Reliability, Resilience and Stability Metric

AES Indiana 2022 IRP Report Attachment 1-2 Page 317 of 647

Risk & Opportunity Metrics

		Current Trends - Reference Case	No E	nvironmental Action	Aggressive Environmental	Decarbonzied Economy	
	No Early Retirement						
Generation Strategies	Pete Refuel to 100% Gas (est. 2025)			Rur	n the Optin	ptimized	
	One Pete Unit Retires (2026)			Reference Case			
	Both Pete Units Retire (2026 & 2028)			Mixes	through t	he other	
	Both Pete Units Retire and Replaced with Wind, Solar & Storage (2026 & 2028)				Scenario	S	
	Encompass Optimization without predefined Strategy						

AES Indiana 2022 IRP Report Attachment 1-2 Page 318 of 647

Metrics

For each strategy, the analysis will capture:

- → Risk potential using the highest scenario PVRR for each strategy
- → Opportunity potential using the lowest scenario PVRR for each strategy

Risk & Opportunity Metrics

AES Indiana 2022 IRP Report Attachment 1-2 Page 319 of 647

Risk & Opportunity Metrics

70

AES Indiana 2022 IRP Report Attachment 1-2 Page 320 of 647

60

Market Exposure Metric

To estimate the risk for each strategy, AES Indiana will calculate the average of the absolute value of the annual sales and purchases and sum those over the 20-yr period.

Economic Impact Metrics

AES Indiana 2022 IRP Report Attachment 1-2 Page 321 of 647

IRP Scorecard for Portfolio Evaluation

	Affordability	Environmental Sustainability			Reliability, Stability & Resiliency	Risk & Opportunity					Economic Impact			
	20-yr PVRR	CO ₂ Emissions	SO₂ Emissions	NO _x Emissions	Other Emissions	Reliability Score	Environment al Policy Opportunity	Environment al Policy Risk	Cost Opportunity	Cost Risk	Market Exposure	Renewable Capital Cost Risk	Employees (+/-)	Property Taxes
	Present Value of Revenue Requirements	Total portfolio CO2 Emissions	Total portfolio SO2 Emissions	Total portfolio NOx Emissions	Water Use & Coal Ash	Composite score from Reliability Analysis	Lowest PVRR across policy scenarios	Highest PVRR across policy scenarios	Mean - P5	P95 - Mean	20-year avg sales + purchases	TBD	Total # of AES IN generation employees	Total amount of property tax paid from AES IN assets
1)														
2)					ulatic		foro	ooh		ina	motr			
3)				alcu	nauc)115		acri	5001	IIIG	meu			
4)			h	o in	ماريط			mnl	oto t	ho C	oorc	nonra		
5)			D	еш	CIUU			IIIPI				scar		
6)														

Strategies \rightarrow

- → 1. No Early Retirement
- \rightarrow 2. Pete Refuel to 100% Natural Gas (est. 2025)
- \rightarrow 3. One Pete Unit Retires in 2026
- \rightarrow 4. Both Pete Units Retire in 2026 & 2028
- → 5. "Clean Energy Strategy" Both Pete Units Retire and replaced with Renewables in 2026 & 2028
- → 6. Encompass Optimization without Predefined Strategy 2022 IRP

A Preferred Resource Portfolio will be selected after evaluation of the Scorecard results

AES Indiana 2022 IRP Report Attachment 1-2 Page 322 of 647

AES Indiana Distribution System Planning

AES Indiana 2022 IRP Report Attachment 1-2 Page 323 of 647

AES Indiana 2022 IRP Report Attachment 1-2 Page 324 of 647

Building the AES of the Future

AES Indiana 2022 IRP Report Attachment 1-2 Page 325 of 647

An interactive two-way intelligent platform

Electric Vehicle

Wind Power Plant

Smart Grid Vision

AES Indiana 2022 IRP Report Attachment 1-2 Page 326 of 647

Engage with our customers through a more personalized experience and build a trusted

Build a distribution system that attracts new customers through innovative clean energy

Transform to a customer-focused, data-driven culture that empowers our people to reimaging

Transform our energy system and services to improve resiliency and seamlessly integrate renewables, distributed generation, energy storage and electrification technologies.

Operations Future State Vision

DER Dispatch DER Forecast DER Monitoring and Control DER Market Interface DER Scheduling DER Estimation Storm Management Outage Analysis Call Management Planned Outage Management Outage Reporting Crew Management

Distribution Network Operating Model

Network Model

 \leftrightarrow

TopologyGraphicalProcessingUser Interface

DER Modeling

Operations Technology Platform

SCADA, Alarming, Trending, Visualization, Historian, Load Shed, Study Mode

Real-Time/DER Communication

Wind

Substation

Devices

Dispatchable

Generators

Feeder

Devices

EVs and

Charging

Stations

DR and Smart Appliance

2022 IRP

77

AES Indiana 2022 IRP Report Attachment 1-2 Page 327 of 647

Switch Order Management Volt/Var Optimization Distribution Power Flow Feeder Reconfiguration Fault Location Restoration Short Circuit Analysis

DER ng Aggregation

 \longleftrightarrow

rt Energy Storage Solar Microgrids Pv DMS – Distribution Management System
OMS – Outage Management System
DERMS – Distributed Energy Resources Management System

AMI – Advance Metering Infrastructure

Mobile Application

Real Time Map View

Job Management

Damage Assessment

Field Switching

Off-Line Operation

GPS Integration

Connected Planning & Operations

Energy

Storage

DR and Smart Appliance

Collect all technical specifications needed for detailed modeling

Demand Forecasting Tool

In alignment with resource planning develop bottom-up geo-referenced forecasts, with forecast updates as a result of resource changes and information from smart grid devices

Network Model Building & Analysis

Develop short, mid, long term power flow study models for T&D systems

- Collecting all technical data at the front of the interconnection process and translating it directly to standardized forecasting and modeling tools in planning & operations.
- Leveraging Smart Grid investments for better forecasting and model inputs.
- Devices are utilized for better operational visibility & orchestration leading to better customer outcomes.

Smart Grid Devices

AMI, Smart Reclosers, Sensors, SCADA/Pi, Weather data utilized to build better modes and provide an operations technology platform that enhances planning and operations

4

AMI – Smart Meters Substation Devices AES Indiana 2022 IRP Report Attachment 1-2 Page 328 of 647

DER Dispatch DER Forecast DER Monitoring and Control DER Market Interface DER Scheduling DER Estimation

Storm Management Outage Analysis Call Management Planned Outage Management Outage Reporting Crew Management

Switch Order Management Volt/Var Optimization Distribution Power Flow Feeder Reconfiguration Fault Location Restoration Short Circuit Analysis

 DMS – Distribution Management System
OMS – Outage Management System
DERMS – Distributed Energy Resources Management System
AMI – Advance Metering Infrastructure

Grid Upgrades

Develop solutions for grid interconnection, capacity, and reliability needs

Aligned Planning at AES Indiana

AES Indiana 2022 IRP Report Attachment 1-2 Page 329 of 647

AES Indiana 2022 IRP Report T&D Demand Forecasting Future State Process

System Modeling & **Analysis Output**

Multi-Scenario Development

- \rightarrow Short, Mid, Long-Term **Scenarios**
- \rightarrow Low, Medium, **High Growth** Rates
- → DER/EV **Sensitivities**
- → Weather **Sensitivities**

CYME Power Engineering Software

Power Flow Models

- \rightarrow CYME
- \rightarrow PSSE
- \rightarrow Export to GIS for Visualization
- → Aligned Study Models for T&D in Indiana + Ohio

Load Flow Analysis for Distribution Systems

- AES uses CYME for distribution system modeling and analysis
- CYME takes advanced forecasts/scenarios from our demand forecasting tool (LoadSEER) to develop power flow models of the system
 - These forecasts and scenarios will be analyzed to forecast future system capacity, redundancy, and voltage needs
 - Contingency & Scenario Planning present new challenges for distribution since multiple circuit configurations are possible with smart grid devices
- Time series for load profiles
 - Will become more important over time with changing load profiles due to DER, EV charging, etc. being major load modifiers
- Advanced Capabilities Under Development
 - Reliability Assessment
 - Recloser Placement Module
 - Time Series
 - Hosting Capacity

AES Indiana 2022 IRP Report Attachment 1-2 Page 331 of 647

Example of a Battery Energy Storage System (BESS) (a Non-Wire Alternative)

AES Indiana 2022 IRP Report Attachment 1-2 Page 332 of 647

Distributed Energy Resources

AES Indiana 2022 IRP Report Attachment 1-2 Page 333 of 647

Electric Vehicles

Distribution planning considerations for electric vehicles (ev's)

- → Level 1 and 2 charging are generally manageable for capacity planning assuming effective time of use (TOU) charging rates are in place.
- → Level 3 charging is more problematic due to the peak load occurring simultaneously with the grid peak and at much higher magnitudes.
- → Fleet charging requests have been limited but we see the potential for very large loads in this space that may have a major impact on system planning.

Demand forecasting & network modeling

- → AES will account for EV growth by taking the resource planning topdown forecast and utilizing our demand forecasting parcel level EV propensity model to allocate it down to the circuits and feeders.
- → AES will study the multiple scenarios developed around EV charging in our network models to determine if capacity upgrades will be required. In combination with other system needs on a particular circuit, there could be multiple ways to plan for solutions such as traditional asset upgrades, strategic battery placements, optimally placed circuit ties, optimal DER placements, etc.

AES Indiana 2022 IRP Report Attachment 1-2 Page 334 of 647

FERC Order 2222

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Page 335 of 647

Importance of FERC Order 2222

- FERC Order No. 2222 enables distributed energy resources (DERs) aggregators to compete in wholesale electric markets such as MISO
- DERs can range from solar to battery storage, demand response, energy efficiency, thermal storage, \rightarrow electric vehicles and their charging equipment. DERs can locate on the distribution system and/or behind a customer meter

Distribution Planning Considerations:

- \rightarrow Distribution Aggregation studies will need to be completed.
- \rightarrow Furthers the need for connected T&D systems, processes, and interconnection portals as DER is integrated into MISO markets.
- → Modernization of interconnection databases for tracking all DERs and their technical specifications.
- \rightarrow Potential for significant increases to DER interconnection study volumes, complexity, and size expected.
- \rightarrow Long-term forecasting of DERs, DERAs, and their performance impacts
- \rightarrow Potential need for distribution energy storage locally to manage the variability on each circuit.

Expedites and further justifies the need to expand smart grid operations & programs (AMI, ADMS, GIS, etc.).

- \rightarrow Basic levels of visibility and monitoring will be required for the continued safe operation of the system.
- \rightarrow Need to perform RTO day ahead and real time market studies with adequate visibility and monitoring.
- \rightarrow Enhancement of distribution system operator and market roles.

AES Indiana 2022 IRP Report Attachment 1-2 Page 336 of 647

Conclusion

Strategic Organizational **Alignment between Resource & T&D** planning

Advanced Demand Forecasting, **Connected top-down** & bottom-up load forecasting

AES Indiana 2022 IRP Report Attachment 1-2 Page 337 of 647

Advanced Modeling & Analysis, utilization of advanced power flow tools

Cutting-Edge Grid Operations, **Utilization of ADMS** to be Grid of the Future

Final Q&A and Next Steps

AES Indiana 2022 IRP Report Attachment 1-2 Page 338 of 647

Public Advisory Meeting

- \rightarrow All meetings will be available for attendance via Teams. Meetings in 2022 may also occur inperson.
- \rightarrow A Technical Meeting will be held the week preceding each Public Advisory Meeting for stakeholders with nondisclosure agreements. Tech Meeting topics will focus on those anticipated at the next Public Advisory Meeting.
- → Meeting materials can be accessed at <u>www.aesindiana.com/integrated-resource-plan</u>.

AES Indiana 2022 IRP Report Attachment 1-2 Page 339 of 647

Thank You

AES Indiana 2022 IRP Report Attachment 1-2 Page 340 of 647

Appendix

AES Indiana 2022 IRP Report Attachment 1-2 Page 341 of 647

Wind Parameters

\rightarrow	Location: Indiana	100%
\rightarrow	Annual Capacity Factor: 33.6 – 40.4%	90%
\rightarrow	Source Profile: NREL System	80%
	Advisory Model (SAM)	60%
\rightarrow	Project Size: 50 MW ICAP	40%
\rightarrow	Useful Life: 30 years	30%
\rightarrow	Summer ELCC (2025): 7.1%; Source: Horizons Energy	20%
\rightarrow	Winter ELCC: 20%; Source: MISO RAN	0% 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 —Wind (Summer) —Wind (Winter)

AES Indiana 2022 IRP Report Attachment 1-2 Page 342 of 647

Solar Parameters

*Summer ELCC forecast presented in chart is from the Horizon Custom Reference Case – ELCC forecast will vary by custom scenario

AES Indiana 2022 IRP Report Attachment 1-2 Page 343 of 647

Solar ELCC	
7 2028 2029 2030 2031 2032 2033 2034 2034 —Solar (Summer) —Solar (W	5 2036 2037 2038 2039 2040 2041 2042 inter)

Solar + Storage Parameters

- **Location:** Petersburg, Indiana \rightarrow
- **System:** DC Coupled Solar + \rightarrow Storage System, Storage charges exclusively from the solar array
- → **Solar Component:** Identical to stand-alone solar (25 MW ICAP)
- Storage Component: 12.5 MW \rightarrow ICAP | 50 MWh
- **Synergies:** 4.3% reduction in \rightarrow capital costs, 2% improvement of RTE
- 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

- Summer ELCC (2025): 100% \rightarrow
- Winter ELCC: 48% \rightarrow

AES Indiana 2022 IRP Report Attachment 1-2 Page 344 of 647

IRP Acronyms

https://www.aesindiana.com/integrated-resource-plan.

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Page 345 of 647

IRP Acronyms

- → CPCN: Certificate of Public Convenien Necessity
- \rightarrow CT: Combustion Turbine
- \rightarrow CVD: Countervailing Duties
- → CVR: Conservation Voltage Reduction
- → DER: Distributed Energy Resource
- → DERA: Distributed Energy Resource A
- DERMS: Distributed Energy Resource Management System
- → DG: Distributed Generation
- DGPV: Distributed Generation Photovo System
- → DLC: Direct Load Control
- \rightarrow DOC: U.S. Department of Commerce
- \rightarrow DOE: U.S. Department of Energy
- → DR: Demand Response
- → DRR: Demand Response Resource
- → DSM: Demand-Side Management
- DMS: Distribution Management System
- → DSP: Distribution System Planning
- \rightarrow EE: Energy Efficiency

AES Indiana 2022 IRP Report Attachment 1-2 Page 346 of 647

hee and	× 1	EEOPd: Equivalent Forced Outage Pate Demand
	~	
	\rightarrow	EIA: Energy Information Administration
	\rightarrow	ELCC: Effective Load Carrying Capability
	\rightarrow	EM&V: Evaluation Measurement and Verification
	\rightarrow	ESCR: Effective Selective Catalytic Reduction System
	\rightarrow	EV: Electric Vehicle
ggregation	\rightarrow	FLOC: Federated Learning of Cohorts
1	\rightarrow	GDP: Gross Domestic Product
	\rightarrow	GFL: Grid-Following System
altaia	\rightarrow	GIS: Geographic Information System
JIIAIC	\rightarrow	GT: Gas Turbine
	\rightarrow	HDD: Heating Degree Day
	\rightarrow	HVAC: Heating, Ventilation, and Air Conditioning
	\rightarrow	IAC: Indiana Administrative Code
	\rightarrow	IBR: Inverter-Based Resource
	\rightarrow	IC: Indiana Code
	\rightarrow	ICE: Intercontinental Exchange
n	\rightarrow	ICAP: Installed Capacity
	\rightarrow	IEEE: Institute of Electrical and Electronics Engineers
	\rightarrow	IRP: Integrated Resource Plan

IRP Acronyms

- PRA: Planning Resource Auction \rightarrow
- PSSE: Power System Simulator for \rightarrow
- PTC: Renewable Electricity Producti \rightarrow
- PRMR: Planning Reserve Margin Re \rightarrow
- PV: Photovoltaic \rightarrow
- PVRR: Present Value Revenue Req \rightarrow
- PY: Planning Year \rightarrow
- **RA: Resource Adequacy** \rightarrow
- RAN: Resource Availability and Nee \rightarrow
- **RAP: Realistic Achievable Potential** \rightarrow
- RCx: Retrocommissioning \rightarrow
- **REC:** Renewable Energy Credit \rightarrow
- **REP: Renewable Energy Production** \rightarrow
- RFP: Request for Proposals \rightarrow
- **RIIA: MISO's Renewable Integration** \rightarrow Assessment
- **RTO: Regional Transmission Organi** \rightarrow
- SAC: MISO's Seasonal Accredited C \rightarrow
- SAE: Small Area Estimation \rightarrow
- SCADA: Supervisory Control and Data Acquisition \rightarrow

AES Indiana 2022 IRP Report Attachment 1-2 Page 347 of 647

	\rightarrow	SCR: Selective Catalytic Reduction System
Engineering	\rightarrow	SEM: Strategic Energy Management
ion Tax Credit	\rightarrow	SO2: Sulfur Dioxide
equirement	\rightarrow	SMR: Small Modular Reactors
	\rightarrow	ST: Steam Turbine
uirement	\rightarrow	SUFG: State Utility Forecasting Group
	\rightarrow	T&D: Transmission and Distribution
	\rightarrow	TOU: Time-of-Use
d	\rightarrow	TRM: Technical Resource Manual
	\rightarrow	UCT: Utility Cost Test
	\rightarrow	UCAP: Unforced Capacity
	\rightarrow	VAR: Volt-Amp Reactive
1	\rightarrow	VPN: Virtual Private Network
	\rightarrow	WTP: Willingness to Participate
Impact	\rightarrow	XEFORd: Equivalent Forced Outage Rate Demand excluding causes of outages that are outside
zation		management control
Capacity		

AES Indiana 2022 IRP Report Attachment 1-2 Page 348 of 647

2022 Integrated Resource Plan (IRP)

Public Advisory Meeting #4 9/19/2022

Agenda and Introductions

Stewart Ramsay, Managing Executive, Vanry & Associates

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Page 349 of 647

Agenda

Time	Торіс	Speakers
Morning Starting at 10:00 AM	Virtual Meeting Protocols and Safety	Chad Rogers, Director, Regulatory Affairs, AES Indiana
	Welcome and Opening Remarks	Kristina Lund, President & CEO, AES Indiana
	Stakeholder Presentations	Bhawramaett Broehm, Market Development Analyst, Wartsila Marcus Nichol, Senior Director, Nuclear Energy Institute
	IRP Schedule & Timeline	Erik Miller, Manager, Resource Planning, AES Indiana
	IRP Framework Review & Modeling Updates	Erik Miller, Manager, Resource Planning, AES Indiana
	Retirement & Replacement Analysis Results	Erik Miller, Manager, Resource Planning, AES Indiana
Break 12:00 PM – 12:30 PM	Lunch	
Afternoon Starting at 12:30 PM	Replacement Resource Cost Sensitivity Analysis Results	Erik Miller, Manager, Resource Planning, AES Indiana
	Preliminary IRP Scorecard Results	Erik Miller, Manager, Resource Planning, AES Indiana
	Final Q&A and Next Steps	

AES Indiana 2022 IRP Report Attachment 1-2 Page 350 of 647

Virtual Meeting Protocols and Safety

Chad Rogers, Director, Regulatory Affairs, AES Indiana

AES Indiana 2022 IRP Report Attachment 1-2 Page 351 of 647

IRP Team Introductions

AES Indiana Leadership Team

Kristina Lund, President & CEO, AES Indiana Aaron Cooper, Chief Commercial Officer, AES Indiana Brandi Davis-Handy, Chief Customer Officer, AES Indiana Tanya Sovinski, Senior Director, Public Relations, AES Indiana

Ahmed Pasha, Chief Financial Officer, AES Indiana Tom Raga, Vice President Government Affairs, AES Indiana

Sharon Schroder, Senior Director, Regulatory Affairs, AES Indiana

Kathy Storm, Vice President, US Smart Grid, AES Indiana

AES Indiana IRP Planning Team

Joe Bocanegra, Load Forecasting Analyst, AES Indiana Erik Miller, Manager, Resource Planning, AES Indiana Scott Perry, Manager, Regulatory Affairs, AES Indiana Chad Rogers, Director, Regulatory Affairs, AES Indiana Mike Russ, Senior Manager, T&D Planning & Forecasting, AES Asset Management Brent Selvidge, Engineer, AES Indiana Will Vance, Senior Analyst, AES Indiana Kelly Young, Director, Public Relations, AES Indiana

AES Indiana 2022 IRP Report Attachment 1-2 Page 352 of 647

AES Indiana IRP Partners

Annette Brocks, Senior Resource Planning Analyst, ACES

Patrick Burns, PV Modeling Lead and

Regulatory/IRP Support, Brightline Group

Eric Fox, Director, Forecasting Solutions, Itron

Jeffrey Huber, Overall Project Manager and MPS Lead, GDS Associates

Jordan Janflone, EV Modeling Forecasting, GDS Associates

Patrick Maguire, Executive Director of Resource Planning, ACES

Hisham Othman, Vice President, Transmission and Regulatory Consulting, Quanta Technology

Stewart Ramsey, Managing Executive, Vanry & Associates

Mike Russo, Forecast Consultant, Itron

Jacob Thomas, Market Research and End-Use Analysis Lead, GDS Associates

Melissa Young, Demand Response Lead, GDS Associates

Danielle Powers, Executive Vice President, Concentric Energy Advisors

Meredith Stone, Senior Project Manager, Concentric Energy Advisors

AES Indiana Legal Team

Nick Grimmer, Indiana Regulatory Counsel, AES Indiana Teresa Morton Nyhart, Counsel, Barnes & Thornburg LLP
Welcome to Today's Participants

Advanced Energy Economy Alliance Coal Barnes & Thornburg LLP Bose, McKinney & Evans LLP CenterPoint Energy **Citizens Action Coalition** City of Indianapolis **Clean Grid Alliance Demand Side Analytics** Develop Indy | Indy Chamber **Energy Futures Group** Faith in Place Hallador Energy Hoosier Energy Hoosier Environmental Council **IBEW Local Union 1395** Indiana Chamber Indiana DG Indiana Distributed Energy Alliance Indiana Energy Association Indiana Office of Energy Development Indiana Utility Regulatory Commission Indiana State Conference of the NAACP

IUPUI

M&G

Midwest Energy Efficiency Alliance

Midcontinent Independent System Operator (MISO) NIPSCO

Nuclear Energy Institute **NuScale Power** Office of Utility Consumer Counselor

Power Takeoff Purdue - State Utility Forecasting Group

Ranger Power **Rolls-Royce/ISS** Sierra Club Solar United Neighbors

UUI Green Team Wartsila

AES Indiana 2022 IRP Report Attachment 1-2 Page 353 of 647

... and members of the AES **Indiana team and the public!**

Virtual Meeting Best Practices

Questions

- \rightarrow Your candid feedback and input is an integral part to the IRP process.
- Questions or feedback will be taken at the \rightarrow end of each section.
- \rightarrow Feel free to submit a question in the chat function at any time and we will ensure those questions are addressed.

 \rightarrow All lines are muted upon entry.

 \rightarrow

Audio

- \rightarrow For those using audio via Teams, you can unmute by selecting the microphone icon.
- \rightarrow If you are dialed in from a phone, press *6 to unmute.

Video

Video is not required. To minimize bandwidth, please refrain from using video unless commenting during the meeting.

AES Purpose & Values

Accelerating the future of energy, **together**.

AES Indiana 2022 IRP Report Attachment 1-2 Page 355 of 647

Safety first

Highest standards

All together

Safety First

- 1. AES Indiana strives to provide a place of employment that is free from recognized hazards and one that meets or exceeds governmental regulations regarding occupational health and safety.
- 2. AES Indiana considers occupational health and safety a fundamental value of the organization and is a key performance indicator of the overall success of the company.
- 3. AES Indiana's ultimate objective is that each day all AES Indiana people, contractors, and the public we serve return home to their family, friends, and community free from harm.

AES Indiana 2022 IRP Report Attachment 1-2 Page 356 of 647

IRP Overview

Advisory Meeting #1 (January 24): AES Indiana Resource Planning team recapped the 2019 IRP Short-Term Action Plan, introduced the IRP resource planning process and model overview, and highlighted existing resources, replacement resource options and future IRPs.

Advisory Meeting #2 (April 12): AES Indiana Resource Planning team presented load scenarios, results of the market potential study, commodity forecasts and distribution system planning items, and shared additional analysis of reliability that will give insight into how AES Indiana is working to ensure any changes to its portfolio maintain reliable service 24/7/365 for its customers.

AES Indiana 2022 IRP Report Attachment 1-2 Page 357 of 647

IRP Overview

Advisory Meeting #3 (June 27): AES Indiana's Resource Planning team discussed system planning and RTO reliability planning, presented content on modeling reliability, and provided an overview of Portfolio metrics and scorecard. We welcomed presentations from MISO, Sierra Club and Faith in Place.

Today, the AES Indiana Resource Planning team will cover results from preliminary core IRP modeling and the scorecard, which evaluates multiple strategies and scenarios using defined cost, environmental, reliability and risk metrics.

We thank you for your input into this important process!

AES Indiana 2022 IRP Report Attachment 1-2 Page 358 of 647

AES Indiana and the IRP

- The IRP is a unique opportunity for AES Indiana to engage with our customers, communities and stakeholders to analyze our energy future, together.
- The in-depth analysis and stakeholder input will position AES Indiana to best serve our customers' needs today and well into the future.

AES Indiana 2022 IRP Report Attachment 1-2 Page 359 of 647

AES Indiana and Our Stakeholders

- The IRP process has allowed us to engage \rightarrow with many stakeholders through our Advisory Meetings and Technical Meetings and through their participation, questions, input and stakeholder presentations.
- \rightarrow We are listening and taking feedback seriously. Through our collaboration, the IRP team has:
 - → Evaluated all feedback
 - \rightarrow Added the Clean Energy Strategy
 - \rightarrow Worked collaboratively with stakeholders on key inputs

AES Indiana 2022 IRP Repor Page 360 of 647

Meeting our customers' needs today and tomorrow

AES Indiana is leading the inclusive, clean energy transition.

Reliability

Affordability

Sustainability

Stakeholder Presentations

Bhawramaett Broehm, Market Development Analyst, Wartsila

AES Indiana 2022 IRP Report Attachment 1-2 Page 362 of 647

Stakeholder Presentations

Marcus Nichol, Senior Director, Nuclear Energy Institute

AES Indiana 2022 IRP Report Attachment 1-2 Page 363 of 647

IRP Schedule & Timeline

Erik Miller, Manager, Resource Planning, AES Indiana

AES Indiana 2022 IRP Report Attachment 1-2 Page 364 of 647

Updated 2022 IRP Timeline

= Stakeholder Technical Meeting for stakeholders with executed NDAs held the week before each public stakeholder meeting

= Preferred Resource Portfolio selected

AES Indiana is available for additional touchpoints with stakeholders to discuss IRP-related topics.

AES Indiana 2022 IRP Report Attachment 1-2 Page 365 of 647

Public Advisory Schedule

Topics for meeting 5 are subject to change.

19

AES Indiana 2022 IRP Report Attachment 1-2 Page 366 of 647

IRP Process Overview

AES Indiana 2022 IRP Report Attachment 1-2 Page 367 of 647

Modeling Updates & IRP Framework Review

Erik Miller, Manager, Resource Planning, AES Indiana

AES Indiana 2022 IRP Report Attachment 1-2 Page 368 of 647

Model Constraints

Capacity Expansion models require constraints to provide meaningful results. There are three main constraints AES Indiana utilized:

Limiting Capacity Purchases and Sales

Prevents the selection of a portfolio that relies excessively on market purchases for capacity or \rightarrow on uncertain revenues associated with selling capacity. The constraint is \sim 50 MW.

Limiting Energy Purchases and Sales

- \rightarrow Selects a portfolio that covers at least 90% of AES Indiana's energy sales on an annual basis, limiting reliance on the market.
- Also prevents a portfolio that sells more than 10% above AES Indiana's expected energy sales \rightarrow on an annual basis, limiting reliance on uncertain energy revenue. Excess generation is assumed to be curtailed.

AES Indiana 2022 IRP Report Page 369 of 647

Model Constraints (continued)

Limiting the Build of New Resources

- Prevents the model from selecting \rightarrow resources in the near term that cannot practically be executed and are not supported by recent RFP responses.
 - \rightarrow Earliest build is ~1,500 MW (ICAP) of Solar, Storage, and Hybrids in 2025
 - \rightarrow By 2027, can build ~1,000 MW (ICAP) of any technology per year
 - \rightarrow Over the 20-year time span, can build a max of ~2,000 MW of any one technology

	10,000	
	7,500	
apacity (MW)	5,000	
Ü	2,500	
	0	2023

AES Indiana 2022 IRP Report Attachment 1-2 Page 370 of 647

Total Selectable Capacity (ICAP)

Modeling Updates

Inflation Reduction Act of 2022 (IRA) included in Current Trends

- IRA passed House and Senate and signed into law in August \rightarrow
- Legislation changes the Current Trends (Reference Case) assumptions for the ITC and PTC \rightarrow

Original Current Trends – Five one-year tax credit extensions

*Years correspond to years projects first produce energy

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Page 371 of 647

Revised Current Trends – Ten-year tax credit extension

Modeling Updates

Forecast for NOx allowance prices updated based on current market trends

- Scarcity within the NOx allowance market has driven prices to historic highs
- Updated prices included in the Current Trends (Reference Case), Aggressive Environmental and Decarbonized Economy Scenarios

25

AES Indiana 2022 IRP Report Attachment 1-2 Page 372 of 647

Modeling Updates

Carbon Tax moved from starting in 2035 to starting in 2028 in the Aggressive Environmental Scenario

- Change made to provide a reasonably aggressive environmental scenario
- Aligns with the Interagency Working Group Social Cost of Carbon Forecast (5% Discount Rate)

AES Indiana 2022 IRP Report Attachment 1-2 Page 373 of 647

Modeling the Decarbonized Economy Scenario

The Decarbonization Scenario captures a bookend with an aggressive grid transition to renewable energy generation. This is accomplished through a progressive Renewable Portfolio Standard (RPS):

Percent of Load to be Served with Renewable Generation

RPS target, penalties, and grants are based on the theoretical Clean Energy Performance Program:

- Failure to hit the RPS results in a \$40/MWh penalty, per MWh of shortfall \rightarrow
- Exceeding the RPS results in a \$150/MWh grant, per MWh of exceedance \rightarrow

Structure for Today's Review

Retirement & Replacement Analysis Review: Review the optimized portfolios and complete the Portfolio Matrix

		Scenarios						
		No Environmental Action	Current Trends	Aggressive Environmental	Decarbonized Economy			
	No Early Retirement							
tegies	Pete Refuel to 100% Gas (est. 2025)	Portf	olio cost (F	PVRR) w	ill be			
n Straf	One Pete Unit Retires (2026)	calcul	atad for a	ach nortfo	nlin to			
eratio	Both Pete Units Retire (2026 & 2028)	Calcul						
Gen	"Clean Energy Strategy" Both Pete Units Retire and Replaced	CON	nplete Por	ttolio ivia	TIX			
	with Wind, Solar & Storage (2026 & 2028)							
	Encompass Optimization without predefined Strategy							

- \rightarrow Review generation mixes and PVRR in the Current Trends (Reference Case) \leftarrow
- \rightarrow Complete the Portfolio Matrix and compare PVRR
- Review the Replacement Resource Cost Sensitivity Analysis

AES Indiana 2022 IRP Report Attachment 1-2 Page 375 of 647

Structure for Today's Review

Review key IRP Scorecard Metrics for the Current Trends (Reference Case)

	Affordability			Environmental	Sustainability			Reliability, Stability & Resiliency			Risk & Op	oportunity			Econom	ic Impact
	20-yr PVRR	CO₂ Emissions	SO₂ Emissions	NO _x Emissions	Water Use	Coal Combustion Products (CCP)	Clean Energy Progress	Reliability Score	Environmental Policy Opportunity	Environmental Policy Risk	Cost Opportunity	Cost Risk	Market Exposure	Renewable Capital Cost Risk (+50%)	Employees (+/·)	Property Taxes
	Present Value of Revenue Requirements	Total portfolio CO2 Emissions (mmtons)	Total portfolio SO2 Emissions (tons)	Total portfolio NOx Emissions (tons)	Water Use (mmgal)	CCP (tons)	% Renewable Energy in 2032	Composite score from Reliability Analysis	Lowest PVRR across policy scenarios	Highest PVRR across policy scenarios	Mean - P95	P95 - Mean	20-year avg sales + purchases	Portfolio PVRF w/ renewable costs +50%	Total FTEs associated with generation	Total amount of property tax paid from AES IN assets
1																
2				Cal	rula	tinna	s for	020	h sc	orin	am	atric	\\/ill			
3				Uan	Jula			Cau			9		VVIII			
1				ho	inclu	Idac	t to	n	nlata	h thc		nran	ard			
5				とて		JUCL			ρισια				aiu			
5																

 \rightarrow

 \rightarrow

Strategies

- → 1. No Early Retirement
- \rightarrow 2. Pete Refuel to 100% Natural Gas (est. 2025)
- → 3. One Pete Unit Retires in 2026
- \rightarrow 4. Both Pete Units Retire in 2026 & 2028
- → 5. "Clean Energy Strategy" Both Pete Units Retire and replaced with Renewables in 2026 & 2028
- → 6. Encompass Optimization without Predefined Strategy

29

AES Indiana 2022 IRP Report Attachment 1-2 Page 376 of 647

Review PVRR, emissions and economic metrics Reliability and risk analysis still in-progress and will be presented in Meeting #5

Retirement and **Replacement Analysis Results**

Erik Miller, Manager, Resource Planning, AES Indiana

AES Indiana 2022 IRP Repor Page 377 of 647

Capacity vs. Energy in Resource Planning

These are two very different planning/market concepts.

1) Capacity Planning

- MISO requires utilities to have enough generation resources to meet their peak hour plus a reserve margin (buffer). This is called a Planning Reserve Margin Requirement (PRMR).
- Historically, MISO planning has been based on only the summer peak hour + buffer/PRMR.
- This changed earlier in the month when FERC approved MISO's seasonal construct Utilities now are required to have enough generation to serve their peak hour + buffer/PRMR in all four seasons – summer, fall, winter and spring.
- With the seasonal construct, AES Indiana now has a higher winter peak hour + buffer/PRMR than summer.
- There's a market for capacity thus, AES Indiana assigns a monetary value to capacity for modeling purposes - \$89/kW-yr.

AES Indiana 2022 IRP Report Attachment 1-2 Page 378 of 647

Capacity vs. Energy in Resource Planning cont'

2) Energy Planning

- Most people are familiar with energy this is a MWh that is produced or purchased to supply customers.
- For planning purposes, AES Indiana can build generation to supply energy for its customers or rely on the market. Relying on the market for energy comes with both price and reliability risks to customers. Energy planning is where we can really make an impact on emissions. ullet

Differences in Resource Types

- Certain resources are better suited for supplying <u>capacity</u>
 - Thermal and battery energy storage resources are dispatchable therefore, MISO gives them almost full credit as a capacity resource in all seasons.
 - Wind and solar are not dispatchable (utilities can't control when they are on) therefore, MISO correspondingly adjusts down their capacity value, e.g. a 200 MW solar resource receives zero capacity value (ELCC) in the winter.
 - A resource can be built for its <u>capacity</u> value and run very little to supply <u>energy</u>. It's there when the system really needs it!

Summer vs. Winter Capacity Position

AES Indiana 2022 IRP Report Attachment 1-2 Page 380 of 647

Historically, AES Indiana has only had to plan for its summer peak + buffer/PRMR.

This changed in early September when FERC approved MISO's fourseason capacity construct.

AES has a winter capacity shortage in the near-term regardless of unit retirements.

Unfortunately, based on MISO's accreditation, solar receives no value in the winter and wind receives only 18% of it's full value.

The planning model can only select thermal or battery energy storage resources to fill this winter capacity need. Solar can be combined with battery energy storage if economic.

Summary of Scenario Driving Assumptions Page 381 of 647

Scenario	Load	EV	Dist Solar	Power	Gas	Coal	CO2
No Environmental Action – "No Env"	Low	Low	Low	Horizon Fundamental Forecast	Low	Base	None
Current Trends (Reference Case) – "Ref"	Base	Base	Base	Horizon Fundamental Forecast	Base	Base	Low
Aggressive Environmental – "AE"	High	High	High	Horizon Fundamental Forecast	High	Base	High
Decarbonized Economy – "Decarb"	High	Very High	High	Horizon Fundamental Forecast	Base	Base	None*

*Carbon targets will be modeled through a National Renewable Portfolio Standard

AES Indiana 2022 IRP Report Attachment 1-2

Current Trends Assumptions Review

The following slides provide the **Portfolio Summaries** for the Current Trends Scenario – these are the candidate portfolios. Portfolio Summaries will include the following:

- Generation mix and Unforced Capacity position
- Installed capacity over the planning period \rightarrow
- % energy mix to serve load \rightarrow
- **DSM** Selections
- \rightarrow PVRR

→ ITC & PTC assumptions aligned with the Inflation Reduction Act

This section will conclude with a comparison of the PVRRs for the Strategies and Scenarios in the Portfolio Matrix.

Note: The Portfolio Summaries for the No Environmental Action, Aggressive Environmental and Decarbonized Economy scenarios are included in the appendix of this presentation.

35

As a review, the **Current Trends Scenario** includes the following driving assumptions:

- → Base Power, Gas, and Coal Prices
- \rightarrow Base NOx Prices
- \rightarrow Low Carbon Price at \$6.49/ton starting in 2028 and escalating annually at 4.6%
 - Base load, EV and customer solar forecasts

A. No Early Retirement

Scenarios								
No Environmental Action	Current Trends	Aggressive Environmental	Decarbonized Economy					
	\$9,572							

AES Indiana 2022 IRP Report Attachment 1-2 Page 383 of 647

Firm Unforced Capacity Position – Summer

AES Indiana 2022 IRP Report Attachment 1-2 Page 384 of 647

Firm Unforced Capacity Position – Winter

AES Indiana 2022 IRP Report Attachment 1-2 Page 385 of 647

Installed Capacity Cumulative Additions (MW)

Installed Capacity Incremental Additions (MW): 2023 - 2028

	<u>2023</u>	<u>2024</u>	<u>2025</u>	<u>2026</u>	<u>2027</u>	<u>2028</u>
Wind	0	0	0	0	<mark>500</mark>	0
Solar	0	0	0	0	0	0
Storage	0	0	<mark>240</mark>	0	0	0
Solar + Storage	0	0	<mark>45</mark>	0	0	0
Natural Gas	0	0	0	0	0	0

AES Indiana 2022 IRP Report Attachment 1-2 Page 386 of 647

AES Indiana 2022 IRP Report Attachment 1-2 Page 387 of 647

DSM Results

Energy Efficiency:

	Vintage 1	Vintage 2	Vintage 3
	2024 - 2026	2027 - 2029	2030 - 2042
ential	Efficient Products - Lower Cost Efficient Products - Higher Cost Behavioral	Lower Cost Residential (excluding Income Qualified Weatherization (IQW))	Lower Cost Residential (excluding IQW)
Resid	School Education Appliance Recycling Multifamily	Higher Cost Residential (excluding IQW)	Higher Cost Residential (excluding IQW)
	IQW	IQW	IQW
<u>&</u> I	Prescriptive Custom	C & I	C 8.1
C	Custom RCx Custom SEM	Cal	Cal
	Avg Annual MWh	Avg Annual MWh	Avg Annual MWh
S	134,263	141,526	146,428
act	% of 2021 Sales ex. Opt-Out	% of 2021 Sales ex. Opt-Out	% of 2021 Sales ex. Opt-Out
шp	1.1%	1.1%	1.2%
-	Cummulative Summer MW	Cummulative Summer MW	Cummulative Summer MW
	89 MW	92 MW	303 MW

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Page 388 of 647

Demand Response:

	2026 - 2042						
ential	Direct Load Control						
Resid	Residential Rates						
C&I	Direct Load Control						
	C&I Rates						
	Cumulative Summer MW						
	75 MW						

Note: Boxes highlighted in purple denote DSM bundles that were selected by Encompass

No Early Retirement: Current Trends (Reference Case)

Portfolio Overview

Retirements

Harding Street:

\rightarrow HS ST5 Nat Gas: 2030	
 → HS ST6 Nat Gas: 2030 → HS ST7 Nat Gas: 2033 → Total Nat Gas Retired MW: 618 MW 	No Early Ro
	Pete Refue
Replacement Additions by 2042 → DSM: 490 MW	One Pete U
 → Wind: 2,500 MW → Solar: 2,080 MW 	Both Pete I
→ Storage: 700 MW	"Clean Ene
→ Solar + Storage: 45 MW → Thermal: 0 MW	Both Pete l with Wind,
	Encompase predefined

AES Indiana 2022 IRP Report Attachment 1-2 Page 389 of 647

Current Trends PVRR Summary

20-Year PVRR (2023\$MM, 2023-2042)

Strategy	PVRR
No Early Retirement	\$9,572
Pete Refuel to 100% Gas (est. 2025)	\$9,330
One Pete Unit Retires (2026)	\$9,773
Both Pete Units Retire (2026 & 2028)	\$9,618
"Clean Energy Strategy" Both Pete Units Retire and Replaced with Wind, Solar & Storage (2026 & 2028)	\$9,711
Encompass Optimization without predefined Strategy – Selects Pete 3 Refuel in 2025 & Pete 4 Refuel in 2027	\$9,262

B. Pete Refuel by 2025

Scenarios					
No Environmental Action	Current Trends	Aggressive Environmental	Decarbonized Economy		
	\$9,330				

AES Indiana 2022 IRP Report Attachment 1-2 Page 390 of 647

AES Indiana 2022 IRP Report Attachment 1-2 Pete 3 & 4 Refuel in 2025: Current Trends (Reference Case)

Installed Capacity Incremental Additions (MW): 2023 - 2028

	<u>2023</u>	<u>2024</u>	<u>2025</u>	<u>2026</u>	<u>2027</u>	<u>2028</u>
Pete Refuel	0	0	<mark>1,052</mark>	0	0	0
Wind	0	0	0	<mark>50</mark>	<mark>450</mark>	0
Solar	0	0	0	0	0	0
Storage	0	0	<mark>240</mark>	0	0	0
Solar + Storage	0	0	<mark>45</mark>	0	0	0
Natural Gas	0	0	0	0	0	0

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Pete 3 & 4 Refuel in 2025: Current Trends (Reference Case)

P			

Thermal MWh %	92%
Renewable/DSM MWh %	8%

AES Indiana 2022 IRP Report Attachment 1-2 Page 395 of 647 Page 395 of 647

DSM Results

Energy Efficiency:

	Vintage 1 Vintage 2		Vintage 3	
	2024 - 2026	2027 - 2029	2030 - 2042	
	Efficient Products - Lower Cost	Lower Cost Residential	Lower Cost Residential	
Itial	Efficient Products - Higher Cost	(excluding Income Qualified Weatherization (IQW))	(excluding IQW)	
den	Behavioral			
esi	School Education	Higher Cost Posidential	Higher Cost Posidential	
æ	Appliance Recycling		(excluding IOW)	
	Multifamily			
	IQW	IQW	IQW	
	Prescriptive			
ßI	Custom	C & I	C 9.1	
Ũ	Custom RCx	Cal	CQI	
	Custom SEM			
	Avg Annual MWh	Avg Annual MWh	Avg Annual MWh	
6	131,578	141,526	146,428	
acts	% of 2021 Sales ex. Opt-Out	% of 2021 Sales ex. Opt-Out	% of 2021 Sales ex. Opt-Out	
dm	1.0%	1.1%	1.2%	
	Cumulative Summer MW	Cumulative Summer MW	Cumulative Summer MW	
	87 MW	92 MW	303 MW	

Demand Response:

	2026 - 2042					
ential	Direct Load Control					
Residential Rates						
<u> </u>	Direct Load Control					
SS	C&I Rates					
	Cumulative Summer MW					
	75 MW					

Note: Boxes highlighted in purple denote DSM bundles that were selected by Encompass

Pete 3 & 4 Refuel in 2025: Current Trends (Reference Case)

Ρ	ortfo	lio	Ov	erv	view
			•	• • •	

Retirements Petersburg:	
Pete 3 & 4 Coal: 2025 Refuel with Nat Gas	
→ Total Refueled MW: 1,040 MW	No Early R
Harding Street:	
→ HS ST5 Nat Gas: 2030	Pete Refue
→ HS ST6 Nat Gas: 2030	
→ HS ST7 Nat Gas: 2033	One Pete L
→ Total Nat Gas Retired MW: 618 MW	Both Pete
Poplacement Additions by 2012	
	"Clean Ene
\rightarrow Wind: 2.500 MW	Both Pete with Wind
\rightarrow Solar: 1.983 MW	Encompas
\rightarrow Storage: 620 MW	predefined
→ Solar + Storage: 225 MW	Refuel in 2

- Thermal: 0 \rightarrow
- Pete 3 & 4 Refueled to Nat Gas: 1,000 MW \rightarrow

Current Trends PVRR Summary

20-Year PVRR (2023\$MM, 2023-2042)

Strategy	PVRR
etirement	\$9,572
el to 100% Gas (est. 2025)	\$9,330
Jnit Retires (2026)	\$9,773
Units Retire (2026 & 2028)	\$9,618
ergy Strategy" Units Retire and Replaced Solar & Storage (2026 & 2028)	\$9,711
s Optimization without Strategy – Selects Pete 3 025 & Pete 4 Refuel in 2027	\$9,262

C. One Pete Unit Retires (2026)

Scenarios					
No Environmental Action	Current Trends	Aggressive Environmental	Decarbonized Economy		
	\$9,773				

AES Indiana 2022 IRP Report Attachment 1-2 Page 397 of 647

Firm Unforced Capacity Position – Summer

AES Indiana 2022 IRP Report Attachment 1-2 One Pete Unit Retires (2026): Current Trends (Reference Case)

Installed Capacity Incremental Additions (MW): 2023 - 2028

	<u>2023</u>	<u>2024</u>	<u>2025</u>	<u>2026</u>	<u>2027</u>	<u>2028</u>
Wind	0	0	0	<mark>100</mark>	<mark>400</mark>	0
Solar	0	0	0	0	0	0
Storage	0	0	<mark>300</mark>	<mark>400</mark>	0	0
Solar + Storage	0	0	0	0	0	0
Natural Gas	0	0	0	0	0	0

AES Indiana 2022 IRP Report Attachment 1-2 One Pete Unit Retires (2026): Current Trends (Reference Case)

Thermal MWh %	92%
Renewable/DSM MWh %	8%

One Pete Unit Retires (2026): Current Trends (Reference Case)

DSM Results

Energy Efficiency:

	Vintage 1	Vintage 2	Vintage 3
	2024 - 2026	2027 - 2029	2030 - 2042
ential	Efficient Products - Lower Cost Efficient Products - Higher Cost Behavioral	Lower Cost Residential (excluding Income Qualified Weatherization (IQW))	Lower Cost Residential (excluding IQW)
Resid	School Education Appliance Recycling Multifamily	Higher Cost Residential (excluding IQW)	Higher Cost Residential (excluding IQW)
	IQW	IQW	IQW
<u></u>	Prescriptive Custom	C&I	C&I
	Custom RCX Custom SEM		
	Avg Annual MWh	Avg Annual MWh	Avg Annual MWh
6	131,578	141,526	146,428
act:	% of 2021 Sales ex. Opt-Out	% of 2021 Sales ex. Opt-Out	% of 2021 Sales ex. Opt-Out
тр;	1.0%	1.1%	1.2%
-	Cummulative Summer MW	Cummulative Summer MW	Cummulative Summer MW
	87 MW	92 MW	303 MW

Demand Response:

	2026 - 2042			
ential	Direct Load Control			
Resid	Residential Rates			
C&I	Direct Load Control			
	C&I Rates			
Cumulative Summer MW				
	75 MW			

Note: Boxes highlighted in purple denote DSM bundles that were selected by Encompass

One Pete Unit Retires (2026): Current Trends (Reference Case)

Portfolio Overview

Retirements Petersburg:	
\rightarrow Pete 3 Coal: 2026	
→ Total Coal Retired MW: 520 MW	No Early R
Harding Street:	
\rightarrow HS ST5 Nat Gas: 2030	Pete Refue
→ HS ST6 Nat Gas: 2030	
→ HS ST7 Nat Gas: 2033	One Pete l
→ Total Nat Gas Retired MW: 618 MW	
	Both Pete
Replacement Additions by 2042	
\rightarrow DSM: 490 MW	"Clean En Both Pete
\rightarrow Wind: 2,500 MW	with Wind,
→ Solar: 2,340 MW	Encompas
→ Storage: 1,240 MW	predefined
→ Solar + Storage: 45 MW	Refuel in 2

→ Thermal: 0 MW

Current Trends PVRR Summary

20-Year PVRR (2023\$MM, 2023-2042)

Strategy	PVRR
etirement	\$9,572
el to 100% Gas (est. 2025)	\$9,330
Jnit Retires (2026)	\$9,773
Units Retire (2026 & 2028)	\$9,618
ergy Strategy" Units Retire and Replaced Solar & Storage (2026 & 2028)	\$9,711
s Optimization without Strategy – Selects Pete 3 025 & Pete 4 Refuel in 2027	\$9,262

D. Both Pete Units Retire (2026 & 2028)

Scenarios						
No Environmental Action	Current Trends	Aggressive Environmental	Decarbonized Economy			
	\$9,618					

AES Indiana 2022 IRP Report Attachment 1-2 Page 404 of 647

Both Pete Units Retire: Current Trends (Reference Case) 2026 & 2028

Firm Unforced Capacity Position – Summer

58

AES Indiana 2022 IRP Report Attachment 1-2 Page 405 of 647

_									
	_	_	_	_					
	2037	2035	2036	2037	2038	2039	2040	2041	PORT
stin	g Other (Wind/So	lar/DR)		New W	/ind			
v N	atural Ga	as			New So	olar			
ИR	less DSN	1							

Both Pete Units Retire: Current Trends (Reference Case) 2026 & 2028

Firm Unforced Capacity Position – Winter

59

AES Indiana 2022 IRP Report Attachment 1-2 Page 406 of 647

Both Pete Units Retire: Current Trends (Reference Case) 2026 & 2028

Installed Capacity Cumulative Additions (MW)

Installed Capacity Incremental Additions (MW): 2023 – 2028

	<u>2023</u>	<u>2024</u>	<u>2025</u>	<u>2026</u>	<u>2027</u>	<u>2028</u>
Wind	0	0	0	<mark>100</mark>	<mark>400</mark>	<mark>100</mark>
Solar	0	0	0	0	0	0
Storage	0	0	<mark>300</mark>	<mark>400</mark>	<mark>20</mark>	<mark>40</mark>
Solar + Storage	0	0	0	0	0	0
Natural Gas	0	0	0	0	0	<mark>325</mark>

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Page 407 of 647

Both Pete Units Retire: Current Trends (Reference Case)

AES Indiana 2022 IRP Report Attachment 1-2 Page 408 of 647

Both Pete Units Retire: Current Trends (Reference Case)

DSM Results

Energy Efficiency:

	Vintage 1	Vintage 2	Vintage 3	
	2024 - 2026	2027 - 2029	2030 - 2042	
	Efficient Products - Lower Cost	Lower Cost Residential	Lower Cost Residential	
tial	Efficient Products - Higher Cost	(excluding Income Qualified Weatherization (IQW))	(excluding IQW)	
den	Behavioral			
esic	School Education	Higher Cost Residential	Higher Cost Desidential	
8	Appliance Recycling		(excluding IOW)	
	Multifamily			
	IQW	IQW IQW		
	Prescriptive			
ß	Custom	C & I	C 8.1	
ΰ	Custom RCx	Cai	Cal	
	Custom SEM			
	Avg Annual MWh	Avg Annual MWh	Avg Annual MWh	
6	131,578	141,526	146,428	
acts	% of 2021 Sales ex. Opt-Out	% of 2021 Sales ex. Opt-Out	% of 2021 Sales ex. Opt-Out	
dm	1.0%	1.1%	1.2%	
_	Cummulative Summer MW	Cummulative Summer MW	Cummulative Summer MW	
	87 MW	92 MW	303 MW	

AES Indiana 2022 IRP Report Attachment 1-2 Page 409 of 647

Demand Response:

	2026 - 2042
ential	Direct Load Control
Reside	Residential Rates
C&I	Direct Load Control
	C&I Rates
	Cumulative Summer MW
	195 MW

Note: Boxes highlighted in purple denote DSM bundles that were selected by Encompass

Both Pete Units Retire: Current Trends (Reference Case)

Portfolio Overview	
Retirements	
Petersburg:	
\rightarrow Pete 3 Coal: 2026	
Pete 4 Coal: 2028	
→ Total Coal Retired MW: 1,040 MW	No Early R
Harding Street:	Pete Refue
\rightarrow HS ST5 Nat Gas: 2030	
\rightarrow HS ST6 Nat Gas: 2030	One Pete U
\rightarrow HS ST7 Nat Gas: 2033	
→ Total Nat Gas Retired MW: 618 MW	Both Pete
Replacement Additions by 2042	"Clean Ene Both Pete
\rightarrow DSM: 610 MW	with Wind,
\rightarrow Wind: 2,450 MW	Encompas
\rightarrow Solar: 2,308 MW	predefined Refuel in 2
→ Storage: 1,280 MW	

- → Solar + Storage: 225 MW
- \rightarrow Thermal: 325 MW

Current Trends PVRR Summary

20-Year PVRR (2023\$MM, 2023-2042)

Strategy	PVRR
etirement	\$9,572
el to 100% Gas (est. 2025)	\$9,330
Jnit Retires (2026)	\$9,773
Units Retire (2026 & 2028)	\$9,618
ergy Strategy" Units Retire and Replaced Solar & Storage (2026 & 2028)	\$9,711
s Optimization without Strategy – Selects Pete 3 025 & Pete 4 Refuel in 2027	\$9,262

E. Clean Energy Strategy

Retire & Replace Pete with Clean Energy

Scenarios						
No Environmental Action	Current Trends	Aggressive Environmental	Decarbonized Economy			
	\$9,711					

AES Indiana 2022 IRP Report Attachment 1-2 Page 411 of 647

Retire & Replace Pete with Clean Energy

Firm Unforced Capacity Position – Summer

AES Indiana 2022 IRP Report Attachment 1-2 Page 412 of 647

• - •									
•	2032	2035	2036	2037	2038	2039	2040	2041	2045
sting	g Other (Wind/Sol	ar/DR)		New W	/ind			
v Na	atural Ga	IS			New So	olar			
/ IR	less DSM								

Retire & Replace Pete with Clean Energy

Firm Unforced Capacity Position – Winter

AES Indiana 2022 IRP Report Attachment 1-2 Page 413 of 647

Retire & Replace Pete with Clean Energy

Installed Capacity Cumulative Additions (MW)

Installed Capacity Incremental Additions (MW): 2023 – 2028

	<u>2023</u>	<u>2024</u>	<u>2025</u>	<u>2026</u>	<u>2027</u>	<u>2028</u>
Wind	0	0	0	<mark>100</mark>	<mark>400</mark>	<mark>400</mark>
Solar	0	0	0	0	0	0
Storage	0	0	<mark>300</mark>	<mark>400</mark>	0	<mark>280</mark>
Solar + Storage	0	0	0	0	0	<mark>45</mark>
Natural Gas	0	0	0	0	0	0

AES Indiana 2022 IRP Report Attachment 1-2 Page 414 of 647

Retire & Replace Pete with Clean Energy

Energy Mix %

2	022 IRP	

Thermal MWh %	92%
Renewable/DSM MWh %	8%

AES Indiana 2022 IRP Report Attachment 1-2 Page 415 of 647

Retire & Replace Pete with Clean Energy

DSM Results

Energy Efficiency:

	Vintage 1	Vintage 2	Vintage 3	
	2024 - 2026	2027 - 2029	2030 - 2042	
	Efficient Products - Lower Cost	Lower Cost Residential	Lower Cost Residential	
tial	Efficient Products - Higher Cost	(excluding Income Qualified Weatherization (IQW))	(excluding IQW)	
len	Behavioral			
esic	School Education	Higher Cost Residential	Higher Cost Desidential	
R	Appliance Recycling		(excluding IOW)	
	Multifamily			
	IQW	IQW	IQW	
	Prescriptive			
& I	Custom	C&I	C & I	
Ũ	Custom RCx	Cai	Cal	
	Custom SEM			
	Avg Annual MWh	Avg Annual MWh	Avg Annual MWh	
6	134,263	141,526	146,428	
act:	% of 2021 Sales ex. Opt-Out	% of 2021 Sales ex. Opt-Out	% of 2021 Sales ex. Opt-Out	
dm	1.1%	1.1%	1.2%	
_	Cummulative Summer MW	Cummulative Summer MW	Cummulative Summer MW	
	89 MW	92 MW	303 MW	

69

AES Indiana 2022 IRP Report Attachment 1-2 Page 416 of 647

Demand Response:

	2026 - 2042
ntial	Direct Load Control
Reside	Residential Rates
<u>k</u> l	Direct Load Control
C8	C&I Rates
	Cumulative Summer MW
	195 MW

Note: Boxes highlighted in purple denote DSM bundles that were selected by Encompass

Retire & Replace Pete with Clean Energy

Portfolio Overview

Retirements

Petersburg:

\rightarrow Pete 3 Coal: 2026	
→ Pete 4 Coal: 2028 → Total Coal Retired MW: 1,040 MW	No Early Re
Harding Street:	Pete Refuel
→ HS ST5 Nat Gas: 2030	
→ HS ST6 Nat Gas: 2030	One Pete U
→ HS ST7 Nat Gas: 2033	
→ Total Retired Nat Gas MW: 618 MW	Both Pete U
Replacements by 2042	"Clean Ener Both Pete U
\rightarrow DSM: 610 MW	with Wind, \$
\rightarrow Wind: 2,450 MW	Encompass
→ Solar: 2,438 MW	predefined
→ Storage: 1,560 MW	Refuel in 20
→ Solar + Storage: 180 MW	
\rightarrow Thermal: 0 MW	

AES Indiana 2022 IRP Report Attachment 1-2 Page 417 of 647

Current Trends PVRR Summary

20-Year PVRR (2023\$MM, 2023-2042)

Strategy	PVRR
etirement	\$9,572
el to 100% Gas (est. 2025)	\$9,330
Jnit Retires (2026)	\$9,773
Units Retire (2026 & 2028)	\$9,618
ergy Strategy" Units Retire and Replaced Solar & Storage (2026 & 2028)	\$9,711
s Optimization without Strategy – Selects Pete 3 025 & Pete 4 Refuel in 2027	\$9,262

F. Encompass Optimization

Selects Pete 3 Refuel in 2025 & Pete 4 Refuel in 2027

Scenarios						
No Environmental Action	Current Trends	Aggressive Environmental	Decarbonized Economy			
	\$9,262					

AES Indiana 2022 IRP Report Attachment 1-2 Page 418 of 647

AES Indiana 2022 IRP Report Attachment 1-2 Encompass Optimization: Current Trends (Reference Case)

Selects Pete 3 Refuel in 2025 & Pete 4 Refuel in 2027

Installed Capacity Incremental Additions (MW): 2023 - 2028

	<u>2023</u>	<u>2024</u>	<u>2025</u>	<u>2026</u>	<u>2027</u>	<u>2028</u>
Pete Refuel	0	0	<mark>526</mark>	0	<mark>526</mark>	0
Wind	0	0	0	0	<mark>500</mark>	0
Solar	0	0	0	0	0	0
Storage	0	0	<mark>240</mark>	0	0	0
Solar + Storage	0	0	<mark>45</mark>	0	0	0

AES Indiana 2022 IRP Report Attachment 1-2 Encompass Optimization: Current Trends (Reference Case) Selects Pete 3 Refuel in 2025 & Pete 4 Refuel in 2027 **Energy Mix %** 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 2040 2023 2039 PORT 2028 PORT 2036 2029 Wind Solar + Storage Natural Gas Coal DSM <u>2023</u> 2042 2032 5% 3% 7% 8% 13% 30% 46% 49% 33% 43% 46%

Thermal MWh %		
Renewable/DSM	MWh	%

92%

8%

Thermal MWh %

Renewable/DSM MWh %

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Page 423 of 647 Page 423 of 647

Selects Pete 3 Refuel in 2025 & Pete 4 Refuel in 2027

DSM Results

Energy Efficiency:

	Vintage 1	Vintage 2	Vintage 3	
	2024 - 2026	2027 - 2029	2030 - 2042	
Residential	Efficient Products - Lower Cost	Lower Cost Residential	Lower Cost Residential (excluding IQW)	
	Efficient Products - Higher Cost	(excluding Income Qualified Weatherization (IQW))		
	Behavioral			
	School Education	Lligher Cost Desidential	Higher Cost Residential	
	Appliance Recycling			
	Multifamily			
	IQW	IQW	IQW	
C&I	Prescriptive		C&I	
	Custom	C Q I		
	Custom RCx	Cal		
	Custom SEM			
	Avg Annual MWh	Avg Annual MWh	Avg Annual MWh	
6	134,263	141,526	146,428	
acts	% of 2021 Sales ex. Opt-Out	% of 2021 Sales ex. Opt-Out	% of 2021 Sales ex. Opt-Out	
lmp	1.1%	1.1%	1.2%	
	Cummulative Summer MW	Cummulative Summer MW	Cummulative Summer MW	
	89 MW	92 MW	303 MW	

Demand Response:

	2026 - 2042		
ential	Direct Load Control		
Resid	Residential Rates		
C&I	Direct Load Control		
	C&I Rates		
	Cumulative Summer MW		
	75 MW		

Note: Boxes highlighted in purple denote DSM bundles that were selected by Encompass

AES Indiana 2022 IRP Report Attachment 1-2 Page 424 of 647 Page 424 of 647

Selects Pete 3 Refuel in 2025 & Pete 4 Refuel in 2027

Portfolio Overview

Retirements

Petersburg:	
\rightarrow Pete 3 Coal: 2026	
\rightarrow Pete 4 Coal: 2028	
Total Refueled MW: 1,040 MW	NO Early R
Harding Street:	Data Dafua
→ HS ST5 Nat Gas: 2030	rele Reiue
→ HS ST6 Nat Gas: 2030	One Data I
→ HS ST7 Nat Gas: 2033	One Pete L
→ Total Nat Gas Retired MW: 618 MW	Both Pete
Replacement Additions by 2042	
\rightarrow DSM: 490 MW	Both Pete
\rightarrow Wind: 2,500 MW	with wind,
\rightarrow Solar: 2,145 MW	Encompas
→ Storage: 680 MW	predefined
→ Solar + Storage: 45 MW	Reiuei III Z
\rightarrow Thermal: 0	

→ Pete 3 & 4 Refueled to Nat Gas: 1,052 MW

Current Trends PVRR Summary

20-Year PVRR (2023\$MM, 2023-2042)

Strategy	PVRR
etirement	\$9,572
el to 100% Gas (est. 2025)	\$9,330
Jnit Retires (2026)	\$9,773
Units Retire (2026 & 2028)	\$9,618
Units Retire and Replaced Solar & Storage (2026 & 2028)	\$9,711
s Optimization without Strategy – Selects Pete 3 025 & Pete 4 Refuel in 2027	\$9,262

Portfolio Matrix

		Scenarios								
	20-Year PVRR (2023\$MM, 2023-2042)	No Environmental Action	Current Trends (Reference Case)	Aggressive Environmental	Decarbonized Economy					
	No Early Retirement	\$7,111	\$9,572	\$11,349	\$9,917					
ategies	Pete Refuel to 100% Gas (est. 2025)	\$6,621	\$9,330	\$11,181	\$9,546					
Seneration Str	One Pete Unit Retires (2026)	\$7,462	\$9,773	\$11,470	\$9,955					
	Both Pete Units Retire (2026 & 2028)	\$7,425	\$9,618	\$11,145	\$9,923					
	"Clean Energy Strategy" Both Pete Units Retire and Replaced with Wind, Solar & Storage (2026 & 2028)	\$9,211	\$9,711	\$11,184	\$9,690					
	Encompass Optimization without predefined Strategy	\$6,610	\$9,262	\$10,994*	\$9,572					
		Encompass Optimization Results by Scenario:								
		Refuels Petersburg Units 3 & 4 in 2025	Refuels Petersburg Unit 3 in 2025 & Refuels Petersburg Unit 4 in 2027	Refuels Petersburg Unit 4 in 2027*	Refuels Petersburg Unit 3 in 2025 & Refuels Petersburg Unit 4 in 2027					
78	2022 IRP * Potuling Poto 3.8.4 at the same time provides cost officiencies									

*Refueling Pete 3 & 4 at the same time provides cost efficiencies. These efficiencies are not captured when only one unit refuels.

AES Indiana 2022 IRP Report Attachment 1-2 Page 425 of 647

Break for Lunch

Time	Торіс	Speaker
Afternoon Starting at 12:30 PM	Replacement Resource Cost Sensitivity Analysis	Erik Mille
	Preliminary IRP Scorecard Results	Erik Mille

AES Indiana 2022 IRP Report Attachment 1-2 Page 426 of 647

'S

er, Manager, Resource Planning, AES Indiana

er, Manager, Resource Planning, AES Indiana

Replacement Resource Cost Sensitivity Analysis

Erik Miller, Manager, Resource Planning, AES Indiana

AES Indiana 2022 IRP Repor Page 427 of 647

AES Indiana 2022 IRP Repor Replacement Resource Cost Sensitivity Analysis Overview

As part of this IRP, AES Indiana conducted a sensitivity analysis on the capital costs for replacement resources. The analysis was conducted in response to the current volatility of replacement resource capital cost caused by supply constraints and potential solar tariffs.

How the analysis was performed

- Using secondary data sources and the responses from AES Indiana's past two RFPs that were issued in 2020 and the \rightarrow spring of 2022, the IRP team created low, base and high levels of replacement resource costs.
 - \rightarrow Low low costs were based on the avg of the contemporary replacement resource capital cost forecasts from Wood Mackenzie, NREL and BNEF and benchmarked against the responses from AES Indiana's 2020 RFP.
 - Base base costs were based on the lower half of the 2022 RFP responses. \rightarrow
 - High high costs were based on the upper half of the 2022 RFP responses. \rightarrow
 - Capacity Expansion (Retirement & Replacement) analysis was performed \rightarrow for each

Current Trends strategies at the three different replacement resource cost levels.

The following slides present the range of generation additions for each strategy that result from running capacity expansion with the different cost levels.

Low, Base and High replacement resource costs (nominal \$/kW unsubsidized) in 2025

	Low	Base	High
Wind	\$1,477	\$1,909	\$2,340
Solar	\$1,036	\$1,364	\$1,925
4-hr Storage	\$1,016	\$1,253	\$1,447
6-hr Storage	\$1,525	\$1,880	\$2,170
Hybrid	\$985	\$1,270	\$1 <i>,</i> 689
ССБТ	\$1,028	\$1,120	\$1,212
Frame CT	\$868	\$945	\$1,023
Aero CT	\$1,328	\$1,447	\$1,566
Recip	\$1,277	\$1,391	\$1,505

Replacement Resource Cost Sensitivity No Early Retirement

Portfolio ICAP Retirements and Replacements by 2042

AES Indiana 2022 IRP Report Attachment 1-2 Page 429 of 647

Replacement Resource Cost Sensitivity Pete Refuel by 2025

AES Indiana 2022 IRP Report Attachment 1-2 Page 430 of 647

Replacement Resource Cost Sensitivity One Pete Unit Retires

AES Indiana 2022 IRP Report Attachment 1-2 Page 431 of 647

Replacement Resource Cost Sensitivity Both Pete Unite Retire

AES Indiana 2022 IRP Report Attachment 1-2 Page 432 of 647

Replacement Resource Cost Sensitivity Clean Energy Strategy

AES Indiana 2022 IRP Report Attachment 1-2 Page 433 of 647

Replacement Resource Cost Sensitivity Encompass Optimization

2022 IRP

87

2022 IRP Report Attachment 1-2 Page 434 of 647

AES Indiana

Attachment 1-2 **Replacement Resource Cost Sensitivity** Page 435 of 647 Key Takeaways & PVRR Results

- As capital costs increase, fewer renewables are built for their energy value to the portfolio.
- As capital costs increase, \rightarrow newly constructed natural gas becomes more cost effective – less high price volatility with the cost to construct natural gas.
- Across the range of \rightarrow **Replacement Resource** Costs, refueling Petersburg provides a low PVRR.

20-Voar BV/PR (2023\$MM 2023-2042)		Current Trends (Reference Case)					
	20- Teal PVKK (2023\$IVIIVI, 2023-2042)	Low	Base	High			
	No Early Retirement	\$9,054	\$9,572	\$9,876			
gies	Pete Refuel to 100% Gas (est. 2025)	\$8,698	\$9,330	\$9,661			
Generation Strate	One Pete Unit Retires (2026)	\$9,081	\$9,773	\$10,181			
	Both Pete Units Retire (2026 & 2028)	\$8,790	\$9,618	\$10,178			
	"Clean Energy Strategy" Both Pete Units Retire and Replaced with Wind, Solar & Storage (2026 & 2028)	\$8,787	\$9,711	\$10,586			
	Encompass Optimization without predefined Strategy	\$8,670*	\$9,262	\$9,624			

*Refueling Pete 3 & 4 at the same time provides cost efficiencies. These efficiencies are not captured when only one unit refuels.

Encompass Optimization Portfolios

Low	Base	High
Refuels Petersburg Unit 3 in 2025*	Refuels Petersburg Unit 3 in 2025 & Refuels Petersburg Unit 4 in 2027	Refuels Petersburg Unit 3 in 2025 & Refuels Petersburg Unit 4 in 2027

AES Indiana

2022 IRP Report

Preliminary IRP Scorecard Results

Erik Miller, Manager, Resource Planning, AES Indiana

AES Indiana 2022 IRP Report Attachment 1-2 Page 436 of 647

Preliminary Scorecard Results

Affordability, Environmental Sustainability and Risk & Opportunity metrics for the Current Trends portfolios

	Afford	dability	Environmental Sustainability					Reliability, Stability & Resiliency			Risk & Op	portunity			Econom	ic Impa	ct	
	20-yr	PVRR	CO₂ Emissions	SO ₂ Emissions	NO _x Emissions	Water Use	Coal Combustion Products (CCP)	Clean Energy Progress	Reliability Score	Environmental Policy Opportunity	Environmental Policy Risk	Cost Opportunity	Cost Risk	Market Exposure	Renewable Capital Cost Risk (+50%)	Employees (+/-)	Proper	rty Taxes
	Presen of Re Requir (20 \$000	nt Value evenue rements 023 0,000)	CO2 Emissions (mmtons) 2023 - 2032	SO2 Emissions (tons) 2023 - 2032	NOx Emissions (tons) 2023 - 2032	Water Use (mmgal) 2023 - 2032	CCP (tons) 2023 - 2032	% Renewable Energy in 2032	Composite score from Reliability Analysis	Lowest PVRR across policy scenarios	Highest PVRR across policy scenarios	Mean - P95	P95 - Mean	20-year avg sales + purchases	Portfolio PVRR w/ renewable costs +50%	Total FTEs associated with generation	Total a of prop paid fr IN asse \$00(amount perty tax rom AES ets (2023 0,000)
1	\$	9,572	73.2	49,944	34,755	28.4	5,126	45%									\$	173
2	\$	9,330	54.5	13,402	19,501	7.9	1,417	55%									\$	211
3	\$	9,773	65.2	37,102	33,243	26.7	4,813	52%		N	letrics \$	Still in I	Progres	SS			\$	215
4	\$	9,618	58.6	25,506	23,102	15.0	2,700	48%									\$	248
5	\$	9,711	55.3	25,254	23,303	14.8	2,676	64%									\$	262
6	\$	9,262	56.6	18,503	22,559	10.9	1,970	54%									\$	203

Strategies \rightarrow

- → **1.** No Early Retirement
- 2. Pete Refuel to 100% Natural Gas (est. 2025) \rightarrow
- **3.** One Pete Unit Retires in 2026
- \rightarrow **4.** Both Pete Units Retire in 2026 & 2028
- → 5. "Clean Energy Strategy" Both Pete Units Retire and replaced with Renewables in 2026 & 2028
- → 6. Encompass Optimization without Predefined Strategy Selects Pete 3 Refuel in 2025 & Pete 4 Refuel in 2027

2022 IRP

90

AES Indiana 2022 IRP Report Attachment 1-2 Page 437 of 647

Complete Scorecard review and selection of the Preferred Resource Portfolio will be topics for Public Advisory Meeting # 5.

Attachment 1-2 **IRP Annual Revenue Requirement** Page 438 of 647 **Compared to the No Retirement ("Status Quo") Scenario**

Presented revenue requirement is only for incremental generation capital expenditures

-Encompass Optimization w/o Predefined Strategy – Selects Pete 3 Refuel in 2025 & Pete 4 Refuel in 2027

AES Indiana 2022 IRP Report

Final Q&A and Next Steps

AES Indiana 2022 IRP Report Attachment 1-2 Page 439 of 647

Public Advisory Meeting

- \rightarrow All meetings will be available for attendance via Teams. Meetings in 2022 may also occur inperson.
- \rightarrow A Technical Meeting will be held the week preceding each Public Advisory Meeting for stakeholders with nondisclosure agreements. Tech Meeting topics will focus on those anticipated at the next Public Advisory Meeting.
- → Meeting materials can be accessed at <u>www.aesindiana.com/integrated-resource-plan</u>.

AES Indiana 2022 IRP Report Attachment 1-2 Page 440 of 647

Thank You

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Page 441 of 647

Appendix

AES Indiana 2022 IRP Report Attachment 1-2 Page 442 of 647

No Early Retirement: Current Trends (Reference Case)

AES Indiana 2022 IRP Report Attachment 1-2 Page 443 of 647

2022 IRP

Both Pete Units Retire: Current Trends (Reference Case)

0 \vec{v}_{Q_3} \vec{v}_{Q_4} \vec{v}_{Q_5} \vec

99 2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Page 446 of 647

Clean Energy Strategy: Current Trends (Reference Case)

Retire & Replace Pete with Clean Energy

AES Indiana 2022 IRP Report Attachment 1-2 Page 447 of 647

Environmental Sustainability Metrics

Environmental Sustainability									
CO ₂ Emissions	SO ₂ Emissions	NO _x Emissions	Water Use	Coal Combustion Products (CCP)	Clean Energy Progress				
Total portfolio CO2 Emissions (mmtons) 2023 - 2042	Total portfolio SO2 Emissions (tons) 2023 - 2042	Total portfolio NOx Emissions (tons) 2023 - 2042	Water Use (mmgal) 2023 - 2042	CCP (tons) 2023 - 2042	% Renewable Energy in 2032				
101.9	64,991	45,605	36.7	6,611	45%				
72.5	13,513	22,146	7.9	1,417	55%				
88.1	45,544	42,042	26.7	4,813	52%				
79.5	25,649	24,932	15.0	2,700	48%				
69.8	25,383	24,881	14.8	2,676	64%				
76.1	18,622	25,645	10.9	1,970	54%				

→ Strategies

- → **1.** No Early Retirement
- → 2. Pete Refuel to 100% Natural Gas (est. 2025)
- → 3. One Pete Unit Retires in 2026
- → 4. Both Pete Units Retire in 2026 & 2028
- → 5. "Clean Energy Strategy" Both Pete Units Retire and replaced with Renewables in 2026 & 2028
- → 6. Encompass Optimization without Predefined Strategy Selects Pete 3 Refuel in 2025 & Pete 4 Refuel in 2027

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Page 449 of 647

ewables in 2026 & 2028 Refuel in 2025 & Pete 4 Refuel in 2027

IRP Acronyms

Note: A glossary of acronyms with definitions is available at <u>https://www.aesindiana.com/integrated-resource-plan</u>.

AES Indiana 2022 IRP Report Attachment 1-2 Page 450 of 647

IRP Acronyms

- → ACEE: The American Council for an Energy-Efficient Economy
- → AMI: Advanced Metering Infrastructure
- \rightarrow AD: Ad Valorem
- → AD/CVD: Antidumping and Countervailing Duties
- → ADMS: Advanced Distribution Management System
- → BESS: Battery Energy Storage System
- → BNEF: Bloomberg New Energy Finance
- → BTA: Build-Transfer Agreement
- → BTU: British Thermal Unit
- → C&I: Commercial and Industrial
- → CAA: Clean Air Act
- → CAGR: Compound Annual Growth Rate
- → CCGT: Combined Cycle Gas Turbines
- → CCP: Coal Combustion Products
- → CCS: Carbon Dioxide Capture and Storage
- → CDD: Cooling Degree Day
- → CIS: Customer Integrated System
- → COD: Commercial Operation Date
- → CONE: Cost of New Entry
- → CP: Coincident Peak

- CPCN: Certificate of Public Convenien Necessity
- \rightarrow CT: Combustion Turbine
- → CVD: Countervailing Duties
- → CVR: Conservation Voltage Reduction
- → DER: Distributed Energy Resource
- → DERA: Distributed Energy Resource A
- DERMS: Distributed Energy Resource Management System
- → DG: Distributed Generation
- → DGPV: Distributed Generation Photovo System
- → DLC: Direct Load Control
- → DOC: U.S. Department of Commerce
- → DOE: U.S. Department of Energy
- → DR: Demand Response
- → DRR: Demand Response Resource
- → DSM: Demand-Side Management
- → DMS: Distribution Management System
- → DSP: Distribution System Planning
- → EE: Energy Efficiency

AES Indiana 2022 IRP Report Attachment 1-2 Page 451 of 647

nce and	\rightarrow	EFORd: Equivalent Forced Outage Rate Demand
	\rightarrow	EIA: Energy Information Administration
	\rightarrow	ELCC: Effective Load Carrying Capability
	\rightarrow	EM&V: Evaluation Measurement and Verification
I	\rightarrow	ESCR: Effective Selective Catalytic Reduction System
	\rightarrow	EV: Electric Vehicle
ggregation	\rightarrow	FLOC: Federated Learning of Cohorts
;	\rightarrow	FTE: Full-Time Employee
	\rightarrow	GDP: Gross Domestic Product
oltaia	\rightarrow	GFL: Grid-Following System
JILAIC	\rightarrow	GIS: Geographic Information System
	\rightarrow	GT: Gas Turbine
	\rightarrow	HDD: Heating Degree Day
	\rightarrow	HVAC: Heating, Ventilation, and Air Conditioning
	\rightarrow	IAC: Indiana Administrative Code
	\rightarrow	IBR: Inverter-Based Resource
	\rightarrow	IC: Indiana Code
n	\rightarrow	ICE: Intercontinental Exchange
	\rightarrow	ICAP: Installed Capacity
	\rightarrow	IEEE: Institute of Electrical and Electronics Engineers

IRP Acronyms

- \rightarrow IRA: Inflation Reduction Act
- → IRP: Integrated Resource Plan
- → ICE: Internal Combustion Engine
- → IQW: Income Qualified Weatherization
- → ITC: Investment Tax Credit
- → IURC: Indiana Regulatory Commission
- \rightarrow kW: Kilowatt
- → kWh: Kilowatt-Hour
- → MATS: Mercury and Air Toxics Standards
- → MaxGen: Maximum Generation
- → MDMS: Meter Data Management System
- → MISO: Midcontinent Independent System Operator
- → MMGAL: One Million Gallons
- → MMTons: One Million Metric Tons
- → MPS: Market Potential Study
- → MW: Megawatt

105

- → Nat Gas: Natural Gas
- → NDA: Nondisclosure Agreement

2022 IRP

- \rightarrow NOX: Nitrogen Oxides
- → NPV: Net Present Value
- → NREL: National Renewable Energy Laboratory

- \rightarrow NTG: Net to Gross
- → OMS: Outage Management System
- → PLL: Phase-Locked Loop
- → PPA: Power Purchase Agreement
- → PRA: Planning Resource Auction
- → PSSE: Power System Simulator for E
- → PTC: Renewable Electricity Production
- → PRMR: Planning Reserve Margin Re
- → PV: Photovoltaic
- → PVRR: Present Value Revenue Requ
- \rightarrow PY: Planning Year
- → RA: Resource Adequacy
- → RAN: Resource Availability and Need
- \rightarrow RAP: Realistic Achievable Potential
- → RCx: Retrocommissioning
- → REC: Renewable Energy Credit
- → REP: Renewable Energy Production
- \rightarrow RFP: Request for Proposals
- RIIA: MISO's Renewable Integration Assessment
- → RPS: Renewable Portfolio Standard

AES Indiana 2022 IRP Report Attachment 1-2 Page 452 of 647

	\rightarrow	SCADA: Supervisory Control and Data Acquisition
	\rightarrow	RTO: Regional Transmission Organization
	\rightarrow	SAC: MISO's Seasonal Accredited Capacity
	\rightarrow	SAE: Small Area Estimation
	\rightarrow	SCR: Selective Catalytic Reduction System
Engineering	\rightarrow	SEM: Strategic Energy Management
on Tax Credit	\rightarrow	SO2: Sulfur Dioxide
equirement	\rightarrow	SMR: Small Modular Reactors
	\rightarrow	ST: Steam Turbine
uirement	\rightarrow	SUFG: State Utility Forecasting Group
	\rightarrow	T&D: Transmission and Distribution
	\rightarrow	TOU: Time-of-Use
b	\rightarrow	TRM: Technical Resource Manual
	\rightarrow	UCT: Utility Cost Test
	\rightarrow	UCAP: Unforced Capacity
	\rightarrow	VAR: Volt-Amp Reactive
	\rightarrow	VPN: Virtual Private Network
	\rightarrow	WTP: Willingness to Participate
Impact	\rightarrow	XEFORd: Equivalent Forced Outage Rate Demand excluding causes of outages that are outside management control

No Environmental Action

20-Year PVRR (2023\$MM, 2023-2042)

	No Early Retirement
e S	Pete Refuel to 100% Gas (est. 2025)
trategi	One Pete Unit Retires (2026)
tion St	Both Pete Units Retire (2026 & 2028)
Generat	"Clean Energy Strategy" Both Pete Units Retire and Replaced with Wind, & Storage (2026 & 2028)
	Encompass Optimization without predefined Str Selects Pete 3 & 4 Refuel in 2025

AES Indiana 2022 IRP Report Attachment 1-2 Page 453 of 647

	Scenarios
	No Environmental Action
	\$7,111
	\$6,621
	\$7,462
	\$7,425
Solar	\$9,211
rategy –	\$6,610

A. No Early Retirement

		Scen	arios		
Generation Strategy: No Early Retirement	No Environmental Action	Current Trends	Aggressive Environmental	Decarbonized Economy	
-	\$7,111				

AES Indiana 2022 IRP Report Attachment 1-2 Page 454 of 647

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Page 455 of 647

Firm Unforced Capacity Position – Winter

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Page 456 of 647

Installed Capacity Incremental Additions (MW): 2023 - 2028

	<u>2023</u>	<u>2024</u>	<u>2025</u>	<u>2026</u>	<u>2027</u>	<u>2028</u>
Wind	0	0	0	0	0	0
Solar	0	0	0	0	0	0
Storage	0	0	180	0	0	0
Solar + Storage	0	0	0	0	0	0
Pete Refuel	0	0	0	0	0	0
Gas	0	0	0	0	0	0

AES Indiana 2022 IRP Report Attachment 1-2 Page 457 of 647

aes Indiana

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Page 458 of 647

No Early R

Pete Refue

One Pete U

Both Pete

"Clean Ene **Both Pete** with Wind,

Encompas predefined

AES Indiana 2022 IRP Report Attachment 1-2 Page 459 of 647

Current Trends PVRR Summary 20-Year PVRR (2023\$MM, 2023-2042)

	Scenarios		
	No Environmental Action		
etirement	\$7,111		
el to 100% Gas (est. 2025)	\$6,621		
Jnit Retires (2026)	\$7,462		
Units Retire (2026 & 2028)	\$7,425		
ergy Strategy" Units Retire and Replaced Solar & Storage (2026 & 2028)	\$9,211		
s Optimization without Strategy	\$6,610		

B. Pete Refuel by 2025

20-Year PVRR (2023\$MM, 2023-2042) Generation Strategy: Pete Refuel to 100% Gas (est. 2025)	Sce			
	No Environmental Action	Current Trends		
	\$6,621			

AES Indiana 2022 IRP Report Attachment 1-2 Page 460 of 647

enarios Aggressive Decarbonized Environmental Economy

Pete 3 & 4 Refuel in 2025: No Environmental Action 461 of 647

2022 IRP

9

								-
								_
2034	2035	2036	2031	2038	2039	2040	2041	2045
Other (Win	Other (Wind/Solar/DR) Petersburg 3 & 4 Refuel to Natural Gas							
orage	ge New Solar + Storage							
			P	PRMR less	DSM			

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Pete 3 & 4 Refuel in 2025: No Environmental Action 463 of 647

Installed Capacity Incremental Additions (MW): 2023 - 2028

	2023	2024	2025	<u>2026</u>	2027	<u>2028</u>
Wind	0	0	0	0	0	0
Solar	0	0	0	0	0	0
Storage	0	0	180	0	0	0
Solar + Storage	0	0	0	0	0	0
Pete Refuel	0	0	1,052	0	0	0
Gas	0	0	0	0	0	0

2022 IRP

aes Indiana

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Page 464 of 647

Pete 3 & 4 Refuel in 2025: No Environmental Action 465 of 647

Portfolio Overview	
Retirements	C
Petersburg:	
Pete 3 & 4 Coal: 2025 Refuel with Nat Gas	
Total Refueled MW: 1,040 MW	
Harding Street:	
\rightarrow HS ST5 Nat Gas: 2030	No Early Re
\rightarrow HS ST6 Nat Gas: 2030	
→ HS ST7 Nat Gas: 2033	Pete Refuel
→ Total Nat Gas Retired MW: 618 MW	
	One Pete U
Replacement Additions by 2042	
\rightarrow DSM: 326 MW	Both Pete L
\rightarrow Wind: 0 MW	
\rightarrow Solar: 0 MW	"Clean Ener
→ Storage: 260 MW	with Wind.
Solar + Storage: 0 MW	_
→ Thermal: 750 MW	Encompass
Pete 3 & 4 Refueled to Nat Gas: 1,052 MW	hieneimen

Current Trends PVRR Summary 20-Year PVRR (2023\$MM, 2023-2042)

	Scenarios
	No Environmental Action
etirement	\$7,111
I to 100% Gas (est. 2025)	\$6,621
Init Retires (2026)	\$7,462
Units Retire (2026 & 2028)	\$7,425
ergy Strategy" Units Retire and Replaced Solar & Storage (2026 & 2028)	\$9,211
s Optimization without Strategy	\$6,610

C. One Pete Unit Retires (2026)

20-Year PVRR	Scenarios							
(2023\$MM, 2023-2042) Generation Strategy:	No Environmental Action	Current Trends	Aggressive Environmental	Decarbonized Economy				
One Pete Unit Retires (2026)	\$7,462							

Firm Unforced Capacity Position – Summer

2022 IRP

2022 IRP

One Pete Unit Retires (2026): No Environmental Action

Installed Capacity Incremental Additions (MW): 2023 - 2028

	2023	2024	2025	2026	2027	2028
Wind	0	0	0	0	0	0
Solar	0	0	0	0	0	0
Storage	0	0	220	400	0	0
Solar + Storage	0	0	0	0	0	0
Pete Refuel	0	0	0	0	0	0
Gas	0	0	0	0	0	0

		0270		05%	
Thermal MWh %	92%	Thermal MWh %	86%	Thermal MWh %	8
Renewable/DSM MWh %	8%	Renewable/DSM MWh %	14%	Renewable/DSM MWh %	1

2022 IRP

18

AES Indiana 2022 IRP Report Attachment 1-2 Page 470 of 647

One Pete Unit Retires (2026): No Environmental Action

Portfolio Overview	
Retirements	C
Petersburg:	
→ Pete 3 Coal: 2026	
→ Total Coal Retired MW: 520 MW	
Harding Street:	
\rightarrow HS ST5 Nat Gas: 2030	No Early Ro
\rightarrow HS ST6 Nat Gas: 2030	
\rightarrow HS ST7 Nat Gas: 2033	Pete Refue
→ Total Nat Gas Retired MW: 618 MW	
	One Pete U
Replacement Additions by 2042	
\rightarrow DSM: 453 MW	Both Pete l
\rightarrow Wind: 0 MW	
\rightarrow Solar: 0 MW	"Clean Ene Both Pete I
→ Storage: 640 MW	Wind, Sola
Solar + Storage: 0 MW	Encompac
\rightarrow Thermal: 650 MW	predefined

Current Trends PVRR Summary 20-Year PVRR (2023\$MM, 2023-2042)

	Scenarios
	No Environmental Action
etirement	\$7,111
el to 100% Gas (est. 2025)	\$6,621
Jnit Retires (2026)	\$7,462
Units Retire (2026 & 2028)	\$7,425
ergy Strategy" Units Retire and Replaced with r & Storage (2026 & 2028)	\$9,211
s Optimization without Strategy	\$6,610

D. Both Pete Units Retire (2026 & 2028)

20-Year PVRR	Scenarios						
(2023\$MM, 2023-2042) Generation Strategy: Both Pete Units Retire (2026 & 2028)	No Environmental Action	Current Trends	Aggressive Environmental	Decarbonized Economy			
	\$7,425						

AES Indiana 2022 IRP Report Attachment 1-2 Page 472 of 647

Both Pete Units Retire: No Environmental Action

Firm Unforced Capacity Position - Summer

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Page 473 of 647

						_ ·
	1					
203 2035 203	2031	2038	2039	RORO	ROAT	ROAD
Other (Wind/Solar/DR)	-	Petersburg	g 3 & 4 Re	fuel to Na	tural Gas	
orage	-	New Solar + Storage				
		PRMR less	DSM			

Both Pete Units Retire: No Environmental Action

2022 IRP

22

AES Indiana 2022 IRP Report Attachment 1-2 Page 474 of 647

								- ·
								_
1								
202	202	202	202	202	20	Ros	205	205
S.	5	36	C.	30	30	¥0	47	Ŕ
Other (Win	d/Solar/D	R)	P	etersburg	g 3 & 4 Re	fuel to Na	itural Gas	
orage				lew Solar	+ Storage			
			— P	RMR less	DSM			

Both Pete Units Retire: No Environmental Action

Installed Capacity Incremental Additions (MW): 2023 – 2028

	<u>2023</u>	<u>2024</u>	<u>2025</u>	<u>2026</u>	<u>2027</u>	<u>2028</u>
Wind	0	0	0	0	0	0
Solar	0	0	0	0	0	0
Storage	0	0	220	460	0	80
Solar + Storage	0	0	0	0	0	0
Pete Refuel	0	0	0	0	0	0
Gas	0	0	0	0	0	325

AES Indiana 2022 IRP Report Attachment 1-2 Page 475 of 647

aes Indiana

Energy Mix % 100% 90% 80% 70% 60% **50%** 40% 30% 20% 10% 0% 2023 2024 2025 2026 2027 2028 2029 2033 2032 2030 203 Coal

2026 & 2028

2022 IRP

24

AES Indiana 2022 IRP Report Attachment 1-2 Page 476 of 647

Both Pete Units Retire: No Environmental Action 2026 & 2028

Portfolio Overview

Retirements Petersburg:	20-Year PVRR (2023\$MM, 2023-2042)						
 → Pete 3 Coal: 2026 → Pete 4 Coal: 2028 → Total Coal Retired MW: 1,040 MW 		Scenarios No Environmental Action					
Harding Street:	No Early Retirement	\$7,111					
\rightarrow HS ST5 Nat Gas: 2030 \rightarrow HS ST6 Nat Gas: 2030	Pete Refuel to 100% Gas (est. 2025)	\$6,621					
→ HS ST7 Nat Gas: 2033 → Total Nat Gas Retired MW: 618 MW	One Pete Unit Retires (2026)	\$7,462					
Replacement Additions by 2042	Both Pete Units Retire (2026 & 2028)	\$7,425					
→ DSM: 472 MW → Wind: 0 MW → Solar: 0 MW	"Clean Energy Strategy" Both Pete Units Retire and Replaced with Wind, Solar & Storage (2026 & 2028)	\$9,211					
 → Storage: 860 MW → Solar + Storage: MW → Thermal: 975 MW 	Encompass Optimization without predefined Strategy	\$6,610					

AES Indiana 2022 IRP Report Attachment 1-2 Page 477 of 647

Current Trande DV/DD Summary

20-Year PVRR (2023\$MM, 2023-2042)	Scenarios							
Generation Strategy:	No Environmental Action	Current Trends	Aggressive Environmental	Decarbonized Economy				
"Clean Energy Strategy" Both Pete Units Retire and Replaced with Wind, Solar & Storage (2026 & 2028)	\$9,211							

AES Indiana 2022 IRP Report Attachment 1-2 Page 478 of 647

Retire & Replace Pete with Clean Energy

Clean Energy Strategy: No Environmental Action

Retire & Replace Pete with Clean Energy

Firm Unforced Capacity Position – Summer

AES Indiana 2022 IRP Report Attachment 1-2 Page 479 of 647

Retire & Replace Pete with Clean Energy

Firm Unforced Capacity Position – Winter

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Page 480 of 647

Retire & Replace Pete with Clean Energy

Installed Capacity Incremental Additions (MW): 2023 – 2028

	<u>2023</u>	2024	<u>2025</u>	<u>2026</u>	<u>2027</u>	<u>2028</u>
Wind	0	0	0	100	0	0
Solar	0	0	0	0	0	0
Storage	0	0	220	420	0	420
Solar + Storage	0	0	0	0	0	0
Pete Refuel	0	0	0	0	0	0
Gas	0	0	0	0	0	0

AES Indiana 2022 IRP Report Attachment 1-2 Page 481 of 647

					1
Thermal MWh %	92%	Thermal MWh %	86%	Thermal MWh %	80
Renewable/DSM MWh %	8%	Renewable/DSM MWh %	14%	Renewable/DSM MWh %	20

AES Indiana 2022 IRP Report Attachment 1-2 Page 482 of 647

Retire & Replace Pete with Clean Energy

Portfolio Overview	
Retirements	C
Petersburg:	
\rightarrow Pete 3 Coal: 2026	
→ Pete 4 Coal: 2028	
→ Total Coal Retired MW: 1,040 MW	
Harding Street:	No Early Re
→ HS ST5 Nat Gas: 2030	
→ HS ST6 Nat Gas: 2030	Pete Refuel
→ HS ST7 Nat Gas: 2033	
→ Total Retired Nat Gas MW: 618 MW	One Pete U
Replacements by 2042	Both Pete L
\rightarrow DSM: 610 MW	"Clean Ene
\rightarrow Wind: 100 MW	Both Pete L
\rightarrow Solar: 2,600 MW	with Wind, S
→ Storage: 1,680 MW	Fncompass
→ Solar + Storage: 45 MW	predefined
\rightarrow Thermal: 0 MW	-

AES Indiana 2022 IRP Report Attachment 1-2 Page 483 of 647

Current Trends PVRR Summary 20-Year PVRR (2023\$MM, 2023-2042)

	Scenarios
	No Environmental Action
etirement	\$7,111
I to 100% Gas (est. 2025)	\$6,621
Init Retires (2026)	\$7,462
Units Retire (2026 & 2028)	\$7,425
ergy Strategy" Units Retire and Replaced Solar & Storage (2026 & 2028)	\$9,211
s Optimization without Strategy	\$6,610

F. Encompass Optimization

20-Year PVRR (2023\$MM, 2023-2042)	Scenarios						
Generation Strategy:	No Environmental Action	Current Trends	Aggressive Environmental	Decarbonized Economy			
Encompass Optimization without predefined Strategy – Selects Pete 3 & 4 Refuel in 2025	\$6,610						

AES Indiana 2022 IRP Report Attachment 1-2 Page 484 of 647

Refuels Petersburg Units 3 & 4 in 2025

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Encompass Optimization: No Environmental Action^{187 of 647}

Refuels Petersburg Units 3 & 4 in 2025

Installed Capacity Incremental Additions (MW): 2023 - 2028

	2023	2024	2025	2026	2027	2028
Wind	0	0	0	0	0	0
Solar	0	0	0	0	0	0
Storage	0	0	180	0	0	0
Solar + Storage	0	0	0	0	0	0
Pete Refuel	0	0	1,052	0	0	0
Gas	0	0	0	0	0	0

2022 IRP

Refuels Petersburg Units 3 & 4 in 2025

2022 IRP

36

AES Indiana 2022 IRP Report Attachment 1-2 Page 488 of 647

Encompass Optimization: No Environmental Action 489 of 647

Refuels Petersburg Units 3 & 4 in 2025

Portfolio Overview	
Retirements	C
Petersburg:	
\rightarrow Pete 3 Coal: 2025	
\rightarrow Pete 4 Coal: 2025	
Total Refueled MW: 1,040 MW	
Harding Street:	No Fashs D
\rightarrow HS ST5 Nat Gas: 2030	NO Early R
\rightarrow HS ST6 Nat Gas: 2030	Data Dafua
\rightarrow HS ST7 Nat Gas: 2033	Pete Refue
→ Total Nat Gas Retired MW: 618 MW	One Pete II
Replacement Additions by 2042	
\rightarrow DSM: 326 MW	Both Pete I
\rightarrow Wind: 0 MW	
\rightarrow Solar: 0 MW	"Clean Ene
→ Storage: 280 MW	Both Pete U with Wind
→ Solar + Storage: 45 MW	
\rightarrow Thermal: 650 MW	Encompase
→ Pete 3 & 4 Refueled to Nat Gas: 1,052 MW	predenned

Current Trends PVRR Summary 20-Year PVRR (2023\$MM, 2023-2042)

	Scenarios
	No Environmental Action
etirement	\$7,111
l to 100% Gas (est. 2025)	\$6,621
Init Retires (2026)	\$7,462
Units Retire (2026 & 2028)	\$7,425
ergy Strategy" Units Retire and Replaced Solar & Storage (2026 & 2028)	\$9,211
s Optimization without Strategy	\$6,610

Portfolio Matrix

				Scen	ario	S			
	20-Year PVRR (2023\$MM, 2023-2042)	No Environmental Action		Current Trends (Reference Case)		Aggressive Environmental		Decarbonized Economy	
	No Early Retirement	\$7,111		\$9,572		\$11,349		\$9,917	
ategies	Pete Refuel to 100% Gas (est. 2025)	\$6,621		\$9,330		\$11,181		\$9,546	
tion Str	One Pete Unit Retires (2026)	\$7,462	\$7,462		\$9,773			\$9,955	
Genera	Both Pete Units Retire (2026 & 2028)	\$7,425		\$9,618		\$11,145		\$9,923	
	"Clean Energy Strategy" Both Pete Units Retire and Replaced with Wind, Solar & Storage (2026 & 2028)	\$9,211		\$9,711		\$11,184		\$9,690	
	Encompass Optimization without predefined Strategy	\$6,610		\$9,262		\$10,994		\$9,572	
		Encompass Optimization Results by Scenario:							
			Refu in 202	els Petersburg Unit 3 5 & Refuels Petersburg Unit 4 in 2027		Refuels Petersburg Unit 4 in 2027	Re in 2	efuels Petersburg Unit 3 2025 & Refuels Petersburg Unit 4 in 2027	

AES Indiana 2022 IRP Report Attachment 1-2 Page 490 of 647

Decarbonized Economy

		Scenarios
	20-Year PVRR (2023\$MM, 2023-2042)	Decarbonized Economy
	No Early Retirement	\$9,917
es	Pete Refuel to 100% Gas (est. 2025)	\$9,546
trategi	One Pete Unit Retires (2026)	\$9,955
ation S	Both Pete Units Retire (2026 & 2028)	\$9,923
Genera	"Clean Energy Strategy" Both Pete Units Retire and Replaced with Wind, Solar & Storage (2026 & 2028)	\$9,690
	Encompass Optimization without predefined Strategy – Selects Pete 3 Refuel in 2025 & Pete 4 Refuel in 2027	\$9,572

AES Indiana 2022 IRP Report Attachment 1-2 Page 491 of 647

A. No Early Retirement

	Scenarios					
Generation Strategy: No Early Retirement	No Environmental Action	Current Trends	Aggressive Environmental	Decarbonized Economy		
				\$9,917		

AES Indiana 2022 IRP Report Attachment 1-2 Page 492 of 647

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Page 493 of 647

Firm Unforced Capacity Position – Winter

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Page 494 of 647

Installed Capacity Incremental Additions (MW): 2023 - 2028

	<u>2023</u>	<u>2024</u>	<u>2025</u>	<u>2026</u>	<u>2027</u>	<u>2028</u>
Wind	0	0	0	100	400	0
Solar	0	0	325	65	0	0
Storage	0	0	260	0	0	0
Solar + Storage	0	0	45	0	0	0
Gas	0	0	0	0	0	0

AES Indiana 2022 IRP Report Attachment 1-2 Page 495 of 647

Thermal MWh %	92%	Thermal MWh %	80%	Thermal MWh %	65
Renewable/DSM MWh %	8%	Renewable/DSM MWh %	20%	Renewable/DSM MWh %	35

6

AES Indiana 2022 IRP Report Attachment 1-2 Page 496 of 647
No Early Retirement: Decarbonized Economy

Portfolio Overview <i>Retirements</i>	С
Harding Street:	
\rightarrow HS S15 Nat Gas: 2030	
\rightarrow HS S16 Nat Gas: 2030	
\rightarrow HS ST7 Nat Gas: 2033	
→ Total Nat Gas Retired MW: 618 MW	No Early Re
Replacement Additions by 2042	Pete Refuel
\rightarrow DSM: 490 MW	
\rightarrow Wind: 2,350 MW	One Pete U
\rightarrow Solar: 2,600 MW	
→ Storage: 900 MW	Both Pete U
Solar + Storage: 45 MW	
Thermal: 0 MW	"Clean Ener
	Both Pete U with Wind, S
	Encompass
	predefined \$

AES Indiana 2022 IRP Report Attachment 1-2 Page 497 of 647

Current Trends PVRR Summary 20-Year PVRR (2023\$MM, 2023-2042)

	Scenarios
	Economy
etirement	\$9,917
el to 100% Gas (est. 2025)	\$9,546
Jnit Retires (2026)	\$9,955
Units Retire (2026 & 2028)	\$9,923
ergy Strategy" Units Retire and Replaced Solar & Storage (2026 & 2028)	\$9,690
s Optimization without Strategy	\$9,572

B. Pete Refuel by 2025

20-Year PVRR (2023\$MM_2023-2042)	Scenarios				
Generation Strategy:	No Environmental Action	Current Trends	Aggressive Environmental	Decarbonized Economy	
Pete Refuel to 100% Gas (est. 2025)				\$9,546	

AES Indiana 2022 IRP Report Attachment 1-2 Page 498 of 647

Pete 3 & 4 Refuel in 2025: Decarbonized Economy Ales Indiana Attachment 1-2 Page 499 of 647

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Pete 3 & 4 Refuel in 2025: Decarbonized Economy^{Page 500 of 647}

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Pete 3 & 4 Refuel in 2025: Decarbonized Economy^{age 501 of 647}

Installed Capacity Incremental Additions (MW): 2023 - 2028

	<u>2023</u>	<u>2024</u>	<u>2025</u>	<u>2026</u>	<u>2027</u>	<u>2028</u>
Wind	0	0	0	100	400	0
Solar	0	0	325	65	0	0
Storage	0	0	260	0	0	0
Solar + Storage	0	0	45	0	0	0
Gas	0	0	0	0	0	0

AES Indiana 2022 IRP Report Attachment 1-2 Pete 3 & 4 Refuel in 2025: Decarbonized Economy^{Pige 502 of 647}

Renewable/DSM MWh %

54% Renewable/DSM MWh %

Thermal MWh %	92%	Thermal MWh %	79%	Thermal MWh %	63%
Renewable/DSM MWh %	8%	Renewable/DSM MWh %	21%	Renewable/DSM MWh %	37%

2022 IRP

12

Pete 3 & 4 Refuel in 2025: Decarbonized Economy Ales Indiana 2022 IRP Report Attachment 1-2 Attachment 1-2

Portfolio Overview Retirements Petersburg: → Pete 3 & 4 Coal: 2025 Refuel with Nat Gas → Total Refueled MW: 1,040 MW	C
Harding Street:	No Early Po
\rightarrow HS S15 Nat Gas: 2030	
\rightarrow HS ST0 Nat Gas: 2030 \rightarrow HS ST7 Not Gas: 2032	Pete Refuel
\rightarrow Total Nat Gas. 2000 \rightarrow Total Nat Gas Retired MW: 618 MW	
	One Pete U
Replacement Additions by 2042	
\rightarrow DSM: 490 MW	Both Pete U
\rightarrow Wind: 2,350 MW	
\rightarrow Solar: 2,600 MW	"Clean Ener Both Peter
→ Storage: 900 MW	with Wind, S
Solar + Storage: 45 MW	Encompass
\rightarrow Thermal: 0	predefined
→ Pete 3 & 4 Refueled to Nat Gas: 1,052 MW	-

Current Trends PVRR Summary 20-Year PVRR (2023\$MM, 2023-2042)

	Scenarios
	Decarbonized Economy
etirement	\$9,917
l to 100% Gas (est. 2025)	\$9,546
Init Retires (2026)	\$9,955
Units Retire (2026 & 2028)	\$9,923
ergy Strategy" Units Retire and Replaced Solar & Storage (2026 & 2028)	\$9,690
s Optimization without Strategy	\$9,572

C. One Pete Unit Retires (2026)

20-Year PVRR	Scenarios				
Generation Strategy:	No Environmental Action	Current Trends	Aggressive Environmental	Decarbonized Economy	
One Pete Unit Retires (2026)				\$9,955	

2022 IRP

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 One Pete Unit Retires (2026): Decarbonized Economy

Installed Capacity Incremental Additions (MW): 2023 - 2028

	<u>2023</u>	<u>2024</u>	<u>2025</u>	<u>2026</u>	<u>2027</u>	<u>2028</u>
Wind	0	0	0	200	400	0
Solar	0	0	293	0	0	0
Storage	0	0	280	400	0	0
Solar + Storage	0	0	45	0	0	0
Gas	0	0	0	0	0	0

AES Indiana 2022 IRP Report Attachment 1-2 One Pete Unit Retires (2026): Decarbonized Economy

2022 IRP

One Pete Unit Retires (2026): Decarbonized Economy

Portfolio Overview <i>Retirements</i> Petersburg: → Pete 3 Coal: 2026 → Total Coal Retired MW: 520 MW	C
Harding Street:	No Forby D
\rightarrow HS ST5 Nat Gas: 2030	NO Early Re
\rightarrow HS ST6 Nat Gas: 2030	
\rightarrow HS ST7 Nat Gas: 2033	Pete Refue
→ Total Nat Gas Retired MW: 618 MW	
	One Pete U
Replacement Additions by 2042	
\rightarrow DSM: 610 MW	Both Pete l
\rightarrow Wind: 2,300 MW	
\rightarrow Solar: 2,600 MW	"Clean Ene
→ Storage: 1,260 MW	Both Pete L with Wind
→ Solar + Storage: 45 MW	
\rightarrow Thermal: 0 MW	Encompase
	predefined

Current Trends PVRR Summary 20-Year PVRR (2023\$MM, 2023-2042)

	Scenarios
	Decarbonized Economy
etirement	\$9,917
l to 100% Gas (est. 2025)	\$9,546
Init Retires (2026)	\$9,955
Units Retire (2026 & 2028)	\$9,923
ergy Strategy" Units Retire and Replaced Solar & Storage (2026 & 2028)	\$9,690
s Optimization without Strategy	\$9,572

D. Both Pete Units Retire (2026 & 2028)

20-Year PVRR				
Generation Strategy:	No Environmental Action	Current Trends	Aggressive Environmental	Decarbonized Economy
Both Pete Units Refire (2026 & 2028)				\$9,923

Both Pete Units Retire: Decarbonized Economy

Firm Unforced Capacity Position – Summer

1 2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Page 511 of 647

Both Pete Units Retire: Decarbonized Economy

Firm Unforced Capacity Position – Winter

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Page 512 of 647

				'					-
	ro.	₹0.	Ro	₹0,	Ro	₹0.	Ro	20	20-
3 3		ین مارد مامیر ا	ۍ مې	د ^{ون}	Зур etershow	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Sol to N	597 7	Ř
ig U	ther (win	d/Solar/	DR)	P	etersburg	3 & 4 Ke	tuel to Na	atural Gas	•
tora	age			N	lew Solar	+ Storage	2		
				— P	RMR less	DSM			

Both Pete Units Retire: Decarbonized Economy 2026 & 2028

Installed Capacity Incremental Additions (MW): 2023 – 2028

	<u>2023</u>	<u>2024</u>	<u>2025</u>	<u>2026</u>	<u>2027</u>	<u>2028</u>
Wind	0	0	0	200	400	50
Solar	0	0	260	0	0	0
Storage	0	0	300	420	0	40
Solar + Storage	0	0	45	0	0	0
Gas	0	0	0	0	0	325

AES Indiana 2022 IRP Report Attachment 1-2 Page 513 of 647

aes Indiana

Both Pete Units Retire: Decarbonized Economy 2026 & 2028

AES Indiana 2022 IRP Report Attachment 1-2 Page 514 of 647

Both Pete Units Retire: Decarbonized Economy

Portfolio Overview	C
Retirements → Petersburg:	
 → Pete 3 Coal: 2026 → Pete 4 Coal: 2028 → Total Coal Retired MW: 1,040 MW 	
→ Harding Street:	No Early Re
→ HS S15 Nat Gas: 2030 → HS ST6 Nat Gas: 2030	Pete Refuel
→ HS ST7 Nat Gas: 2033 → Total Nat Gas Retired MW: 618 MW	One Pete U
Replacement Additions by 2042	Both Pete L
 → DSM: 610 MW → Wind: 2,300 MW → Solar: 2,600 MW 	"Clean Ene Both Pete L with Wind, S
 → Storage: 1,480 MW → Solar + Storage: 45 MW → Thermal: 325 MW 	Encompass predefined
5 2022 IRP	

AES Indiana 2022 IRP Report Attachment 1-2 Page 515 of 647

Current Trends PVRR Summary 20-Year PVRR (2023\$MM, 2023-2042)

	Scenarios
	Decarbonized Economy
etirement	\$9,917
el to 100% Gas (est. 2025)	\$9,546
Jnit Retires (2026)	\$9,955
Units Retire (2026 & 2028)	\$9,923
ergy Strategy" Units Retire and Replaced Solar & Storage (2026 & 2028)	\$9,690
s Optimization without Strategy	\$9,572

E. Clean Energy Strategy

20-Year PVRR (2023\$MM, 2023-2042)

Generation Strategy: "Clean Energy Strategy" Both Pete Units Retire and Replaced with Wind, Solar & Storage (2026 & 2028)

Scenarios								
No Environmental Action	Current Trends	Aggressive Environmental	Decarbonized Economy					
			\$9,690					

AES Indiana 2022 IRP Report Attachment 1-2 Page 516 of 647

Retire & Replace Pete with Clean Energy

Retire & Replace Pete with Clean Energy

Firm Unforced Capacity Position – Summer

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Page 517 of 647

Retire & Replace Pete with Clean Energy

Firm Unforced Capacity Position – Winter

AES Indiana 2022 IRP Report Attachment 1-2 Page 518 of 647

$\frac{1}{3} \frac{1}{3} \frac{1}$	2037	2038	2039	2040	2041	PORT
g Other (Wind/Solar/DR)	Pe	etersburg	3 & 4 Re	fuel to Na	atural Gas	
torage	N	ew Solar	+ Storage	1		
	—-PI	RMR less	DSM			

Retire & Replace Pete with Clean Energy

Installed Capacity Incremental Additions (MW): 2023 – 2028

	<u>2023</u>	<u>2024</u>	<u>2025</u>	<u>2026</u>	<u>2027</u>	<u>2028</u>
Wind	0	0	0	150	400	300
Solar	0	0	293	0	0	0
Storage	0	0	300	440	0	320
Solar + Storage	0	0	45	0	0	0
Gas	0	0	0	0	0	0

AES Indiana 2022 IRP Report Attachment 1-2 Page 519 of 647

Retire & Replace Pete with Clean Energy

	Thermal MWh %	92%	Thermal MWh %	81%	Thermal MWh %	5
	Renewable/DSM MWh %	8%	Renewable/DSM MWh %	19%	Renewable/DSM MWh %	- 4
1						

AES Indiana 2022 IRP Report Attachment 1-2 Page 520 of 647

Retire & Replace Pete with Clean Energy

Portfolio Overview	C
Retirements	
Petersburg:	
\rightarrow Pete 3 Coal: 2026	
\rightarrow Pete 4 Coal: 2028	
→ Total Coal Retired MW: 1,040 MW	
Harding Street:	No Early Re
→ HS ST5 Nat Gas: 2030	
\rightarrow HS ST6 Nat Gas: 2030	Pete Refuel
HS ST7 Nat Gas: 2033	
→ Total Retired Nat Gas MW: 618 MW	One Pete U
Replacements by 2042	Both Pete U
\rightarrow DSM: 610 MW	
\rightarrow Wind: 2,300 MW	"Clean Ener Both Peterl
\rightarrow Solar: 2,600 MW	with Wind, S
→ Storage: 1,800 MW	
→ Solar + Storage: 45 MW	Encompass predefined
\rightarrow Thermal: 0 MW	prodotniou
31 2022 IRP	

AES Indiana 2022 IRP Report Attachment 1-2 Page 521 of 647

Current Trends PVRR Summary 20-Year PVRR (2023\$MM, 2023-2042)

	Scenarios
	Decarbonized Economy
etirement	\$9,917
l to 100% Gas (est. 2025)	\$9,546
Init Retires (2026)	\$9,955
Units Retire (2026 & 2028)	\$9,923
ergy Strategy" Units Retire and Replaced Solar & Storage (2026 & 2028)	\$9,690
s Optimization without Strategy	\$9,572

F. Encompass Optimization

20-Year PVRR (2023\$MM, 2023-2042)

Generation Strategy: Encompass Optimization without predefined **Strategy – Selects Pete 3** Refuel in 2025 & Pete 4 Refuel in 2027

Scenarios								
No Environmental Action	Current Trends	Aggressive Environmental	Decarbonized Economy					
			\$9,572					

Selects Pete 3 Refuel in 2025 & Pete 4 Refuel in 2027

AES Indiana 2022 IRP Report Attachment 1-2 Page 522 of 647

AES Indiana 2022 IRP Report Attachment 1-2 **Encompass Optimization:** Decarbonized Economy^{26 523 of 647}

Selects Pete 3 Refuel in 2025 & Pete 4 Refuel in 2027

AES Indiana 2022 IRP Report Attachment 1-2 **Encompass Optimization:** Decarbonized Economy^{46 524 of 647}

Selects Pete 3 Refuel in 2025 & Pete 4 Refuel in 2027

Firm Unforced Capacity Position - Winter

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 **Encompass Optimization:** Decarbonized Economy^{46 525 of 647}

Selects Pete 3 Refuel in 2025 & Pete 4 Refuel in 2027

Installed Capacity Incremental Additions (MW): 2023 - 2028

	<u>2023</u>	<u>2024</u>	<u>2025</u>	<u>2026</u>	<u>2027</u>	<u>2028</u>
Wind	0	0	0	100	400	0
Solar	0	0	325	33	0	65
Storage	0	0	260	0	0	0
Solar + Storage	0	0	45	0	0	0
Gas	0	0	0	0	0	0

AES Indiana 2022 IRP Report Attachment 1-2 **Encompass Optimization:** Decarbonized Economy^{46 526 of 647}

Selects Pete 3 Refuel in 2025 & Pete 4 Refuel in 2027

2%	Thermal MWh %	47%	Thermal MWh %	15%
8%	Renewable/DSM MWh %	53%	Renewable/DSM MWh %	85%

AES Indiana 2022 IRP Report Attachment 1-2 **Encompass Optimization:** Decarbonized Economy^{46 527 of 647}

Selects Pete 3 Refuel in 2025 & Pete 4 Refuel in 2027

Portfolio Overview

Retirements Petersburg:	20-Year PVRR (2023\$MM, 2023-2042)			
\rightarrow Pete 3 Coal: 2025		Scenarios		
\rightarrow Pete 4 Coal: 2027				
\rightarrow Total Refueled MW: 1,040 MW		Decarbonized Economy		
Harding Street:				
→ HS ST5 Nat Gas: 2030	No Early Retirement	\$9,917		
\rightarrow HS ST6 Nat Gas: 2030				
→ HS ST7 Nat Gas: 2033	Pete Refuel to 100% Gas (est. 2025)	\$9,546		
→ Total Nat Gas Retired MW: 618 MW				
	One Pete Unit Retires (2026)	\$9,955		
Replacement Additions by 2042				
\rightarrow DSM: 490 MW	Both Pete Units Retire (2026 & 2028)	\$9.923		
→ Wind: 2.300 MW		+-,		
\rightarrow Solar: 2.568 MW	"Clean Energy Strategy"			
\rightarrow Storage: 940 MW	Both Pete Units Retire and Replaced	\$9,690		
\rightarrow Solar + Storage: 135 MW	with Wind, Solar & Storage (2026 & 2028)			
\rightarrow Thermal: 0	Encompass Optimization without	¢0 570		
Pete 3 & 4 Refueled to Nat Gas: 1 052 M/M	predefined Strategy	\$9,57Z		

Current Tranda DV/DD Current are

Portfolio Matrix

		Scenarios						
20-Year PVRR (2023\$MM, 2023-2042)		No Environmental Action		Current Trends (Reference Case)		Aggressive Environmental	Decarbonized Economy	
	No Early Retirement	\$7,111		\$9,572		\$11,349	\$9,917	
Generation Strategies	Pete Refuel to 100% Gas (est. 2025)	5) \$6,621		\$9,330		\$11,181	\$9,546	
	One Pete Unit Retires (2026)	\$7,462		\$9,773		\$11,470	\$9,955	
	Both Pete Units Retire (2026 & 2028)	\$7,425		\$9,618		\$11,145	\$9,923	
	"Clean Energy Strategy" Both Pete Units Retire and Replaced with Wind, Solar & Storage (2026 & 2028)	\$9,211		\$9,711		\$11,184	\$9,690	
	Encompass Optimization without predefined Strategy	\$6,610		\$9,262		\$10,994	\$9,572	
		Encompass Optimization Results by Scenario:						
		Refuels Petersburg Units 3 & 4 in 2025	Refu in 202	Refuels Petersburg Unit 3 in 2025 & Refuels Petersburg Unit 4 in 2027		Refuels Petersburg Unit 4 in 2027	Refuels Petersburg Unit 3 in 2025 & Refuels Petersburg Unit 4 in 2027	

AES Indiana 2022 IRP Report Attachment 1-2 Page 528 of 647

Aggressive Environmental

		Scenarios
	20-Year PVRR (2023\$MM, 2023-2042)	Aggressive Environmental
	No Early Retirement	\$11,349
es	Pete Refuel to 100% Gas (est. 2025)	\$11,181
trategi	One Pete Unit Retires (2026)	\$11,470
tion S	Both Pete Units Retire (2026 & 2028)	\$11,145
Genera	"Clean Energy Strategy" Both Pete Units Retire and Replaced with Wind, Solar & Storage (2026 & 2028)	\$11,184
	Encompass Optimization without predefined Strategy – Selects Pete 4 Refuel in 2027	\$10,994

AES Indiana 2022 IRP Report Attachment 1-2 Page 529 of 647

A. No Early Retirement

AES Indiana 2022 IRP Report Attachment 1-2 Page 530 of 647

No Early Retirement: Aggressive Environmental

Firm Unforced Capacity Position – Summer

3

AES Indiana 2022 IRP Report Attachment 1-2 Page 531 of 647

No Early Retirement: Aggressive Environmental

Firm Unforced Capacity Position – Winter

AES Indiana 2022 IRP Report Attachment 1-2 Page 532 of 647

No Early Retirement: Aggressive Environmental

Installed Capacity Incremental Additions (MW): 2023 - 2028

	<u>2023</u>	<u>2024</u>	<u>2025</u>	<u>2026</u>	<u>2027</u>	<u>2028</u>
Wind	0	0	0	100	400	750
Solar	0	0	0	0	0	65
Storage	0	0	260	0	0	0
Solar + Storage	0	0	45	0	0	0
Gas	0	0	0	0	0	0

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Page 533 of 647

No Early Retirement: Aggressive Environmental

AES Indiana 2022 IRP Report Attachment 1-2 Page 534 of 647

No Early Retirement: Aggressive Environmental

Portfolio Overview Retirements Harding Street: → HS ST5 Nat Gas: 2030	С
\rightarrow HS S16 Nat Gas: 2030	
\rightarrow Total Nat Gas: 2033 Total Nat Gas Potirod MW: 618 MW	
\rightarrow 10tal Nat Gas Retired WW. 010 WW	No Early Re
Replacement Additions by 2042	
\rightarrow DSM: 462 MW	Pete Refuel
\rightarrow Wind: 2,500 MW	
\rightarrow Solar: 2,535 MW	One Pete U
→ Storage: 820 MW	
\rightarrow Solar + Storage: 45 MW	Both Pete U
\rightarrow Thermal: 0 MW	"Clean Ener
	Both Pete L
	with Wind, S
	Encompass predefined

Current Trends PVRR Summary 20-Year PVRR (2023\$MM, 2023-2042)

	Scenarios
	Aggressive Environmental
etirement	\$11,349
l to 100% Gas (est. 2025)	\$11,181
Init Retires (2026)	\$11,470
Units Retire (2026 & 2028)	\$11,145
ergy Strategy" Units Retire and Replaced Solar & Storage (2026 & 2028)	\$11,184
s Optimization without Strategy	\$10,994

B. Pete Refuel by 2025

20-Year PVRR		
(2023\$MM, 2023-2042)		
Generation Strategy:	No Environmental Action	Current Trends
Pete Refuel to 100% Gas (est. 2025)		

AES Indiana 2022 IRP Report Attachment 1-2 Page 536 of 647

Scenarios						
	Aggressive Environmental	Decarbonized Economy				
	\$11,181					

Pete 3 & 4 Refuel in 2025: Aggressive Environmental for

2022 IRP

Pete 3 & 4 Refuel in 2025: Aggressive Environmental for

10 2022 IRP

								- •
2039	2035	2036	2031	7038	2039	2040	2041	PORN
Natural Gas			E	xisting Ot	her (Wind	d/Solar/D	R)	
orage				lew Solar	+ Storage			
			— P	RMR less	DSM			

AES Indiana 2022 IRP Report Attachment 1-2 Pete 3 & 4 Refuel in 2025: Aggressive Environmental f 647

Installed Capacity Incremental Additions (MW): 2023 - 2028

	<u>2023</u>	<u>2024</u>	<u>2025</u>	<u>2026</u>	<u>2027</u>	<u>2028</u>
Wind	0	0	0	200	650	650
Solar	0	0	780	65	0	0
Storage	0	0	260	0	0	0
Solar + Storage	0	0	90	0	0	0
Pete Refuel	0	0	1,052	0	0	0
Gas	0	0	0	0	0	0

Pete 3 & 4 Refuel in 2025: Aggressive Environmental 1-2 1647

Pete 3 & 4 Refuel in 2025: Aggressive Environmental 14

Portfolio Overview	
Retirements	
Petersburg:	
→ Pete 3 & 4 Coal: 2025 Refuel with Nat Gas	
→ Total Refueled MW: 1,040 MW	
Harding Street:	
\rightarrow HS ST5 Nat Gas: 2030	No Early R
\rightarrow HS ST6 Nat Gas: 2030	
→ HS ST7 Nat Gas: 2033	Pete Refue
→ Total Nat Gas Retired MW: 618 MW	
	One Pete L
Replacement Additions by 2042	
\rightarrow DSM: 415 MW	Both Pete
\rightarrow Wind: 2,500 MW	
\rightarrow Solar: 2,535 MW	Both Pete
→ Storage: 820 MW	with Wind,
→ Solar + Storage: 270 MW	Encompas
\rightarrow Thermal: 0	predefined
Pete 3 & 4 Refueled to Nat Gas: 1,052 MW	•

Current Trends PVRR Summary 20-Year PVRR (2023\$MM, 2023-2042)

	Scenarios
	Aggressive Environmental
etirement	\$11,349
el to 100% Gas (est. 2025)	\$11,181
Jnit Retires (2026)	\$11,470
Units Retire (2026 & 2028)	\$11,145
ergy Strategy" Units Retire and Replaced Solar & Storage (2026 & 2028)	\$11,184
s Optimization without Strategy	\$10,994

C. One Pete Unit Retires (2026)

20-Year PVRR	Scenarios							
(2023\$MM, 2023-2042) Generation Strategy:	No Environmental Action	Current Trends	Aggressive Environmental	Decarbonized Economy				
One Pete Unit Retires (2026)			\$11,470					

One Pete Unit Retires (2026): Aggressive Environmental

Firm Unforced Capacity Position – Summer

15 2022 IRP

1								
2034	2035	2036	2037	7038	2039	2030	ROAT	2042
Other (Win	nd/Solar/D	PR)	P	etersburg	g 3 & 4 Re	fuel to Na	itural Gas	
orage			— N	lew Solar	+ Storage	2		
			— P	RMR less	DSM			

One Pete Unit Retires (2026): Aggressive Environmental

AES Indiana 2022 IRP Report Attachment 1-2 One Pete Unit Retires (2026): Aggressive Environmental

Installed Capacity Incremental Additions (MW): 2023 - 2028

	<u>2023</u>	<u>2024</u>	<u>2025</u>	<u>2026</u>	<u>2027</u>	<u>2028</u>
Wind	0	0	0	200	400	850
Solar	0	0	0	553	0	0
Storage	0	0	300	400	0	0
Solar + Storage	0	0	90	0	0	0
Gas	0	0	0	0	0	0

17

Pete Refuel Gas

One Pete Unit Retires (2026): Aggressive Environmental

\vec{z}_{0} , \vec{z}_{0} , \vec{z}_{0} ,	\vec{z}_{0} , \vec{z}_{0} , \vec{z}_{0} ,	20	20	20
র ৬১ ৬৫		*0	*7	*2
+ Storage ■ DSM				
2032	2042			
6%	7% 11	.%		
36%				
	38%			
		43%		
35%				
13% Thermal MWh %	22% Thermal MWh %	11%		
57% Renewable/DSM MWh %	78% Renewable/DSM MWh %	89%		

One Pete Unit Retires (2026): Aggressive Environmental

Portfolio Overview <i>Retirements</i> Petersburg: → Pete 3 Coal: 2026 → Total Coal Retired MW: 520 MW	2
Harding Street:	
\rightarrow HS ST5 Nat Gas: 2030	No Early Ro
\rightarrow HS ST6 Nat Gas: 2030	
\rightarrow HS ST7 Nat Gas: 2033	Pete Refue
→ Total Nat Gas Retired MW: 618 MW	One Pete U
Replacement Additions by 2042	
\rightarrow DSM: 490 MW	Both Pete U
\rightarrow Wind: 2,500 MW	"Clean Ene
\rightarrow Solar: 2,600 MW	Both Pete l
→ Storage: 1,240 MW	with Wind,
Solar + Storage: 180 MW	Encompas
Thermal: 0 MW	predefined

Current Trends PVRR Summary 20-Year PVRR (2023\$MM, 2023-2042)

	Scenarios
	Aggressive Environmental
etirement	\$11,349
I to 100% Gas (est. 2025)	\$11,181
Init Retires (2026)	\$11,470
Units Retire (2026 & 2028)	\$11,145
ergy Strategy" Units Retire and Replaced Solar & Storage (2026 & 2028)	\$11,184
s Optimization without Strategy	\$10,994

D. Both Pete Units Retire (2026 & 2028)

20-Year PVRR		Scer
(2023\$MM, 2023-2042) Generation Strategy:	No Environmental Action	Current Trends
Both Pete Units Retire (2026 & 2028)		

AES Indiana 2022 IRP Report Attachment 1-2 Page 548 of 647

Both Pete Units Retire: Aggressive Environmental

Firm Unforced Capacity Position – Summer

AES Indiana 2022 IRP Report Attachment 1-2 Page 549 of 647

Both Pete Units Retire: Aggressive Environmental

Firm Unforced Capacity Position – Winter

22

AES Indiana 2022 IRP Report Attachment 1-2 Page 550 of 647

									•
									_
23	2034	2035	2036	2037	2038	2039	ROAD	2041	ROAD
ng O	ther (Win	d/Solar/D	R)		Petersburg	g 3 & 4 Re	fuel to Na	atural Gas	
Stora	age			 [New Solar	+ Storage	2		
R				<u> </u>	PRMR less	DSM			

Both Pete Units Retire: Aggressive Environmental 2026 & 2028

Installed Capacity Incremental Additions (MW): 2023 – 2028

	<u>2023</u>	<u>2024</u>	<u>2025</u>	<u>2026</u>	<u>2027</u>	<u>2028</u>
Wind	0	0	0	200	900	1,000
Solar	0	0	0	293	0	0
Storage	0	0	300	420	0	60
Solar + Storage	0	0	45	0	0	0
Gas	0	0	0	0	0	0

AES Indiana 2022 IRP Report Attachment 1-2 Page 551 of 647

aes Indiana

Both Pete Units Retire: Aggressive Environmental

15% Renewable/DSM MWh %

Renewable/DSM MWh %

8% Renewable/DSM MWh %

AES Indiana 2022 IRP Report Attachment 1-2 Page 552 of 647

35%	Thermal MWh %	18% Thermal MWh %	11%
55%	Renewable/DSM MWh %	82% Renewable/DSM MWh %	89%

Both Pete Units Retire: Aggressive Environmental

Portfolio Overview Retirements Petersburg: → Pete 3 Coal: 2026 → Pete 4 Coal: 2028 → Total Coal Retired MW: 1,040 MW	C
Harding Street:	No Early Re
 → HS ST5 Nat Gas: 2030 → HS ST6 Nat Gas: 2030 	Pete Refuel
→ HS ST7 Nat Gas: 2033 → Total Nat Gas Retired MW: 618 MW	One Pete U
Replacement Additions by 2042	Both Pete U
 → DSM: 610 MW → Wind: 2,500 MW → Solar: 2,600 MW 	"Clean Ener Both Pete U with Wind, S
 → Storage: 1,620 MW → Solar + Storage: 45 MW → Thermal: 0 MW 	Encompass predefined

AES Indiana 2022 IRP Report Attachment 1-2 Page 553 of 647

Current Trends PVRR Summary 20-Year PVRR (2023\$MM, 2023-2042)

	Scenarios
	Aggressive Environmental
etirement	\$11,349
l to 100% Gas (est. 2025)	\$11,181
Init Retires (2026)	\$11,470
Units Retire (2026 & 2028)	\$11,145
ergy Strategy" Units Retire and Replaced Solar & Storage (2026 & 2028)	\$11,184
s Optimization without Strategy	\$10,994

E. Clean Energy Strategy

20-Year PVRR (2023\$MM, 2023-2042)		
Generation Strategy: "Clean Energy Strategy"	No Environmental Action	Current Trends
Both Pete Units Retire and eplaced with Wind, Solar &		

Storage (2026 & 2028)

Replaced

AES Indiana 2022 IRP Report Attachment 1-2 Page 554 of 647

Retire & Replace Pete with Clean Energy

Clean Energy Strategy: Aggressive Environmental Age 555 of 647 **Retire & Replace Pete with Clean Energy**

Firm Unforced Capacity Position – Summer

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2

Clean Energy Strategy: Aggressive Environmental^{Allaciment Page 556 of 647} **Retire & Replace Pete with Clean Energy**

Firm Unforced Capacity Position – Winter

28

AES Indiana 2022 IRP Report Attachment 1-2

		•
		-
		_
		.
$\frac{1}{2} \frac{1}{2} \frac{1}$	$r_{0_{3}}$ $r_{0_{3}}$ $r_{0_{3}}$ $r_{0_{3}}$ $r_{0_{40}}$ $r_{0_{41}}$	POAS
ng Other (Wind/Solar/DR)	Petersburg 3 & 4 Refuel to Natural Gas	
Storage	New Solar + Storage	
R	PRMR less DSM	
	aes Indiana	а

2022 IRP Report Attachment 1-2 **Clean Energy Strategy:** Aggressive Environmental^{Attachment 1-2} **Retire & Replace Pete with Clean Energy**

Installed Capacity Incremental Additions (MW): 2023 – 2028

	<u>2023</u>	<u>2024</u>	<u>2025</u>	<u>2026</u>	<u>2027</u>	<u>2028</u>
Wind	0	0	0	200	900	1,000
Solar	0	0	0	293	0	0
Storage	0	0	300	420	0	60
Solar + Storage	0	0	45	0	0	0
Gas	0	0	0	0	0	0

2022 IRP

29

AES Indiana

Clean Energy Strategy: Aggressive Environmental^{Allaciment 1-2}

Retire & Replace Pete with Clean Energy

AES Indiana 2022 IRP Report Attachment 1-2

Clean Energy Strategy: Aggressive Environmental age 559 of 647 **Retire & Replace Pete with Clean Energy**

Both Pete

Portfolio Overview Retirements Petersburg: Pete 3 Coal: 2026 \rightarrow Pete 4 Coal: 2028 \rightarrow Total Coal Retired MW: 1,040 MW No Early R Harding Street: HS ST5 Nat Gas: 2030 \rightarrow **Pete Refue** HS ST6 Nat Gas: 2030 \rightarrow HS ST7 Nat Gas: 2033 \rightarrow **One Pete U** Total Retired Nat Gas MW: 618 MW \rightarrow

Replacements by 2042

\rightarrow DSIVI. OTO IVIV	"Clean Energ
→ Wind: 2,500 MW	Both Pete Ur
\rightarrow Solar: 2,600 MW	with Wind, Se
→ Storage: 1,620 MW	Encompass
→ Solar + Storage: 45 MW	predefined S
Thermal: 0 MW	

AES Indiana 2022 IRP Report Attachment 1-2

Current Trends PVRR Summary 20-Year PVRR (2023\$MM, 2023-2042)

	Scenarios
	Aggressive Environmental
etirement	\$11,349
l to 100% Gas (est. 2025)	\$11,181
Init Retires (2026)	\$11,470
Units Retire (2026 & 2028)	\$11,145
ergy Strategy" Units Retire and Replaced Solar & Storage (2026 & 2028)	\$11,184
s Optimization without Strategy	\$10,994

F. Encompass Optimization

20-Year PVRR (2023\$MM, 2023-2042)	Scenarios					
Generation Strategy:	No Environmental Action	Current Trends	Aggressive Environmental	Decarbonized Economy		
Encompass Optimization without predefined			¢10.004			
Strategy – Selects Pete 4 Refuel in 2027			ΦΙ 0,994			

Selects Pete 3 Refuel in 2025 & Pete 4 Refuel in 2027

Encompass Optimization: Aggressive Environmentation

Selects Pete 4 Refuel in 2027

Firm Unforced Capacity Position – Summer

33 ⁵ 03 ₄	F0.35	5036	F033	F038	F039	5090	40a,1	FORZ
ng Natural Gas			E	xisting Ot	her (Wind	l/Solar/D	R)	
Storage			D	RMR loss	+ storage			
			P	1/1011/ 1622				

Encompass Optimization: Aggressive Environmentation

Selects Pete 4 Refuel in 2027

Firm Unforced Capacity Position – Winter

2022 IRP

$r_{O_{3}}$ $r_{O_{3}}$ $r_{O_{3}}$ $r_{O_{3}}$	$r_{0_{3}}$ $r_{0_{3}}$ $r_{0_{3}}$ $r_{0_{3}}$ $r_{0_{40}}$ $r_{0_{41}}$ $r_{0_{42}}$
ng Natural Gas	Existing Other (Wind/Solar/DR)
Storage	New Solar + Storage
R	PRMR less DSM

AES Indiana 2022 IRP Report Attachment 1-2 **Encompass Optimization:** Aggressive Environmental

Selects Pete 4 Refuel in 2027

Installed Capacity Incremental Additions (MW): 2023 - 2028

	2023	2024	<u>2025</u>	<u>2026</u>	<u>2027</u>	<u>2028</u>
Wind	0	0	0	50	900	950
Solar	0	0	0	0	0	260
Storage	0	0	260	0	0	140
Solar + Storage	0	0	45	0	0	0
Pete Refuel	0	0	0	0	526	0
Gas	0	0	0	0	0	0

AES Indiana 2022 IRP Report Attachment 1-2 **Encompass Optimization:** Aggressive Environmentation

Selects Pete 4 Refuel in 2027

AES Indiana 2022 IRP Report Attachment 1-2 Encompass Optimization: Aggressive Environment and 1-2 Attachment 1-2

Selects Pete 4 Refuel in 2027

Portfolio Overview Retirements Petersburg: → Pete 3 Coal: 2028 – Retired 520 MW → Pete 4 Coal: 2026 – Refueled 520 MW	C
Harding Street: → HS ST5 Nat Gas: 2030	No Early Re
→ HS ST6 Nat Gas: 2030 → HS ST7 Nat Gas: 2033 → Total Nat Gas Retired MW: 618 MW	Pete Refuel
Replacement Additions by 2042 → DSM: 490 MW	One Pete U Both Pete U
→ Wind: 2,500 MW → Solar: 2,600 MW → Storage: 1,260 MW → Solar - Storage: $00 MW$	"Clean Ener Both Pete U with Wind, S
 Solar + Storage. 90 MW Thermal: 0 Pete 4 Refueled to Nat Gas: 526 MW 	Encompass predefined

Current Trends PVRR Summary 20-Year PVRR (2023\$MM, 2023-2042)

	Scenarios
	Aggressive Environmental
etirement	\$11,349
I to 100% Gas (est. 2025)	\$11,181
Init Retires (2026)	\$11,470
Units Retire (2026 & 2028)	\$11,145
ergy Strategy" Units Retire and Replaced Solar & Storage (2026 & 2028)	\$11,184
s Optimization without Strategy	\$10,994

Portfolio Matrix

		Scenarios							
	20-Year PVRR (2023\$MM, 2023-2042)	No Environmental Action		Current Trends (Reference Case)		Aggressive Environmental		Decarbonized Economy	
	No Early Retirement	\$7,111		\$9,572		\$11,349		\$9,917	
ategies	Pete Refuel to 100% Gas (est. 2025)	\$6,621		\$9,330		\$11,181		\$9,546	
tion Str	One Pete Unit Retires (2026)	\$7,462		\$9,773		\$11,470		\$9,955	
Genera	Both Pete Units Retire (2026 & 2028)	\$7,425		\$9,618		\$11,145		\$9,923	
	"Clean Energy Strategy" Both Pete Units Retire and Replaced with Wind, Solar & Storage (2026 & 2028)	\$9,211		\$9,711		\$11,184		\$9,690	
	Encompass Optimization without predefined Strategy	\$6,610	\$9,262		\$10,994		\$9,572		
		Encompass Optimization Res	ults by S	Scenario:					
		Refuels Petersburg Units 3 & 4 in 2025	Refu in 202	efuels Petersburg Unit 3 2025 & Refuels Petersburg Unit 4 in 2027		Refuels Petersburg Unit 4 in 2027		Refuels Petersburg Unit 3 2025 & Refuels Petersburg Unit 4 in 2027	

AES Indiana 2022 IRP Report Attachment 1-2 Page 566 of 647

AES Indiana 2022 IRP Report Attachment 1-2 Page 567 of 647

2022 Integrated Resource Plan (IRP)

Public Advisory Meeting #5 10/31/2022

Agenda and Introductions

Stewart Ramsay, Managing Executive, Vanry & Associates

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Page 568 of 647

Agenda

Time	Торіс	Speakers
Morning Starting at 10:00 AM	Virtual Meeting Protocols and Safety	Chad Rogers
	Welcome and Opening Remarks	Kristina Lund
	IRP Schedule & Timeline	Erik Miller, M
	IRP Framework Review	Erik Miller, M
	Risk & Opportunity Metrics	Erik Miller, M
Break 12:00 PM – 12:30 PM	Lunch	
Afternoon Starting at 12:30 PM	Reliability, Stability & Resiliency Metric	Hisham Othm
	IRP Scorecard Results	Erik Miller, M
	Preferred Resource Portfolio & Short-Term Action Plan	Erik Miller, M
	Final Q&A and Next Steps	

AES Indiana 2022 IRP Report Attachment 1-2 Page 569 of 647

- , Director, Regulatory Affairs, AES Indiana
- , President & CEO, AES Indiana
- lanager, Resource Planning, AES Indiana
- lanager, Resource Planning, AES Indiana
- lanager, Resource Planning, AES Indiana
- nan, Manager, Resource Planning, Quanta Technology
- lanager, Resource Planning, AES Indiana
- lanager, Resource Planning, AES Indiana

Virtual Meeting Protocols and Safety

Chad Rogers, Director, Regulatory Affairs, AES Indiana

AES Indiana 2022 IRP Report Attachment 1-2 Page 570 of 647

IRP Team Introductions

AES Indiana Leadership Team

Kristina Lund, President & CEO, AES Indiana Aaron Cooper, Chief Commercial Officer, AES Indiana Brandi Davis-Handy, Chief Customer Officer, AES Indiana Tanya Sovinski, Senior Director, Public Relations, AES Indiana Ahmed Pasha, Chief Financial Officer, AES Indiana Tom Raga, Vice President Government Affairs, AES Indiana Sharon Schroder, Senior Director, Regulatory Affairs, AES Indiana

Kathy Storm, Vice President, US Smart Grid, AES Indiana

AES Indiana IRP Planning Team

Joe Bocanegra, Load Forecasting Analyst, AES Indiana Erik Miller, Manager, Resource Planning, AES Indiana Scott Perry, Manager, Regulatory Affairs, AES Indiana Chad Rogers, Director, Regulatory Affairs, AES Indiana Mike Russ, Senior Manager, T&D Planning & Forecasting, AES Asset Management Brent Selvidge, Engineer, AES Indiana Will Vance, Senior Analyst, AES Indiana Kelly Young, Director, Public Relations, AES Indiana AES Indiana 2022 IRP Report Attachment 1-2 Page 571 of 647

AES Indiana IRP Partners

Annette Brocks, Senior Resource Planning Analyst, ACES Patrick Burns, PV Modeling Lead and Regulatory/IRP Support, **Brightline Group** Eric Fox, Director, Forecasting Solutions, Itron Jeffrey Huber, Overall Project Manager and MPS Lead, GDS Associates Jordan Janflone, EV Modeling Forecasting, GDS Associates Patrick Maguire, Executive Director of Resource Planning, ACES Hisham Othman, Vice President, Transmission and Regulatory Consulting, Quanta Technology Stewart Ramsey, Managing Executive, Vanry & Associates Mike Russo, Forecast Consultant, Itron Jacob Thomas, Market Research and End-Use Analysis Lead, **GDS** Associates Melissa Young, Demand Response Lead, GDS Associates Danielle Powers, Executive Vice President, Concentric Energy Advisors Meredith Stone, Senior Project Manager, Concentric Energy Advisors

AES Indiana Legal Team

Nick Grimmer, Indiana Regulatory Counsel, AES Indiana Teresa Morton Nyhart, Counsel, Barnes & Thornburg LLP

Welcome to Today's Participants

Advanced Energy Economy Barnes & Thornburg LLP Bose, McKinney & Evans LLP CenterPoint Energy **Citizens Action Coalition** City of Indianapolis **Demand Side Analytics** Develop Indy | Indy Chamber Earth Charter Indiana **EDPR North America Energy Futures Group** Faith in Place Hallador Energy **Hoosier Energy IBEW Local Union 1395** Indiana Farm Bureau, Inc. Indiana Friends Committee On Legislation Indiana Michigan Power

Indiana Office of Energy Development Indiana Utility Regulatory Commission IUPUI Indiana Office of Utility Consumer Counselor Key Capture Energy NIPSCO NuScale Power Power Takeoff Purdue - State Utility Forecasting Group **R3** Renewables Ranger Power **Rolls-Royce/ISS** Sierra Club Solar United Neighbors Synapse Energy Economics Wartsila

AES Indiana 2022 IRP Report Attachment 1-2 Page 572 of 647

... and members of the AES Indiana team and the public!

Virtual Meeting Best Practices

Questions

- \rightarrow Your candid feedback and input is an integral part to the IRP process.
- Questions or feedback will be taken at the \rightarrow end of each section.
- \rightarrow Feel free to submit a question in the chat function at any time and we will ensure those questions are addressed.

- \rightarrow For those using audio via Teams, you can unmute by selecting the microphone icon.
- \rightarrow If you are dialed in from a phone, press *6 to unmute.
- Video is not required. To minimize \rightarrow bandwidth, please refrain from using video unless commenting during the meeting.

2022 IRP

Audio

 \rightarrow All lines are muted upon entry.

Video

AES Purpose & Values

Accelerating the future of energy, **together**.

AES Indiana 2022 IRP Report Attachment 1-2 Page 574 of 647

Safety first

Highest standards

All together

Safety First

- 1. AES Indiana strives to provide a place of employment that is free from recognized hazards and one that meets or exceeds **governmental regulations** regarding occupational health and safety.
- 2. AES Indiana considers occupational health and safety a **fundamental value** of the organization and is a **key** performance indicator of the overall success of the company.
- 3. AES Indiana's ultimate objective is that each day all AES Indiana people, contractors, and the public we serve return home to their family, friends, and community free from harm.

AES Indiana 2022 IRP Report Attachment 1-2 Page 575 of 647

Meeting our customers' needs today and tomorrow

AES Indiana is leading the inclusive, clean energy transition.

Reliability

Affordability

Sustainability

AES Indiana 2022 IRP Report Attachment 1-2 Gradual change to the AES Indiana portfolio over time"

2009-2015

Signed 100 MW PPA at Hoosier Wind Park in NW Indiana, 200 MW PPA at Lakefield Wind Farm in Minnesota and 96 MW PPA for solar in Indianapolis through Rate REP 2016

Retired 260 MW of coal at Eagle Valley

2016

Finalized refuel of 630 MW of coalfired generation at Harding Street to natural gas

2018

Eagle Valley 671 **MW Gas-Fired Combined Cycle Plant Completed**

2021-2023

Retired (Unit 1) 220 MW of coal at Petersburg; Plans to retire (Unit 2) 401 MW of coal at Petersburg in 2023

2023 - 2024

Plans to complete 195 MW Hardy Hills Solar project and 250 MW + 180 MWh Petersburg **Energy Center** solar + storage project

AES Indiana 2022 IRP Report Attachment 1-2 Capabilities and infrastructure of current fleet

Largest sites have valuable capabilities and infrastructure for the energy transition

Petersburg

Experienced, skilled labor force, land, interconnection, water rights, water treatment, natural gas pipelines already present on site

AES Indiana seeks to partner with Pike County and City of Indianapolis to drive customer value and community impact of Petersburg and Harding Street Sites.

Short-term Action Plan Uses Existing Capacity and Adds Significant Renewables

CONVERT

Convert Petersburg units 3 & 4 (1,052 MW) to natural gas in 2025 via existing pipeline on site

ADD RENEWABLES

Add up to 1300 MW of wind, solar, and storage as early as 2025

PREFERRED PORTFOLIO MAINTAINS OPTIONALITY FOR THE FUTURE

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Page 579 of 647

MONITOR

Monitor emerging technologies for inclusion in future planning

AES Indiana 2022 IRP Repor Attachment 1-2 Short-term Action Plan Best Serves Our Customers' Objectives

RELIABILITY

Highest composite reliability \rightarrow score

AFFORDABILITY

Saves AES Indiana customers \rightarrow more than \$200M

SUSTAINABILITY

Provides 68% reduction in \rightarrow carbon intensity in 2030 compared to 2018

IRP Schedule & Timeline

Erik Miller, Manager, Resource Planning, AES Indiana

AES Indiana 2022 IRP Report Attachment 1-2 Page 581 of 647

Updated 2022 IRP Timeline

= Stakeholder Technical Meeting for stakeholders with executed NDAs held the week before each public stakeholder meeting

AES Indiana is available for additional touchpoints with stakeholders to discuss IRP-related topics.

= Preferred Resource Portfolio selected

AES Indiana 2022 IRP Report Attachment 1-2 Page 582 of 647

Public Advisory Schedule

Topics for meeting 5 are subject to change.

AES Indiana 2022 IRP Report Attachment 1-2 Page 583 of 647

IRP Process Overview

AES Indiana 2022 IRP Report Attachment 1-2 Page 584 of 647

IRP Framework Review

Erik Miller, Manager, Resource Planning, AES Indiana

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Page 585 of 647

Final Portfolio Matrix

Results from Capacity Expansion Scenario Analysis

			Scen	arios		
20-Year PVRR (2023\$MM, 2023-2042)		No Environmental Current Trends Action (Reference Case)		Aggressive Environmental	Decarbonized Economy	
<i>(</i> 0	No Early Retirement	\$7,111 \$9,572		\$11,349	\$9,917	
Generation Strategies	Pete Refuel to 100% Gas (est. 2025)	\$6,621	\$9,330	\$11,181	\$9,546	
	One Pete Unit Retires (2026)	\$7,462	\$9,773	\$11,470	\$9,955	
	Both Pete Units Retire (2026 & 2028)	\$7,425	\$9,618	\$11,145	\$9,923	
	"Clean Energy Strategy" Both Pete Units Retire and Replaced with Wind, Solar & Storage (2026 & 2028)	\$9,211	\$9,711	\$11,184	\$9,690	
	Encompass Optimization without predefined Strategy	\$6,610	\$9,262	\$10,994*	\$9,572	
		Encompass Optimization Res	ults by Scenario:	-		
		Refuels Petersburg Units 3 & 4 in 2025	Refuels Petersburg Unit 3 in 2025 & Refuels Petersburg Unit 4 in 2027	Refuels Petersburg Unit 4 in 2027 Retires Unit 3 in 2028*	Refuels Petersburg Unit 3 in 2025 & Refuels Petersburg Unit 4 in 2027	

*Refueling Pete 3 & 4 at the same time provides cost efficiencies. These efficiencies are not captured when only one unit refuels.

AES Indiana 2022 IRP Report Attachment 1-2 Page 586 of 647

Candidate Portfolios

Replacement Resource Cost Sensitivity Analysis

Key Takeaways & PVRR Results

- As capital costs increase, \rightarrow fewer renewables are built for their energy value to the portfolio.
- As capital costs increase, \rightarrow newly constructed natural gas becomes more cost effective – less high price volatility with the cost to construct natural gas.
- Across the range of \rightarrow **Replacement Resource** Costs, refueling Petersburg provides a low PVRR.

20-Year PVRR (2023\$MM, 2023-2042)		Current Trends (Reference Case)					
		Low	Base	High			
Generation Strategies	No Early Retirement	\$9,054	\$9,572	\$9,876			
	Pete Refuel to 100% Gas (est. 2025)	\$8,698	\$9,330	\$9,661			
	One Pete Unit Retires (2026)	\$9,081	\$9,773	\$10,181			
	Both Pete Units Retire (2026 & 2028)	\$8,790	\$9,618	\$10,178			
	"Clean Energy Strategy" Both Pete Units Retire and Replaced with Wind, Solar & Storage (2026 & 2028)	\$8,787	\$9,711	\$10,586			
	Encompass Optimization without predefined Strategy	\$8,670*	\$9,262	\$9,624			
		Encompass Optimization Portfolios					
		Low	Base	High			
		Refuels Petersburg Unit 3 in 2025 Retires Unit 4 in 2028*	Refuels Petersburg Unit 3 in 2025 & Refuels Petersburg Unit 4 in 2027	Refuels Petersburg Unit 3 in 2025 & Refuels Petersburg Unit 4 in 2027			

AES Indiana 2022 IRP Report Attachment 1-2 Page 587 of 647

Preliminary Scorecard Results

The IRP Scorecard evaluates the Candidate Portfolios (Strategies in Current Trends/Reference Case) using metrics that fit into five categories.

	Affordability	ility Environmental Sustainability				Reliability, Stability & Resiliency			Ris	sk & Opportunit	y			Economic	Impac	:t		
	20-yr PVRR	CO₂ Emissions	SO ₂ Emissions	NO _x Emissions	Water Use	Coal Combustion Products (CCP)	Clean Energy Progress	Reliability Score	Environmental Policy Opportunity	Environmental Policy Risk	General Cost Opportunity **Stochastic Analysis**	General Cost Risk **Stochastic Analysis**	Market Exposure	Renewable Capital Cost Opportunity (Low Cost)	Renewable Capital Cost Risk (High Cost)	Employees (+/-)	Proj Ta	perty Ixes
	Present Value of Revenue Requirements (\$000,000)	Total portfolio CO2 Emissions (mmtons)	Total portfolio SO2 Emissions (tons)	Total portfolio NOx Emissions (tons)	Water Use (mmgal)	CCP (tons)	% Renewable Energy in 2032	Composite score from Reliability Analysis	Lowest PVRR across policy scenarios (\$000,000)	Highest PVRR across policy scenarios (\$000,000)	P5 [Mean - P5]	P95 [P95 – Mean]	20-year avg sales + purchases (GWh)	Portfolio PVRR w/ low renewable cost (\$000,000)	Portfolio PVRR w/ high renewable cost (\$000,000)	Total change in FTEs associated t with generation 2023 - 2042	Total a of prop paid fr IN a (\$000	amount perty tax rom AES issets 0,000)
1	\$ 9,572	101.9	64,991	45,605	36.7	6,611	45%										\$	173
2	\$ 9,330	72.5	13,513	22,146	7.9	1,417	55%										\$	211
3	\$ 9,773	88.1	45,544	42,042	26.7	4,813	52%										\$	215
4	\$ 9,618	79.5	25,649	24,932	15.0	2,700	48%										\$	248
5	\$ 9,711	69.8	25,383	24,881	14.8	2,676	64%										\$	262
6	\$ 9,262	76.1	18,622	25,645	10.9	1,970	54%										\$	203

 \rightarrow

Strategies \rightarrow

- → **1.** No Early Retirement
- 2. Pete Refuel to 100% Natural Gas (est. 2025)
- **3.** One Pete Unit Retires in 2026
- \rightarrow **4.** Both Pete Units Retire in 2026 & 2028

2022 IRP

- 5. "Clean Energy Strategy" Both Pete Units Retire and replaced with Renewables in 2026 & 2028
- → 6. Encompass Optimization without Predefined Strategy Selects Pete 3 Refuel in 2025 & Pete 4 Refuel in 2027

22

In Meeting #4 – we reviewed a partially completed Scorecard

Today, we will review the remaining metrics and completed Scorecard. The Meeting will conclude with review of the Preferred Resource **Portfolio and Short-term Action Plan**

Risk and Opportunity Metrics

Erik Miller, Manager, Resource Planning, AES Indiana

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Page 589 of 647

Risk & Opportunity Metrics

AES Indiana included four Risk & Opportunity Metrics on the IRP Scorecard. Analyses were performed on the Candidate Portfolios to quantify these metrics – analyses include:

- → Environmental Policy Sensitivity Analysis
- → Cost Risk & Opportunity Metric **Stochastic Analysis**
- → Market Interaction/Exposure Analysis
- → Renewable Resource Capital Cost Sensitivity Analysis

The following slides will review the results from each analysis performed to quantify these metrics.

AES Indiana 2022 IRP Report Attachment 1-2 Page 590 of 647

Risk & Opportunity Metrics: **Environmental Policy Sensitivity Analysis**

- > AES Indiana modeled environmental policy sensitivities on the optimized capacity expansion results from the Candidate Portfolios (Current Trends/Reference Case) to understand how the PVRR may change using different environmental policy and commodities.
- The results will help to answer the question "How would the optimized Reference Case perform in a very different policy future, \rightarrow e.g. Reference Case in a Decarbonized Economy future?"

		Current Trends – Reference Case	No Environr	nental Action	Aggressive Environmental	Decarbo	nzied Economy
	No Early Retirement						
Generation Strategies	Pete Refuel to 100% Gas (est. 2025)			Run	the Optimiz	ed	
	One Pete Unit Retires (2026)			Re	ference Cas	e	
	Both Pete Units Retire (2026 & 2028)			Mixe	es through t	he	
	Both Pete Units Retire and Replaced with Wind, Solar & Storage (2026 & 2028)			oth	er Scenario	S	
	Encompass Optimization without predefined Strategy						

AES Indiana 2022 IRP Report Attachment 1-2 Page 591 of 647

Metrics

For each strategy, the analysis will capture:

- \rightarrow Risk potential using the **highest** scenario PVRR for each strategy
- → Opportunity potential using the lowest scenario **PVRR** for each strategy

Risk & Opportunity Metrics: **Environmental Policy Sensitivity Analysis**

- **Env Policy Opportunity Metric** the environmental policy and commodity assumptions in the No Environmental Action Scenario \rightarrow results in the lowest PVRR in all strategies because this scenario has no carbon price and low gas prices.
- Env Policy Risk Metric the environmental policy and commodity assumptions in the Aggressive Environmental Scenario results \rightarrow in the highest PVRR because this scenario has a high carbon price (\$19.47/ton) starting in 2028 and high gas.

		Current Trends – Reference Case	No Environmental Action	Aggressive Environmental	Decarbonized Economy
Generation Strategies	No Early Retirement	\$9,572	\$8,860	\$11,259	\$9,953
	Pete Refuel to 100% Gas (est. 2025)	\$9,330	\$8,564	\$11,329	\$9,699
	One Pete Unit Retires (2026)	\$9,773	\$9,288	\$11,462	\$10,084
	Both Pete Units Retire (2026 & 2028)	\$9,618	\$9,135	\$11,392	\$10,334
	Both Pete Units Retire and Replaced with Wind, Solar & Storage (2026 & 2028)	\$9,711	\$9,590	\$11,275	\$9,776
	Encompass Optimization (Refuel in 2025 & 2027)	\$9,262	\$8,517	\$11,226	\$9,721
26	2022 IRP	Lowest PVRR Opportunity Pote	ential	Highest P Risk Pote	VRR ntial

AES Indiana 2022 IRP Report Attachment 1-2 Page 592 of 647

Key takeaways/explanations

- \rightarrow Low gas prices and no carbon price drive the Pete Refuel to be the least cost portfolio in the No Env Action scenario.
- \rightarrow Low-capacity factor due to negative spark spreads (power and gas) drives the Pete Refuel to be the least cost portfolio in the Decarb Econ scenario – portfolio has low energy from gas units and high energy from renewables to meet RPS.
- \rightarrow Base coal prices dampen the impact of higher carbon prices and higher NOx, which results in comparatively low PVRR for No Early Retirement in the Agg Env **Cess** Indiana scenario.

Risk & Opportunity Metrics: **Cost Risk & Opportunity Metric** **Stochastic Analysis**

- Stochastic analysis was performed on the **Candidate Portfolios** to \rightarrow understand the risks and opportunities to each Strategy from:
 - \rightarrow Energy price volatility
 - \rightarrow Gas price volatility
 - \rightarrow Coal price volatility
 - \rightarrow Load volatility
 - \rightarrow Renewable generation volatility
- Each variable was varied across a full stochastic distribution using \rightarrow 100 iterations of potential outcomes.
- Metrics to measure cost risks and cost opportunities include: \rightarrow
 - \rightarrow Risk Metric = P95 and [P95 Mean]
 - \rightarrow Opportunity Metric = P5 and [Mean P5]

AES Indiana 2022 IRP Report Attachment 1-2 Page 593 of 647

AES Indiana 2022 IRP Report *Risk & Opportunity Metrics:* Attachment 1-2 Page 594 of 647 **Cost Risk & Opportunity Metric** **Stochastic Analysis**

In order to fully evaluate commodity risk, the stochastic analysis captures recent volatility in commodity prices in forecasted distributions.

Henry Hub Gas Prices for 100 Stochastic Iterations included in Analysis

2022 IRP

28

Risk & Opportunity Metrics: Cost Risk & Opportunity Metric **Stochastic Analysis**

All Candidate Portfolios rely partly on gas generation and therefore exhibit sensitivity to gas price volatility.

Risk & Opportunity Metrics: **Cost Risk & Opportunity Metric** **Stochastic Analysis**

- \rightarrow For the stochastic analysis, AES Indiana lifted the energy constraints in Encompass to fully assess portfolio risk which results in a slightly different mean compared to the deterministic results.
- Risk: P95 Indicates \rightarrow that 95% of potential PVRRs will fall below this value – there's a 5% chance PVRR will be higher.
- \rightarrow Opportunity: P5 Indicates 95% of PVRRs will fall above this value - there's a 5% chance PVRR will be lower.

Portfolio	Scorecard PVRR Metric	Mean ↓	Opportunity: P5 [Mean - P5]	Risk: P95 [P95 - Mean]
No Early Retirement	\$9,572	\$9,535	\$9,271 [-\$264]	\$9,840 [\$305]
Pete Refuel to 100% Gas (est. 2025)	\$9,330	\$9,364	\$9,030 [-\$334]	\$9,746 [\$382]
One Pete Unit Retires (2026)	\$9,773	\$9,902	\$9,608 [-\$294]	\$10,237 [\$336]
Both Pete Units Retire (2026 & 2028)	\$9,618	\$9,582	\$9,295 [-\$287]	\$9,903 [\$321]
"Clean Energy Strategy"	\$9,711	\$9,727	\$9,447 [-\$280]	\$10,039 [\$312]
EnCompass Optimization (Refuel 2025 & 2027)	\$9,262	\$9,277	\$8,952 [-\$324]	\$9,629 [\$352]

AES Indiana 2022 IRP Report Attachment 1-2 Page 596 of 647

Stochastic results from varying power prices, gas prices, coal prices, load and renewable generation.

AES Indiana 2022 IRP Report *Risk & Opportunity Metrics:* Attachment 1-2 Page 597 of 647 Cost Risk & Opportunity Metric **Stochastic Analysis**

Opportunity Potential Risk Potential

- **Converting Petersburg** \rightarrow to natural gas provides lowest PVRR at the P95 (risk) and the lowest PVRR at the P5 (opportunity) compared to the other strategies.
- **Converting Petersburg** to natural gas exhibits the widest distribution due to gas price volatility.
- Continuing to operate Petersburg on coal provides the tightest distribution because coal prices are subject to less volatility compared to other commodities.

Risk & Opportunity Metrics: **Market Interaction/Exposure**

- \rightarrow When a utility generates energy in excess of load, the energy is sold into the market. Conversely, when a utility is short energy, the utility must purchase energy to supply load.
- \rightarrow Generally, the less sales and purchases in a portfolio, the less risky the portfolio or strategy is for the customer because the sales and purchases aren't exposed to price volatility in the market.
- \rightarrow For example what if prices drop to zero when wind is available in excess of load or what if prices spike when energy purchases are needed to meet load?

2022 IRP

32

Risk & Opportunity Metrics:

Market Interaction/Exposure Results

20-year	
Average	
Sales	

	20-year Average + Sales	20-year Average = Purchases	Market Interaction/Exposure Metric
Candidate Portfolios (Strategies in Current Trends/Ref Case)	20-yr Annual Avg Market Sales (GWh)	20-yr Annual Avg Market Purchases (GWh)	Market Interaction/Exposure (GWh)
No Early Retirement	2,935	2,356	5,291
Pete Refuel to 100% Natural Gas (2025)	2,346	2,877	5,222
One Pete Unit Retires in 2026	2,916	2,821	5,737
Both Pete Units Retire in 2026 & 2028	2,921	2,591	5,512
"Clean Energy Strategy"*	3,146	2,942	6,088
Encompass Optimization**	2,285	2,851	5,136

*Both Pete Units Retire and replaced with Renewables in 2026 & 2028

**Selects Pete 3 Refuel in 2025 & Pete 4 Refuel in 2027

Comparing across strategies, we see portfolios with less dispatchable generation have higher market interaction in the form of energy sales.

AES Indiana 2022 IRP Report Attachment 1-2 Page 599 of 647

AES Indiana 2022 IRP Report *Risk & Opportunity Metrics:* Attachment 1-2 Page 600 of 647 Market Interaction/Exposure Example and Comparison

- Strategies with less dispatchable generation typically have higher market interaction in the form of sales due to inability to control when energy is generated.
- In the near term, the Clean Energy Strategy adds more renewables to replace Petersburg, resulting in comparatively higher sales.
- Starting in 2031, both \rightarrow strategies add similar amounts of renewables, so we see sales grow somewhat proportionally.

Market Interaction Comparison – Pete Refuel Strategy vs Clean Energy Strategy

AES Indiana 2022 IRP Renor *Risk & Opportunity Metrics:* Page 601 of 647 **Renewable Resource Capital Cost Sensitivity Analysis**

The Renewable Resource Capital Cost Sensitivity Analysis evaluates how much the Candidate Portfolio's PVRRs would change if renewable resource costs end up being higher or lower than the base assumptions.

How the analysis was performed

- > Using secondary data sources and the responses from AES Indiana's past two RFPs that were issued in 2020 and the spring of 2022, the IRP team created low, base and high levels of renewable resource capital costs.
 - \rightarrow Low low costs were based on the avg of the 2021 replacement resource capital cost forecasts from Wood Mackenzie, NREL and BNEF and benchmarked against the responses from AES Indiana's 2020 RFP.
 - Base base costs were based on the lower half of the 2022 all-source RFP responses. \rightarrow
 - High high costs were based on the upper half of the 2022 all-source RFP responses. \rightarrow
 - The Renewable Resource Capital Cost Sensitivity analysis was performed by \rightarrow using the high and low cost calculations to increase and decrease the capital costs for the renewable additions in the Candidate Portfolios.

AES Indiana 2022 IRP Report *Risk & Opportunity Metrics:* Attachment 1-2 Page 603 of 647 **Renewable Resource Capital Cost Sensitivity Analysis Results**

Portfolios with the highest renewable investment are most sensitive to price fluctuations.

	Current Trends (Reference Case)				
	Low	Base	High		
No Early Retirement	\$9,080	\$9,572	\$10,157		
Pete Refuel to 100% Gas (est. 2025)	\$8,763	\$9,330	\$9,999		
One Pete Unit Retires (2026)	\$9,244	\$9,773	\$10,406		
Both Pete Units Retire (2026 & 2028)	\$9,104	\$9,618	\$10,249		
Both Pete Units Retire and Replaced with Wind, Solar & Storage (2026 & 2028)	\$9,017	\$9,711	\$10,442		
Encompass Optimization without predefined Strategy (Refuel 2025 & 2027)	\$8,730	\$9,262	\$9,909		
	Opportunity Metric:		Risk Metric: Candidate Portfolio		

Candidate Portfolios using low costs for renewables

RESULTS

S using high costs for renewables

Break for Lunch

Time	Торіс	Speakers
Break 12:00 PM – 12:30 PM	Lunch	
Afternoon Starting at 12:30 PM	Reliability, Stability & Resiliency Metric	Hisham (
	IRP Scorecard Results	Erik Mille
	Preferred Resource Portfolio & Short-Term Action Plan	Erik Mille
	Final Q&A and Next Steps	

AES Indiana 2022 IRP Report Attachment 1-2 Page 604 of 647

Othman, Manager, Resource Planning, Quanta Technology

r, Manager, Resource Planning, AES Indiana

er, Manager, Resource Planning, AES Indiana

Reliability, Resiliency & Stability Metric

Hisham Othman, VP Transmission & Regulatory Consulting, Quanta

AES Indiana 2022 IRP Report Attachment 1-2 Page 605 of 647

AES Indiana 2022 IRP Report Attachment 1-2 Page 606 of 647

Integrated Resource Plan (IRP) 2022

Reliability Analysis of IRP Portfolios: Final Report October 19, 2022

Presented by IRP Partner

Q U A N T A T E C H N O L O G Y

Managing System Reliability – High IBR Portfolios

- Traditional planning ensures the provision of sufficient generation and transmission capacity based on:
 - Centralized synchronous generation
 - Dispatchable resources
 - Predictable flow patterns
 - Excludes fuel constraints
 - Few operating snapshots (e.g., 2-4)
 - Separate T and D planning

With increasing retirements and dependence on solar/wind/storage resources, both distributed and utility-scale, planning paradigm is evolving to assure operational reliability. AES Indiana 2022 IRP Report Attachment 1-2 Page 607 of 647

- Traditional planning methods are evolving:
 - Resource Adequacy: Effective Load Carrying Capability (ELCC)
 - Time-series transmission security (8760 hrs)
 - Probabilistic production cost simulations (renewable/load profiles)
 - Coordinated/Integrated T&D planning
 - Scenario planning approaches to address increased uncertainty
- More analysis is required Essential Reliability Service

Q U A N T A T E C H N O L O G Y

Essential Reliability Services

AES Indiana 2022 IRP Report Attachment 1-2 Page 608 of 647

- Market-Procured Reliability Services
 - Some reliability services are typically procured competitively by the RTO or the ISO such as capacity, energy, and reserves.
- Portfolio-Supplied Reliability Services
- Some reliability services are assumed to be innately supplied by the resource portfolio such as inertial and primary frequency response and voltage support

Essential Reliability Studies

	Reliability Study Area	
-	Resource Adequacy	
-	Energy Adequacy	
-	Transmission Reliability / Deliverability / Interconnections	
1	Energy Adequacy	
2	Operational Flexibility and Frequency Support	
3	Short Circuit Strength Requirement	
4	Power Quality (Flicker)	
5	Blackstart	
6	Dynamic VAR Deliverability	
7	Dispatchability and Automatic Generation Control	
8	Predictability and Firmness of Supply	
9	Geographic Location Relative to Load	

AES Indiana 2022 IRP Report Attachment 1-2 Page 609 of 647

Normal 50/50, Connected)	Max-Gen (90/10, Import Limited)	Islanded (Critical Load)	
X (also 90/10)			Typically, Part of
X (8760)			IRP Portfolio Design
Х			
Х	Х	Х	
Х		Х	
Х		Х	
Х		Х	Additional Reliability
		Х	Analysis
Х			
Х			
Х			
Х			

Reliability Metrics (1/2)

	Metric	Description	
1	Energy Adequacy	Resources are able to meet the energy and capacity duration requirements. Portfolio resources are able to supply the energy demand of customers during normal and emergency max gen events, and also to supply the energy needs of critical loads during islanded operation events.	Utility durin
2	Operational Flexibility and Frequency Support	Ability to provide inertial energy reservoir or a sink to stabilize the system. Additionally, resources can adjust their output to provide frequency support or stabilization in response to frequency deviations with a droop of 5% or better.	Regional differ cond operation
3	Short Circuit Strength Requirement	Ensure the strength of the system to enable the stable integration of all inverter-based resources (IBRs) within a portfolio.	The r with i stren ratio future
4	Power Quality (Flicker)	The "stiffness of the grid" affect the sensitivity of grid voltages to the intermittency of renewable resources. Ensuring the grid can deliver power quality in accordance with IEEE standards is essential.	Retire incre resou
5	Blackstart	Ensure that resources have the ability to be started without support from the wider system or are designed to remain energized without connection to the remainder of the system, with the ability to energize a bus, supply real and reactive power, frequency and voltage control	In the its loc cran
6	Dynamic VAR Support	Customer equipment driven by induction motors (e.g., air conditioning or factories) requires dynamic reactive power after a grid fault to avoid stalling. The ability of portfolio resources to provide this service depends on their closeness to the load centers.	Utility attrib
44	INTEGRATED RE	SOURCE PLAN (IRP) 2022	

AES Indiana 2022 IRP Report Attachment 1-2 Page 610 of 647

Rationale

y must have long duration resources to serve the needs of its customers of emergency and islanded operation events.

onal markets and/or control centers balance supply and demand under rent time frames according to prevailing market construct under normal litions, but preferable that local control centers possess the ability to maintain ation during under-frequency conditions in emergencies.

retirement of synchronous generators within utility footprint and replacements increasing levels of inverter-based resources will lower the short circuit of the system. Resources than can operate at lower levels of short circuit (SCR) and those that provide higher short circuit current provide a better e proofing without the need for expensive mitigation measures.

ement of large thermal generation plants lower the strength of the grid and ases its susceptibility to voltage flicker due to intermittency of renewable urces, unless properly assessed and mitigated.

e event of a black out condition, utility must have a blackstart plan to restore cal electric system. The plan should demonstrate the ability to energize a king path to start large flexible resources with sufficient energy reservoir.

y must retain resources electrically close to load centers to provide this oute in accordance with NERC and IEEE Standards

Q U A N T A T E C H N O L O G Y

Reliability Metrics (2/2)

	Metric	Description	
7	Dispatchability and Automatic Generation Control	Resources should respond to directives from system operators regarding their status, output, and timing. Resources that can be ramped up and down automatically to respond immediately to changes in the system contribute more to reliability than resources which can be ramped only up or only down, and those in turn are better than ones that cannot be ramped.	Abili qual prov resto
8	Predictability and Firmness of Supply	Ability to predict/forecast the output of resources and to counteract forecast errors.	The adva activ hour sche the c and
9	Geographic Location Relative to Load (Resilience)	Ensure the ability to have redundant power evacuation or deliverability paths from resources. Preferrable to locate resources at substations with easy access to multiple high voltage paths, unrestricted fuel supply infrastructure, and close to major load centers.	Loca curta relia powe trans resto

AES Indiana 2022 IRP Report Attachment 1-2 Page 611 of 647

Rationale

ty to control frequency is paramount to stability of the electric system and the ity of power delivered to customers. Control centers (regional or local) ride dispatch signals under normal conditions, and under emergency pration procedures or other operational considerations.

ability to predict resource output from a day-ahead to real-time is antageous to minimize the need for spinning reserves. In places with an we energy market, energy is scheduled with the market in the day-ahead rly market and in the real-time 5-minute market. Deviations from these edules have financial consequences and thus the ability to accurately forecast output of a resource up to 38 hours ahead of time for the day-ahead market 30 minutes for the real time market is advantageous.

ation provides economic value in the form of reduced losses, congestion, ailment risk, and address local capacity requirements. Additionally, from a bility perspective, resources that are interconnected to buses with multiple er evacuation paths and those close to load centers are more resilient to smission system outages and provide better assistance in the blackstart oration process.

Q U A N T A T E C H N O L O G Y

Scoring Criteria Thresholds (1/2)

	Veer 2024			2	3	
	Tear 2031		(Pass)	(Caution)	(Problem)	
		Loss of Load Hours (LOLH) - normal system, 50/50 forecast	<2.4 hrs	2.4-4.8 hrs	>4.8 hrs	Exp imp
	Energy Adequacy	Expected Energy not Served (GWh) - normal system 50/50 fcst	<2.4*Pe ak	2.4-4.8*Peak	>4.8*Peak	The reso
1		max MW Short (MW) - normal system 50/50 forecast	<90%	90-110%	>110%	The impo
		max MW Short - loss of 50% of tieline capacity, 50/50 fcst	<45%	45-55%	>55%	The impo
		max MW Short (islanded, 50/50 forecast)	<70%	70-85%	>85%	Abili othe
		max MW Short (normal system, 90/10 forecast)	<5%	5-20%	>20%	Abili durii
	Operational Flexibility and Frequency	Inertia MVA-s	>4.2 *Peak	2.6-4.2 *Peak	<2.6 *Peak	Syno inert
2		Inertial Gap FFR MW (% CAP)	0	0-10% of CAP	>10% of CAP	Syst resp
	Support	Primary Gap PFR MW (% CAP)	0	0-2% of CAP	>2% of CAP	Syst resp
		Inverter MWs passing ESCR limits (%) - Connected System	95%	80-95%	80%	Grid oper
2	Short Circuit	Inverter MWs passing ESCR limits (%) - Islanded System	80%	50-80%	>50%	Grid oper
3	Strength	Required Additional Synch Condensers MVA (% peak load) - Connected	0	0-500	>500	Porti thres
		Required Additional Synch Condensers MVA (% peak load) - Islanded	0	0-500	>500	Porti thres

AES Indiana 2022 IRP Report Attachment 1-2 Page 612 of 647

Rationale

- ected number of hours in a year the portfolio is energy short and relies on orts (2.4hrs = 1day in 10 years)
- energy consumption which is not supplied due to insufficient capacity ources within portfolio to meet the demand
- maximum hourly power shortage in the portfolio that has to be supplied by orts (% of Tie-line Import Limits)
- energy consumption which is not supplied due to insufficient resources and orts to meet the demand, when tieline import capacity is halved
- ity of Resources to serve critical loads, estimated at 15% of total load. Adding er important loads brings the total to 30%
- ity of portfolio resources to serve unanticipated growth in load consumption ng MISO emergency max-gen events
- chronous machine has inertia of 2-5xMVA rating. Conventional systems have tia that exceeds 2-5x (Peak load x 1.3)
- tem should have enough inertial response, so gap should be 0. Inertial ponse of synch machine ≈ 10% of CAP
- tem should have enough primary response, so gap should be 0. Primary ponse of synch machine ≈ 3.3% of CAP/0.1Hz (Droop 5%)
- following inverters require short circuit strength at the point of connection to rate properly (ESCR threshold of 3.5)
- following inverters require short circuit strength at the point of connection to rate properly (ESCR threshold of 3.5)
- folio should not require additional synchronous condensers. 500MVArs is a shold
- folio should not require additional synchronous condensers. 500MVArs is a shold

Scoring Criteria Thresholds (2/2)

	V		1	2	3	
	Tear 2031		(Pass)	(Caution)	(Problem)	
		Compliance with Flicker limits when Connected (GE Flicker Curve or IEC Flicker Meter)	>95%	80-95%	<80%	% ir
4	Flicker	Compliance with Flicker limits when Islanded	>80%	50-80%	<50%	% ir
		Required Synchronous Condensers MVA to mitigate Flicker	0%	0-500	>500	S
5	Blackstart	Qualitative Assessment of Ability to Blackstart the system	Excellent	Average	Poor	S ^r ot
6	Dynamic VAR Support	Dynamic VAR to load Center Capability (% of Peak Load)	≥85%	55-85%	<55%	D Io re th
		Dispatchable (%CAP)	>60%	50-60%	<50%	D
		Unavoidable VER Penetration %	<60%	60-70%	>70%	Ir
		Increased Freq Regulation Requirements (% Peak Load)	<2% of peak load	2-3% of Peak Load	>3% of peak load	R
7	Dispatchability	1-min Ramp Capability (MW)	>15% of CAP	10-15% of CAP	<10% of CAP	1) m
		10-min Ramp Capability (MW)	>65% of CAP	50-65% of CAP	<50% of CAP	1 w
8	Predictability and Firmness	Ramping Capability to Mitigate Forecast Errors (+Excess/-Deficit) (%VER MW)	≥ 0	-10% - 0% of CAP	<-10% of CAP	E is
9	Location	Average Number of Evacuation Paths	>3	2-3	<2	N

AES Indiana 2022 IRP Report Attachment 1-2 Page 613 of 647

Rationale

o of system load buses that is likely to experience flicker (>100% of Border line of ritation or Pst>1)

o of system load buses that is likely to experience flicker (>100% of Border line of ritation or Pst>1)

ize of Synchronous condensers required to mitigate flicker (500MVArs is a threshold)

ystem requires real and reactive power sources with sufficient rating and duration to start ther resources. Higher rated resources lower the risk

ynamic reactive power (DRP) should exceed 55-85% of the peak load served by the bad centers. DRP requirement to prevent induction motor stalling is 2.5x the steady state eactive consumption. Assuming a PF=0.9, and Induction motors account for 50-80% of the load. Assume that only 20% of the load can experience a common voltage event.

ispatchable resource are essential for system operation termittent Power Penetration above 60% is problematic when islanded

Regulation of Conventional Systems ≈1%

0% per minute was the norm for conventional systems. Renewable portfolios require nore ramping capability

0% per minute was the norm for conventional systems. But with 50% min loading, that *i*ll be 50% in 10 min. Renewable portfolios require more ramping capability

xcess ramping capability to offset higher levels of intermittent resource output variability desired

lore power evacuation paths increase system resilience

Scorecard – Portfolio Scores

				C	andidate Por	tfolios in 203	31	
	Year 2031		Status Quo	Refuel	1 Retire	2 Retire	Clean	Optimize
		Loss of Load Hours (LOLH) - normal system, 50/50 forecast	1	1	0	0	0	1
		Expected Energy not Served (GWh) - normal system 50/50 fcst	1	1	1	1	1	1
1		max MW Short (MW) - normal system 50/50 forecast	1	1	1	1	1	1
I	Energy Adequacy	max MW Short - loss of 50% of tieline capacity, 50/50 fcst	1	1	1	1/2	0	1
		max MW Short (islanded, 50/50 forecast)	1	1	1	1	1	1
		max MW Short (normal system, 90/10 forecast)	1/2	1/2	0	0	0	1/2
	Operational Elevibility and	Inertia MVA-s	1/2	1/2	1/2	1/2	1/2	1/2
2	Frequency Support	Inertial Gap FFR MW (% CAP)	1/2	1/2	1/2	1/2	1/2	1/2
		Primary Gap PFR MW (% CAP)	0	0	1	1	1	0
		Inverter MWs passing ESCR limits (%) - Connected System	1	1	1	1	1	1
3	Short Circuit Strength	Inverter MWs passing ESCR limits (%) - Islanded System	1	1	0	1/2	0	1
	Onort Oncon Otterigin	Required Additional Synch Condensers MVA (when Connected)	1	1	1	1	1	1
		Required Additional Synch Condensers MVA (when Islanded)	1	1	1/2	1/2	0	1
		Compliance with Flicker limits when Connected	1	1	1	1	1	1
Δ	Power Quality	(GE Flicker Curve or IEC Flicker Meter)	•	•	l	•		•
- T		Compliance with Flicker limits when Islanded	1	1	1	1	1	1
		Required Synchronous Condensers MVA to mitigate Flicker	1	1	1	1	1	1
5	Blackstart	Qualitative Assessment of Ability to Blackstart the system	1	1	1	1	1	1
6	Dynamic VAR Support	Dynamic VAR to load Center Capability (% of Peak Load)	1	1	1	1	1	1
		Dispatchable (%CAP)	1	1	1	1	1	1
	Dispatchability and	Unavoidable VER Penetration %	1	1	1	1	1	1
7	Automatic Generation	Increased Freq Regulation Requirements (% Peak Load)	1	1	1	1	1	1
	Control	1-min Ramp Capability (MW)	1/2	1/2	1	1	1	1/2
		10-min Ramp Capability (MW)	0	0	1/2	1/2	1/2	0
8	Predictability and Firmness	Ramping Capability to Mitigate Forecast Errors (+Excess/-Deficit) (%VER MW)	1	1	1	1	1	1
9	Location	Average Number of Evacuation Paths	1	1	1	1	1	1

Cumulative score (out of poss

AES Indiana 2022 IRP Report Attachment 1-2 Page 614 of 647

sible 9) 7.95 7.95 7.86 7.90 7.57 7.95	sible 9)	7.95	7.95	7.86	7.90	7.57	7.95
--	----------	------	------	------	------	------	------

Mitigations

	Current Trends							
	Status Quo	Refuel	1 Retire	2 Retire	Clean	Optimize		
Equip Stand-alone ESS with GFM inverters (MW)	129	99	183	49	128	98		
Additional Synchronous Condensers (MVA)	0	0	350	300	1500	0		
Additional Power Mitigations (MW)	298	326	183	49	128	325		
Increased Freq Regulation	39	48	49	45	66	47		
Address Inertial Response Gaps	129	99	183	49	128	98		
Address Primary Response Gaps	298	326	0	0	0	325		
Firm up Intermittent Renewable Forecast	0	0	0	0	0	0		

AES Indiana 2022 IRP Report Attachment 1-2 Page 615 of 647

Thank you!

AES Indiana 2022 IRP Report Attachment 1-2 Page 616 of 647

Quanta-Technology.com

Info@Quanta-Technology.com

LinkedIn.com/company/quanta-technology

Hisham Othman HOthman@Quanta-Technology.com (919) 000-0000

QUANTA

TECHNOLOGY

IRP Scorecard Results

Erik Miller, Manager, Resource Planning, AES Indiana

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Page 617 of 647

What is a Preferred Resource Portfolio?

What is a preferred resource portfolio?

"'Preferred resource portfolio' means the utility's selected long term supply-side and demand-side resource mix that safely, reliably, efficiently, and cost-effectively meets the electric system demand, taking cost, risk, and uncertainty into consideration." IAC 4-7-1-1-cc

Integrated Resource Plan (IRP) in Indiana -> 170 IAC 4-7-2

- \rightarrow 20-year look at how AES Indiana will serve load
- \rightarrow Submitted every three years
- \rightarrow Plan created with stakeholder input
- \rightarrow Modeling and analysis culminates in a preferred resource portfolio and a short-term action plan

Stakeholders are critical to the process

AES Indiana has been committed to providing an engaging and collaborative IRP process for its stakeholders:

- \rightarrow Five Public Advisory Meetings for stakeholders to engage throughout the process
- \rightarrow Five Technical Meetings available to stakeholders with nondisclosure agreements (NDA) for deeper analytics discussion
- \rightarrow Additional ad hoc meetings to review comments and questions from stakeholders with NDAs
- > Planning documents and modeling materials were shared with stakeholders with NDAs including Encompass model database
- The Preferred Resource Portfolio was determined after full consideration of stakeholder input

IRP rules link: http://iac.iga.in.gov/iac/iac title?iact=170&iaca=&submit=+Go Article 4. 170 IAC 4-7-2

AES Indiana 2022 IRP Report Attachment 1-2 Page 618 of 647

Final IRP Scorecard Results

	Affordability		Environmental Sustainability					Reliability, Stability & Resiliency		Risk & Opportunity					Economic Impact		
	20-yr PVRR	CO₂ Emissions	SO ₂ Emissions	NO _x Emissions	Water Use	Coal Combustion Products (CCP)	Clean Energy Progress	Reliability Score	Environmental Policy Opportunity	Environmental Policy Risk	General Cost Opportunity **Stochastic Analysis**	General Cost Risk **Stochastic Analysis**	Market Exposure	Renewable Capital Cost Opportunity (Low Cost)	Renewable Capital Cost Risk (High Cost)	Generation Employees (+/-)	Property Taxes
	Present Value of Revenue Requirements (\$000,000)	Total portfolio CO2 Emissions (mmtons)	Total portfolio SO2 Emissions (tons)	Total portfolio NOx Emissions (tons)	Water Use (mmgal)	CCP (tons)	% Renewable Energy in 2032	Composite score from Reliability Analysis	Lowest PVRR across policy scenarios (\$000,000)	Highest PVRR across policy scenarios (\$000,000)	P5 [Mean - P5]	P95 [P95 – Mean]	20-year avg sales + purchases (GWh)	Portfolio PVRR w/ low renewable cost (\$000,000)	Portfolio PVRR w/ high renewable cost (\$000,000)	Total change in FTEs associated with generation 2023 - 2042	Total amount of property tax paid from AES IN assets (\$000,000)
1	\$ 9,572	101.9	64,991	45,605	36.7	6,611	45%	7.95	\$ 8,860	\$ 11,259	\$	\$	5,291	\$ 9,080	\$ 10,157	222	\$ 154
2	\$ 9,330	72.5	13,513	22,146	7.9	1,417	55%	7.95	\$ 8,564	\$ 11,329	\$	\$	5,222	\$ 8,763	\$ 9,999	99	\$ 193
3	\$ 9,773	88.1	45,544	42,042	26.7	4,813	52%	7.86	\$ 9,288	\$ 11,462	\$	\$ 10,237 [\$336]	5,737	\$ 9,244	\$ 10,406	195	\$ 204
4	\$ 9,618	79.5	25,649	24,932	15.0	2,700	48%	7.90	\$ 9,135	\$ 11,392	\$	\$ 9,903 [\$321]	5,512	\$ 9,104	\$ 10,249	74	\$ 242
5	\$ 9,711	69.8	25,383	24,881	14.8	2,676	64%	7.57	\$ 9,590	\$ 11,275	\$	\$ 10,039 [\$312]	6,088	\$ 9,017	\$ 10,442	55	\$ 256
6	\$ 9,262	76.1	18,622	25,645	10.9	1,970	54%	7.95	\$ 8,517	\$ 11,226	\$	\$ 9,629 [\$352]	5,136	\$ 8,730	\$ 9,909	88	\$ 185

→ Strategies

2022 IRP

- → **1.** No Early Retirement
- \rightarrow 2. Pete Refuel to 100% Natural Gas (est. 2025)
- \rightarrow 3. One Pete Unit Retires in 2026
- \rightarrow **4.** Both Pete Units Retire in 2026 & 2028

→ 5. "Clean Energy Strategy" – Both Pete Units Retire and replaced with Renewables in 2026 & 2028

→ 6. Encompass Optimization without Predefined Strategy – Selects Pete 3 Refuel in 2025 & Pete 4 Refuel in 2027

53

AES Indiana 2022 IRP Report Attachment 1-2 Page 619 of 647

Opportunities for our people

CONVERSION

 \rightarrow Jobs to support the conversion from coal to natural gas

RENEWABLES

 \rightarrow Jobs to support new renewables added on-site

TRANSMISSION **AND DISTRIBUTION**

 \rightarrow Jobs to maintain transmission and distribution

New opportunities and continued economic impact

AES Indiana 2022 IRP Report Attachment 1-2 Page 620 of 647

CONSTRUCTION

 \rightarrow Jobs to build and expand infrastructure

Preferred Resource Portfolio & Short-Term Action Plan

Erik Miller, Manager, Resource Planning, AES Indiana

AES Indiana 2022 IRP Repor Page 621 of 647

Preferred Resource Portfolio

Convert Petersburg Coal Units 3 & 4 to Natural Gas in 2025 and add up to ~1,300 MW of wind, solar and storage by 2027

Affordability

- Provides the least cost to customers over the 20-year planning horizon by lowering the fixed cost at Petersburg through the economic \rightarrow conversion of the remaining Petersburg units from coal to natural gas.
- Demonstrates lowest annual PVRR relative to other portfolios over the 20-year planning horizon. \rightarrow

Environmental Sustainability

Delivers the quickest exit from coal-fired generation (in 2025) which provides the lowest 20-year AES Indiana generation portfolio \rightarrow emissions for SO2, NOx, water use and coal combustion products, and the second lowest emissions for CO2.

Reliability, Stability & Resiliency

- Offers1-for-1 replacement dispatchable capacity (UCAP) for Petersburg that economically and effectively delivers in meeting MISO's \rightarrow Seasonal Resource Adequacy Construct.
- Provides firm unforced capacity when needed which will allow AES Indiana to responsibly and gradually transition to renewable \rightarrow energy resources over the planning horizon.
- Demonstrates the highest composite reliability score while still delivering significant renewable generation investment. \rightarrow

AES Indiana 2022 IRP Report Page 622 of 647

Preferred Resource Portfolio (continued)

Convert Petersburg Coal Units 3 & 4 to Natural Gas in 2025 and add up to ~1,300 MW of wind, solar and storage by 2027

Risk & Opportunity

Provides best general performance across risk and opportunity metrics. \rightarrow

Economic Impact

Continues to contribute economically to the Petersburg community by leveraging existing infrastructure and maintaining operation of \rightarrow the Petersburg Generating Station as a gas resource and hub for renewable resources.

AES Indiana 2022 IRP Report Page 623 of 647

Preferred Resource Portfolio

Convert Petersburg Coal Units 3 & 4 to Natural Gas in 2025 and build ~1,300 MW of renewables by 2027

AES Indiana 2022 IRP Report Attachment 1-2 Page 624 of 647

Winter capacity position after converting Petersburg to Natural Gas

Pete Conversion to 100% Natural Gas (est. 2025)

- → Refueling Units 3 & 4 provides 1-for-1 dispatchable replacement of the existing coal units.
- → AES Indiana still has a capacity need (~240 MW) in the winter under MISO's new seasonal construct with high winter reserve margin.
- Company to fill the remaining capacity need with renewable generation based on model results.

Short-Term Action Plan: 2023-2027

Convert Petersburg Coal Units 3 & 4 to Natural Gas in 2025 and add up to ~1,300 MW of wind, solar and storage by 2027

AES Indiana's short-term action plan balances reliability, affordability and sustainability by:

- \rightarrow Ceasing coal-fired generation in 2025 after converting Petersburg Units 3 and 4 to natural gas
- \rightarrow Adding up to 1,300 MW of renewable generation for capacity and energy, which includes:
 - \rightarrow 240 MW ICAP of battery energy storage at Petersburg to fill winter capacity position in 2025
 - \rightarrow 550 1,065 MW ICAP of wind and solar as energy replacement for Petersburg based on results from the base and low Replacement Resource Capital Cost Sensitivity Analysis
- \rightarrow Implementing three-year DSM action plan that targets an annual average of 130,000 – 134,000 MWh of energy efficiency (approximately 1.1% of 2021 sales) and threeyear total of 75 MW summer peak impacts of demand response

Pete Conversion Strategy using **Base** Replacement Resource Costs (presented in MW ICAP)

Replacements	2023	2024	2025	2026	2027
Pete Conversion to Natural Gas	0	0	1052	0	0
Wind	0	0	0	50	450
Solar	0	0	0	0	0
Storage	0	0	240	0	0
Solar + Storage	0	0	45	0	0

Pete Conversion Strategy using **Low** Replacement Resource Costs (presented in MW ICAP)

Replacement Pete Conversi Wind Solar

Storage Solar + Storage

AES Indiana plans to procure a range of renewables as energy replacement for Petersburg based on results from the Base and Low Replacement **Resource Capital Cost Sensitivity Analysis. If renewables can be procured at** a cost closer to the low-cost sensitivity, then AES Indiana will pursue a quantity consistent with the low sensitivity.

AES Indiana 2022 IRP Report Attachment 1-2 Page 626 of 647

ts	2023	2024	2025	2026	2027
on to Natural Gas	0	0	1052	0	0
	0	0	0	200	700
	0	0	75	0	0
	0	0	240	0	0
2	0	0	90	0	0

DSM Short Term Action Plan

DSM Results

Energy Efficiency:

	Vintage 1 2024 - 2026	Vintage 2 2027 – 2029	Vintage 3 2030 - 2042
Residential	Efficient Products - Lower Cost	Lower Cost Residential (excluding Income Qualified	Lower Cost Residential (excluding IQW)
	Efficient Products - Higher Cost		
	Behavioral	Weatherization (IQW))	
	School Education	Llighor Cost Desidential	Higher Cost Residential (excluding IQW)
	Appliance Recycling	(excluding IOW)	
	Multifamily		
	IQW	IQW	IQW
C&I	Prescriptive		C&I
	Custom		
	Custom RCx	Cal	
	Custom SEM		
Impacts	Avg Annual MWh	Avg Annual MWh	Avg Annual MWh
	131,578 - 134,263	141,526	146,428
	% of 2021 Sales ex. Opt-Out	% of 2021 Sales ex. Opt-Out	% of 2021 Sales ex. Opt-Out
	1 - 1.1%	1.1%	1.2%
	Cumulative Summer MW	Cummulative Summer MW	Cummulative Summer MW
	87 - 89 MW	92 MW	303 MW

AES Indiana 2022 IRP Report Attachment 1-2 Page 627 of 647

Demand Response:

Note: Boxes highlighted in purple denote DSM bundles that were selected by Encompass

Affordability

Petersburg conversion to natural gas provides the lowest 20-yr PVRR and low PVRR volatility over the planning period

20-yr PVRR

	Present Value of Revenue Requirements (2023 \$000,000)		
1	\$	9,572	
2	\$	9,330	
3	\$	9,773	
4	\$	9,618	
5	\$	9,711	
6	\$	9,262	

Strategies

- → **1.** No Early Retirement
- → 2. Pete Refuel to 100% Natural Gas (est. 2025)
- **3.** One Pete Unit Retires in 2026
- 4. Both Pete Units Retire in 2026 & 2028
- → **5.** "Clean Energy Strategy" Both Pete Units Retire and replaced with Renewables in 2026 & 2028
- **6.** Encompass Optimization without Predefined Strategy – Selects Pete 3 Refuel in 2025 & Pete 4 Refuel in 2027

Compared to the No Retirement ("Status Quo") Scenario

AES Indiana 2022 IRP Report Attachment 1-2 Page 628 of 647

-- "Clean Energy Strategy" - Both Pete Units Retire and Replaced with Renewables in 2026 & 2028 - Encompass Optimization w/o Predefined Strategy – Selects Pete 3 Refuel in 2025 & Pete 4 Refuel in 2027

Sustainability

Emissions Comparison – Petersburg Conversion vs Clean Energy Strategy

AES Indiana 2022 IRP Report Attachment 1-2 Page 629 of 647

Sustainability

AES Indiana Generation Portfolio CO2 Emissions Projections

Converting Petersburg Units 3 & 4 to natural gas effectively reduces CO2 emissions due to a low-capacity factor of Pete on natural gas combined with significant investment in renewables.

AES Indiana 2022 IRP Report Attachment 1-2 Page 630 of 647

City of Indianapolis Recommendations for AES Indiana's 2022 IRP Report Attachment 1-2 Of Indiana City of Indiana City of Indiana's 2022 IRP Report Attachment 1-2 Of Indiana City of Indiana's 2022 IRP Report

City of Indianapolis Recommendations	
The City of Indianapolis seeks a resource mix with renewable generation capacity that aligns with the goals of the City and community. City recommends AES Indiana develop a model with multiple scenarios that achieve a 62.8% reduction over 2018 emissions levels, in order to align with the City's Science Based Target's for 2030.	AES Indiana 2030 compa energy to In
The City of Indianapolis strongly supports AES Indiana's use of "all-source" procurement for future capacity additions to ensure cost-effective, market-driven innovation.	AES Indiana Plan throug wind, and st
The City of Indianapolis encourages AES Indiana to expand offerings of and access to energy efficiency programs targeting those with the highest energy burden.	AES Indiana work to deve current IRP programs the that benefit
The City of Indianapolis encourages AES Indiana to support a Just Transition for each Indiana community.	AES Indiana that deliver communities development transparence Indiana to p a just and in
The City of Indianapolis requests that AES Indiana make energy performance and aggregated whole building data available to customers.	AES Indiana territory with to customer measures a evolve to su driven need

AES Indiana Response

a's Preferred Resource Portfolio achieves a 69% reduction in CO2 emissions in ared to 2018 levels. The portfolio provides affordable, reliable and sustainable indianapolis residents.

a will fill it's need for replacement capacity identified in the Short-Term Action h all-source RFPs. The Company will pursue the most cost effective and viable torage projects through this process.

a has identified energy efficiency as a cost-effective energy resource and will velop a new energy efficiency program plan to start in 2024 - 2026. Based on modeling results we expect our new plan will continue to have an emphasis on nat provide energy savings to all customers, with added emphasis on programs low- and moderate-income households.

a will continue to invest in new technologies and identify clean energy projects greener, smarter energy solutions. AES Indiana remains invested in our es through commitments to the workforce, charitable organizations and economic nt. Advanced modeling, additional economic impact metrics, greater cy with stakeholders and increased accessibility to the IRP process allowed AES paint a full picture of the potential impacts of each generation strategy and select nclusive portfolio.

a currently offers online tools that provide customers throughout our service h access to their energy usage data. These tools also provide recommendations rs for managing their energy usage and costs through energy efficiency and programs. As AES Indiana expects the capabilities of our online tools will upport additional customer friendly features that meet current and future data ds such as whole building data aggregation.

2022 IRP Key Modeling Solutions

There were several significant events in 2022 that created challenges for IRP modeling.

Market Changes	
In 2022, FERC approved MISO's Seasonal Capacity Construct and MISO's Capacity Market cleared at CONE (Planning Reserve Auction – PRA)	Modeled a M in all four sea
Inflated replacement resource capital costs identified through AES Indiana's 2022 RFP	Conducted R costs for repl costs. Provid procured at a
Inflation Reduction Act of 2022 passed into law in August of 2022 which changed the ITC and PTC provisions for renewable resources	Included IRA portfolio eval
Scarcity within the NOx allowance market brought on by uncertainty around CSAPR resulted in historically high NOx prices	Increased NO
Volatile commodities starting in early 2022 marked by inflated gas and power prices starting Feb/Mar 2022	Updated com 2022 Horizon

AES Indiana 2022 IRP Report Attachment 1-2 Page 632 of 647

Modeling Solutions

IISO's Seasonal Capacity Construct and included CONE as the capacity price asons

Replacement Resource Sensitivity Analysis with low, base and high capital lacement resources. Analysis optimized portfolios assuming a range of capital des for flexibility in executing the Short-Term Action Plan if resources can be a lower cost

assumptions in the Current Trends (Reference Case) Scenarios for candidate luation

Ox price forecast in near-term to reflect current NOx allowance market volatility

nmodity curves using ICE Forward Curves from May 31, 2022 and Spring n Fundamental Curves

Future Modeling Enhancements

2022 IPL IRP

- → Focused modeling on viable renewable technologies - wind, solar & storage
- Conducted hourly dispatch modeling to capture \rightarrow portfolio PVRR
- → Distribution System Planning analysis that assessed system constraints from emerging technologies
- → Captured appropriate resource accreditation for non-dispatchable generation based on MISO guidance

- Model alternative replacement resource options such as hydrogen or SMRs if commercially viable
- Sub hourly modeling to capture additional PVRR \rightarrow benefits including ancillary services value of battery energy storage and reciprocating engines
- Enhanced Distribution System Planning that captures \rightarrow circuit-level value of distributed generation and DSM
- \rightarrow Include refinements made to non-dispatchable resource seasonal capacity credit such as seasonal ELCC

AES Indiana 2022 IRP Report Attachment 1-2 Page 633 of 647

Consideration for Future IRPs

IRP SURVEY

- \rightarrow AES Indiana invites the public and stakeholders to provide feedback on the IRP process.
- \rightarrow Your responses will help AES Indiana ensure the 2022 IRP reflects a meaningful, objective look at our shared energy future.
- > Input from this survey will be reviewed by members of the IRP team in advance of the final IRP report filing on or before Dec. 1, 2022, and to improve future IRPs.
- \rightarrow Your participation in this survey is confidential and completely voluntary.
- \rightarrow Responses will be collected until Nov. 13, 2022.
- \rightarrow The survey link will be shared in the chat.

AES Indiana 2022 IRP Report Attachment 1-2 Page 634 of 647

Final Q&A and Next Steps

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Page 635 of 647

Public Advisory Meeting

 \rightarrow All meetings were made available for attendance via Teams.

 \rightarrow A Technical Meeting was held the week preceding each Public Advisory Meeting for stakeholders with nondisclosure agreements. Tech Meeting topics focused on those anticipated at the proceeding Public Advisory Meeting.

Meeting materials can be accessed at <u>www.aesindiana.com/integrated-resource-plan</u>.

 \rightarrow IRP Report will be filed with the IURC December 1, 2022

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Page 636 of 647

Thank You

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Page 637 of 647

Appendix

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Page 638 of 647

AES Indiana 2022 IRP Report Attachment 1-2 Petersburg Capacity Factors Pre vs Post Gas Conversion 639 of 647

2022 IRP

Quanta Analysis - Appendix 1

All Portfolios

AES Indiana 2022 IRP Report Attachment 1-2 Page 640 of 647

Portfolios (T1-T24)

AES Indiana 2022 IRP Report Attachment 1-2 Page 641 of 647

		Storage
70.0%		EE
60.0%		DR
		Wind
50.0%	uo	BTM-Solar
40.0%	trati	S+S
20.0%	Pene	Solar
30.0%	M+9	CC
20.0%	0)	GT
10.0%		Steam
10.070		Coal
0.0%		~~~%S+W

•••		onnen	uai	
el	1 Retire	2 Retire	Clean	Optim z
	78	77	73	78
)	19	19	22	19

<mark>Q U A N T A</mark> T E C H N O L O G Y

Portfolio Resources

Aggressive Environmental							Current Trends							Decarbonization							No Environmental					
	Quo	Refuel	1 Retire	2 Retire	Clean	Optimiz	Quo	Refuel	1 Retire	2 Retire	Clean	Optimiz	Quo	Refuel	1 Retire	2 Retire	Clean	Optimiz	Quo	Refuel	1 Retire	2 Retire	Clean	Optimiz		
Y2031 - All Resources	T1	T2	Т3	T4	T5	Т6	T7	T 8	Т9	T10	T11	T12	T13	T14	T15	T16	T17	T18	T19	T20	T21	T22	T23	T24		
Solar	1,755	1,780	1,905	1,805	1,805	1,630	1,105	1,380	1,480	1,180	1,655	1,205	1,205	1,130	1,080	1,030	1,355	1,055	405	405	405	405	405	405		
BTM-Solar	124	124	124	124	124	124	110	110	110	110	110	110	124	124	124	124	124	124	102	102	102	102	102	102		
Wind	1,950	2,150	2,000	2,400	2,400	2,450	800	850	800	900	1,200	1,000	800	1,100	900	950	1,150	1,200	300	300	300	300	400	300		
S+S	25	50	50	25	25	25	25	60	35	69	69	25	25	25	25	25	25	25	0	0	0	0	0	0		
Storage	333	345	785	1,013	1,013	553	333	313	840	920	1,180	313	393	333	813	1,013	1,293	333	240	240	680	820	1,280	240		
Steam	420	1,472	420	420	420	946	420	1,472	420	420	420	1,472	420	1,472	420	420	420	1,472	420	1,472	420	420	420	1,472		
GT	464	464	464	464	464	464	464	464	464	464	464	464	464	464	464	464	464	464	464	464	464	464	464	464		
CC	680	680	680	680	680	680	680	680	680	1,005	680	680	680	680	680	1,005	680	680	1,005	1,005	1,005	1,330	680	1,005		
Coal	1,040	0	520	0	0	0	1,040	0	520	0	0	0	1,040	0	520	0	0	0	1,040	0	520	0	0	0		
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
EE	195	195	195	195	195	195	195	194	194	194	195	195	195	195	195	195	195	194	118	118	136	165	194	119		
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
DR	121	73	154	198	198	154	154	154	154	198	198	154	154	154	198	198	198	154	154	154	198	198	198	154		
ICAP (MW) - Total	7,106	7,333	7,296	7,322	7,322	7,220	5,325	5,676	5,696	5,460	6,170	5,617	5,499	5,676	5,417	5,422	5,902	5,700	4,247	4,259	4,229	4,203	4,142	4,260		
Conventional (MW)	2,604	2,616	2,084	1,564	1,564	2,090	2,604	2,616	2,084	1,889	1,564	2,616	2,604	2,616	2,084	1,889	1,564	2,616	2,929	2,941	2,409	2,214	1,564	2,941		
Intermittent (MW)	3,854	4,104	4,079	4,354	4,354	4,229	2,040	2,390	2,415	2,240	3,015	2,340	2,154	2,379	2,129	2,129	2,654	2,404	807	807	807	807	907	807		
Storage (MW)	333	345	785	1,013	1,013	553	333	313	840	920	1,180	313	393	333	813	1,013	1,293	333	240	240	680	820	1,280	240		
% Renewable Penetration	70%	76%	74%	81%	81%	80%	35%	40%	41%	39%	52%	41%	36%	42%	37%	37%	46%	43%	13%	13%	13%	13%	15%	13%		
% Intermittent	54%	56%	56%	59%	59%	59%	38%	42%	43%	41%	49%	42%	39%	42%	39%	39%	45%	42%	19%	19%	19%	19%	22%	19%		

INTEGRATED RESOURCE PLAN (IRP) 2022

Scorecard – Portfolio Scores

			Aggressive Environmental							Current Trends						Decarbonization							No Environmental				
			Quo	Refuel	1 Retire	2 Retire	Clean	Optimiz	Quo	Refuel	1 Retire	2 Retire	Clean	Optimiz	Quo	Refuel	1 Retire	2 Retire	Clean	Optimiz	Quo	Refuel	1 Retire	2 Retire	Clean	Optimiz	
	Year 2031		T1	T2	Т3	T4	T5	Т6	T7	Т8	Т9	T10	T11	T12	T13	T14	T15	T16	T17	T18	T19	T20	T21	T22	T23	T24	
		Loss of Load Hours (LOLH) - normal system, 50/50 forecast	1	1	1	0	0	1	1	1	0	0	0	1	1	1	0	1	0	1	1	1	1	0	0	1	
		Expected Energy not Served (GWh) - normal system 50/50 fcst	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
1		max MW Short (MW) - normal system 50/50 forecast	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
		max MW Short - loss of 50% of tieline capacity, 50/50 fcst	1	1	1	0	0	1	1	1	1	1/2	0	1	1	1	1	1	0	1	1	1	1	1	0	1	
		max MW Short (islanded, 50/50 forecast)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
		max MW Short (normal system, 90/10 forecast)	1/2	1/2	0	0	0	0	1/2	1/2	0	0	0	1/2	1/2	1/2	0	1/2	0	1/2	1/2	1/2	0	0	0	1/2	
	Operational Elevibility	Inertia MVA-s	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1	1	1/2	1	1/2	1	
2	and Frequency Support	Inertial Gap FFR MW (% CAP)	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	1/2	
	1 7 11	Primary Gap PFR MW (% CAP)	0	0	1	1	1	0	0	0	1	1	1	0	0	0	1	1	1	0	0	0	1	1	1	0	
		Inverter MWs passing ESCR limits (%) - Connected System	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
3	Short Circuit Strength	Inverter MWs passing ESCR limits (%) - Islanded System	0	0	0	0	0	0	1	1	0	1/2	0	1	1	1	1/2	1/2	0	1	1	1	1	1	1	1	
	onore on our our origin	Required Additional Synch Condensers MVA (when Connected)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
		Required Additional Synch Condensers MVA (when Islanded)	0	0	0	0	0	0	1	1	1/2	1/2	0	1	1	1	1/2	1/2	0	1	1	1	1	1	1	1	
		Compliance with Flicker limits when Connected (GE Flicker Curve or IEC Flicker Meter)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
4	Power Quality	Compliance with Flicker limits when Islanded	1	1	1	1/2	1/2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
		Required Synchronous Condensers MVA to mitigate Flicker	1	1	1	1/2	1/2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
5	Blackstart	Qualitative Assessment of Ability to Blackstart the system	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
6	Dynamic VAR Support	Dynamic VAR to load Center Capability (% of Peak Load)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
		Dispatchable (%CAP)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Dispatchability and	Unavoidable VER Penetration %	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
7	Automatic Generation	Increased Freq Regulation Requirements (% Peak Load)	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	Control	1-min Ramp Capability (MW)	1/2	1/2	1	1	1	1	1/2	1/2	1	1	1	1/2	1/2	1/2	1	1	1	1/2	1/2	1/2	1	1	1	1/2	
		10-min Ramp Capability (MW)	0	0	0	1/2	1/2	0	0	0	1/2	1/2	1/2	0	0	0	1/2	1/2	1	0	0	0	1/2	1/2	1	0	
8	Predictability and Firmness	Ramping Capability to Mitigate Forecast Errors (+Excess/-Deficit) (%VER MW)	1/2	1/2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
9	Location	Average Number of Evacuation Paths	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
1	Energy Adequacy		0.92	0.92	0.83	0.50	0.50	0.83	0.92	0.92	0.67	0.58	0.50	0.92	0.92	0.92	0.67	0.92	0.50	0.92	0.92	0.92	0.83	0.67	0.50	0.92	
2 Dispatchability and Automatic Generation Control				0.70	0.80	0.90	0.90	0.80	0.70	0.70	0.90	0.90	0.90	0.70	0.70	0.70	0.90	0.90	1.00	0.70	0.70	0.70	0.90	0.90	1.00	0.70	
3 Operational Flexibility and Frequency Support				0.33	0.67	0.67	0.67	0.33	0.33	0.33	0.67	0.67	0.67	0.33	0.33	0.33	0.67	0.67	0.67	0.33	0.50	0.50	0.67	0.83	0.67	0.50	
4 Predictability and Firmness					1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
5	Short Circuit Strength	0.50	0.50	0.50	0.50	0.50	0.50	1.00	1.00	0.63	0.75	0.50	1.00	1.00	1.00	0.75	0.75	0.50	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
6	Dynamic VAR Support	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
7	Power Quality	1.00	1.00	1.00	0.67	0.67	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
9	Blackstart		1.00	1.00	1.00	1.00	1 00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
		Cumulative Score (out of possible 9	6.95	6.95	7.80	7.23	7.23	7.47	7.95	7.95	7.86	7.90	7.57	7.95	7.95	7.95	7.98	8.23	7.67	7.95	8.12	8.12	8.40	8.40	8.17	8.12	

AES Indiana 2022 IRP Report Attachment 1-2 Page 643 of 647

Mitigations

		Ag	ggressive E	Invironmen	tal		Current Trends							Decarbonization							No Environmental							
	Quo	Refuel	1 Retire	2 Retire	Clean	Optimiz	Quo	Refuel	1 Retire	2 Retire	Clean	Optimiz	Quo	Refuel	1 Retire	2 Retire	Clean	Optimiz	Quo	Refuel	1 Retire	2 Retire	Clean	Optimiz				
	T1	Т2	Т3	Τ4	Т5	Т6	Τ7	Т8	Т9	T10	T11	T12	T13	T14	T15	T16	T17	T18	T19	T20	T21	T22	Т23	T24				
Equip Stand-alone ESS with GFM inverters (MW)	124	93	178	123	123	164	129	99	183	49	128	98	129	98	183	49	128	98	53	23	107	221	133	23				
Additional Synchronous Condensers (MVA)	1250	1500	1900	2700	2700	2050	0	0	350	300	1500	0	0	0	100	200	1100	0	0	0	0	0	0	0				
Additional Power Mitigations (MW)	323	322	178	123	123	164	298	326	183	49	128	325	239	310	183	49	128	310	370	378	107	221	133	378				
Increased Freq Regulation	90	97	97	105	105	101	39	48	49	45	66	47	42	48	41	41	56	49	9	9	9	9	11	9				
Address Inertial Response Gaps	124	93	178	123	123	164	129	99	183	49	128	98	129	98	183	49	128	98	53	23	107	221	133	23				
Address Primary Response Gaps	323	322	0	0	0	117	298	326	0	0	0	325	239	310	0	0	0	310	370	378	0	0	0	378				
Firm up Intermittent Renewable Forecast	94	138	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				

AES Indiana 2022 IRP Report Attachment 1-2 Page 644 of 647

IRP Acronyms

Note: A glossary of acronyms with definitions is available at <u>https://www.aesindiana.com/integrated-resource-plan</u>.

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Page 645 of 647

IRP Acronyms

- → ACEE: The American Council for an Energy-Efficient Economy
- → AMI: Advanced Metering Infrastructure
- → AD: Ad Valorem
- → AD/CVD: Antidumping and Countervailing Duties
- → ADMS: Advanced Distribution Management System
- → BESS: Battery Energy Storage System
- → BNEF: Bloomberg New Energy Finance
- → BTA: Build-Transfer Agreement
- → BTU: British Thermal Unit
- → C&I: Commercial and Industrial
- \rightarrow CAA: Clean Air Act
- → CAGR: Compound Annual Growth Rate
- → CCGT: Combined Cycle Gas Turbines
- → CCP: Coal Combustion Products
- → CCS: Carbon Dioxide Capture and Storage
- → CDD: Cooling Degree Day
- → CIS: Customer Integrated System
- → COD: Commercial Operation Date
- → CONE: Cost of New Entry
- → CP: Coincident Peak

- → CPCN: Certificate of Public Convenien Necessity
- \rightarrow CT: Combustion Turbine
- → CVD: Countervailing Duties
- → CVR: Conservation Voltage Reduction
- → DER: Distributed Energy Resource
- → DERA: Distributed Energy Resource A
- DERMS: Distributed Energy Resource Management System
- → DG: Distributed Generation
- DGPV: Distributed Generation Photovo System
- → DLC: Direct Load Control
- \rightarrow DOC: U.S. Department of Commerce
- → DOE: U.S. Department of Energy
- → DR: Demand Response
- → DRR: Demand Response Resource
- → DSM: Demand-Side Management
- → DMS: Distribution Management System
- → DSP: Distribution System Planning
- → EE: Energy Efficiency

AES Indiana 2022 IRP Report Attachment 1-2 Page 646 of 647

nce and	\rightarrow	EFORd: Equivalent Forced Outage Rate Demand
	\rightarrow	EIA: Energy Information Administration
	\rightarrow	ELCC: Effective Load Carrying Capability
	\rightarrow	EM&V: Evaluation Measurement and Verification
I	\rightarrow	ESCR: Effective Short Circuit Ratio
	\rightarrow	ESPT: Energy Storage Planning Tool
ggregation	\rightarrow	EV: Electric Vehicle
;	\rightarrow	FLOC: Functional Location
	\rightarrow	FTE: Full-Time Employee
	\rightarrow	GDP: Gross Domestic Product
oltaic	\rightarrow	GFL: Grid-Following System
	\rightarrow	GFM: Grid-Forming System
	\rightarrow	GIS: Geographic Information System
	\rightarrow	GT: Gas Turbine
	\rightarrow	HDD: Heating Degree Day
	\rightarrow	HVAC: Heating, Ventilation, and Air Conditioning
	\rightarrow	IAC: Indiana Administrative Code
m	\rightarrow	IBR: Inverter-Based Resource
	\rightarrow	IC: Indiana Code
	\rightarrow	ICE: Intercontinental Exchange
	\rightarrow	ICAP: Installed Capacity

IRP Acronyms

- \rightarrow IEEE: Institute of Electrical and Electronics Engineers
- → IRA: Inflation Reduction Act
- → IRP: Integrated Resource Plan
- → ICE: Internal Combustion Engine
- → IQW: Income Qualified Weatherization
- → ITC: Investment Tax Credit
- → IURC: Indiana Regulatory Commission
- → kW: Kilowatt
- → kWh: Kilowatt-Hour
- \rightarrow Li-ion: Lithium-ion
- → MATS: Mercury and Air Toxics Standards
- → MaxGen: Maximum Generation
- → MDMS: Meter Data Management System
- → MISO: Midcontinent Independent System Operator
- → MMGAL: One Million Gallons
- \rightarrow MMTons: One Million Metric Tons
- → MPS: Market Potential Study
- \rightarrow MS: Millisecond
- → MVA: Mega Volt Ampere
- → MW: Megawatt
- → Nat Gas: Natural Gas
- \rightarrow NDA: Nondisclosure Agreement

→ NOX: Nitrogen Oxides

- \rightarrow NPV: Net Present Value
- → NREL: National Renewable Energy I
- → NTG: Net to Gross
- → OMS: Outage Management System
- → PLL: Phase-Locked Loop
- → PPA: Power Purchase Agreement
- → PRA: Planning Resource Auction
- → PSSE: Power System Simulator for E
- → PTC: Renewable Electricity Production
- → PRMR: Planning Reserve Margin Re
- \rightarrow PV: Photovoltaic
- → PVRR: Present Value Revenue Requ
- → PY: Planning Year
- \rightarrow RA: Resource Adequacy
- → RAN: Resource Availability and Need
- → RAP: Realistic Achievable Potential
- → RCx: Retrocommissioning
- → REC: Renewable Energy Credit
- → REP: Renewable Energy Production
- → RFP: Request for Proposals
- RIIA: MISO's Renewable Integration Assessment

2022 IRP

AES Indiana 2022 IRP Report Attachment 1-2 Page 647 of 647

	\rightarrow	RPS: Renewable Portfolio Standard
	\rightarrow	SCADA: Supervisory Control and Data Acquisition
Laboratory	\rightarrow	RTO: Regional Transmission Organization
	\rightarrow	SAC: MISO's Seasonal Accredited Capacity
	\rightarrow	SAE: Small Area Estimation
	\rightarrow	SCR: Selective Catalytic Reduction System
	\rightarrow	SEM: Strategic Energy Management
	\rightarrow	SO2: Sulfur Dioxide
Engineering	\rightarrow	SMR: Small Modular Reactors
ion Tax Credit	\rightarrow	ST: Steam Turbine
equirement	\rightarrow	SUFG: State Utility Forecasting Group
	\rightarrow	T&D: Transmission and Distribution
uirement	\rightarrow	TOU: Time-of-Use
	\rightarrow	TRM: Technical Resource Manual
	\rightarrow	UCT: Utility Cost Test
d	\rightarrow	UCAP: Unforced Capacity
	\rightarrow	VAR: Volt-Amp Reactive
	\rightarrow	VPN: Virtual Private Network
	\rightarrow	WTP: Willingness to Participate
ı	\rightarrow	XEFORd: Equivalent Forced Outage Rate Demand
		excluding causes of outages that are outside
n Impact		

