Planning Models Used by MISO

2018 IRP Contemporary Issues Technical Conference April 24, 2018

MISO's planning tools can be grouped into two study factions

No single tool or process can be used to find complete planning solutions without input from other tools and processes

• Each tool provides different information that is required for a comprehensive planning approach

Transmission and Resource Reliability Assessments

What is Reliability Planning?

- Transmission Planning -Reliability assessment and coordination for Transmission Planners within MISO and across the Planning Coordinators
- Resource Reliability Probabilistic assessment of resource adequacy within the footprint

How is it applied?

- NERC Transmission
 Planning
- Generation Retirement or Suspension Studies
- Access Planning
 - Transmission Service Requests
 - Generator Interconnection
- Loss of Load Expectation

Key Tools

• PSS/E

- TARA
- POM
- TSAT
- VSAT
- SERVM

Analysis	Software Tool	Use
Steady-State	PSS/E, TARA, POM	Reliability
Dynamic Stability	PSS/E, TSAT	Reliability
Voltage Stability	PSS/E, VSAT	Reliability, Resource Adequacy
Transfer Analysis	TARA	Reliability, Resource Adequacy
Probabilistic	SERVM	Resource Adequacy

Analysis	Software Tool	Use
Steady-State	PSS/E, TARA, POM	Reliability
Dynamic Stability	PSS/E, TSAT	Reliability
Voltage Stability	PSS/E, VSAT	Reliability, Resource Adequacy
Transfer Analysis	TARA	Reliability, Resource Adequacy
Probabilistic	SERVM	Resource Adequacy

What is the question being answered?

• Substation voltage and thermal loading of circuits under system intact and contingent operations

Time Frame?

• Multiple single hour snapshots representing typical loading levels in a year

Analysis	Software Tool	Use	
Steady-State	PSS/E, TARA, POM	Reliability	
Dynamic Stability	PSS/E, TSAT	Reliability	
Voltage Stability	PSS/E, VSAT	Reliability, Resource Adequacy	
Transfer Analysis	TARA	Reliability, Resource Adequacy	
Probabilistic	SERVM	Resource Adequacy	

What is the question being answered?

• Transient stability, which is the ability to reach a steady state after a system change (fault, loss of generator, etc.)

Time Frame?

• Analyzes up to 30 seconds of system reaction after a change of state occurs in multiple single hour snapshots

Analysis	Software Tool	Use
Steady-State	PSS/E, TARA, POM	Reliability
Dynamic Stability	PSS/E, TSAT	Reliability
Voltage Stability	PSS/E, VSAT	Reliability, Resource Adequacy
Transfer Analysis	TARA	Reliability, Resource Adequacy
Probabilistic	SERVM	Resource Adequacy

What is the question being answered?

• Ability of the system to maintain compliant voltage requirements while transferring power from one area of the system to another

Time Frame?

• Generally one single hour snapshot representing peak loading

Analysis	Software Tool	Use
Steady-State	PSS/E, TARA, POM	Reliability
Dynamic Stability	PSS/E, TSAT	Reliability
Voltage Stability	PSS/E, VSAT	Reliability, Resource Adequacy
Transfer Analysis	TARA	Reliability, Resource Adequacy
Probabilistic	SERVM	Resource Adequacy

What is the question being answered?

• Identify the limits of transferring power between areas/subsystems.

Time Frame?

• Multiple single hour snapshots representing typical loading levels in a year

Analysis	Software Tool	Use	
Steady-State	PSS/E, TARA, POM	Reliability	
Dynamic Stability	PSS/E, TSAT	Reliability	
Voltage Stability	PSS/E, VSAT	Reliability, Resource Adequacy	
Transfer Analysis	TARA	Reliability, Resource Adequacy	
Probabilistic	SERVM	Resource Adequacy	

What is the question being answered?

• Determine Loss of Load Expectation in support of seasonal and long term resource assessments

Time Frame?

• 8,760 hour view for next year, one year within 2-5 years out, and one year within 6-10 out

MISO uses a suite of tools in its reliability analyses

PSS/E	TARA	РОМ	VSAT	TSAT	SERVM
 Power System case development Useful for understanding and visualizing the power flow 	 Used to run bulk of DPP analysis Used for Import and Export limits associated with Resource Adequacy evaluation 	 Useful in evaluation of double contingency events Useful in evaluating Optimal Power Flow mitigation strategies 	• Used for Import and Export limits associated with Resource Adequacy evaluation	• Utilizes more details about the bulk system to track system transient stability issues	• Monte-Carlo analysis to determine risk metrics around generation fleet ability to meet demand requirements
					1
10	Used to meet reference	equirements gover deral planning crit	ned by local and eria	?	Supports States in esource adequacy planning

Economic and Policy Assessments

What is Economic and Policy Planning?

- Economic Planning Market congestion assessment and coordination for Transmission Planners within MISO and across the Planning Coordinators
- Policy Planning Market and bulk system assessment focusing on impacts of broad federal or state initiatives

How is it applied?

- Market Congestion Planning Studies
- Targeted studies like
 - State RPS integration
 - EPA rules around emissions
 - Impacts of intermittent energy resources on the grid

Key Tools

- EGEAS
- PROMOD
- PLEXOS

MISO's economic and policy planning processes leverage the generation production costs

Analysis	Software Tool	Use
Regional Resource Forecasting	EGEAS	Economic Public Policy
Detailed Production Cost	PROMOD, PLEXOS	Economic Public Policy

MISO's economic and policy planning processes leverage the generation production costs

Analysis	Software Tool	Use
Regional Resource Forecasting	EGEAS	Economic Public Policy
Detailed Production Cost	PROMOD, PLEXUS	Economic Public Policy

What is the question being answered?

• Resource fleet projections under various economic and policy driven scenarios

Time Frame?

• Forecasts can be created for 1 to 30 years representing every hour of each year

MISO's economic and policy planning processes leverage the generation production costs

Analysis	Software Tool	Use
Regional Resource	EGEAS	Economic Public Policy
Detailed Production Cost	PROMOD, PLEXOS	Economic Public Policy

What is the question being answered?

• Fleet and bulk grid operations under various economic and policy driven scenarios

Time Frame?

• Up to 1 year of hourly production simulation

MISO uses three tools in its economic planning processes

EGEAS

- Provides resource forecasts under specified assumptions
- Objective function is to maintain resource adequacy at the lowest total cost of expansion (capacity and energy costs)
- Can be constrained for emissions and RPS requirements
- Does not include transmission

PROMOD

- Hourly production simulation
- Objective function is least cost dispatch constrained by transmission system capabilities
- Robust capability in energy market simulation
- Represents full transmission system capabilities

PLEXOS

- Can produce both hourly and sub-hourly production simulations
- Objective function is least cost dispatch constrained by transmission system capabilities
- Robust capability to constrain optimization by emissions or other dispatch requirements
- Represents full transmission system capabilities

Generally used in research to support other planning processes

Used in support of detailed production cost modeling

Used to meet requirements established in MISO's planning tariff

The models used in the planning processes are only as good as the data inputs, so we spend a lot of time on data

In summary, to get to good planning outcomes, MISO relies on a suite of tools that leverage a significant amount of data

Inputs

- Demand and Energy
- Resource Mix
- Location of Load and Resources
- Transmission System
- Policy
- Stakeholder Review

Planning Models (Tool)

- Probabilistic (SERVM)
- Resources Expansion (EGEAS)
- Production Cost (PROMOD and PLEXOS)
- Reliability (PSS/E, TARA, POM, TSAT, VSAT)

Outputs

- Identification of solutions that provide:
 - Reliability,
 - Economic, and
 - Policy benefits

