to gain insight on the incremental cost of EE 

through analysis of areas where the market penetration is low versus where it is high. 

The following sections provide:  

 Brief review of past studies of energy efficiency that reported implementation costs, 

 Discussion of the modeling approach, 

 Review of issues related to the use of the EIA data, 

 Presentation of the modeling results, and  

 Summary of the results along with comments on applicability and implications for future 

research. 
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2. Past Studies 

A large volume of literature has been devoted to studies on energy efficiency and the costs 

associated with program implementation.  Study categories include those that summarize costs and 

impacts based on other reports (meta-studies) and those that conduct a bottom-up analysis of end-

use efficiency.  The studies provide estimates of the market potential and the levelized cost to 

implement energy efficiency.  The levelized cost estimates represent an average expected cost for 

implementing a program or measure or portfolio of programs. 

Generally, the focus of these studies has been on market size and cost in a macro 

perspective, though a few examine the costs associated with individual programs or measures.  As 

the spending on energy efficiency escalates due to energy efficiency portfolio standards (EERS) or 

potentially new EPA rules6 requiring energy efficiency impacts of 1.5% of retail sales each year, the 

cost-effectiveness of energy efficiency programs and measures could change as the market 

penetration of energy efficiency increases.  The research to-date has not provided any insight or 

guidance on this issue.  

The American Council for an Energy Efficient Economy (ACEEE) has produced numerous 

reports, studies, and meta-studies on energy efficiency market size and cost-effectiveness7.  The 

ACEEE reports tend to focus on the estimates of program costs per kWh.  In addition to estimating 

the size of the potential, ACEEE compiled information on unit cost estimates from reports by state 

utility commissions as well as individual utility reports.  While these reports provide a significant 

                                                           
6
 See Section 111d on energy efficiency in the U.S. EPA’s GHG Abatement Measures in Docket ID No. EPA-HQ-OAR-

2013-0602. 
7
 See Chittum (2011), Eldridge et. al. (2010), Elliott et. al. (2007), Friedrich et.al. (2009), Kushler (2004), Laitner et. 

al. (2012), Nadel and Herndon (2014), Neubauer et. al. (2009), Neubauer and Neal (2012), Neubauer and Elliott et. 
al. (2009), Shipley and Elliott (2006), and Takahashi and Nichols (2008). 
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volume of cost related information, none of the reports investigate or estimate how the unit costs 

might vary as the cumulative market penetration increases.   

The Electric Power Research Institute investigated the market potential for EE in two 

relatively recent reports8.  These reports also examined program cost-effectiveness as well as 

market size.  But again, neither of these reports provided insight on how the unit costs might vary as 

the cumulative market penetration increases. 

McKinsey & Company also produced a report9 on EE potential in 2009.  In addition to 

providing estimates of market potential, McKinsey presented a graphical view of the EE supply curve 

as shown in Figure 1.  The chart cleverly combines energy efficiency market potential for each end-

use with the average annualized cost to implement the efficiency improvement on a dollars per 

MMBTU basis.  The width of the bars represents the market potential while the height depicts the 

unit costs.   

                                                                 Figure 1 

 
                                                           
8
 See Electric Power Research Institute (2014) and Rohrmund et. al. (2008). 

9
 See McKinsey & Company (2007) and (2009).  See the Executive Summary page 6. 
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While the chart demonstrates that unit costs will increase as the market potential for the portfolio 

of programs is achieved, the report does not provide guidance on how the costs vary as the 

cumulative market penetration changes for each measure. 

Several other studies10 presented estimates of the market potential and/or the unit costs for 

energy efficiency.  However, these studies also do not examine how the unit costs may change as 

the cumulative market penetration increases.  

Four additional studies investigated the presence of economies of scale in the 

implementation of energy efficiency programs11.  Two of these12 essentially relied on the same 

research results.  Both studies reported declines in the unit costs with increases in incremental first 

year energy saving (as measured by percent of retail sales).  However, neither study considered the 

impact of cumulative market penetration in unit costs.  A very recent report13 published by 

Lawrence-Berkeley National Laboratory that found a slight decline in the levelized unit cost curve as 

participation increases for a specific program, appliance recycling.  However, the report indicates 

that this relationship was not statistically significant for any other program studied.  While the study 

claims that cost efficiency exists for this one program, the report does not indicate whether the unit 

cost estimates could have been influenced by the size of the different markets or whether or not 

unit costs decline as cumulative market penetration increases. 

The fourth study14 is the first identified to pose the question as to the existence of 

increasing returns to scale with diminishing marginal returns.    In other words, the researchers 

contend that the unit costs of implementing energy efficiency programs will decline with increases 

                                                           
10

 See Barbose et. al. (2009), Brown et. al. (2010), Cappers and Goldman (2009), Chandler and Brown (2009), 
Energy Center of Wisconsin (2009), Forefront Economics et. al. (2012), Forefront Economics and H. Gil Peach and 
Associates (2012), GDS Associates (2006), GDS Associates (2007), Itron, Inc. et. al. (2006), La Capra Associates, Inc. 
et. al. (2006), McKinsey & Company (2007), Nadel and Herndon (2014), Midwest Energy Alliance (2006), Western 
Governors’ Association (2006), Wilson (2009), and U.S. Department of Energy (2007). 
11

 See Billingsley et. al. (2014), Hurley et. al. (2008), Plunkett et. al. (2012), and Takahashi and Nichols (2008). 
12

 See reference number Hurley et. al. (2008) and Takahashi and Nichols (2008). 
13

 See Billingsley et. al. (2014). 
14

 See Plunkett et. al. (2012).  
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in scale (measured by percent of retail sales), but at some point unit costs for the first year savings 

will increase due to diminishing returns.  The researchers arrive at this conclusion based on an 

econometric analysis that suffers from over-fitting of the data and an application that leads to a bias 

in the coefficients15.  Further, this research only examined unit costs associated with incremental 

first year savings, not cumulative market penetration.  While one of the first studies, if not the first, 

to pose the right questions, the research falls short of providing any enlightenment on the impact of 

cumulative market penetration on unit costs. 

Finally, one study by Cicchetti16 conducted extensive analysis on the unit cost of energy 

efficiency.  Using the data compiled by the EIA, Cicchetti computed costs on a first year as well as a 

levelized basis.  Cicchetti conducted an extensive analysis of the costs, however, again there is no 

insight provided on the impact of market penetration on costs. 

In summary, this review of past studies on the costs of energy efficiency reveals that a 

significant void exists in our understanding of how the implementation costs of energy efficiency are 

affected by the level of market penetration.  Assume for a moment that the cost-effective economic 

market potential for a utility service area is 20% of retail sales and that the levelized unit cost is 

assumed to be 5 cents/kWh.  Then, the unanswered question is whether or not the 5 cents/kWh 

cost remains constant as the achieved percent of market potential rises from 10% ( of the 20% 

economic potential) to 50% to 100% (see Figure 2).  Can one reasonably assume that the cost to 

acquire the first 10% of market potential is the same as the cost to acquire the last 10% percent of 

the market?  Or, does the unit cost become higher or lower as the portion of the market potential 

achieved increases?  

                                                           
15

 The researchers apparently tried multiple mathematical forms until they found the one with the best fit.  In 
addition, besides using a model with specification issues, the researchers boosted the fit of the model by dropping 
the intercept term, an arbitrary approach that produces biases in coefficients. 
16

 See Cicchetti (2009). 
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The following sections of this study will provide an initial attempt to shed light on this issue. 

3. General Model Discussion 

The cost of energy efficiency implementation depends significantly on the type of program 

or measure being implemented.  The typical cost components include project administration, 

marketing, financial incentives paid to customers or marketing channels, and evaluation, 

measurement and verification.  Indirect / overhead costs are not included in this list.  Inclusion of 

indirect items could add another 30% to the total program costs17.   

The key drivers of annual cost are the number of measures or participants (program size) in 

a given year, which affects the volume of incentive payments and level of marketing.  In other 

words, program size and marketing represent the key factors that influence the level of spending in 

a given year.  Marketing costs will vary by type of program.  Some programs can be implemented 

through direct marketing (e.g., mail, email, door-to-door) while others through marketing channels 

                                                           
17 The program costs do not include incremental participant costs because the focus here is on the program 

administration costs which represent the costs recovered from ratepayers. 
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such as equipment distributors as well as retail suppliers.  The issue under investigation here is 

whether or not the level of marketing and hence program cost is affected by the program size and 

how much of the market has already been reached.  With regard to program size, marketing 

economies of scale could develop as the current period level of effort rises.  However, there is a 

limit to the program size due to measure life of the end-use.  For example, if a heat pump has a 20 

year life, not all of the heat-pumps in a utility’s service area become available for replacement at a 

given point in time.  Instead, in this example, one can expect that 5% (1/20) of the heat pumps will 

be replaced each year.  While there may be marketing cost efficiency gains in a given year, there is a 

natural limit based on the available equipment turnover18.  In addition, as market penetration 

increases, energy efficiency implementation costs are expected to rise at higher levels of 

penetration of the market.  The degree of impacts on program costs, from these factors, is a 

question to be empirically analyzed. 

In addition to historical market penetration, other drivers that could potentially affect the 

level of program costs are the level of electric rates and the health of the economy.  Regarding 

customer electric rates, the issue to be investigated here is the whether or not higher electric rates 

make it easier to market energy efficiency measures.  With higher electric rates, the customer bill 

savings would be greater, thus reducing the payback period and making the investment in energy 

efficiency more cost-effective for the participating customer.  With respect to the health of the 

economy, many economic measures could be used.  The issue at question is whether or not it is 

tougher to market energy efficiency when the economy is under stress, e.g., during a recession or its 

aftermath.  Since the Great Recession ended in 2009, economic growth has been lackluster and 

unemployment levels have remained elevated.   One could contend that higher unemployment 

rates make it harder to market energy efficiency because energy consumers do not have the spare 

                                                           
18

 The volume of replacements in this example could exceed 5% if the incentives encourage customers to perform 
early replacement before the end of the useful life.  However, these situations are not the typical expectation.  
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funds to invest in more efficient equipment.  Conversely, one could contend that marketing energy 

efficiency is easier because energy consumers need to find ways to cut costs.  Evidence of a 

relationship between program costs and electric rates and/or economic health can be explored 

empirically. 

4. General Model Development 

Assuming that energy efficiency program costs are affected by program size, historical 

market penetration, electric rates, and health of the economy, then a model can be specified as 

follows: 

 𝑃𝑟𝑜𝑔𝑟𝑎𝑚 𝐶𝑜𝑠𝑡 = 𝑓(𝑀𝑎𝑟𝑘𝑒𝑡 𝑆𝑖𝑧𝑒, 𝑀𝑎𝑟𝑘𝑒𝑡 𝑃𝑒𝑛𝑒𝑡𝑟𝑎𝑡𝑖𝑜𝑛, 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐 𝑅𝑎𝑡𝑒, 𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐 𝐻𝑒𝑎𝑙𝑡ℎ)      (1) 

To assess the impact of these factors on program cost first requires obtaining data that can facilitate 

the analysis.  As previously mentioned, the EIA has been collecting aggregate data for each utility 

jurisdiction on the impacts and costs associated with implementing energy efficiency.  A discussion 

of the data as well as its limitations will be provided in the next section.  However, the model 

variables need further specification for clarity prior to the actual data collection. 

To compile a dataset for analysis, the definition of the variables is critical.  For purposes of 

analysis, given the types of data available from the EIA data base, the following variable definitions 

will be employed: 

 

Dependent variable: 

Program cost includes the level of direct program spending (dollars) on energy efficiency 

programs only.  Indirect costs are not included.   

Independent variables: 
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Program size refers to the current year achievement of energy impacts as a percent of 

current year retail kWh sales.  As program size increases, one expects the cost to increase, though it 

may not be an equal proportional increase due to the potential for marketing efficiencies.  For 

example, the current year market size achieved may be 1% of retail sales in one geographic area, but 

in another geographic area it may be 2% of retail sales.  By studying the relative impact on program 

spending across multiple areas with different levels of achievement, one can begin to understand 

how costs change as the size of the program increases. 

Market penetration represents the cumulative achievement of energy efficiency sales as a 

percent of retail kWh sales.  For this variable, as the market penetration increases and the available 

market potential begins to be depleted, the cost to reach deeper into the market potential may 

increase due to the higher cost to acquire participants who may find that the energy efficiency 

program offers are less interesting or compelling relative to other demands on their time and 

financial resources.  An analysis of program spending between areas with lower market penetration 

versus higher market penetration may provide insights on how costs change relative to changes in 

market penetration. 

Electric rate reflects the cost of power ($/kWh) to customers in an area.  The electric rate 

drives the level of bill savings from implementation of the energy efficiency measures.  The higher 

the electric rate, the easier it is for a participant to cost-justify investment in energy efficiency 

because the bill savings generated by the energy efficiency are greater.  In this situation, higher 

electric rates should make it easier and less costly to market the energy efficiency programs.  

Including a measure of the average cost of electricity in a region should aid in understanding 

whether or not electric rates impact energy efficiency marketing. 

Health of the economy, the final independent variable under consideration here, can be 

measured in a number of different ways.  For example, the rates of growth in employment, per 
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capita disposable income, or gross national product are all reasonable candidates.  At the same 

time, the unemployment rate provides a good measure of overall economic health that is 

contemporaneous and reflects the state of consumer well-being as well as business confidence.  The 

interesting issue is whether or not a higher unemployment rate indicates greater difficulty funding 

energy efficiency or lower difficulty.  On the surface, higher unemployment rates would seem to 

imply that consumers have less cash to invest in energy efficiency, thus potentially raising marketing 

costs.  Conversely, it could also mean that there is more demand for energy efficiency as a way to 

reduce operating costs.  Analysis of this factor should also improve understanding of the drivers of 

program costs. 

In general form, Equation 1 can be re-written as an econometric model as follows: 

  𝑃𝐶 =  𝛼 +  𝛽1 ∙ 𝐶𝑃𝑅 +  𝛽2 ∙ 𝐶𝑃𝑇 +  𝛽3 ∙ 𝐸𝑃 +  𝛽4 ∙ 𝑈𝑅 +  𝜀             (2) 

where: 

PC   = Program cost or spending 

CPR  = Current kWh impacts as a percent of retail sales  

CPT  = Cumulative kWh impacts as a percent of retail sales 

EP  = Average retail price of electricity adjusted for inflation (real dollars) 

UR  = National unemployment rate 

𝜀  = Error term 

This represents the general form of the econometric model to be developed.  It is expected, on an a 

priori basis, that the signs of the coefficients should be: 𝛽1 > 0; 𝛽2 > 0; 𝛽3 < 0; and 𝛽4 > 𝑜𝑟 < 0. 
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The data for the model development will come from the EIA data base as well as national 

data on the unemployment rate and inflation. 

 

5. Model Data 

The Energy Information Administration’s (EIA) Form 861 has been utilized to collect a wealth 

of information on energy efficiency and demand response program spending and load impacts.  The 

EIA data for the years 1990 through 2012 may be found on the EIA website.  It contains information 

on a number of items for each utility service area including the following: 

 Direct spending on energy efficiency programs 

 Direct spending on load management (demand response or demand side management 

(DSM)) programs 

 Indirect program spending – costs not directly related to a specific program 

 Incremental energy efficiency MWH and MW – current year annualized load impacts 

 Annual energy efficiency MWH and MW – cumulative load impacts 

 Incremental demand response MWH and MW – current year annualized load impacts 

 Annual actual demand response MWH and MW – cumulative load impacts 

 Incremental potential19 demand response MWH and MW – cumulative load impacts 

 Annual potential demand response MWH and MW – cumulative load impacts 

 Information is also available on retail revenues and MWH sold to ultimate customers for 

each utility service area20 

                                                           
19

 Potential impacts reflect the expected load reductions under normal extreme weather conditions as opposed to 
the actual reductions achieved given the actual weather conditions. 
20

 Revenues and sales for utility service areas in deregulated markets require careful handling to ensure a complete 
picture of revenues and sales. 
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 Information is also available on state level retail revenues and MWH sold to ultimate 

customers on EIA Form 826 

Data on national inflation and unemployment may be found from numerous sources21. 

Unfortunately, the data collected through the use of EIA Form 861 has several limitations.  

These limitations include lack of information on the life of the measures in the portfolio of 

programs, consistency in reporting over time, consistency in treating effects such as free-riders, 

consistency in reporting program costs versus indirect costs, and impacts due to changes over time 

in the structure and instructions associated with Form EIA 861. 

With respect to measure life, Form EIA 861 seeks data on current year annualized 

incremental impacts.  However, the life expectancy of those impacts is unknown.  Impacts from 

some measures could last 20 years while other associated with behavioral type programs might last 

just one year and require constant reinforcement to maintain the impacts.  For this reason, the 

analysis conducted here looks at total annual spending relative to the first year impacts.  Trying to 

compute a levelized cost requires knowledge that is just not available.  While one might intuit an 

expected measure life for a portfolio, it is only a guess and could lead to misleading conclusions.  

In reviewing the EIA data, it is apparent that the reporting is not consistent.  For example, kWh could 

be reported instead of MWH or dollars instead of thousands of dollars as specified in the 

instructions to the form.   For this reason, this study will focus on the last three years of data for the 

years 2010 through 2012.  Use of the most recent data should provide the best quality of data from 

the data base. 

Regarding cost data, it is unclear what could be included in indirect costs.  The 

categorization of costs across utility service areas will certainly be different, especially with respect 

                                                           
21

 See the website Freelunch.com sponsored by Moody’s Analytics for general macroeconomic data including 
inflation and unemployment. 
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to treatment of overheads and utility financial incentives.  For purposes of this study, only the direct 

program costs including incentive payments to participants will be considered in the analysis. 

Finally, to facilitate the research, costs and impact data is aggregated to a state level22.  This 

provides a useful data set for the 50 states plus the District of Columbia. 

6. Model Development 

Using data for the period 2010 to 2012 opens the possibility of taking two approaches to the 

analysis.  In attempting to glean from the data how costs are affected by program size and market 

penetration, use of multiple approaches can help put a range around an issue afflicted with a lot of 

uncertainty.   

The first approach involves using all the state level data for the 2010 to 2012 time period.  

This involves estimating a cross-sectional / time-series model.  It is cross-sectional given use of data 

for the 50 states plus the District of Columbia.  It is time-series since it covers the period 2010 to 

2012.  To estimate this model over time with the cross-section requires the use of a fixed-effects 

panel data modeling approach that captures the underlying relationship between cost and the 

independent variables while letting the intercept terms capture the inherent underlying differences 

across the various geographies.  The model estimates a separate intercept term for each of the 51 

geographic areas while developing estimates for the independent variables that are the same for all 

the geographic areas.  The methodology is designed to uncover the fundamental relationship 

between cost and the independent variables while differences in the characteristics of each 

geographic area are captured in the intercept terms. 

Algebraically, Model 1, the fixed-effect panel data model, is described as follows: 

 𝑃𝐶𝑖𝑡 =  𝛼𝑖   +  𝛽1 ∙ 𝐶𝑃𝑅𝑖𝑡 +  𝛽2 ∙ 𝐶𝑃𝑇𝑖𝑡 +  𝛽3 ∙ 𝐸𝑃𝑖𝑡 +  𝛽4 ∙ 𝑈𝑅𝑡 +  𝜀𝑖𝑡)         (3) 

                                                           
22

 Future research will extend this analysis to an individual utility service area. 
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where: 

PCit  =  Program costs for geography i during year t 

i   =  Constant term for geography i (the fixed-effect) 

𝐶𝑃𝑅𝑖𝑡 = Current kWh impacts as percent of retail sales for geography i during year t 

𝐶𝑃𝑇𝑖𝑡 =            Cumulative kWh impacts as percent of retail sales for geography i during year t  

𝐸𝑃𝑖𝑡   =            Real electricity price for geography i during year t 

𝑈𝑅𝑡 =            National unemployment rate for year t 

ß  =  Estimated coefficients for ß1, ß2, ß3, and ß4 

    =  Error term for geography i during year t. 

The second approach involves using all the data for the most recent year, 201223.  This is a 

traditional cross-sectional approach.  Cross-sectional models are extremely useful because they 

provide a view into the long-run since the data contains multiple points along the continuum of 

experience.  This approach does not require the use of the fixed effects panel data approach.  

Instead, the model can be estimated using a traditional application of ordinary least squares 

regression.  The model to be estimated is the same as that previous presented by Equation 2. 

Algebraically, Model 2, the cross-sectional model, is described as follows: 

  𝑃𝐶𝑖 =  𝛼 +  𝛽1 ∙ 𝐶𝑃𝑅𝑖 +  𝛽2 ∙ 𝐶𝑃𝑇𝑖 +  𝛽3 ∙ 𝐸𝑃𝑖 +  𝜀                            (4) 

where: 

                                                           
23

 Data for Delaware and Louisiana were deleted since the EIA data indicates essentially zero cumulative impacts 
for the year 2012. 
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𝑃𝐶𝑖  = Program cost or spending for geography i 

𝐶𝑃𝑅𝑖 = Current kWh impacts as a percent of retail sales for geography i 

𝐶𝑃𝑇𝑖 = Cumulative kWh impacts as a percent of retail sales for geography i 

𝐸𝑃𝑖   = Real average retail price of electricity for geography i 

𝜀𝑖   = Error term for geography i 

The one difference from Equation 2 is that the national variable UR is removed since it would be the 

same in a given year for all geographic regions. 

7. Model Results 

Both models were estimated in logarithmic form using the data previously described.  The 

benefit of estimating the model in logarithmic form is that the coefficients represent elasticities that 

enable one to compute how a percent change in the independent variable results in a coefficient 

adjusted percent change in the level of program costs.  Table 1 below summarizes the results of the 

statistical analysis for both Model 1 and Model 2. 

Attachment 1



 

18 
 

 

 

For Model 1, the results indicate that strong statistical relationships exist between the level 

of program cost and program size, market penetration, and real electric price.  All three 

independent variables are statistically significant using a one-tail test given the a priori view of the 

expected sign for the variables.  Only the unemployment rate variable was not statistically 

significant. 

For Model 2, the results indicate that strong statistical relationships exist between the level 

of program cost and market penetration, and real electric price.  The market penetration variable is 

strongly significant, while the electric price variable is weakly significant.  The program size variable 

is not significant in this model. 

These results provide a first insight into the relationship between program costs and 

program size and market penetration.  While the data is aggregate, these results do indicate how 

these costs can be expected to change.  At this point in time, no other study has generated these 

types of results and insights. 
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The following section provides an example of how the results can be used to forecast 

program costs as market penetration increases. 

8. Model Application 

Often under an Energy Efficiency Resource Standard, there is a requirement to achieve X% 

cumulative load reduction by a specific year or to reduce load 1% per year for some number of 

years.  Sometimes these values are based upon the results of a market potential study.  As an 

example, let’s assume a market potential study concluded that the economic potential over a 20 

year period was 20%, or 1% per year.  Then, the question becomes: how does the program cost 

change as one begins to achieve impacts that approach the economic potential, keeping in mind 

that economic potential implies that 100% of the cost-effective measures are installed?   

Given both econometric models previously presented, simulations of the cost impacts can be 

performed under each model to provide a range on how costs could change as market penetration 

increases.  Another factor to consider is the achievable potential.  Data in the EPRI market potential 

studies24 indicate that approximately 50% of the economic potential is realistically achievable and 

that 75% of the economic potential would represent a high achievable potential.  Tables 2 and 3 

provide examples of how the coefficients from each model can be used to estimate how costs 

increase as the market penetration increases.  Given an economic market potential of 20% of retail 

sales or 1% per year for 20 years, the achievable potential would be 10% or 0.5% per year, and the 

high potential would be 15% or .75% per year.  The tables depict how average costs change when 

the market penetration of energy efficiency increases from 50% to 75%.

 

                                                           
24

 This applies in the 10 to 20 year time frame.  See reference numbers 24 and 25. 
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Under Model 1, the average cost increases from $0.249/kWh to $0.308/kWh or 24%.  Under Model 

2, the cost increases from $0.401/kWh to $0.753/kWh or 88%.  The key point here is not the size of 

the unit cost numbers, but the percent increase.  These values produce a range of average cost 

increases of 24% to 88% as market penetration increases.  This is a wide range, but is based on 

actual program cost experience.  It provides guidance on the expectation that as the market 

penetration of energy efficiency increases, the unit cost increases.   

9. Implications for Future Research 

From the review of other studies, it is apparent that little to no evidence exists on the 

relationship between program costs, program size, and market penetration.  But now, the research 

conducted in this study provides an initial insight into this relationship.  While the range of 

estimated impacts on cost is rather wide, selecting a market penetration driven percent increase in 

energy efficiency costs in the middle of the range seems appropriate.  This percent increase would 

be applied in estimating costs when the program impacts are expected to exceed the achievable 

potential.  At the same time, efforts to improve targeted marketing can help with cost management.   

It should be obvious that further research in this area is warranted.  As mentioned, this study is the 

first to investigate how costs can rise with increases in program size and market penetration.  The 

findings point to the existence of cost efficiencies with respect to program size, but rising costs as 

market penetration increases.  The results developed here are at a very high level.  The potential for 

greater insights may exist by monitoring individual program costs over time.  Future research along 

that direction seems appropriate.  The results could vary significantly from one program to the next.   

Analysis could also be conducted at the portfolio level for individual utility energy efficiency efforts 

or a cross-section of individual utilities.  Only through further research can the range be narrowed 

and/or confirmed. 
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