ABBREVIATED ENGINEERING REPORT

ROAD CONSTRUCTION ROUNDABOUT
SR 56 Roundabout at Boatman

Scott County
Des. No. 1800210
December 22, 2020

Prepared for: INDOT Seymour District
185 Agrico Lane
Seymour, IN 47274

Project Manager: Mr. William Fortson

Prepared by:

Table of Contents

Purpose of Report: 3
Project Location: 3
Project Purpose and Need: 3
Existing Facility: 4
Field Check: 7
Traffic Data and Capacity Analysis: 7
Crash Data and Analysis: 8
Alternate and Recommendations: 10
Maintenance of Traffic During Construction: 12
Cost Estimate: 11
Environmental Impacts: 13
Survey Requirements: 14
Right of Way Impacts: 14
Railroad Impacts: 14
Utilities Impacts: 15
Coordination, Meetings: 15
Report Concurrence Block: 16
Appendix A (Traffic Counts and SIDRA Analysis) 17
Appendix B (Accident Data \& Analysis) 33
Appendix C (Alternatives Exhibits) 39
Appendix D (Cost Estimates of Alternates) 45
Appendix E (Environmental Red Flag Investigation) 45
Appendix F (Scope Meeting and Field Check Meeting Minutes) 55
Appendix G (Intersection Sight Distance Tables and Figures). 64
Appendix H (Crash Reduction Factors) 68
Appendix I (Call Application and Hazard Analysis) 82

I. Purpose of Report

The purpose of this report is to document the engineering assessment phase of project development, including all coordination that has been completed in preparation for this road project. This purpose of this report is limited in that the Seymour District has determined that a roundabout is the most cost-effective solution to reduce vehicle crashes at the project location. This report is being prepared to analyze the roundabout placement impacts in relation to utility relocation costs, environmental impacts, project costs and right-of-way acquisition cost. This document outlines the proposal and is intended to serve as a guide for subsequent survey, design, environmental, right of way and other project activities leading to construction. The preferred alternative identified in this document is considered predecisional, pending the outcome of environmental studies.

II. Project Location

This project is located at the intersection of SR 56 and Boatman Road, approximately 1.36 miles west of I-65 in Scott County, Indiana. The project is located in the INDOT Seymour District.

III. Project Purpose and Need

Purpose

The purpose of this project is to improve the safety and reduce the frequency and severity of crashes that occur at the intersection of State Road 56 and Boatman Road. Thirty-four crashes have occurred at this intersection during the time frame of January 1, 2012 to March 13, 2017. Sixteen of the thirty-four crashes have been right angle collisions, which represents about 45\% of the crashes. Two incapacitating injury crashes and a fatal crash have been recorded within the last three years.

Given the types of accidents and their severity, it was decided that a roundabout was the best alternative, a SIDRA analysis was completed for the intersection of State Road 56 and Boatman Road. A SIDRA analysis determines at what Level of Service (LOS) the proposed roundabout will function. Using the design year and peak hour traffic counts, the SIDRA analysis shows a single lane roundabout functioning at a LOS A in the design year.

Need

The need for this project is the high crash rates and the severity of crashes occurring at the intersection of State Route 56 and Boatman Road. A ROADHAT analysis completed at this location had an Index of Crash Frequency (ICF) score
of 3.15 and an Index of Crash Cost (ICC) score of 1.89. An ICF score of 2 or higher is considered a high crash location and warrants a discussion with INDOT Traffic Safety personnel. An ICC score of 1.89 means the severity of the crashes at the location of State Road 56 and Boatman Road is higher than nominal value, by nearly 2 standard deviations. The ROADHAT analysis can be found in Appendix I.

Crash narratives indicate that drivers are unaware that the intersection is a two way stop, rather than a four way stop, when approaching from the northbound and southbound directions (Boatman Road). Supplemental signs, speed bumps, nor the two-way flashing beacon has effectively reduced the crash rate at the intersection of State Route 56 and Boatman Road.

The geometry of the intersection and posted speed limit plays a role in the crash rate. The Indiana Design Manual, section 46-1.02, states the desirable skew of an intersection is less than a 20 -degree skew. The current intersection has a 28 degree skew, which reduces the driver's line of sight.

The intersection is also located in a reverse curve segment. With a posted speed limit of $50-55 \mathrm{mph}$ on State Route 56, the intersection sight distance required for a passenger car to turn from Boatman Road onto State Route 56 is 530 ft for a right turn and 730 ft for a left turn (Indiana Design Manual Figures 46 -10G and $46-10 \mathrm{H}$). The existing reverse curves reduce the intersection sight distance.

A traffic signal was considered but eliminated as an effective alternate as it would not address the number and severity of right-angle crashes that this intersection's crash history shows but may increase rear-end accidents as the signal introduces a stop situation between curves that may surprise motorists unfamiliar with the area.

The preferred alternative of placing a roundabout at the intersection of SR 56 and Boatman Rd would improve the geometry of the intersection by having the approach legs intersecting at 90 degrees which improve sight lines. Slower vehicle speeds entering the roundabout alternative would also improve the safety by reducing the severity of crashes. A well-lit roundabout also improves intersection sight lines and reduces crash rate.

IV. Existing Facility

The classification of State Route 56 is Minor/Principal Arterial and is not part of the US National Highway System (NHS). The roadway is on the National Truck Network. The posted speed limit at the project location changes from 50 to 55 mph .

Boatman Road is classified as a Major Collector and is not part of the US National Highway System (NHS). There is not a posted speed limit for Boatman Road, therefore, the existing speed limit set by state law is 55 mph .

Roadway

State Route 56 has a pavement width of 26 ft through the project limits. State Route 56 currently consists of two 12 - ft wide travel lanes with a 1 ft paved and 1 ft usable shoulders. The existing right-of-way along State Route 56 varies from 60 to 70 ft wide. State Route 56 and Boatman Rd is a two-way stop-controlled intersection, providing free flow traffic for SR 56 and a stop condition for Boatman Rd. A flashing beacon is also present at the intersection of SR 56 and Boatman Rd.

Boatman has a pavement width of 20 ft through the project limits. Boatman Rd currently consists of two 10 ft wide travel lanes with unmarked 1 ft usable earth shoulders. The existing right-of-way along Boatman Road varies from 36-40ft.

Drainage

The terrain is level. The existing drainage through the project is primarily through sheet flow away from the road into adjoining open channel ditches. There is a 24 -inch corrugated metal pipe (CMP) culvert approximately 550 ft west of SR 56 and Boatman Rd intersection. This 24-inch culvert runs underneath SR 56 , north/south. There is also a 12 -inch CMP culvert approximately 350 ft south of the SR 56 and Boatman Rd intersection. This 12-inch culvert runs underneath Boatman Rd, east/west. A third 12 -inch CMP culvert is located in the northside open channel ditch at the intersection of SR 56 and Boatman Rd. This 12 -inch culvert runs underneath Boatman Rd, east/west, albeit is still located close enough to SR 56 to most likely be inside state right-of-way.

The proposed drainage though the project will be primarily sheet flow to adjoining roadside ditches. Per INDOT's request, First Group will attempt to avoid the 24-inch CMP located west of the Boatman Rd and SR 56 intersection. First Group will inspect and perform hydraulic analysis on all three of the CMP culverts (both 12 -inch and 24 -inch). Proposed treatment of the three CMP culverts may consist of replacing, lining and or pipe extensions.

Land Use

The land use in the project area is a mix of residential, commercial and agricultural. There is an Indiana Farm Bureau Insurance Office and Farm Credit Mid-America Bank in the northeast quadrant of State 56 and Boatman Rd. There is a residential housing development in the northwest quadrant of the intersection. The southwest quadrant of the State Route 56 and Boatman Road intersection has parcels own by Elevation Church. The southeast quadrant of the State 56 and Boatman Road intersection has parcels that are used for
agricultural activities. The southside of State Route 56 has less conflicts for the placement of the roundabout due to the open fields with minimum obstructions.

Roadway Information			
Geometric Criteria - Boatman Road			
Design Speed	Exist: 55 mph (Not Posted) Prop: 35 mph	Functional Class	Major Collector
Design Criteria	4R (Non Freeway)	Rural/Urban	Rural
Terrain	Level	Access Control	None
Approach Cross Section			
IDM Figure Reference	IDM 53-4		
Travel Lane Count	2	Travel Lane Width	Existing: 10 ft Proposed: 12 ft
Shoulder Width (Usable) Curb \& Gutter	Existing: 1ft Proposed: 2ft	Shoulder Width (paved)	Existing: 0 ft Proposed: *2 ft
Mainline Pavement	HMA	Shoulder Pavement	Existing: HMA Proposed: HMA

* Level 1 Design Exception

Roadway Information

Geometric Criteria - SR 56			
Design Speed	Exist: $50-55 \mathrm{mph}$ Prop: 45 mph	Functional Class	Minor Principal Arterial
Design Criteria	4R (Non Freeway)	Rural/Urban	Rural
Terrain	Level	Access Control	None
Approach Cross Section			
IDM Figure Reference	IDM 55-3F (Suburban)		
Travel Lane Count	2	Travel Lane Width	Existing: 12 ft Proposed: 12 ft
Shoulder Width (Usable) Curb and Gutter	Existing: 1 ft Proposed: *2ft Concrete Gutter only	Shoulder Width (paved)	$\begin{array}{ll} \text { Existing: } & 1 \mathrm{ft} \\ \text { Proposed: } & * 4 \mathrm{ft} . \end{array}$
Mainline Pavement	HMA	Shoulder Pavement	Existing: HMA Proposed: HMA

* Level 1 Design Exception

V. Field Check

A Field Check was held on July 11, 2019 at the project site. The minutes for that meeting are attached to this report.

VI. Traffic Data and Capacity Analysis

Traffic Data

INDOT provided traffic turn count data from 3/6/2017 and data from GIS provided Site Count in June 2018 used:

2018 AADT - 9,820 VPD
2018 DHV - 870 VPH
2038 Design Year AADT - 14,377 VPD
2038 DHV - 1,290 VPH
Commercial Vehicles - 5.2\%
Growth Rate $=2.2 \%$ (Linear)
Page 7

See Appendix A for Traffic Data and Turning Counts.

Capacity Analysis

The computer program SIDRA was used to analyze the intersection for a single lane roundabout with four approaching roadways. The intersection level of service (LOS) is used to grade the level of delay at an intersection with the following conditions:

Level of Service
Control Delay (seconds/vehicle)

UNSIGNALIZED Less than or equal to 10
Between 10.1 and 15
Between 15.1 and 25
Between 25.1 and 35
Between 35.1 and 50 Greater than 50

SIGNALIZED
Less than or equal to 10
Between 10.1 and 20
Between 20.1 and 35
Between 35.1 and 55
Between 55.1 and 80
Greater than 80

A LOS lower than a D is undesirable while a LOS of F is considered failure and warrants improvements to the capacity of the intersection.

The proposed roundabout at the intersection of State Route 56 and Boatman Rd, will operate at a Level of Service A for Design Year 2038.

The following is a Capacity Analysis summary for the roundabout. See Appendix A for SIDRA results.

Roadway Approach	Level of Service Peak Year 2038
SR 56 - East Approach	Level of Service B
SR 56 - West Approach	Level of Service A
Boatman Rd - North Approach	Level of Service A
Boatman Rd - South Approach	Level of Service A

VII. Crash Data and Analysis

Crash data for this project uses the timeframe of January 1, 2012 to March 13, 2017. During that time, thirty-four crashes have occurred at this intersection. Sixteen of the thirty-four crashes have been right angle collisions, which represents about 45% of the crashes. Two incapacitating injury crashes and a fatal crash have been recorded within the last three years. The crash analysis table/chart for State Route 56 and Boatman Road can be found in the Appendix B. A summary of the severity of the collisions is shown below:

Crash Summary

21 Property Damage
5 crashes with non-incapacitating injuries
7 crashes with incapacitating injuries
1 fatal crash
11 right angle collision
According to the Traffic Engineering Handbook, 6th Edition, potential factors in Right-Angle Crashes include restricted sight distance, excessive speed, inadequate roadway lighting, inadequate advance warning signs, large traffic volumes, and inadequate traffic control devices. Countermeasures to address these crashes include removal of the sight obstruction, provide all-way stop or signal, install or improve warning signs, reduce speed limit with enforcement, install rumble strips, install or improve lighting, install or improve warning signs, or reroute traffic. Left \& right turn crashes can be caused by large turn volumes, restricted sight distance, and excessive speed. Possible countermeasures include adding turn lanes, prohibiting left turns, rerouting left turn traffic, providing a traffic signal with a turn phase, removing sight obstructions, reducing the speed limit and improving enforcement. Rear end crashes can be caused by large turning volumes, slippery pavement, or inadequate roadway lighting. Potential countermeasures include prohibiting left turns, provide turn lanes, increasing the corner radius for right turns, reducing the speed limit with enforcement, overlaying the pavement or use an ultra-thin bonded wearing course, provide adequate drainage, groove the pavement, provide "Slippery When Wet" signs, and improve the lighting. Run-off-the-road and sideswipe crashes can be caused by excessive speed, slippery pavement, inadequate roadway lighting, poor visibility or lack of warning signs, narrow pavement, poor pavement markings, inadequate shoulder, or inadequate pavement maintenance. Potential countermeasures include reducing the speed limit with enforcement, overlaying the pavement, provide adequate drainage, groove pavement, provide "Slippery When Wet" signs, improve lighting, widen lanes and/or shoulders, install guardrail, improve pavement markings, upgrade the shoulder slope, and repair the roadway surface.

Federal Highway Administration (FHWA) provides a worksheet table named "Crash Reduction Factors Table", which estimates the crash reduction that might be achieved if a specific countermeasure is implemented at an intersection. A review of the FHWA Crash Reduction Factors Table shows that the best possible countermeasure for reducing crashes, including right-angle crashes, is a geometric change of the intersection to a roundabout. The Crash Reduction Factor for a roundabout is 82 , versus 74 for installing a traffic signal. The intersection currently has a two-way beacon and advance warning signs, which has not reduced the crash rates. The FHWA Crash Reduction Factors Tables can be found in the Appendix H .

VIII. Alternatives and Recommendations

Three alternative options would convert the intersection into a single lane roundabout with 4 legs. All 4 approach legs would have horizontal curves introduced preceding the splitter islands to slow traffic and provide smooth transitions into and out of the roundabout.

All of the alternatives will include intersection lighting. Due to the intersection location being a rural suburban, high speed setting, the introduction of a roundabout at this location should be made highly visible with intersection lighting for the safety of motorist. Advance signing and lower speed limits would be needed on all 4 approaches. Traffic on SR 56 would no longer be free-flowing at 55 mph , as this alternative would require traffic on SR 56 to slow through the intersection and yield to traffic from other approaches in the roundabout. It is recommended that INDOT consider lowering the speed limit along SR 56 in advance of the roundabout. It is also recommended that Scott County Highway Department consider posting a lower speed limit along Boatman in advance of the roundabout. Lowering the speed limit in advance of the roundabout will result in shorter approach legs which reduces the construction costs.

All of the alternatives will include drainage culvert work. Three existing drainage culverts location within the project limits will require either pipe lining, pipe extension or full replacement.

All of the alternatives will include the closing of Mount Road. The pavement connecting Mount Road and SR 56 will be removed and an earth berm will be constructed to prevent vehicle passage. A truck turn around will be constructed approximately 300 ft from the intersection of Mount Road and SR 56. The closing of Mount Road will require R.O.W., which is included with the R.O.W. acquisition cost.

What differentiates the three alternatives is the placement of the circulating roadway within the project limits. The placement of the roundabout will impact utility relocation costs, private property and construction cost.

Preferred Alternative One

Alternative one places the center of the circulating roadway approximately 65 ft southeast of the existing intersection. This location would require facility relocations of electric, water, telephone and a high-pressure gas main. Permanent right-of-way acquisition would be 3.5 acres from a total of 12 parcels. There would be no relocations and 1 total parcel take. The estimated cost of right-of-way acquisition is $\$ 108,825$.

The maintenance of traffic includes $\$ 112,000$ for traffic control and $\$ 328,500$ for temporary pavement.

There are no reimbursable utilities within the project limits. The relocation costs will be zero dollars.

The construction cost is estimated at $\$ 2,084,000$.
The total cost for the preferred option is $\$ 2,633,325$.
See Appendix C for Preferred Alternative Option 1 Design.

Alternative Two

Alternative two places the center of the circulating roadway approximately 125 ft south of the existing intersection. This location would require facility relocations of electric, water, telephone and a high-pressure gas main.

Permanent right-of-way acquisition would be 3.7 acres from a total of 12 parcels. While there are no relocations, the Elevation Church parcel adjacent to SR 56 would require relocation of a digital billboard sign and impact the Church's future expansion plans. This option also includes 1 total parcel take. The estimated cost of right-of-way acquisition is $\$ 167,050$.

The maintenance of traffic includes $\$ 112,000$ for traffic control and $\$ 292,000$ for temporary pavement.

There are no reimbursable utilities within the project limits. The utility relocation costs will be zero dollars.

The construction cost is estimated at $\$ 2,134,000$.
The total cost for the Alternate Two option is $\$ 2,705,050$.
See Appendix C for Alternative Option 2 Design

Alternative Three

Alternative three places the center of the circulating roadway at the center of the existing intersection. This location would require facility relocations of electric, water, telephone and a high-pressure gas main.

Permanent right-of-way acquisition would be 3.5 acres from a total of 12 parcels. This option would require a relocation of one residential parcel at a cost of
$\$ 200,000$. This option also includes 2 total parcels take. The estimated cost of right-of-way acquisition is $\$ 336,475$.

The maintenance of traffic includes $\$ 112,000$ for traffic control and $\$ 365,000$ for temporary pavement.

There are no reimbursable utilities within the project limits. The relocation costs will be zero dollars.

The construction cost is estimated at $\$ 2,070,000$.
The total cost for the Alternate Three option is $\$ 2,883,475$.
See Appendix C for Alternative Option 3 Design.

IX. Maintenance of Traffic During Construction

Possible Detour routes around the intersection of SR 56 and Boatman Road are limited. The nearest parallel state route is SR 256 to the north and would create a detour of approximately 21 miles. The Seymour District of INDOT also recommended against a detour route. Using temporary pavement will to allow SR 56 to remain open to traffic will be costly. The estimated cost of the temporary pavement is between $\$ 300,000-\$ 365,000$, which includes borrow, subgrade treatment and compacted aggregate.

Appendix C provides a proposed Typical Cross Section along with a Maintenance of Traffic (MOT) Plan that uses temporary pavement lanes and shoulders to provide a safe construction zone while staying within the scope of the project.

X. Cost Estimate

Below is a breakdown of every alternative cost. Appendix D shows the preliminary construction cost estimate.

Preferred Alternative Location 1	
Construction	$\$ 2,084,000.00$
Right of Way Engineering and Acquisition	$\$ 108,825.00$
Maintenance of Traffic including Temp Pavement	$\$ 440,500.00$
Total Project Cost	$\$ 2,633,325.00$

Alternative Location 2	
Construction	$\$ 2,134,000.00$
Right of Way Engineering and Acquisition	$\$ 167,050.00$
Maintenance of Traffic including Temp Pavement	$\$ 404,000.00$
Total Project Cost	$\$ 2,705,050.00$

Alternative Location 3	
Construction	$\$ 2,070,000.00$
Right of Way Engineering and Acquisition	$\$ 336,475.00$
Maintenance of Traffic including Temp Pavement	$\$ 477,000.00$
Total Project Cost	$\$ 2,883,475.00$

XI. Environmental Impacts

A preliminary Red Flag investigation was completed in order to identify any potential environmental concerns within the project limits. Based on the investigation, there should be minimal effects. Midwest Natural Gas Corporation owns two (2) high-pressure 6-inch natural gas pipe lines within the project area. Early Utility Coordination and Subsurface Utility Engineering performed during survey will lessen the possibility of significant utility reimbursement expenses. This project will acquire about 3.5 acres of right-of-way. That amount of right-of-way acquisition means that this project appears to meet the requirements of a Level 2 Categorical Exclusion (CE-2). A Rule 5 approval from IDEM will be required as the project will result in more than one acre of ground disturbance. While there are no water resources within or adjacent to the project, a waters investigation by need to be and the findings documented in a Wetland Delineation/Waters of the U.S. Determination Report.
The Indiana bat and northern long-eared bat are within range of this project, but suitable habitat does not appear to be present in the project area.
A review of the National Register of Historic Places (NRHP) and the Indiana Register of Historic Sites and Structures did not identify any properties listed or likely eligible for inclusion in the NRHP within the project area. The Preliminary Red Flag Investigation can be view in Appendix E.

XII. Survey Requirements

The survey limits extend approximately 700ft west and 1100 east of the State 56 and Boatman Road intersection, along State Route 56. The survey limits extend 400 ft north and 425 ft south of the State 56 and Boatman Road intersection, along Boatman Road. The survey limits extend 450 ft west of the intersection of State 56 and Mount Road, along Mount Road.

XIII. Right-of-Way Impact

The southside of State Route 56 is preferred for locating the roundabout due to the open fields with minimum obstructions and no residential or commercial relocations. The land use in the project area is a mix of residential, commercial and agricultural.

The preferred location for the roundabout will require approximately 3.5 acres of permanent right-of-way and 12 parcels. There are three agricultural parcels totaling 1.6 acres. There are three residential parcels totaling 0.3 acres. There are six business parcels totaling 1.6 acres. See "Option 1" exhibit for Right-ofWay Impacts details in Appendix C.

The Alternative 2 will require approximately 3.7 acres of permanent right-of-way. There are two agricultural parcels totaling 2.5 acres. There are three residential parcels totaling 0.12 acres. There are seven business parcels totaling 1.1 acres. See "Option 2" exhibit for Right-of-Way Impacts details in Appendix C.

Alternative 3 will require approximately 3.5 acres of permanent right-of-way, but will require 1 relocation. There are three agricultural parcels totaling 1.2 acres. There are three residential parcels totaling 0.73 acres. There are seven business parcels totaling 1.6 acres. See "Option 3" exhibit for Right-of-Way Impacts details in Appendix C.

	Residential		Business		Agricultural		Relocation		Total
	Acres	Parcels	Acres	Parcels	Acres	Parcels	Acres	Parcels	Acres
Alternative 1	0.30	3	1.6	6	1.6	3			3.5
Alternative 2	0.12	3	1.1	7	2.5	2			3.7
Alternative 3	0.73	3	1.6	7	1.2	3	.45	1	3.5

XIV. Railroad Impact

Railroads are not located within the project footprint, therefore no impacts.

XV. Utility Impact

A completed topographical survey and the One Call Utility Locates listed the following facilities within the project area:

Frontier (Telephone), Insight Communications (Cable TV), Jackson County R.E.M.C. (Electric), Midwest Natural Gas Corporation/Ohio Valley (Gas), City of Scottsburg (Water, Electric and Sewer) and Stucker Fork Water Utility (Water).

The proposed design will try to avoid and if necessary, use minor relocations to minimize impacts to each utility. Midwest Natural Gas Corporation has a highpressure main within the project limits. The cost to relocate a high-pressure gas main is expensive, though a meeting with a representative from Midwest Natural Gas Corporation stated that there is not a gas easement. The extent of reimbursable utilities will not be known until the early stages of utility coordination.

XVI. Coordination and Meetings

Scope of Services Meeting Minutes - December 6, 2018
Field Inspection Meeting Minutes - July 11, 2019

See Appendix F for meeting minutes.

XVII. Report Concurrence Block

This document was prepared by:
 [Date] 12-22-20

Timothy Suber, PE
Design Engineer, First Group Engineering, Inc,

Reviewed by:
Project Manager Review
[Date] \qquad
Project Manager, Seymour District

Reviewed by:
SAM Review
[Date]
Systems Asset Manager, Seymour District

APPENDIXA

6:45 PM	2	2	4	0	8	0	56	11	0	67	8	2	1	0	11	2	29	1	0	32	118
Hourly Total	15	10	32	0	57	1	255	43	0	299	34	9	6	0	49	5	159	12	0	176	581
7:00 PM	0	0	7	0	7	0	43	6	0	49	10	2	1	0	13	2	37	0	0	39	108
7:15 PM	4	0	2	0	6	0	37	5	0	42	5	0	0	0	5	0	23	0	0	23	76
7:30 PM	2	0	4	0	6	0	35	5	0	40	7	1	0	0	8	2	17	2	0	21	75
7:45 PM	1	0	3	0	4	0	33	6	0	39	5	0	0	0	5	1	15	4	0	20	68
Hourly Total	7	0	16	0	23	0	148	22	0	170	27	3	1	0	31	5	92	6	0	103	327
8:00 PM	2	1	2	0	5	0	26	8	0	34	3	3	0	0	6	0	30	0	0	30	75
8:15 PM	2	1	3	0	6	0	23	4	0	27	6	4	0	0	10	1	30	2	0	33	76
8:30 PM	1	3	3	0	7	0	33	7	0	40	7	1	1	0	9	0	43	0	0	43	99
8:45 PM	1	0	1	0	2	0	11	4	0	15	8	0	1	0	9	0	34	2	0	36	62
Hourly Total	6	5	9	0	20	0	93	23	0	116	24	8	2	0	34	1	137	4	0	142	312
9:00 PM	0	1	3	0	4	0	15	6	0	21	1	0	1	0	2	0	26	0	0	26	53
9:15 PM	2	0	2	0	4	0	10	3	0	13	4	1	0	0	5	0	23	0	0	23	45
9:30 PM	1	0	2	0	3	0	18	3	0	21	2	1	0	0	3	0	16	1	0	17	44
9:45 PM	0	0	1	0	1	0	20	3	0	23	4	1	0	0	5	0	12	0	0	12	41
Hourly Total	3	1	8	0	12	0	63	15	0	78	11	3	1	0	15	0	77	1	0	78	183
10:00 PM	0	2	0	0	2	0	22	7	0	29	2	0	0	0	2	0	15	0	0	15	48
10:15 PM	1	1	1	0	3	0	15	6	0	21	2	0	0	0	2	0	6	0	0	6	32
10:30 PM	1	2	1	0	4	0	10	2	0	12	1	0	0	0	1	0	4	0	0	4	21
10:45 PM	1	0	1	0	2	0	8	0	0	8	2	0	0	0	2	0	3	1	0	4	16
Hourly Total	3	5	3	0	11	0	55	15	0	70	7	0	0	0	7	0	28	1	0	29	117
11:00 PM	0	0	0	0	0	0	10	2	0	12	0	1	0	0	1	0	2	0	0	2	15
11:15 PM	2	0	1	0	3	0	3	5	0	8	4	1	0	0	5	0	9	0	0	9	25
11:30 PM	0	1	1	0	2	0	6	4	0	10	1	0	0	0	1	1	4	0	0	5	18
11:45 PM	0	1	0	0	1	0	7	0	0	7	2	0	0	0	2	0	5	0	0	5	15
Hourly Total	2	2	2	0	6	0	26	11	0	37	7	2	0	0	9	1	20	0	0	21	73
12:00 AM	0	0	1	0	1	0	2	0	0	2	0	0	0	0	0	0	1	0	0	1	4
12:15 AM	0	0	0	0	0	0	3	2	0	5	0	0	0	0	0	0	3	0	0	3	8
12:30 AM	0	0	1	0	1	0	2	1	0	3	1	0	0	0	1	0	4	0	0	4	9
12:45 AM	0	0	0	0	0	0	3	1	0	4	0	0	0	0	0	0	3	0	0	3	7
Hourly Total	0	0	2	0	2	0	10	4	0	14	1	0	0	0	1	0	11	0	0	11	28
1:00 AM	1	0	1	0	2	0	2	1	0	3	0	0	0	0	0	0	1	0	0	1	6
1:15 AM	0	1	2	0	3	0	4	0	0	4	0	0	0	0	0	1	1	0	0	2	9
1:30 AM	1	0	1	0	2	0	3	0	0	3	1	1	0	0	2	0	2	0	0	2	9
	0	0	0	0	0	0	3	1	0	4	1	1	0	0	2	0	0	0	0	0	6
Hourly Total	2	1	4	0	7	0	12	2	0	14	2	2	0	0	4	1	4	0	0	5	30
2:00 AM	0	1	0	0	1	0	3	2	0	5	0	0	0	0	0	0	1	0	0	1	7
2:15 AM	0	0	1	0	1	0	4	0	0	4	0	1	0	0	1	0	6	0	0	6	12
2:30 AM	0	0	0	0	0	0	3	0	0	3	0	1	0	0	1	0	4	0	0	4	8
2:45 AM	0	0	0	0	0	0	1	1	0	2	2	0	0	0	2	0	4	0	0	4	8
Hourly Total	0	1	1	0	2	0	11	3	0	14	2	2	0	0	4	0	15	0	0	15	35
3:00 AM	0	0	1	0	1	0	1	1	0	2	0	0	0	0	0	1	3	0	0	4	7
3:15 AM	0	0	0	0	0	0	2	0	0	2	3	0	0	0	3	0	8	0	0	8	13
3:30 AM	0	0	0	0	0	0	4	1	0	5	2	2	0	0	4	0	8	0	0	8	17
3:45 AM	0	1	0	0	1	0	0	1	0	1	1	1	0	0	2	0	15	0	0	15	19
Hourly Total	0	1	1	0	2	0	7	3	0	10	6	3	0	0	9	1	34	0	0	35	56
4:00 AM	1	1	1	0	3	0	10	1	0	11	1	0	0	0	1	0	7	0	0	7	22
4:15 AM	2	1	1	0	4	0	2	1	0	3	0	0	0	0	0	0	12	0	0	12	19
4:30 AM	0	1	3	0	4	0	6	0	0	6	3	0	0	0	3	0	11	0	0	11	24
4:45 AM	1	0	3	0	4	0	4	0	0	4	2	1	0	0	3	0	23	1	0	24	35
Hourly Total	4	3	8	0	15	0	22	2	0	24	6	1	0	0	7	0	53	1	0	54	100

Page 20

5:00 AM	1	1	8	0	10	0	7	0	0	7	3	0	0	0	3	0	20	0	0	20	40
5:15 AM	0	0	1	0	1	0	7	0	0	7	3	1	0	0	4	0	27	0	0	27	39
5:30 AM	2	0	3	0	5	0	17	1	0	18	1	1	0	0	2	2	33	2	0	37	62
5:45 AM	2	0	4	0	6	0	9	3	0	12	3	1	0	0	4	1	49	4	0	54	76
Hourly Total	5	1	16	0	22	0	40	4	0	44	10	3	0	0	13	3	129	6	0	138	217
6:00 AM	1	1	4	0	6	0	29	6	0	35	7	1	1	0	9	2	55	3	0	60	110
6:15 AM	1	3	5	0	9	0	20	4	0	24	9	2	2	0	13	0	52	2	0	54	100
6:30 AM	0	0	9	0	9	0	14	6	0	20	12	1	0	0	13	1	58	3	0	62	104
6:45 AM	3	3	7	0	13	0	16	7	0	23	7	2	0	0	9	2	54	4	0	60	105
Hourly Total	5	7	25	0	37	0	79	23	0	102	35	6	3	0	44	5	219	12	0	236	419
7:00 AM	3	2	8	0	13	0	23	8	0	31	6	1	1	0	8	2	49	2	0	53	105
7:15 AM	5	0	14	0	19	0	28	5	0	33	15	1	0	0	16	2	74	5	0	81	149
7:30 AM	5	8	20	0	33	0	15	5	0	20	6	9	1	0	16	1	87	12	0	100	169
7:45 AM	3	6	11	0	20	0	14	3	0	17	14	3	2	0	19	0	74	14	0	88	144
Hourly Total	16	16	53	0	85	0	80	21	0	101	41	14	4	0	59	5	284	33	0	322	567
8:00 AM	4	6	3	1	14	6	39	7	0	52	1	6	6	0	13	8	18	31	0	57	136
8:15 AM	4	8	0	0	12	2	25	5	0	32	0	5	1	0	6	2	0	49	0	51	101
8:30 AM	5	4	0	0	9	0	13	4	0	17	0	4	0	0	4	7	0	54	0	61	91
8:45 AM	4	6	1	1	12	2	24	3	0	29	0	10	2	0	12	6	0	37	0	43	96
Hourly Total	17	24	4	2	47	10	101	19	0	130	1	25	9	0	35	23	18	171	0	212	424
9:00 AM	5	5	0	0	10	1	25	2	0	28	0	6	0	0	6	4	0	45	0	49	93
9:15 AM	6	5	0	1	12	2	25	1	0	28	0	8	1	0	9	10	0	25	0	35	84
9:30 AM	10	4	0	0	14	0	8	2	0	10	0	3	3	0	6	6	1	27	0	34	64
9:45 AM	14	5	0	0	19	0	2	1	0	3	0	6	4	0	10	10	1	38	0	49	81
Hourly Total	35	19	0	1	55	3	60	6	0	69	0	23	8	0	31	30	2	135	0	167	322
10:00 AM	20	4	0	0	24	2	1	0	0	3	1	10	10	0	21	12	1	26	1	40	88
10:15 AM	12	5	2	0	19	1	2	2	0	5	2	6	8	0	16	2	0	20	0	22	62
10:30 AM	15	7	1	2	25	1	2	0	0	3	0	10	3	0	13	8	1	12	0	21	62
10:45 AM	11	8	0	0	19	1	6	1	0	8	0	8	2	0	10	9	0	13	0	22	59
Hourly Total	58	24	3	2	87	5	11	3	0	19	3	34	23	0	60	31	2	71	1	105	271
Grand Total	307	209	417	5	938	28	2732	536	0	3296	508	222	80	0	810	134	2639	519	1	3293	8337
Approach \%	32.7	22.3	44.5	0.5	-	0.8	82.9	16.3	0.0	-	62.7	27.4	9.9	0.0	-	4.1	80.1	15.8	0.0	-	-
Total \%	3.7	2.5	5.0	0.1	11.3	0.3	32.8	6.4	0.0	39.5	6.1	2.7	1.0	0.0	9.7	1.6	31.7	6.2	0.0	39.5	-
Motorcycles	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1	0	0	0	0	0	2
\% Motorcycles	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	-	0.0	0.2	0.0	0.0	-	0.1	0.0	0.0	0.0	0.0	0.0	0.0
Cars	209	148	335	3	695	21	1962	414	0	2397	383	154	45	0	582	82	1896	357	0	2335	6009
\% Cars	68.1	70.8	80.3	60.0	74.1	75.0	71.8	77.2	-	72.7	75.4	69.4	56.3	-	71.9	61.2	71.8	68.8	0.0	70.9	72.1
Light Goods Vehicles	76	58	75	2	211	6	610	100	0	716	105	60	25	0	190	42	543	121	0	706	1823
$\begin{gathered} \hline \% \text { Light Goods } \\ \text { Vehicles } \\ \hline \end{gathered}$	24.8	27.8	18.0	40.0	22.5	21.4	22.3	18.7	-	21.7	20.7	27.0	31.3	-	23.5	31.3	20.6	23.3	0.0	21.4	21.9
Buses	4	1	2	0	7	0	6	2	0	8	1	2	1	0	4	2	4	2	0	8	27
\% Buses	1.3	0.5	0.5	0.0	0.7	0.0	0.2	0.4	-	0.2	0.2	0.9	1.3	-	0.5	1.5	0.2	0.4	0.0	0.2	0.3
Single-Unit Trucks	12	2	5	0	19	1	62	13	0	76	14	6	6	0	26	5	78	19	0	102	223
\% Single-Unit Trucks	3.9	1.0	1.2	0.0	2.0	3.6	2.3	2.4	-	2.3	2.8	2.7	7.5		3.2	3.7	3.0	3.7	0.0	3.1	2.7
Articulated Trucks	6	0	0	0	6	0	92	6	0	98	4	0	3	0	7	3	118	20	1	142	253
\% Articulated Trucks	2.0	0.0	0.0	0.0	0.6	0.0	3.4	1.1	-	3.0	0.8	0.0	3.8	-	0.9	2.2	4.5	3.9	100.0	4.3	3.0

Page 21

100 N. Senate Ave

Turning Movement Data Plot

100 N. Senate Ave
Indianapolis, Indiana, United States 46204 3177504056 KLee@indot.in.gov

Count Name: SD SR56 @ Boatman Rd (72) Site Code:
Start Date: 03/06/2017
Page No: 5

Turning Movement Peak Hour Data (11:00 AM)

Count Name: SD SR56 @ Boatman Rd (72) Site Code:
Start Date: 03/06/2017
Page No: 6

Turning Movement Peak Hour Data Plot (11:00 AM)

Turning Movement Peak Hour Data (3:45 PM)

Count Name: SD SR56 @ Boatman Rd (72) Site Code:
Start Date: 03/06/2017
Page No: 8

Turning Movement Peak Hour Data Plot (3:45 PM)

Count Name: SD SR56 @ Boatman Rd (72) Site Code:
Start Date: 03/06/2017
Page No: 9

Turning Movement Peak Hour Data (7:15 AM)

Start Time	Boatman Rd. Southbound					SR56 Westbound					Boatman Rd. Northbound					SR56Eastbound					Int. Total
	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	Right	Thru	Left	U-Turn	App. Total	
7:15 AM	5	0	14	0	19	0	28	5	0	33	15	1	0	0	16	2	74	5	0	81	149
7:30 AM	5	8	20	0	33	0	15	5	0	20	6	9	1	0	16	1	87	12	0	100	169
7:45 AM	3	6	11	0	20	0	14	3	0	17	14	3	2	0	19	0	74	14	0	88	144
8:00 AM	4	6	3	1	14	6	39	7	0	52	1	6	6	0	13	8	18	31	0	57	136
Total	17	20	48	1	86	6	96	20	0	122	36	19	9	0	64	11	253	62	0	326	598
Approach \%	19.8	23.3	55.8	1.2	-	4.9	78.7	16.4	0.0	-	56.3	29.7	14.1	0.0	-	3.4	77.6	19.0	0.0	-	-
Total \%	2.8	3.3	8.0	0.2	14.4	1.0	16.1	3.3	0.0	20.4	6.0	3.2	1.5	0.0	10.7	1.8	42.3	10.4	0.0	54.5	-
PHF	0.850	0.625	0.600	0.250	0.652	0.250	0.615	0.714	0.000	0.587	0.600	0.528	0.375	0.000	0.842	0.344	0.727	0.500	0.000	0.815	0.885
Motorcycles	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\% Motorcycles	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	-	0.0	0.0
Cars	10	14	37	0	61	5	66	11	0	82	22	15	7	0	44	8	182	50	0	240	427
\% Cars	58.8	70.0	77.1	0.0	70.9	83.3	68.8	55.0	-	67.2	61.1	78.9	77.8	-	68.8	72.7	71.9	80.6	-	73.6	71.4
Light Goods Vehicles	6	6	11	1	24	1	25	7	0	33	10	3	2	0	15	2	63	10	0	75	147
\% Light Goods Vehicles	35.3	30.0	22.9	100.0	27.9	16.7	26.0	35.0	-	27.0	27.8	15.8	22.2	-	23.4	18.2	24.9	16.1	-	23.0	24.6
Buses	1	0	0	0	1	0	1	0	0	1	1	0	0	0	1	1	0	0	0	1	4
\% Buses	5.9	0.0	0.0	0.0	1.2	0.0	1.0	0.0	-	0.8	2.8	0.0	0.0	-	1.6	9.1	0.0	0.0	-	0.3	0.7
Single-Unit Trucks	0	0	0	0	0	0	2	2	0	4	0	1	0	0	1	0	4	2	0	6	11
\% Single-Unit Trucks	0.0	0.0	0.0	0.0	0.0	0.0	2.1	10.0	-	3.3	0.0	5.3	0.0	-	1.6	0.0	1.6	3.2	-	1.8	1.8
Articulated Trucks	0	0	0	0	0	0	2	0	0	2	3	0	0	0	3	0	4	0	0	4	9
\% Articulated Trucks	0.0	0.0	0.0	0.0	0.0	0.0	2.1	0.0	-	1.6	8.3	0.0	0.0	-	4.7	0.0	1.6	0.0	-	1.2	1.5

Indiana DOT
100 N. Senate Ave

Count Name: SD SR56 @ Boatman Rd (72) Site Code:
Start Date: 03/06/2017
Page No: 10

Turning Movement Peak Hour Data Plot (7:15 AM)

Indiana DOT 100 N. Senate Ave

Count Name: SD SR56 @ Boatman Rd (72) Site Code:
Start Date: 03/06/2017
Page No: 11

SR 56 Traffic Count Information

SR 56 Traffic Count Projection Calculations

Growth Rate Calculation		
2018	-8%	
2017	1%	
2016	0%	
2015	15%	
2014	1%	
2013	-1%	
2012	0%	
2011	1%	
2001	4%	
1997	9%	
	2.2%	<=Avg Yearly Growth

Calculated AADT Growth		
YR	2.2%	DELTA
2018	9820	217
2019	10037	217
2020	10254	217
2021	10471	217
2022	10688	217
2023	10905	217
2024	11122	217
2025	11339	217
2026	11556	217
2027	11773	217
2028	11990	217
2029	12207	217
2030	12424	217
2031	12641	217
2032	12858	217
2033	13075	217
2034	13292	217
2035	13509	217
2036	13726	217
2037	13943	217
2038	14160	217
2039	14377	217

DHV Growth		
YR	2.2%	DELTA
2018	870	20
2019	890	20
2020	910	20
2021	930	20
2022	950	20
2023	970	20
2024	990	20
2025	1010	20
2026	1030	20
2027	1050	20
2028	1070	20
2029	1090	20
2030	1110	20
2031	1130	20
2032	1150	20
2033	1170	20
2034	1190	20
2035	1210	20
2036	1230	20
2037	1250	20
2038	1270	20
2039	1290	$\mathbf{2 0}$

Truck \% from 2017 Count for SR 56 at Boatman Intersection

Articulated =	1.7%
SU Trucks =	3.0%
Buses =	0.5%
Truck \% DHV $=$	5.2%

Roundabout at SR 56 and Boatman Rd
SR 56 is 2 lane and Boatman Rd is 1 lane
Roundabout
Design Life Analysis (Practical Capacity): Results for 20 years

Movement Performance - Vehicles											
Mov ID	Turn	Demand Flow veh/h	$\begin{gathered} \text { HV } \\ \% \end{gathered}$	Deg. Satn v/c	Average Delay sec	Level of Service	95\% Back Vehicles veh	Queue Distance ft	Prop. Queued	Effective Stop Rate per veh	Average Speed mph
South: RoadName											
3	L	6	0.0	0.151	6.6	LOS A	0.5	13.6	0.48	0.87	19.9
8	T	21	0.0	0.151	6.6	LOS A	0.5	13.6	0.48	0.43	21.0
18	R	82	2.0	0.151	6.6	LOS A	0.5	13.6	0.48	0.51	20.8
Approac		110	1.5	0.151	6.6	LOS A	0.5	13.6	0.48	0.52	20.8
East: RoadName											
1	L	82	6.0	0.591	11.1	LOS B	4.4	111.0	0.26	0.86	18.6
6	T	542	2.0	0.591	11.1	LOS B	4.4	111.0	0.26	0.11	19.6
16	R	3	0.0	0.591	11.1	LOS B	4.4	111.0	0.26	0.24	19.3
Approac		627	2.5	0.591	11.1	LOS B	4.4	111.0	0.26	0.21	19.4
North: RoadName											
7	L	53	3.0	0.244	9.4	LOS A	0.9	22.2	0.59	0.89	19.1
4	T	33	0.0	0.244	9.4	LOS A	0.9	22.2	0.59	0.59	19.8
14	R	55	3.0	0.244	9.4	LOS A	0.9	22.2	0.59	0.65	19.7
Approach		142	2.3	0.244	9.4	LOS A	0.9	22.2	0.59	0.72	19.5
West: RoadName											
5	L	11	0.0	0.397	8.6	LOS A	1.8	48.0	0.40	0.98	19.4
2	T	345	5.0	0.397	8.6	LOS A	1.8	48.0	0.40	0.29	20.4
12	R	3	0.0	0.397	8.6	LOS A	1.8	48.0	0.40	0.41	20.3
Approac		359	4.8	0.397	8.6	LOS A	1.8	48.0	0.40	0.31	20.4
All Vehic		1237	3.1	0.591	9.8	LOS A	4.4	111.0	0.35	0.32	19.8

Level of Service (LOS) Method: Delay \& v/c (HCM 2010).
Roundabout LOS Method: Same as Sign Control.
Vehicle movement LOS values are based on average delay and v/c ratio (degree of saturation) per movement
LOS F will result if $\mathrm{v} / \mathrm{c}>1$ irrespective of movement delay value (does not apply for approaches and intersection).
Intersection and Approach LOS values are based on average delay for all movements (v/c not used as specified in HCM 2010).
Roundabout Capacity Model: US HCM 2010.
HCM Delay Model used. Geometric Delay not included.

APPENDIX B

Crash Analysis for SR 56 and Boatman Rd, Scottsburg, Scott County
Date: 1/1/2012-3/13/2017

1.)	SEVERITY	2012	2013	2014	2015	2016	2017	TOTALS	
	Property Damage	4	2	5	3	7	0	21	62\%
	Non-Incapacitating Injury	3	1	0	1	0	0	5	15\%
	Incapacitating Injury	2	1	0	2	1	1	7	21\%
	Fatality	0	0	1	0	0	0	1	3\%
	Unknown	0	0	0	0	0	0	0	0\%

	TOTALS	9	4	6	6	8	1	34	100\%
2.)	COLLISION DIAGRAM	2012	2013	2014	2015	2016	2017	TOTALS	
	Rear End Collision (\#1)	2	1	2	1	2	0	8	24\%
	Head-On Collision (\#2)	0	0	0	0	0	0	0	0\%
	Same Direction Sideswipe (\#3) ...	0	0	0	0	0	0	0	0\%
	Opposite Direction Sideswipe (\#4)	0	1	0	0	0	0	1	3\%
	Off Road Collision (\#5) .	1	0	1	1	1	0	4	12\%
	Right Angle Collision (\#6)..	3	1	2	2	2	1	11	32\%
	Lt. Turn Collision (\#7-13)..	1	1	0	1	2	0	5	15\%
	Rt. Turn Collision (\#14-18).	0	0	1	0	0	0	1	3\%
	Animal/Object in Roadway .	2	0	0	0	1	0	3	9\%
	Backing Crash	0	0	0	0	0	0	0	0\%
	Rear to Rear	0	0	0	0	0	0	0	0\%
	Left/Right Turn	0	0	0	0	0	0	0	0\%
	Non-Collision	0	0	0	0	0	0	0	0\%
	Other	0	0	0	1	0	0	1	3\%
	Unknown.	0	0	0	0	0	0	0	0\%

	TOTALS	9	4	6	6	8	1	34	100\%
3.)	SURFACE CONDITION	2012	2013	2014	2015	2016	2017	TOTALS	
	Dry (\#1)..	9	4	4	5	7	1	30	88\%
	Wet (\#2).................	0	0	0	1	1	0	2	6\%
	Snow/Ice/Slush (\#3,4,5).	0	0	1	0	0	0	1	3\%

APPENDIX C

APPENDIXD

SR 56 IN SCOTTSBURG - QUANTITIES AND PAY ITEM LIST HMA PREFERRED ALTERNATE - PRELIMINARY ESTIMATE 11-Sep-19							
ITEM	DESCRIPTION	UNIT	QUANTITY	UNIT PRICE		total cost	
105-06845	CONSTRUCTION ENGINEERING	LS	1.00	\$	47,000.00	\$	47,000.00
110-01001	MOBILIZATION AND DEMOBILIZATION	LS	1.00	\$	125,000.00	\$	125,000.00
201-52370	CLEARING RIGHT OF WAY	LS	1.00	\$	63,000.00	\$	63,000.00
202-93995	SIGNAL POLE FOUNDATION, REMOVE	EACH	2.00	\$	700.00	\$	1,400.00
202-93999	SIGNAL POLE, REMOVE	EACH	2.00	\$	450.00	\$	900.00
202-95579	SERVICE POINT, REMOVE	EACH	1.00	\$	25.00	\$	25.00
202-96151	TRANSPORTATION OF SALVAGEABLE ITEMS	LS	1.00	\$	4,500.00	\$	4,500.00
203-02000	EXCAVATION, COMMON	CYS	4750.00	\$	20.00	\$	95,000.00
203-02070	BORROW	CYS	1500.00	\$	25.00	\$	37,500.00
205-12108	STORM WATER MANAGEMENT BUDGET	DOL	20000.00	\$	1.00	\$	20,000.00
205-12109	SWQCP PREPARATION AND IMPLEMENTATION, LEVEL 1	LS	1.00	\$	20,000.00	\$	20,000.00
207-08264	SUBGRADE TREATMENT, TYPE II	SYS	55.00	\$	9.00	\$	495.00
207-09935	SUBGRADE TREATMENT, TYPE IC	SYS	12600.00	\$	25.00	\$	315,000.00
211-09264	STRUCTURE BACKFILL, TYPE 1	CYS	250.00	\$	30.00	\$	7,500.00
401-07347	QC/QA-HMA, 3, 70, SURFACE, 12.5 mm	TON	825.00	\$	81.00	\$	66,825.00
401-07398	QC/QA-HMA, 3, 70, INTERMEDIATE, 19.0 mm	TON	1370.00	\$	72.00	\$	98,640.00
401-07424	QC/QA-HMA, 3, 64, BASE, 19.0 mm	TON	3300.00	\$	69.00	\$	227,700.00
401-10258	JOINT ADHESIVE, SURFACE	LFT	2000.00	\$	0.20	\$	400.00
401-10259	JOINT ADHESIVE, INTERMEDIATE	LFT	2000.00	\$	0.25	\$	500.00
401-11785	LIQUID ASPHALT SEALANT	LFT	2000.00	\$	0.10	\$	200.00
401-12137	QC/QA-HMA, 4, 76, INTERMEDIATE, OG, 19.0 mm	TON	1240.00	\$	80.00	\$	99,200.00
406-05520	ASPHALT FOR TACK COAT	TON	7.50	\$	475.00	\$	3,562.50
415-11527	BASE SEAL	TON	2.50	\$	500.00	\$	1,250.00
605-06140	CURB AND GUTTER, CONCRETE	LFT	3000.00	\$	25.00	\$	75,000.00
605-06255	CENTER CURB, D CONCRETE	SYS	560.00	\$	125.00	\$	70,000.00
610-07488	HMA FOR APPROACHES, TYPE C	TON	150.00	\$	90.00	\$	13,500.00
610-09108	PCCP FOR APPROACHES, 9 IN .	SYS	55.00	\$	60.00	\$	3,300.00
616-02320	GEOTEXTILES	SYS	300.00	\$	5.00	\$	1,500.00
616-06405	RIPRAP, REVETMENT	TON	200.00	\$	60.00	\$	12,000.00
628-09402	FIELD OFFICE, B	MOS	12.00	\$	2,200.00	\$	26,400.00
715-05048	PIPE, TYPE 4, CIRCULAR, 6 IN.	LFT	5000.00	\$	4.00	\$	20,000.00
715-05053	PIPE, UNDERDRAIN, OUTLET 6 IN.	LFT	250.00	\$	10.00	\$	2,500.00
715-05123	PIPE, TYPE 1, CIRCULAR, 24 IN .	LFT	115.00	\$	70.00	\$	8,050.00
715-05149	PIPE, TYPE 2, CIRCULAR, 12 IN .	LFT	715.00	\$	50.00	\$	35,750.00
715-05169	PIPE, TYPE 3, CIRCULAR, 15 IN .	LFT	60.00	\$	60.00	\$	3,600.00
715-46000	PIPE END SECTION, DIAMETER 12 IN .	EACH	14.00	\$	575.00	\$	8,050.00
715-46005	PIPE END SECTION, DIAMETER 15 IN .	EACH	2.00	\$	600.00	\$	1,200.00
715-46020	PIPE END SECTION, DIAMETER 24 IN.	EACH	4.00	\$	800.00	\$	3,200.00
718-06529	OUTLET PROTECTOR, 2	EACH	4.00	\$	500.00	\$	2,000.00
718-06532	VIDEO INSPECTION FOR UNDERDRAINS	LFT	3000.00	\$	1.00	\$	3,000.00
718-52610	AGGREGATE FOR UNDERDRAINS	CYS	420.00	\$	35.00	\$	14,700.00
718-99153	GEOTEXTILES FOR UNDERDRAIN	SYS	5000.00	\$	1.00	\$	5,000.00
720-98174	INLET, B15	EACH	26.00	\$	2,500.00	\$	65,000.00
801-06775	MAINTAINING TRAFFIC	LS	1.00	\$	112,000.00	\$	112,000.00
802-	SIGNING (LUMP SUM)	LS	1.00	\$	5,000.00	\$	5,000.00
805-01300	TRAFFIC SIGNAL EQUIPMENT, REMOVE	EACH	3.00	\$	1,410.00	\$	4,230.00
807-	LIGHTING (LUMP SUM)	LS	1.00	\$	180,000.00	\$	180,000.00
	CONTINGENCY (15\%)	LS	1.00	\$	285,000.00	\$	285,000.00
					TOTAL	\$	2,195,577.50
					TOTAL	\$	2,196,000.00
					MOT	\$	112,000.00
			Total (excluding MOT)			\$	2,084,000.00

SR 56 IN SCOTTSBURG - QUANTITIES AND PAY ITEM LIST hMA ALTERNATE 2 - PRELIMINARY ESTIMATE 11-Sep-19							
ITEM	DESCRIPTION	UNIT	QUANTITY	UNIT PRICE		total Cost	
105-06845	CONSTRUCTION ENGINEERING	LS	1.00	\$	48,000.00	\$	48,000.00
110-01001	MOBILIZATION AND DEMOBILIZATION	LS	1.00	\$	128,000.00	\$	128,000.00
201-52370	CLEARING RIGHT OF WAY	LS	1.00	\$	64,000.00	\$	64,000.00
202-93995	SIGNAL POLE FOUNDATION, REMOVE	EACH	2.00	\$	700.00	\$	1,400.00
202-93999	SIGNAL POLE, REMOVE	EACH	2.00	\$	450.00	\$	900.00
202-95579	SERVICE POINT, REMOVE	EACH	1.00	\$	25.00	\$	25.00
202-96151	TRANSPORTATION OF SALVAGEABLE ITEMS	LS	1.00	\$	4,500.00	\$	4,500.00
203-02000	EXCAVATION, COMMON	CYS	4750.00	\$	20.00	\$	95,000.00
203-02070	BORROW	CYS	3000.00	\$	25.00	\$	75,000.00
205-12108	STORM WATER MANAGEMENT BUDGET	DOL	20000.00	\$	1.00	\$	20,000.00
205-12109	SWQCP PREPARATION AND IMPLEMENTATION, LEVEL 1	LS	1.00	\$	20,000.00	\$	20,000.00
207-08264	SUBGRADE TREATMENT, TYPE II	SYS	55.00	\$	9.00	\$	495.00
207-09935	SUBGRADE TREATMENT, TYPE IC	SYS	12600.00	\$	25.00	\$	315,000.00
211-09264	STRUCTURE BACKFILL, TYPE 1	CYS	250.00	\$	30.00	\$	7,500.00
401-07347	QC/QA-HMA, 3, 70, SURFACE, 12.5 mm	TON	825.00	\$	81.00	\$	66,825.00
401-07398	QC/QA-HMA, 3, 70, INTERMEDIATE, 19.0 mm	TON	1370.00	\$	72.00	\$	98,640.00
401-07424	QC/QA-HMA, 3, 64, BASE, 19.0 mm	TON	3300.00	\$	69.00	\$	227,700.00
401-10258	JOINT ADHESIVE, SURFACE	LFT	2000.00	\$	0.20	\$	400.00
401-10259	JOINT ADHESIVE, INTERMEDIATE	LFT	2000.00	\$	0.25	\$	500.00
401-11785	LIQUID ASPHALT SEALANT	LFT	2000.00	\$	0.10	\$	200.00
401-12137	QC/QA-HMA, 4, 76, INTERMEDIATE, OG, 19.0 mm	TON	1240.00	\$	80.00	\$	99,200.00
406-05520	ASPHALT FOR TACK COAT	TON	7.50	\$	475.00	\$	3,562.50
415-11527	BASE SEAL	TON	2.50	\$	500.00	\$	1,250.00
605-06140	CURB AND GUTTER, CONCRETE	LFT	3000.00	\$	25.00	\$	75,000.00
605-06255	CENTER CURB, D CONCRETE	SYS	560.00	\$	125.00	\$	70,000.00
610-07488	HMA FOR APPROACHES, TYPE C	TON	150.00	\$	90.00	\$	13,500.00
610-09108	PCCP FOR APPROACHES, 9 IN.	SYS	55.00	\$	60.00	\$	3,300.00
616-02320	GEOTEXTILES	SYS	300.00	\$	5.00	\$	1,500.00
616-06405	RIPRAP, REVETMENT	TON	200.00	\$	60.00	\$	12,000.00
628-09402	FIELD OFFICE, B	MOS	12.00	\$	2,200.00	\$	26,400.00
715-05048	PIPE, TYPE 4, CIRCULAR, 6 IN.	LFT	5000.00	\$	4.00	\$	20,000.00
715-05053	PIPE, UNDERDRAIN, OUTLET 6 IN.	LFT	250.00	\$	10.00	\$	2,500.00
715-05123	PIPE, TYPE 1, CIRCULAR, 24 IN .	LFT	115.00	\$	70.00	\$	8,050.00
715-05149	PIPE, TYPE 2, CIRCULAR, 12 IN .	LFT	715.00	\$	50.00	\$	35,750.00
715-05169	PIPE, TYPE 3, CIRCULAR, 15 IN .	LFT	60.00	\$	60.00	\$	3,600.00
715-46000	PIPE END SECTION, DIAMETER 12 IN.	EACH	14.00	\$	575.00	\$	8,050.00
715-46005	PIPE END SECTION, DIAMETER 15 IN .	EACH	2.00	\$	600.00	\$	1,200.00
715-46020	PIPE END SECTION, DIAMETER 24 IN.	EACH	4.00	\$	800.00	\$	3,200.00
718-06529	OUTLET PROTECTOR, 2	EACH	4.00	\$	500.00	\$	2,000.00
718-06532	VIDEO INSPECTION FOR UNDERDRAINS	LFT	3000.00	\$	1.00	\$	3,000.00
718-52610	AGGREGATE FOR UNDERDRAINS	CYS	420.00	\$	35.00	\$	14,700.00
718-99153	GEOTEXTILES FOR UNDERDRAIN	SYS	5000.00	\$	1.00	\$	5,000.00
720-98174	INLET, B15	EACH	26.00	\$	2,500.00	\$	65,000.00
801-06775	MAINTAINING TRAFFIC	LS	1.00	\$	112,000.00	\$	112,000.00
802-	SIGNING (LUMP SUM)	LS	1.00	\$	5,000.00	\$	5,000.00
805-01300	TRAFFIC SIGNAL EQUIPMENT, REMOVE	EACH	3.00		1,410.00	\$	4,230.00
807-	LIGHTING (LUMP SUM)	LS	1.00	\$	180,000.00	\$	180,000.00
	CONTINGENCY (15\%)	LS	1.00	\$	292,500.00	\$	292,500.00
					TOTAL	\$	2,245,577.50
					TOTAL	\$	2,246,000.00
					MOT	\$	112,000.00
			Total (excluding MOT)			\$	2,134,000.00

SR 56 IN SCOTTSBURG - QUANTITIES AND PAY ITEM LIST HMA ALTERNATE 3 - PRELIMINARY ESTIMATE 11-Sep-19							
ITEM	DESCRIPTION	UNIT	QUANTITY	UNIT PRICE		total Cost	
105-06845	CONSTRUCTION ENGINEERING	LS	1.00	\$	47,000.00	\$	47,000.00
110-01001	MOBILIZATION AND DEMOBILIZATION	LS	1.00	\$	124,000.00	\$	124,000.00
201-52370	CLEARING RIGHT OF WAY	LS	1.00	\$	62,000.00	\$	62,000.00
202-93995	SIGNAL POLE FOUNDATION, REMOVE	EACH	2.00	\$	700.00	\$	1,400.00
202-93999	SIGNAL POLE, REMOVE	EACH	2.00	\$	450.00	\$	900.00
202-95579	SERVICE POINT, REMOVE	EACH	1.00	\$	25.00	\$	25.00
202-96151	TRANSPORTATION OF SALVAGEABLE ITEMS	LS	1.00	\$	4,500.00	\$	4,500.00
203-02000	EXCAVATION, COMMON	CYS	4750.00	\$	20.00	\$	95,000.00
203-02070	BORROW	CYS	1000.00	\$	25.00	\$	25,000.00
205-12108	STORM WATER MANAGEMENT BUDGET	DOL	20000.00	\$	1.00	\$	20,000.00
205-12109	SWQCP PREPARATION AND IMPLEMENTATION, LEVEL 1	LS	1.00	\$	20,000.00	\$	20,000.00
207-08264	SUBGRADE TREATMENT, TYPE II	SYS	55.00	\$	9.00	\$	495.00
207-09935	SUBGRADE TREATMENT, TYPE IC	SYS	12600.00	\$	25.00	\$	315,000.00
211-09264	STRUCTURE BACKFILL, TYPE 1	CYS	250.00	\$	30.00	\$	7,500.00
401-07347	QC/QA-HMA, 3, 70, SURFACE, 12.5 mm	TON	825.00	\$	81.00	\$	66,825.00
401-07398	QC/QA-HMA, 3, 70, INTERMEDIATE, 19.0 mm	TON	1370.00	\$	72.00	\$	98,640.00
401-07424	QC/QA-HMA, 3, 64, BASE, 19.0 mm	TON	3300.00	\$	69.00	\$	227,700.00
401-10258	JOINT ADHESIVE, SURFACE	LFT	2000.00	\$	0.20	\$	400.00
401-10259	JOINT ADHESIVE, INTERMEDIATE	LFT	2000.00	\$	0.25	\$	500.00
401-11785	LIQUID ASPHALT SEALANT	LFT	2000.00	\$	0.10	\$	200.00
401-12137	QC/QA-HMA, 4, 76, INTERMEDIATE, OG, 19.0 mm	TON	1240.00	\$	80.00	\$	99,200.00
406-05520	ASPHALT FOR TACK COAT	TON	7.50	\$	475.00	\$	3,562.50
415-11527	BASE SEAL	TON	2.50	\$	500.00	\$	1,250.00
605-06140	CURB AND GUTTER, CONCRETE	LFT	3000.00	\$	25.00	\$	75,000.00
605-06255	CENTER CURB, D CONCRETE	SYS	560.00	\$	125.00	\$	70,000.00
610-07488	HMA FOR APPROACHES, TYPE C	TON	150.00	\$	90.00	\$	13,500.00
610-09108	PCCP FOR APPROACHES, 9 IN.	SYS	55.00	\$	60.00	\$	3,300.00
616-02320	GEOTEXTILES	SYS	300.00	\$	5.00	\$	1,500.00
616-06405	RIPRAP, REVETMENT	TON	200.00	\$	60.00	\$	12,000.00
628-09402	FIELD OFFICE, B	MOS	12.00	\$	2,200.00	\$	26,400.00
715-05048	PIPE, TYPE 4, CIRCULAR, 6 IN.	LFT	5000.00	\$	4.00	\$	20,000.00
715-05053	PIPE, UNDERDRAIN, OUTLET 6 IN.	LFT	250.00	\$	10.00	\$	2,500.00
715-05123	PIPE, TYPE 1, CIRCULAR, 24 IN .	LFT	115.00	\$	70.00	\$	8,050.00
715-05149	PIPE, TYPE 2, CIRCULAR, 12 IN .	LFT	715.00	\$	50.00	\$	35,750.00
715-05169	PIPE, TYPE 3, CIRCULAR, 15 IN .	LFT	60.00	\$	60.00	\$	3,600.00
715-46000	PIPE END SECTION, DIAMETER 12 IN.	EACH	14.00	\$	575.00	\$	8,050.00
715-46005	PIPE END SECTION, DIAMETER 15 IN .	EACH	2.00	\$	600.00	\$	1,200.00
715-46020	PIPE END SECTION, DIAMETER 24 IN.	EACH	4.00	\$	800.00	\$	3,200.00
718-06529	OUTLET PROTECTOR, 2	EACH	4.00	\$	500.00	\$	2,000.00
718-06532	VIDEO INSPECTION FOR UNDERDRAINS	LFT	3000.00	\$	1.00	\$	3,000.00
718-52610	AGGREGATE FOR UNDERDRAINS	CYS	420.00	\$	35.00	\$	14,700.00
718-99153	GEOTEXTILES FOR UNDERDRAIN	SYS	5000.00	\$	1.00	\$	5,000.00
720-98174	INLET, B15	EACH	26.00	\$	2,500.00	\$	65,000.00
801-06775	MAINTAINING TRAFFIC	LS	1.00	\$	112,000.00	\$	112,000.00
802-	SIGNING (LUMP SUM)	LS	1.00	\$	5,000.00	\$	5,000.00
805-01300	TRAFFIC SIGNAL EQUIPMENT, REMOVE	EACH	3.00		1,410.00	\$	4,230.00
807-	LIGHTING (LUMP SUM)	LS	1.00	\$	180,000.00	\$	180,000.00
	CONTINGENCY (15\%)	LS	1.00	\$	285,000.00	\$	285,000.00
					TOTAL	\$	2,181,077.50
					TOTAL	\$	2,182,000.00
					MOT	\$	112,000.00
			Total (excluding MOT)			\$	2,070,000.00

APPENDIXE

LOCHMUELLER GROUP

State Road (56) Intersection Improvement Project SR 56 and Boatman Road (CR 200 W)
 Scott County, Indiana
 Loch Group \# 218-0056

Project Scope

The proposed project involves the construction of a roundabout at the SR 56 and Boatman Road intersection in order to improve safety for travelers at this intersection. Additional right-of-way is anticipated, but an estimated quantity was not available at the time this Preliminary Red Flag Investigation was completed. It is anticipated the amount of right-of-way required will exceed 0.5 -acre.

Preliminary Red Flag Investigation

A preliminary Red Flag Investigation was completed for the project area by Lochmueller Group. The project was screened using 46 Geographic Information System (GIS) layers in order to identify any potential environmental concerns located within the immediate vicinity of the project.

Ecological Resources: No water resources are mapped within or adjacent to the project area. However, a waters investigation may be needed and the findings documented in a Wetland Delineation / Waters of the U.S. Determination Report. The project area is not located within the Potential Karst Features Region as identified in the Karst Memorandum of Understanding (MOU). The project area is not located in the St. Joseph’s Sole Source Aquifer.

The project is within the range of the federally endangered Indiana bat and federally threatened northern long-eared bat. Suitable habitat does not appear to be present within or adjacent to the project area. The proposed project is anticipated to qualify for the Range-wide Programmatic Informal Consultation for the Indiana bat and Northern Long-eared Bat (NLEB). Given the scope of the project, it is anticipated the resulting finding of this coordination will be "No Effect" or "Not Likely to Adversely Affect".

Cultural Resources: There are no properties listed in the National Register of Historic Places (NRHP) adjacent to the project. On October 15, 2018, Lochmueller Group reviewed the information presented on the Indiana State Historic Architectural and Archaeological Research Database (SHAARD) GIS and the Indiana Historic Buildings, Bridges, and Cemeteries Map (IHBBCM) for the proposed project location. The project area does not appear to be within or adjacent to an NRHP eligible or listed bridge, or historic district, and no cemeteries appear to be within or adjacent to the project limits. One property rated Contributing is located north of SR 56 on the west side of Boatman Road. Contributing resources are not typically considered individually eligible for inclusion in the NRHP.

A virtual review was conducted via Google Streetview imagery to assess soil disturbance in regard to the potential for intact archaeological resources. A portion of the project area appears to be within undisturbed soils. Therefore, an archaeological field review is recommended.

Hazardous Materials: N/A

Infrastructure: Two (2) pipelines, owned by Midwest Natural Gas Corporation, are within, or adjacent to, the likely project area. While not mapped on the searched GIS layers, Elevation Church is located near the project area and owns undeveloped property in the southwest quadrant of the subject intersection that will likely be affected by the project.

Mining/Mineral Exploration: N/A

Urbanized Area Boundary (UAB): A portion of the project area is located within a UAB, however, a Rule 13 Permit from IDEM has not been issued.

Summary of Environmental Requirements (LOI Write-Up)

NEPA Documentation: This project appears to meet the requirements of a Level 2 Categorical Exclusion (CE-2) due to the anticipated amount of right-of-way, which is expected to exceed one half acre. The likely acquisition of more than one half acre of new right-of-way will prompt public involvement requirements, requiring at a minimum the advertisement of an opportunity for the public to request a hearing. Approval of the CE-2 is anticipated within 8-10 months due to the public involvement requirements.

A preliminary Red Flag Investigation was completed for the project area by Lochmueller Group. The project was screened using 46 Geographic Information System (GIS) layers in order to identify any potential environmental concerns located within the immediate vicinity of the project. The results of this preliminary review identified the following areas of concern.

- Elevation Church - This resource is located near the subject intersection, but according to Scott County GIS data, also owns undeveloped property in the southwest quadrant of the project. The undeveloped church property will likely be affected by the project. Coordination will occur with a representative of the church during the environmental process to identify any issues.
- Pipeline - Two (2) 6-inch natural gas pipelines, owned by Midwest Natural Gas Corporation, traverse the likely project area. During the development of the project, appropriate coordination with this utility will be required to determine any conflicts.

The National Register of Historic Places (NRHP) and the Indiana Register of Historic Sites and Structures (State Register) were reviewed using the State Historic Architectural and Archaeological Research Database (SHAARD) and the Indiana Historic Buildings, Bridges, and Cemeteries (IHBBC) Map. The results of this virtual review did not identify any properties listed or likely eligible (rated as Notable or Outstanding) for inclusion in the NRHP within the project area. Although, one property rated as Contributing is located north of the intersection. Contributing resources are not typically considered individually eligible for inclusion in the NRHP. As proposed, the project is likely to qualify as a Category B project under the Minor Projects Programmatic Agreement (MPPA) providing no archaeological resources are identified that are considered eligible for the NRHP. The application of the MPPA means formal Section 106 consultation will not be required.

Permits: Rule 5 approval from IDEM will be required as the project is expected to result in more than one acre of ground disturbance. Other permits, such as a Section 404 Permit and Section 401 Water Quality Certification may be required if the results of surveys identify Waters of the U.S. within the project area.

APPENDIX F

SR 56 at Boatman Road Roundabout
 Des. No. 1800210
 Scope of Services Meeting Summary
 Seymour District
 10 AM on December 6, 2018

In attendance:
William Fortson - INDOT Project Manager - wfortson@indot.in.gov
Travis Mankin - Project Manager - tmankin@indot.in.gov
Jeremeih Shawn - Traffic Planning Engineer - jeshaw@indot.in.gov
Damon Brown - Acting Traffic Engineer - DaBrown@indot.in.gov
Greg Carleton - Consultant Services Manager - gcarleton@indot.in.gov
David Vorndran (via phone) - Senior Contract Engineer - dvondran@indot.in.gov
Shawn Strange, Consultant Project Manager, First Group Engineering, sstrange@firstgroupengineering.com
Jeff Brechbill, First Group Engineering, jbrechbill@firstgroupengineering.com
The following notes were transcribed from the project kick-off meeting:

- Project is scheduled for January, 2023 Letting
- Projected Construction Budget is $\$ 1.884$ million
- Scope of Work is to fix accident problem at intersection. The current intersection is in a reverse curve segment, and is at a skew with a 25 degree angle. 45% of the crashes are right angle crashes, and crash narratives have indicated a trend that drivers are not aware of the intersection. Crash narratives also indicate that drivers are unaware that the intersection is a two way stop rather than a four way stop when approaching from the northbound and southbound directions. A fatal crash and two incapacitating injury crashes have been recorded within the last three years, and the index of crash frequency rates at 3.21.
- There are no plans to add travel lanes to this section of SR 56.
- The accident rate has not been effectively reduced by the flasher at this location nor by speed bumps added by the county on the north approach or supplemental signs.
- According to FHWA Toolbox of Countermeasures and Crash Reduction Factors found at https://safety.fhwa.dot.gov/tools/crf/resources/fhwasa08011/page2.cfm\#linktarget_6 the best alternative is reconstructing the intersection is a roundabout. ROADHAT analysis also determined that a roundabout was the most cost-effective alternative to reduce accidents at this location.
- A SIDRA analysis was completed using projected traffic volumes, and it shows that a single lane roundabout will function at a LOS of B in the design year during the peak hour. This indicates that the roundabout will only need a single circulating lane.
- Given the ROADHAT, SIDRA, traffic data collection, and accident analysis already performed, Greg Carleton recommended First Group start by compiling the data in an abbreviated Engineer's Report that evaluates the best location for the circulating roadway with respect to utility impacts, private property impacts, and construction cost.
- First Group pointed out that there are potential reimbursable gas mains that may be expensive to relocate and therefore will need to be more accurately located to ensure the roundabout location does not incur significant utility reimbursement expenses as high-
pressure gas mains can cost hundreds of thousands of dollars to relocate. A limited SUE will be performed at the same time the survey is picked up during the engineering assessment phase of this contract.
- INDOT recognized that due to the high concentration of utilities at the intersection, we should look at adding a Subsurface Utility Engineering Subconsultant to do a SUE analysis for the abbreviated Engineer's Report. First Group also added that in order to determine if utilities are in an easement and therefore reimbursable, early coordination requesting any easement documentation will be necessary.
- INDOT will furnish First Group with 2017 traffic counts.
- INDOT wanted to close off Mount Road to SR 56 as the intersection angle is severely substandard and it would be safer to force that turning traffic to the roundabout to access SR 56.
- INDOT requested two coordination meetings prior to the project's public hearing. They would like one with first responders and the school and another with property owners/public. These would not be advertised and would be more informal than a typical public hearing. Public flyers, door hangers, and coordination with county officials will be necessary to include in the design phase of the contract.
- INDOT would like us to include a review of the horizontal curve to the east in the survey to ensure superelevation requirements are met at the end of the project.
- INDOT would like the drives/approaches near the roundabout evaluated for intersection sight distance. INDOT would like Bob White drive access possibly controlled via a turn lane/by-pass lane and/or splitter island prohibiting left turns out of the development if the roundabout is placed near this intersection. Other options may need to be reviewed during the EA phase on this contract as well.
- INDOT would like lighting at the roundabout and chicanes and RPM's approaching the chicanes if approved by the IDM.
- INDOT would like to use a posted speed limit of 45 mph for SR 56 as the existing speed limit changes from 50 to 55 about 250 ' west of Boatman. This may require stepping down the speed from the west.
- INDOT would like RPM's in advance of the roundabout on SR 56.
- INDOT would like an independent construction cost estimate be provided as part of the EA to verify the programmed construction cost is accurate.
- INDOT would like to try to avoid the pipe structure located about 550 ' west of the Boatman Road intersection. The structure does appear to have scour problems and may be undersized and need rip rap. The structure is less than 48 " so it will be in the district maintenance logs and not in the INDOT BIAS System. INDOT could provide inspection reports but would replace as part of a maintenance contract if needed. First Group will check the hydraulic capacity of the existing structure and determine during design if the structure should be replaced.
- MOT - INDOT recommends against closing SR 56 for a temporary detour. There are no good alternate routes.
- The house at Boatman and mount may need to checked in the EA stage of the contract to ensure no Section 106 is required. INDOT can provide that review if requested by First Group.
- The church in the SW quadrant of the intersection did buy the land near the road recently for potential expansion. There are no known plans at this time for site improvements. Early coordination with locals my flesh out any potential site work. INDOT permits will
check for any pending drive work at this location. The county will know if anything is planned in the near future for this site.
- INDOT would like a preliminary and a final field check during the design of this project.
- The fee proposal will be due in late January and will be a PDF document emailed to Dave Vorndran and William Fortson.
- Fee to include SUE, Survey, and Engineering Assessment. Other services to be added via Supplemental Agreement.
- After visiting the site, it was determined that Ohio Valley Gas owned the high-pressure gas mains near the intersection of Boatman and SR 56. Their headquarters was located on the west site of Scottsburg where First Group met Kelly Shafer, a representative of Ohio Valley Gas who stated that the company had no easements for the gas mains located along SR 56 but may have one on Boatman Road and; therefore, were may not be reimbursable, but they would need to verify this. He also stated that the valve lids can be removed to see the top of the gate valves which are 6 " higher than the lines indicating the depth at that location. After visiting the site, popping the top off the gate valve, it was discovered the valve was half full of water. Given limited probing in the water it was determined that the gas mains were most likely around $40^{\prime \prime}$ to $48^{\prime \prime}$ deep.

The following represent our understanding of the responsibilities for this project:

Services Provided by INDOT:

- Pavement Cores
- Pavement History
- Pavement Design
- R/W Services (except for R/W Engineering)
- Accidents
- Traffic Data \& Traffic Projections
- Small Culvert Inspections
- Railroad Coordination

Services by FGE:

- Engineering Assessment
- Early Utility Coordination
- Survey
- SUE
- Geotechnical Investigation \& Recommendations
- No Public Involvement as part of Engineering Assessment
- Coordination with Police, Fire, School during the design phase of the contract
- Utility Coordination
- R/W Engineering \& Staking
- Title Search
- Categorical Exclusion
- Permits (Rule 5)
- Hydraulics - small structures
- Roadway Design / Maintenance of Traffic
- Public Hearing/Public Involvement
- Monthly Project Reports to William Fortson
- Signing Plans
- Lighting Plans

Summary of Meeting provided by: Shawn H. Strange

Looking West at Intersection from East
Looking South at Intersection from North

Looking North at Intersection from South

Looking East at Intersection from West

Field Inspection
State Route 56 and Boatman Road
Des 1800210
Field Inspection Sign-In Sheet

Name of Attendee	Representing	Telephone Number	E-Mail
Shawn Strange	First Group Engineering	$317-216-7705$	sstrange@firstgroupengineering.com
Tim Suber	First Group Engineering	$317-290-9549$	tsuber@firstgroupengineering.com
William Fortson	INDOT Project Manager	$812-524-3745$	wfortson@indot.in.gov

STREETS - HIGHWAYS - TRAFFIC - STRUCTURES - WATER - SEWER - SURVEYING - RIGHT-OF-WAY SERVICES
ACTIVE MEMBERSHIPS:

Field Inspection Agenda

State Route 56 and Boatman Roundabout
Des 1800210
Fiscal Year of Letting: 2023

1. Design

- Roundabout Location - Preferred Alternate (Need state’s approval of Option 1 - Circulating Roadway Southeast of existing intersection). This alternate limits impacts to properties on the north and west sides of the intersection.
- Speed Reduction - Our Preferred design for the SR 56 approaches use a design speed of 45 mph which is less than the $50-\mathrm{mph}$ posted speed limit. The Boatman Road approaches use a design speed of 35 mph even though the roadway does not have a posted speed; therefore, its 55 mph . Will INDOT require a design exception? We're trying to discourage speeding, so our thought is that the limiting geometry will give enough visual queues to the approaching driver that they will immediately start to slow down enough to yield at the circulating roadway.
- Project tie-in limits are further back than originally anticipated due to high speed approach design requiring quite a bit of length for the splitter islands to encourage deceleration. A 55mph design speed for the approaches will actually extend the splitter island another 90 ft each direction along SR 56. If a $55-\mathrm{mph}$ design speed were used for full deceleration on Boatman Road, it would extend the north-south approaches another 300 ft . Given the tighter property lines and other impacts such as potential Section 106 issues with the historic house located just northwest of the intersection of Mount Dr. and Boatman Rd., we decided on utilizing a lower design speed for the Boatman Road approaches to limit construction impacts.
- Closure of Mount Drive at SR 56. At this time, this intersection is outside the limits of this roundabout project and thus not included in this project at this time. The roadway is used as a short cut to northbound Boatman Road and sees high speed traffic coming off of westbound SR 56. This intersection is at such a poor skew that almost all traffic from Boatman utilize the main intersection at SR 56 to turn east (instead of this short cut). At this time, this project will not impact this intersection and will not be included with this project unless INDOT decides to expand the scope of the project to close this intersection due to safety concerns.

2. Drainage

- The proposed design utilizes curb and gutter to create visual queues to slow down as the lane looks narrower at the splitter island. Since there is no need for sidewalk, our proposed design will utilize curb turnouts to side ditches behind the curb to drain the project location. Pipes will be used to mover water from the east to the west and eventually the stream that

STREETS - HIGHWAYS - TRAFFIC - STRUCTURES - WATER - SEWER - SURVEYING - RIGHT-OF-WAY SERVICES
ACTIVE MEMBERSHIPS:

crosses under SR 56 approximately 500 ft west of Boatman Road. The proposed outfall for the project is also a good location for an engineered stormwater control structure or sediment basin.

3. Property Impacts

- High Speed Characteristics of Boatman Rd were minimized and to a lesser extent on SR 56 to mitigate impacts to the surrounding properties including:
o One potential Historic 106 Property
o Church Property Access
o Minimize Impacts to Properties on County Road

4. Utilities

- Midwest Natural Gas Corporation (Gas) - High Pressure Gas is most likely nonreimbursable and will require relocation
- Frontier (Telephone) is most likely non-reimbursable and will require relocation
- Insight Communications (Cable TV) is most likely non-reimbursable and will require relocation
- Jackson County R.E.M.C. (Electric) is most likely non-reimbursable and will require relocation
- City of Scottsburg (Water, Electric and Sewer) is most likely non-reimbursable and will require relocation
- Stucker Fork Water Utility (Water) is most likely non-reimbursable and will require relocation

5. Existing Drainage

- 24 inch CMP 550ft west of intersection - The proposed design will require that this structure either be replaced or extended. After field inspection, the existing structure is in good enough condition to be extended.
- 12-inch CMP 350ft south of intersection. Given the condition of this structure, the proposed design will require that this structure be replaced.
- 12-inch CMP northside ditch at intersection. Given the condition of this structure, the proposed design will require that this structure be replaced.

6. ROW Acquisition

12 parcels - 3 Residential, 3 Agricultural and 6 Business (including Church)
Contributing House (Historic)
Elevation Church Parcels (2)
Relocating Church LCD Billboard (Damages)
One Additional Parcel will be needed if the Mount Drive approach to SR 56 is closed off as a cul-desac or simple turn-around will require one additional parcel (from the property needing access)

STREETS - HIGHWAYS - TRAFFIC - STRUCTURES - WATER - SEWER - SURVEYING - RIGHT-OF-WAY SERVICES

$$
\begin{aligned}
& \text { OF PROFESSIONAL } \\
& \text { LAND SURVEYORS, INC. }
\end{aligned}
$$

7. Construction MOT

Allowed to close Boatman Road? At this time we are proposing to maintain
8. Project Information
a. Construction Budget - $\$ 1.8$ million
b. Construction Year - FY 2023
c. Stage 1 Plans Due 12/6/19

The following notes were transcribed from the meeting:

- The preferred alternative will require acquiring right-of-way from 12 parcels. The closing of Mount Drive will require right-of-way acquisition from one more parcel if added. The cul-de-sac design required for closing Mount Drive will have to avoid a large tree and the primary driveway used to access the residence.
- Elevation Church has plans to build a structure. Discussed coordinating with architect to limit conflicts with new structure and proposed road design. Proposed road design will limit placement of access to Elevation Church's parcels.
- The $50-55 \mathrm{mph}$ posted speed limit on SR 56 dictates the use of high-speed approaches for the roundabout. The high-speed approaches require a splitter island approximately 350 ft long.
- There is a contributing house located on Boatman Rd., north leg. Contributing resources typically do not affect the environmental document.
- Boatman Road does not have a posted speed limit. Being that Boatman Road is county road located outside urban district, the maximum speed limit is 55 mph . The 55 mph speed limit would require high-speed approaches for the north and south legs of Boatman Road. Shorting Boatman's Road approach legs will reduce the proposed right-of-way. The question was about using a design exception for Boatman Road or reducing the design speed limit. Ask Damon Brown and Jeremeih Shawn about design speed limit for Boatman Rd.
- State Route 56 will use temporary pavement to maintain traffic during construction. Mount Drive could be used as a detour route for north leg of Boatman Rd.
- First Group met with Midwest Natural Gas. Midwest Natural Gas does not believe a gas easement is owned within the project limits.
- William Fortson requested design year traffic counts for First Group Engineering.
- First Group will submit the Engineering Report based on current design assumptions and will revise based on input from INDOT.

Summary provided by: Tim Suber

STREETS - HIGHWAYS - TRAFFIC - STRUCTURES - WATER - SEWER - SURVEYING - RIGHT-OF-WAY SERVICES

APPENDIX G

	Intersection Sight Distance For Passenger Car	
Design Speed (mph)	Calculated (ft)	Design (ft)
15	143.3	145
20	191.1	195
25	238.9	240
30	286.7	290
35	334.4	335
40	382.2	385
45	430.0	430
50	477.8	480
55	525.5	530
60	573.3	575
65	621.1	625
70	668.9	670

Note: Intersection sight distance shown is for a stopped passenger car to turn right onto or cross a two-lane highway with no median and grades of 3% or flatter. For other conditions, the time gap should be adjusted and the required sight distance recalculated.

Figure 46-10H

$*$ $V_{\text {major }}$ (mph)	Passenger Car				Single-Unit Truck	Combination Truck			
	Local Road		Collector or Arterial						
	$t_{g}(\mathrm{~s})$	ISD (ft)							
15	7.5	170	7.5	170	9.5	210	11.5	260	
20	7.5	220	7.5	220	9.5	280	11.5	340	
25	7.5	280	7.5	280	9.5	350	11.5	430	
30	7.5	330	7.5	330	9.5	420	11.5	510	
35	7.5	390	7.5	390	9.5	490	11.5	600	
40	7.5	440	7.5	440	9.5	560	11.5	680	
45	7.5	500	7.5	500	9.5	630	11.5	760	
50	7.5	550	8.5	630	10.5	780	12.5	920	
55	7.5	610	9.0	730	11.0	890	13.0	1060	
60	7.5	670	9.5	840	11.5	1020	13.5	1190	
65	7.5	720	10.0	960	12.0	1150	14.0	1340	
70	7.5	780	10.0	1030	12.0	1240	14.0	1440	

$V_{\text {major }}=$ Design speed of major road
$t_{g} \quad=$ Time gap for minor road vehicle to enter major road
ISD = Intersection sight distance (length of leg of sight triangle along major road)

ISD is shown for a stopped vehicle to turn left onto a two-lane highway with approach grades of 3\% or flatter. For other conditions, the time gap should be adjusted and the required ISD recalculated using the formula ISD $=1.47 V_{\text {major }} t_{g}$.

For a left turn onto a two-way highway with more than two lanes, add 0.5 s for a passenger car, or 0.7 s for a truck for each additional lane from the left in excess of one, to be crossed by a turning vehicle.

For the minor-road approach, if its grade is an upgrade that is steeper than 3%, add 0.2 s for each percent grade for a left turn. The adjustment for the minor-road approach grade is required only if the rear wheels of the design vehicle would be on an upgrade steeper than 3%.

INTERSECTION SIGHT DISTANCE

FOR STOP-CONTROLLED INTERSECTION

Figure 46-10G

APPENDIX H

Desktop Reference for Crash Reduction Factors

Tables for Intersection Crash Reduction Factors

Table 1. Signalization Countermeasures

	Right-angle	All		4-leg	Signal		49		4	18			Experimental Design (Case Control Study)
	Right-angle	Fatal/Injury			Signal		15		30				Simple Before-After
	Right-angle	Fatal/Injury		4-leg	Signal		49		-6	22			Experimental Design (Case Control Study)
	Right-angle	PDO			Signal		15		46				Simple Before-After
	Ped	Fatal/Injury			Signal		49		37				Comparison Group Before After
Increase yellow change interval	All	All			Signal		15		15				Crosssection
	Right-angle	All			Signal		15		30				$\begin{aligned} & \text { Cross- } \\ & \text { section } \end{aligned}$
Install emergency vehicle pre-emption systems	$\begin{array}{\|l\|} \hline \text { Emerg } \\ \text { vehicle } \end{array}$	All					51		70				
Install pedestrian countdown signal heads	Ped	Fatal/Injury	Urban (San Francisco)		Signal		32		25				
Install pedestrian signal	All	All			Signal		15		20				
	All	All					15		25				
	All	All					15		15				
	Ped	All			Signal		15		53				
	Ped	All			Signal		5		0				
	Ped	All					15		55				
	Ped	All					15		50				
Modify signal phasing (implement a leading pedestrian interval)	Ped	All			Signal		28		5				
Provide actuated signals	Left-turn	All			Signal		15		80				$\begin{aligned} & \text { Cross- } \\ & \text { section } \end{aligned}$
	Right-angle	All			Signal		15		10				$\begin{aligned} & \text { Cross- } \\ & \text { section } \end{aligned}$
Provide Advanced Dilemma Zone Detection for rural high speed approaches	All	Fatal/Injury	Rural	$\begin{array}{\|l\|} \hline 4-\operatorname{leg} \\ (1 \mathrm{app}) \end{array}$	Signal		61		39				Simple Before-After
Provide protected left turn phase	All	All			Signal	$\begin{aligned} & \text { <5,000/lane } \\ & \text { (Total) } \end{aligned}$	15		30				Simple Before-After
	All	All			Signal	$\begin{aligned} & \text { <5,000/lane } \\ & \text { (Total) } \end{aligned}$	15		36				Simple Before-After
	All	All			Signal		15		15				Simple Before-After
	All	All			Signal		15		25				Crosssection
	All	All			Signal		15		30				Simple Before-After
	All	All			Signal		15		27				
	Left-turn	All			Signal	$\begin{aligned} & \begin{array}{l} <5,000 / l a n e \\ \text { (Total) } \end{array} \end{aligned}$	15		41				Simple Before-After
	Left-turn	All			Signal	$\begin{aligned} & >5,000 / l a n e \\ & \text { (Total) } \\ & \hline \end{aligned}$	15		46				Simple Before-After
	Left-turn	All			Signal		15		35				Simple Before-After
	Left-turn	All			Signal		15		70				$\begin{aligned} & \text { Cross- } \\ & \text { section } \end{aligned}$
	Left-turn	All			Signal		15		48				
	Left-turn	Fatal/Injury	Urban		Signal		31	30	16	2			EB Before- After After
	Right-angle	Fatal/Injury	Urban		Signal		31	30	19	2			EB BeforeAfter
	Overturn	All			Signal	$\begin{aligned} & \text { <5,000/lane } \\ & \text { (Total) } \end{aligned}$	15		27				Simple Before-After
	Overturn	All			Signal	$\begin{aligned} & >5,000 / l a n e \\ & \text { (Total) } \end{aligned}$	15		35				Simple Before-After
	Overturn	All			Signal		15		31				
	Ped	All			Signal		28		5				
	Rear-end	All			Signal	$\begin{aligned} & \text { <5,000/lane } \\ & \text { (Total) } \end{aligned}$	15		27				Simple Before-After
	Rear-end	All			Signal	$\begin{aligned} & >5,000 / l a n e \\ & \text { (Total) } \end{aligned}$	15		35				Simple Before-After
	Rear-end	All			Signal		15		31				
	Right-angle	All			Signal	$\begin{aligned} & <5,000 / \text { lane } \\ & \text { (Total) } \end{aligned}$	15		54				Simple Before-After
	Right-angle	All			Signal	$\begin{aligned} & \text { >5,000/lane } \\ & \text { (Total) } \\ & \hline \end{aligned}$	15		56				Simple Before-After
	Right-angle	All			Signal		15		80				Simple Before-After
	Right-angle	All			Signal		15		63				
Provide protected/permissive left-turn phase (leading flashing green) (Request MUTCD Experimentation)	Left-turn	Fatal/Injury	Urban		Signal		31	15	16	4			EB Before- After
	Right-angle	Fatal/Injury	Urban		Signal		31	15	12	4			EB BeforeAfter
Provide protected left-turn phase (leading green arrow)	Left-turn	Fatal/Injury	Urban		Signal		31	20	17	2			EB BeforeAfter
	Right-angle	Fatal/Injury	Urban		Signal		31	20	25	2			EB BeforeAfter
Provide signal coordination	All	All	All		Signal		1		15				
	All	All			Signal		28		16				
	All	All	Arizona		Signal		3		7				
	Right-angle	All			Signal		28		32		25	38	
Provide split phases	All	All			Signal		28		25				
Remove flash mode (late night/early morning)	All	All			Signal		28		29				
	Right-angle	All			Signal		47	17	75	19	29	100	Simple Before-After
	Right-angle	All			Signal		28		80				
Replace existing WALK/DON'T WALK signals with pedestrian countdown signal heads	Ped	All	Urban (San		Signal		32		25				

			\|Franci										
SIGNAL HARDWARE COUNTERMEASURES													
Add 3-inch yellow retroreflective sheeting to signal backplates	All	All	Urban		Signal		54		15	51			$\begin{aligned} & \text { EB Before- } \\ & \text { After } \\ & \hline \end{aligned}$
Add additional signal and upgrade to 12-inch lenses	Older-driver	All		4-leg	Signal		39	33	31				
	Youngerdriver	All		4-leg	Signal		39	33	17				
Add signal (additional primary head)	All	All			Signal		28		10				
	All	All	Urban	4-leg	Signal		14	63	28		20	30	$\begin{aligned} & \begin{array}{l} \text { EB Before- } \\ \text { After } \end{array} \\ & \hline \end{aligned}$
	All	Fatal/Injury	Urban	4-leg	Signal		14	63	17		10	25	EB Before- After
	All	PDO	Urban	4-leg	Signal		14	63	31		30	35	$\begin{aligned} & \begin{array}{l} \mathrm{EB} \text { Before- } \\ \text { After } \end{array} \\ & \hline \end{aligned}$
	Rear-end	All	Urban	4-leg	Signal		14	63	28		0	45	$\begin{aligned} & \begin{array}{l} \text { EB Before- } \\ \text { After } \end{array} \\ & \hline \end{aligned}$
	Right-angle	All			Signal		28		42				
	Right-angle	All	Urban	4-leg	Signal		14	63	35		15	45	$\begin{aligned} & \text { EB Before- } \\ & \text { After } \end{aligned}$
Convert signal from pedestal-mounted to mast arm	All	All			Signal		51		49				
	All	All			Signal		35	6	25				$\begin{array}{\|l} \hline \text { Simple } \\ \text { Before-After } \end{array}$
	All	All			Signal		35	33	32				$\begin{array}{\|l} \hline \text { Simple } \\ \text { Before-After } \end{array}$
	All	All			Signal		28		36		28	43	
	All	Fatal/Injury			Signal		51		44				
	All	PDO			Signal		51		51				
	Left-turn	All			Signal		51		12				
	Rear-end	All			Signal		51		41				
	Right-angle	All			Signal		51		74				
	Right-angle	All			Signal		35	6	63				$\begin{array}{\|l} \hline \text { Simple } \\ \text { Before-After } \end{array}$
Improve visibility of signal heads (increase signal lens size, install new backboards, add reflective tape to existing backboards, and/or install additional signal heads)	All	All	Urban		Signal		52	224	7				EB Before- After
	All	Fatal/Injury	Urban		Signal			224	3				$\begin{aligned} & \text { EB Before- } \\ & \text { After } \end{aligned}$
	All	PDO	Urban		Signal		52	224	9				$\begin{aligned} & \text { EB Before- } \\ & \text { After } \\ & \hline \end{aligned}$
	Day	All	Urban		Signal		52	224	6				$\begin{aligned} & \begin{array}{l} \text { EB Before- } \\ \text { After } \end{array} \\ & \hline \end{aligned}$
	Night	All	Urban		Signal		52	224	6				EB Before- After
Improve visibility of signal heads (install two red displays in each head)	All	All			Signal		28		9				
	Right-angle	All			Signal		28		36				
Install larger signal lenses (12 inch)	All	All	All		Signal		1		10				
	All	All			Signal		28		11				
	All	All			Signal		15		10				
	All	All			Signal		15		10				$\begin{aligned} & \text { Cross- } \\ & \text { section } \end{aligned}$
	All	All			Signal		28		11		10	12	
	All	All	Urban		Signal		54		24				$\begin{aligned} & \text { Cross- } \\ & \text { section } \end{aligned}$
	All	Fatal/Injury	Urban		Signal		54		16				Cross- section
	Right-angle	All			Signal		47	44	46		-89	100	Simple Before-After
	Right-angle	All			Signal		28		48				
Install signal backplates only	All	All			Signal		28		13		2	24	
	Right-angle	All			Signal		28		50		7	93	
Install signal backplates (or visors)	Right-angle	All			Signal		15		20				
	Right-angle	All			Signal		15		20				$\begin{aligned} & \text { Cross- } \\ & \text { section } \end{aligned}$
Install signals	All	All			No signal	$\begin{aligned} & \text { <5,000/lane } \\ & \text { (Total) } \\ & \hline \end{aligned}$	15		38				Simple Before-After
	All	All				$\begin{aligned} & >5,000 / l a n e \\ & \text { (Total) } \end{aligned}$	15		20				Simple Before-After
	All	All			$\begin{aligned} & \text { No } \\ & \text { signal } \end{aligned}$		28		33		20	45	
	Left-turn	All			$\begin{aligned} & \text { No } \\ & \text { signal } \end{aligned}$		43	447	38				Simple Before-After
	Right-turn	All			$\begin{array}{\|l\|} \hline \begin{array}{l} \text { No } \\ \text { signal } \end{array} \\ \hline \end{array}$		43		50				Simple Before-After
	All	All	Rural		$\begin{aligned} & \text { No } \\ & \text { signal } \end{aligned}$		43	447	15				$\begin{array}{\|l\|} \hline \text { Simple } \\ \text { Before-After } \end{array}$
	All	Fatal			$\begin{array}{\|l\|} \hline \begin{array}{l} \text { No } \\ \text { signal } \end{array} \\ \hline \end{array}$		43	447	38				Simple Before-After
	Rear-end	All			No signal		43	447	-48				$\begin{aligned} & \text { Simple } \\ & \text { Before-After } \end{aligned}$
	Right-angle	All					43	447	29				$\begin{aligned} & \text { Simple } \\ & \text { Before-After } \end{aligned}$
	All	All	Urban		$\begin{array}{\|l\|} \hline \begin{array}{l} \text { No } \\ \text { signal } \end{array} \\ \hline \end{array}$		43	447	17				Simple Before-After
	All	All			$\begin{aligned} & \text { No } \\ & \text { signal } \end{aligned}$		15		22				
	All	All					15		15				$\begin{aligned} & \text { Simple } \\ & \text { Before-After } \end{aligned}$
	All	All			$\begin{array}{\|l} \text { No } \\ \text { signal } \end{array}$		15		13				$\begin{array}{\|l} \text { Simple } \\ \text { Before-After } \end{array}$
	All	All			$\begin{aligned} & \text { No } \\ & \text { signal } \end{aligned}$		15		20				$\begin{array}{\|l} \hline \text { Simple } \\ \text { Before-Afer } \end{array}$
	All	All			$\begin{array}{\|l\|} \hline \begin{array}{l} \text { No } \\ \text { signal } \end{array} \\ \hline \end{array}$		15		25				Cross- section
	All	All			No signal		15		20				Simple Before-After
	All	Fatal/Injury	Urban	3-leg	Stop	$\begin{array}{\|l\|l\|} \hline 11,750- & 900- \\ 42,000 & 4,000 \\ \hline \end{array}$	34		14	32			EB Before- After
	All	Fatal/Injury	Urban	4-leg	Stop	$12,650-$ $2,400-$ 22,400, 3,625	34		23	22			$\begin{aligned} & \text { EB Before- } \\ & \text { After } \end{aligned}$

Page 71

	Overturn	All			$\begin{aligned} & \text { No } \\ & \text { signal } \end{aligned}$	$\begin{aligned} & \text { <5,000/lar } \\ & \text { (Total) } \end{aligned}$		15		22				Simple Before-After
	Overturn	All			$\begin{aligned} & \text { No } \\ & \text { signal } \end{aligned}$	$\begin{aligned} & \text { 5,000/lar } \\ & \text { (Total) } \end{aligned}$		15		20				$\begin{aligned} & \text { Simple } \\ & \text { Before-After } \end{aligned}$
	Rear-end	All			$\begin{aligned} & \text { No } \\ & \text { signal } \end{aligned}$	$\begin{aligned} & <5,000 / l a r \\ & \text { (Total) } \end{aligned}$		15		22				$\begin{array}{\|l\|} \hline \text { Simple } \\ \text { Before-After } \end{array}$
	Rear-end	All			No signal	$\begin{aligned} & >5,000 / l a r \\ & \text { (Total) } \end{aligned}$		15		20				Simple Before-After
	Rear-end	Fatal/Injury	Urban	3-leg	Stop	$\begin{array}{\|l\|l\|} \hline 11,750- & 9 \\ 42,000 & 4 \end{array}$	$\begin{aligned} & 900- \\ & 4,000 \end{aligned}$	34		-50	51			EB BeforeAfter
	Rear-end	Fatal/Injury	Urban	4-leg	Stop	$\begin{aligned} & 12,650- \\ & 22,400 \end{aligned}$	$\begin{aligned} & 2,400- \\ & 3,625 \end{aligned}$	34		-38	39			EB BeforeAfter
	Right-angle	All			No signal	$\begin{aligned} & <5,000 / l a r \\ & \text { (Total) } \end{aligned}$		15		74				Simple Before-After
	Right-angle	All			No signal	$\begin{aligned} & >5,000 / l a r \\ & \text { (Total) } \end{aligned}$		15		43				Simple Before-After
	Right-angle	All			No signal			15		58				
	Right-angle	All			No signal			15		60				Simple Before-After
	Right-angle	All			No signal			15		42				Simple Before-After
	Right-angle	All			$\begin{aligned} & \text { No } \\ & \text { signal } \end{aligned}$			15		65				$\begin{aligned} & \text { Cross- } \\ & \text { section } \end{aligned}$
	Right-angle	All			$\begin{aligned} & \text { No } \\ & \text { signal } \end{aligned}$			15		65				$\begin{array}{\|l} \hline \text { Simple } \\ \text { Before-After } \end{array}$
	Right-angle	All			$\begin{aligned} & \text { No } \\ & \text { signal } \end{aligned}$			28		68				
	Right-angle	All			$\begin{aligned} & \text { No } \\ & \text { signal } \end{aligned}$			47		74	66	56	100	$\begin{array}{\|l} \hline \text { Simple } \\ \text { Before-After } \end{array}$
	Right-angle	Fatal/Injury	Urban	3-leg	Stop	$\begin{aligned} & 11,750- \\ & 42,000 \\ & \hline \end{aligned}$	$\begin{aligned} & 900- \\ & 4,000 \end{aligned}$	34		34	45			EB BeforeAfter
	Right-angle	Fatal/Injury	Urban	4-leg	Stop	$\begin{aligned} & 12,650- \\ & 22,400 \end{aligned}$	$\begin{aligned} & 2,400- \\ & 3,625 \end{aligned}$	34		67	20			EB BeforeAfter
	All	PDO			$\begin{aligned} & \text { No } \\ & \text { signal } \end{aligned}$			43	447	-15				Simple Before-After
\|nstall signals (temporary)	Head-on	PDO			$\begin{aligned} & \text { No } \\ & \text { signal } \end{aligned}$			15		83				$\begin{array}{\|l\|} \hline \text { Simple } \\ \text { Before-After } \end{array}$
	Left-turn	PDO			No signal			15		11				Simple Before-After
	Right-angle	Fatal/Injury			$\begin{aligned} & \mathrm{No} \\ & \text { signal } \end{aligned}$			15		39				Simple Before-After
	Right-angle	PDO			$\begin{aligned} & \text { No } \\ & \text { signal } \end{aligned}$			15		73				$\begin{aligned} & \text { Simple } \\ & \text { Before-After } \end{aligned}$
	Sideswipe	Fatal/Injury			No signal			15		50				Simple Before-After
Install signals (to have one over each approach lane)	Right-angle	All	All					35		46				$\begin{aligned} & \text { Simple } \\ & \text { Before-After } \end{aligned}$
Remove unwarranted signals	All	All			Signal			15		75				
	All	All			Signal			15		100				Simple Before-After
	All	All			Signal			15		50				$\begin{aligned} & \text { Cross- } \\ & \text { section } \end{aligned}$
	All	All			Signal			15		75				$\begin{array}{\|l} \hline \text { Simple } \\ \text { Before-After } \end{array}$
	All	All			Signal			28		52		50	53	
	All	All	Urban		Signal			21		24				EB BeforeAfter
	All	Fatal/Injury	Urban		Signal			21	199	53				EB BeforeAfter
	All	PDO	Urban		Signal			21	199	24				EB BeforeAfter
	Day	All	Urban		Signal			21	199	22				EB BeforeAfter
	Fixed object	All	Urban		Signal			21	199	31				EB BeforeAfter
	Night	All	Urban		Signal			21	199	30				EB BeforeAfter
	Rea-end	All			Signal			15		95		90	100	
	Rear-end	All			Signal			15		100				Simple Before-After
	Rear-end	All			Signal			15		90				$\begin{aligned} & \text { Cross- } \\ & \text { section } \end{aligned}$
	Rear-end	All	Urban		Signal			21	199	29				EB BeforeAfter
	Right-angle	All	Urban		Signal			21	199	24				EB BeforeAfter
Replace signal lenses with optical lenses	All	All			Signal			28		17		15	18	
	All	All			Signal			15		15				
	All	All			Signal			15		15				$\begin{aligned} & \text { Cross- } \\ & \text { section } \end{aligned}$
	Head-on	All			Signal			15		20				$\begin{aligned} & \text { Cross- } \\ & \text { section } \end{aligned}$
	Left-turn	All			Signal			15		10				$\begin{aligned} & \text { Cross- } \\ & \text { section } \end{aligned}$
	Rear-end	All			Signal			15		10				Crosssection
	Right-angle	All			Signal			15		10				$\begin{aligned} & \text { Cross- } \\ & \text { section } \end{aligned}$
	ION SIGNAL	AND OTHER	R COU	RMEAS	UURES									
Install left-turn lane and add turn phase	All	All			Signal			28		58		46	69	
Install signals and add channelization	Head-on	PDO			No signal			15		27				Simple Before-After
	Left-turn	PDO			$\begin{aligned} & \hline \begin{array}{l} \text { No } \\ \text { signal } \end{array} \\ & \hline \end{aligned}$			15		24				Simple Before-After
	ROR	Fatal/Injury			No signal			15		35				Simple Before-After
	Right-angle	Fatal/Injury			$\begin{aligned} & \text { No } \\ & \text { signal } \end{aligned}$			15		67				Simple Before-After
	Right-angle	DO						15		63				Simple

Page 72

Page 73

	Left-turn	PDO					15		71				Simple Before-After
	ROR	Fatal/Injury					15		8				Simple Before-After
	ROR	PDO					15		13				Simple Before-After
	Rear-end	Fatal/Injury					15		29				Simple Before-After
	Rear-end	PDO					15		32				Simple Before-After
	Right-angle	Fatal/Injury					15		20				Simple Before-After
	Right-angle	PDO					15		8				Simple Before-After
	Sideswipe	Fatal/Injury					15		50				Simple Before-After
Install left-turn lane (painted separation)	All	All				$\begin{aligned} & <5,000 / \text { lane } \\ & \text { (Total) } \end{aligned}$	15		50				Simple Before-After
	All	Fatal/Injury	Rural	${ }^{3-l e g}$		$\begin{aligned} & 5,000- \\ & 15,000 \end{aligned}$	13		22	14			Metaanalysis
	All	Fatal/Injury	Rural	4-leg		$\begin{aligned} & 5,000- \\ & 15,000 \end{aligned}$	13		-28	27			Metaanalysis
	All	PDO	Rural	${ }^{3-1 e g}$		$\begin{aligned} & 5,000- \\ & 15,000 \end{aligned}$	13		20	19			Metaanalysis
	All	PDO	Rural	4-leg		$\begin{aligned} & 5,000- \\ & 15,000 \end{aligned}$	13		26	12			Metaanalysis
	Left-turn	All				$\begin{aligned} & <5,000 / \text { lane } \\ & \text { (Total) } \end{aligned}$	15		57				Simple Before-After
	Left-turn	All				$\begin{aligned} & >5,000 / \text { lane } \\ & \text { (Total) } \end{aligned}$	15		35				Simple Before-After
	Overturn	All				$\begin{aligned} & <5,000 / l a n e \\ & \text { (Total) } \end{aligned}$	15		54				Simple Before-After
	Overturn	All				$\begin{aligned} & >5,000 / l a n e \\ & \text { (Total) } \end{aligned}$	15		39				Simple Before-After
	Rear-end	All				$\begin{aligned} & <5,000 / l a n e \\ & \text { (Total) } \end{aligned}$	15		54				Simple Before-After
	Rear-end	All				$\begin{aligned} & >5,000 / \text { lane } \\ & \text { (Total) } \end{aligned}$	15		39				Simple Before-After
	Right-angle	All				$\begin{aligned} & <5,000 / \text { lane } \\ & \text { (Total) } \end{aligned}$	15		62				Simple Before-After
	Right-angle	All				$\begin{aligned} & >5,000 / \text { lane } \\ & \text { (Total) } \end{aligned}$	15		49				Simple Before-After
Install left-turn lane (physical channelization)	All	All	All		No signal		1		35				
	All	All	All		Signal				25				
	All	All	Rural	3-leg	No signal		28		44				
	All	All	Rural	$\begin{aligned} & \hline \text { 4-leg } \\ & (1 \mathrm{app}) \end{aligned}$	No signal		28		28				
	All	All		$\begin{array}{\|l\|} \hline 4-\operatorname{leg} \\ (2 \mathrm{app}) \end{array}$	No signal		28		42				
	All	All				$\begin{aligned} & \text { <5,000/lane } \\ & \text { (Total) } \end{aligned}$	15		51				$\begin{aligned} & \text { Simple } \\ & \text { Before-After } \end{aligned}$
	All	All				$\begin{aligned} & >5,000 / \text { lane } \\ & \text { (Total) } \end{aligned}$	15		19				Simple Before-After
	All	All	Urban	${ }^{3-l e g}$	No signal		28		33				
	All	All	Urban	$\begin{array}{\|l\|} \hline \text { 4-leg } \\ (1 \mathrm{app}) \end{array}$	No signal		28		27				
	All	Fatal/Injury	Rural	3-leg		$\begin{aligned} & 5,000- \\ & 15,000 \\ & \hline \end{aligned}$	13		27	13			Metaanalysis
	All	Fatal/Injury	Rural	4-leg		$\begin{aligned} & 5,000- \\ & 15,000 \end{aligned}$	13		4	12			Metaanalysis
	All	PDO	Rural	${ }^{3-l e g}$		$\begin{aligned} & 5,000- \\ & 15,000 \end{aligned}$	13		-20	23			Metaanalysis
	All	PDO	Rural	${ }^{4-l e g}$		$\begin{aligned} & 5,000- \\ & 15,000 \end{aligned}$	13		16	22			Metaanalysis
	Left-turn	All				$\begin{aligned} & \text { <5,000/lane } \\ & \text { (Total) } \end{aligned}$	15		24				Simple Before-After
	Left-turn	All				$\begin{aligned} & >5,000 / \text { lane } \\ & \text { (Total) } \end{aligned}$	15		24				Simple Before-After
	Left-turn	Fatal/Injury					15		50				Simple Before-After
	ROR	PDO					15		50				Simple Before-After
	Overturn	All				$\begin{aligned} & \text { <5,000/lane } \\ & \text { (Total) } \end{aligned}$	15		50				Simple Before-After
	Overturn	All				$\begin{aligned} & >5,000 / l a n e \\ & \text { (Total) } \end{aligned}$	15		28				Simple Before-After
	Rear-end	All				$\begin{aligned} & \text { <5,000/lane } \\ & \text { (Total) } \end{aligned}$	15		50				Simple Before-After
	Rear-end	All				$\begin{aligned} & >5,000 / l a n e \\ & \text { (Total) } \end{aligned}$	15		28				Simple Before-After
	Rear-end	Fatal/Injury					15		11				Simple Before-After
	Rear-end	PDO					15		56				$\begin{aligned} & \text { Simple } \\ & \text { Before-After } \end{aligned}$
	Right-angle	All				$\begin{aligned} & <5,000 / \text { lane } \\ & \text { (Total) } \end{aligned}$	15		68				Simple Before-After
	Right-angle	All				$\begin{aligned} & >5,000 / \text { lane } \\ & \text { (Total) } \end{aligned}$	15		55				Simple Before-After
	Right-angle	Fatal/Injury					15		58				Simple Before-After
	Right-angle	PDO					15		54				Simple Before-After
Install left-turn lane (signal has left-turn phase)	All	All			Signal		28		31		25	36	
	All	All			Signal		51		35				
	Left-turn	All			Signal		28		44		43	45	
	Older-driver head on	All		${ }^{4-\operatorname{leg}}$	Signal		39	13	73				

	Younger- driver head on	All		4-leg	Signal			39	13	63			
Install left-turn lane (signal has no turn phase)	All	All			Signal			28		23	21	25	
	Left-turn	All			Signal			28		50	46	54	
Install left-turn lane (with channelization and existing left-turn phase)	All	All			Signal			15		35			
	All	All			Signal			15		35			$\begin{array}{\|l\|} \hline \text { Simple } \\ \text { Before-After } \\ \hline \end{array}$
	All	All			Signal			15		35			$\begin{aligned} & \text { Cross- } \\ & \text { section } \end{aligned}$
Install left-turn lane (with channelization and no left-turn phase)	All	All						15		15			
	All	All						15		15			$\begin{array}{\|l} \hline \text { Simple } \\ \text { Before-After } \end{array}$
	All	All						15		15			$\begin{aligned} & \text { Cross- } \\ & \text { section } \end{aligned}$
Install left-turn lane (within existing curbs)	All	All			Signal			28		26			
	Left-turn	All			Signal			28		66			
Install left-turn refuge within flush median	All	All				$\begin{aligned} & <5,0001 \\ & \text { (Total) } \end{aligned}$	lane	15		24			$\begin{array}{\|l\|} \hline \text { Simple } \\ \text { Before-After } \\ \hline \end{array}$
	All	All				$\begin{aligned} & >5,0001 \\ & \text { (Total) } \end{aligned}$	lane	15		44			$\begin{array}{\|l\|} \hline \text { Simple } \\ \text { Before-After } \end{array}$
	Head-on	All				$\begin{aligned} & >5,000 \\ & (\text { Total }) \end{aligned}$	lane	15		52			Simple Before-After
	Left-turn	All				$\begin{aligned} & >5,000 / \\ & \text { (Total) } \end{aligned}$	lane	15		77			$\begin{aligned} & \text { Simple } \\ & \text { Before-After } \end{aligned}$
	Overturn	All				$\begin{aligned} & \text { <5,000 } \\ & \text { (Total) } \end{aligned}$	lane	15		44			Simple Before-After
	Overturn	All				-5,000 (Total)	lane	15		40			$\begin{array}{\|l} \hline \text { Simple } \\ \text { Before-After } \end{array}$
	Rear-end	All				$\begin{aligned} & \begin{array}{l} <5,000 / \\ (\text { Total }) \end{array} \\ & \hline \end{aligned}$	lane	15		44			Simple Before-After
	Rear-end	All				$\begin{array}{r} >5,0001 \\ \text { (Total) } \end{array}$	lane	15		40			Simple Before-After
	Sideswipe	All				(Total)		15		52			$\begin{aligned} & \text { Simple } \\ & \text { Before-After } \end{aligned}$
Remove left-turn lane	All	All	Rural	3-leg	Signal			6		-18			
	All	All	Rural	$\left\lvert\, \begin{aligned} & 4-\mathrm{leg} \\ & (1 \mathrm{app}) \end{aligned}\right.$	Signal			6		-22			
	All	All	Rural	$\begin{gathered} 4-\mathrm{leg} \\ (2 \mathrm{app}) \end{gathered}$	Signal			6		-49			
	All	All	Urban	3-leg	Signal			6		-8			
	All	All	Urban	3-leg	Stop			6		-49			
	All	All	Urban	$\begin{gathered} 4-\mathrm{leg} \\ (1 \mathrm{app}) \end{gathered}$	Signal			6		-11			
	All	All	Urban	$\begin{gathered} 4-\mathrm{leg} \\ (1 \mathrm{app}) \end{gathered}$	Stop			${ }^{6}$		-37			
	All	All	Urban	$\begin{gathered} 4-\mathrm{leg} \\ (2 \mathrm{app}) \end{gathered}$	Signal			6		-23			
	All	All	Urban	$\begin{aligned} & 4-\operatorname{leg} \\ & (2 \mathrm{app}) \end{aligned}$	Stop			6		-88			
	All	Fatal/Injury	Rural	3-leg	Signal			6		-16			
	All	Fatal/Injury	Rural	$\begin{gathered} 4-\operatorname{leg} \\ (1 \mathrm{app}) \end{gathered}$	Signal			6		-21			
	All	Fatal/Injury	Rural	$\begin{aligned} & 4-\operatorname{leg} \\ & (2 \mathrm{app}) \end{aligned}$	Signal			6		-45			
	All	Fatal/Injury	Urban	3 -leg	Signal			6		-6			
	All	Fatal/Injury	Urban	3-leg	Stop			6		-53			
	All	Fatal/Injury	Urban	$\left.\begin{array}{c} 4-\operatorname{leg} \\ (1 \mathrm{app}) \end{array}\right)$	Signal			6		-10			
	All	Fatal/Injury	Urban	$\begin{gathered} 4-\mathrm{eg} \\ (1 \mathrm{app}) \end{gathered}$	Stop			${ }^{6}$		-41			
	All	Fatal/Injury	Urban	$\begin{aligned} & 4-\mathrm{leg} \\ & (2 \mathrm{app}) \end{aligned}$	Signal			${ }^{6}$		-21			
	All	Fatal/Injury	Urban	$\begin{aligned} & 4-\operatorname{leg} \\ & (2 \mathrm{app}) \end{aligned}$	Stop			6		-98			
	RIGHT-TUR	NCOUNTER	RMEA										
Increase length of right-turn lane	All	\|Fatal/Injury	All	All	All			158		15			
Install right-turn lane	All	All	All	$\begin{array}{\|l\|} \hline 4-\mathrm{leg} \\ 1 \\ 1 \end{array}$	Signal	$\begin{array}{r} 4,200- \\ 55,100 \\ \hline \end{array}$	$\begin{aligned} & 100- \\ & 26,000 \\ & \hline \end{aligned}$	22		4			$\begin{aligned} & \text { EB Before- } \\ & \text { After } \end{aligned}$
	All	All	All	$\begin{aligned} & 4-\operatorname{leg} \\ & (1 \mathrm{app}) \end{aligned}$	Stop	$\begin{aligned} & 1,100- \\ & 40,600 \end{aligned}$	$\begin{aligned} & 25- \\ & 11,800 \\ & \hline \end{aligned}$	22		14			$\begin{aligned} & \mathrm{EB} \text { Before- } \\ & \text { After } \end{aligned}$
	All	All	All	$\begin{gathered} 4-\mathrm{leg} \\ (2 \mathrm{app}) \end{gathered}$	Signal	$\begin{aligned} & 4,200- \\ & 55,100 \end{aligned}$	$\begin{aligned} & 100- \\ & 26,000 \end{aligned}$	22		8			$\begin{aligned} & \text { EB Before- } \\ & \text { After } \end{aligned}$
	All	All	All	$\begin{gathered} 4-\mathrm{leg} \\ (2 \mathrm{app}) \end{gathered}$	Stop	$\begin{aligned} & 1,100- \\ & 40,600 \end{aligned}$	$\begin{aligned} & 25- \\ & 11,800 \\ & \hline \end{aligned}$	22		26			$\begin{aligned} & \text { EB Before- } \\ & \text { After } \end{aligned}$
	All	All	All	All	All			58		35			
	All	All	All					1		25			
	All	All	Rural	$\begin{array}{\|c} 4-\mathrm{leg} \\ (1 \mathrm{app}) \end{array}$	Signal			28		14			
	All	All	Rural	$\begin{aligned} & 4-\mathrm{leg} \\ & (1 \mathrm{app}) \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { signal } \end{aligned}$			28		21	14	27	
	All	All		All	$\begin{aligned} & \text { No } \\ & \text { signal } \end{aligned}$			28		27	24	30	
	All	All						15		25			
	All	All						15		25			$\begin{aligned} & \text { Cross- } \\ & \text { section } \end{aligned}$
	All	All						15		25			$\begin{array}{\|l\|} \hline \text { Simple } \\ \text { Before-After } \\ \hline \end{array}$
	All	All						15		25			Simple Before-After
	All	Fatal/Injury	All	$\begin{array}{\|l\|} \hline 4-\mathrm{leg} \\ (1 \mathrm{app}) \end{array}$	Signal	$\begin{array}{r} 4,200- \\ 55,100 \\ \hline \end{array}$	$\begin{aligned} & 100- \\ & 26,000 \\ & \hline \end{aligned}$	22		9			$\begin{aligned} & \text { EB Before- } \\ & \text { After } \end{aligned}$
	All	Fatal/Injury	All	$\begin{aligned} & 4-\mathrm{eg} \\ & 1 \mathrm{app}) \end{aligned}$	Stop	$\begin{array}{r} 1,100- \\ 40,600 \end{array}$	$\begin{aligned} & 25- \\ & 11,800 \\ & \hline \end{aligned}$	22		23			$\begin{aligned} & \text { EB Before- } \\ & \text { After } \\ & \hline \end{aligned}$
	All	Fatal/Injury	All	All	$\begin{aligned} & \text { No } \\ & \text { signal } \end{aligned}$			58		35			
	All	Fatal/Injury	All	All	Signal			58		35			
	All	Fatal/Injury		All				51		40			

Page 75

Table 2. Geometric Countermeasures

Countermeasures	Crash Type	Crash Severity	Area Type	Config	Control	Major Minor Daily Traffic Volume (veh/day)		Ref	Obs	Effectiveness				Study Type	
								Crash Reduction Factor/Function		$\begin{aligned} & \text { Std } \\ & \text { Error } \end{aligned}$	Range				
											High				
OTHER GEOMETRIC COUNTERMEASURES															
Convert four-leg to two T-intersections	All	All		4-leg	No signal				28		57				
	All	Fatal/Injury	Urban	4-leg		<70\%*	>30\%**	13		33	6			Meta-analysis	
	All	Fatal/Injury	Urban	4-leg		>85\%*	<15\%**	13		-35	15			Meta-analysis	
	All	Fatal/Injury	Urban	4-leg		70-85\%*	15-30\%*	13		25	5			Meta-analysis	
	All	PDO	Urban	4-leg		<70\%**	>30\%**	13		10	5			Meta-analysis	
	All	PDO	Urban	4-leg		>85\%*	<15\%**	13		-15	6			Meta-analysis	
	All	PDO	Urban	4-leg		70-85\%*	15-30\%*	13		0	5			Meta-analysis	
	All	All		4-leg				51		57				Meta-analysis	
Convert intersection to roundabout	All	All	All		All			50	55	35	3			EB Before-After	
	All	All	All		Signal			50	9	48	5			EB Before-After	
	All	All	All		Signal			21	23	40				EB Before-After	
	All	All	All		Stop (2-way)			50	36	44	4			EB Before-After	
	All	All	All		Stop (4-way)			50	10	-3	15			EB Before-After	
	All	All	Rural	1-lane	Stop (2-way)			50	9	72	4			EB Before-After	
	All	All	Rural		Stop	7,185-17,220		44		58	7			EB Before-After	
	All	All		3-leg				15		50				Simple BeforeAfter	
	All	All		4-leg				15		75				Simple BeforeAfter	
	All	Fatal/Injury						55	181	65				Simple BeforeAfter	
	All	PDO						55	181	42				Simple BeforeAfter	
	Ped	All						55	181	89				Simple BeforeAfter	
	All	All	Urban		Stop	$\begin{aligned} & 13,272- \\ & 30,418 \end{aligned}$		44		5	10			EB Before-After	
	All	All	Urban		Signal	5,322-31,525		44		35	9			EB Before-After	
	All	All	Urban		Signal			50	5	1	12			EB Before-After	
	All	All	Urban		Signal			21	4	35				EB Before-After	
	All	All	Urban		Stop (2-way)			50	27	31	6			EB Before-After	
	All	All	Urban	1-lane	Stop (2-way)			50	16	56	6			EB Before-After	
	All	All	Urban	2-lane	Signal			50	4	67	4			EB Before-After	
	All	All	Urban	2-lane	Stop (2-way)			50	11	18	8			EB Before-After	
	All	All	Urban		Stop	4,600-17,825		44		72	6			EB Before-After	
	All	Fatal/Injury	All		All			50	55	76	3			EB Before-After	
	All	Fatal/Injury	All		Signal			50	9	78	6			EB Before-After	
	All	Fatal/Injury	All		Stop (2-way)			50	36	82	3			EB Before-After	
	All	Fatal/Injury	All		Stop (4-way)			50	10	-28	41			EB Before-After	
	All	Fatal/Injury	All		All			21	23	80				EB Before-After	
	All	Fatal/Injury	Rural	1-lane	Stop (2-way)			50	9	87	3			EB Before-After	
	All	Fatal/Injury	Rural		Stop	7,185-17,220		44		82	9			EB Before-After	
	All	Fatal/Injury			No signal			11	62	44		34	52	EB and Metaanalysis	
	All	Fatal/Injury			Signal			11	34	32		19	43	EB and Metaanalysis	
	All	Fatal/Injury						11	96	39		31	45	EB and Meta-	
	All	Fatal/Injury	Urban		Signal			50	5	60	12			EB Before-After	
	All	Fatal/Injury	Urban		Stop (2-way)			50	27	74	6			EB Before-After	
	All	Fatal/Injury	Urban	1-lane	Stop (2-way)			50	16	78	7			EB Before-After	
	All	Fatal/Injury	Urban	2-lane	Stop (2-way)			50	11	72	9			EB Before-After	
	All	Fatal/Injury	Urban		Signal	5,322-31,525		44		74	14			EB Before-After	
	All	Fatal/Injury	Urban		Stop	4,600-17,825		44		88	8			EB Before-After	
	Ped	Fatal/Injury			No signal			11		27					
	Ped	Fatal//njury			Signal			11		-28					
Improve intersection alignment (reduce skew)	All	All	Rural	3-leg	Stop			6		100(1-EXP $\left(0.0048^{*}\right.$ \|intersection angle $\left.-90^{\circ} \mid\right)$); angle in degrees					
	All	All	Rural	4-leg	Stop			6		$100\left(1-\operatorname{EXP}\left(0.0054^{*} \mid\right.\right.$ intersection angle - $\left.\left.90^{\circ}\right)\right)$; angle indegrees					
Improve sight distance in 1 quadrant	All	All	Rural	4-leg	$\begin{aligned} & \text { Stop/Yield } \\ & \text { (2-way) } \end{aligned}$			23		5				Expert Panel	
Improve sight distance in 2 quadrants	All	All	Rural	4-leg	$\begin{aligned} & \text { Stop/Yield } \\ & \text { (2-way) } \end{aligned}$			23		9					

Tools and Technology - Safety | Federal Highway Administration

Table 3. Signs/Markings/Operational Countermeasures

Countermeasures	Crash Type	Crash Severity	Area Type	Config	Control	Major Minor Daily Traffic Volume (veh/day)		Ref	Obs	Effectiveness				Study Type	
								Crash Reduction Factor/Function		Std Error	Range				
								Low			High				
SIGNS															
Install double stop signs	All	All			No signal				28		11				
	Right-angle	All			No signal			47	10	55	52	-38	100	Simple BeforeAfter	
	Right-angle	All			No signal			28		36					
Install flashing beacons as advance warning	All	All		3-leg				15		70				Simple BeforeAfter	
	All	All		4-leg				15		39				Simple BeforeAfter	

Page 77

	All	All			Signal		28		27		25	28	
	All	All					15		25				
	All	All					15		25				Cross-section
	All	All					15		27				Simple BeforeAfter
	All	All					15		25				Simple BeforeAfter
	Left-turn	Fatal/Injury					15		67				Simple BeforeAfter
	Left-turn	PDO					15		79				Simple BeforeAfter
	Rear-end	All		4-leg	Signal		39		36				
	Right-angle	All		4-leg	Signal		39		62				
	Right-angle	Fatal/Injury					15		73				Simple BeforeAfter
	Right-angle	Fatal/Injury					15		73				Simple BeforeAfter
	Right-angle	PDO					15		62				Simple BeforeAfter
Install larger stop signs	All	All			Stop	$\begin{aligned} & >5,000 / \text { /lane } \\ & \text { (Total) } \end{aligned}$	15		19				Simple BeforeAfter
Install pedestrian signing	All	All					15		4				
	Ped	All					15		15				
Install advance warning signs (positive guidance)	All	All	All				,		35				
	All	All			Signal		28		22		3	40	
	All	All	Urban				15		30				Cross-section
	All	All	Rural				15		40				
	Right-angle	All			Signal		47	11	35		20	100	Simple BeforeAfter
	Right-angle	All			Signal		28		35				
Provide overhead lane-use signs	Rear-end	All					51		10				
	Sideswipe	All					51		20				
				T MAR	NGS/MO	DIFICATION							
Add centerline and move STOP bar to extended curb lines	All	All			No signal		28		29				
	Right-angle	All			No signal		28		24				
Add centerline and move STOP bar to extended curb lines, double stop signs	All	All			No signal		28		9				
	Right-angle	All			No signal		28		0				
Add centerline and STOP bar, replace 24-inch with 30 -inch stop signs	Right-angle	All			No signal		47		67	11	27	100	Simple BeforeAfter
	Right-angle	All			No signal		28		67				
Improve pavement friction (groove)	All	All					28		25				
	Wet	All					28		59		42	75	
Improve/install pedestrian crossing	All	All					15		25				
	Ped	All					15		25				
Install pedestrian crossing	Ped	All					15		25				
	Ped	All					15		25				
	Ped	Fatal/Injury	Rural				38		60				EB Before-After
Install pedestrian crossing (raised)	All	All					5		30	67			Meta-analysis
	All	Fatal/Injury					5		36	54			Meta-analysis
	Ped	All					28		8				
Install raised intersection	All	Fatal/Injury		4-leg			13		-5				Meta-analysis
	All	PDO		4-leg			13		-13				Meta-analysis
Install raised pavement markers	All	All					28		10		6	13	
	Wet	All					28		25		20	30	
	Wet/Night	All					28		33		20	16	
Install STOP bars (pedestrian crosswalk)	All	All			Signal		28		18		10	25	
Install STOP bars (STOP bar on minor road	All	All					28		19		10	27	
approaches, with short segments of centerline)	Right-angle	All					28		47				
Install transverse pavement markings	All	All					15		18				Simple BeforeAfter
	Speedrelated	Fatal//njury			Stop		18		57	8			Simple BeforeAfter
	Speedrelated	Serious injury			Stop		18		74	13			Simple BeforeAfter
	Speedrelated	$\begin{aligned} & \text { Slight } \\ & \text { injury } \end{aligned}$			Stop		18		52	11			Simple BeforeAfter
	Speedrelated and day	All			Stop		18		66	8			Simple BeforeAfter
	Speedrelated and dry	All			Stop		18		45	15			Simple BeforeAfter
	Speedrelated	All			Stop		18		48	14			Simple BeforeAfter
	Speedrelated and wet	All			Stop		18		68	11			Simple BeforeAfter
Install transverse rumble strips on approaches	All	All	Rural		No signal		28		35				
	All	All			Stop		15		28				Simple BeforeAfter
	All	All					28		23		2	44	

Page 78

Tools and Technology - Safety | Federal Highway Administration

	Rear-end	All					15		90				Simple BeforeAfter
Mark pavement with supplementary warning messages	All	All			$\begin{array}{\|l\|} \hline \begin{array}{l} N o \\ \text { signal } \end{array} \end{array}$		28		6				
	Right-angle	All			$\begin{array}{\|l\|} \hline \begin{array}{l} \text { No } \\ \text { signal } \end{array} \\ \hline \end{array}$		28		30				
	Right-angle	All	Urban		Stop		47	5	30	66	-20	100	Simple Before- After
Provide bicycle box (advance stop bar to leave dedicated space for cyclists)	Bicycle	All			Signal		51		36				
Provide bike lanes	Bicycle	All					51		36				
Resurface pavement	All	All					28		33		7	59	
	Wet	All					28		47		42	75	
REGULATORY													
Convert STOP control to Yield control	All	All	All		Stop		21	141	-137				Comparison Group Before After
	All	All	Urban	4-leg	Stop		33		-127	70			Comparison Group Before After
Convert to all-way STOP control (from 2-way control)	All	All	All		Stop		21	360	47				Before-After with Likelihood Functions
	All	All			$\begin{aligned} & \hline \begin{array}{l} \text { No } \\ \text { signal } \end{array} \end{aligned}$		28		64		53	74	
	All	All			Stop		15		53				
	All	Fatal/Injury	Urban		Stop		30		71	6			$\begin{aligned} & \text { Simple Before- } \\ & \text { After } \end{aligned}$
	Left-turn	All	Urban		Stop		30		20	52			Simple BeforeAfter
	Left-turn	All			Stop		15		20				Cross-section
	Ped	All					15		39				
	Ped	All	Urban		Stop		30		39	8			Before-After
	Rear-end	All	Urban		Stop		30		13	13			$\begin{array}{\|l\|} \hline \text { Simple Before- } \\ \text { After } \end{array}$
	Rear-end	All			Stop		15		13				Cross-section
	Right-angle	All	Urban		Stop		30		72	3			Simple BeforeAfter
	Right-angle	All			$\begin{array}{\|l\|} \hline \begin{array}{l} \text { No } \\ \text { signal } \end{array} \end{array}$		28		84				
	Right-angle	All			Stop		15		72				Cross-section
	Right-angle	All	Urban		Stop		47	10	80	41	49	100	Simple BeforeAfter
Convert two-way to one-way roadway	All	All					15		26				
	All	All					15		26				Cross-section
Convert Yield control to STOP control	All	All			$\begin{aligned} & \text { No } \\ & \text { signal } \end{aligned}$		28		29				
	Right-angle	All			$\begin{array}{\|l\|} \hline \text { No } \\ \text { signal } \end{array}$		28		9				
Install no left-turn and no u-turn signs	All	All	Urban			$\begin{aligned} & 19,435-42,000 \\ & \text { (Total) } \end{aligned}$	7		62	6			$\begin{aligned} & \text { Simple Before- } \\ & \text { After } \\ & \hline \end{aligned}$
	$\begin{aligned} & \begin{array}{l} \text { Left-turn (or } \\ \text { u-turn) } \end{array} \\ & \hline \end{aligned}$	All	Urban			$\begin{aligned} & 19,435-42,000 \\ & \text { (Total) } \end{aligned}$	7		59	5			Simple Before- After
Permit right-turn-onred	All	All			Signal		5		-7	1			Simple Before- After
	All	All			Signal		10		-5	1			$\begin{aligned} & \begin{array}{l} \text { Simple Before- } \\ \text { After } \end{array} \\ & \hline \end{aligned}$
	Ped	All	New Orleans		Signal		5		-81	88			Before-After
	Ped	All	New York		Signal		5		-43	24			Before-After
	Ped	All	Ohio		Signal		5		-57	31			Before-After
	Ped	All	Wisconsin		Signal		5		-108	51			Before-After
	Right-turn	Fatal/Injury			Signal		13		-60	5			Meta-analysis
	Right-turn	PDO			Signal		13		-10	1			Meta-analysis
Prohibit left-turns	All	All					15		-45				
	All	All					15		45				Cross-section
	Left-turn	All					15		90				Cross-section
	Ped	All					15		10				
	Rear-end	All					15		30				Cross-section
Prohibit right-turn-onred	All	All			Signal		28		23		20	25	
	ROR	All			Signal		15		30				Cross-section
	Rear-end	All			Signal		15		20				Cross-section
	All	All	Urban/suburban		Signal		62		100(1-(0.984)^n); n=number of signalized intersection appraoches where RTOR is prohibited				Expert Panel
	Right-angle	All			Signal		15		30				Cross-section
	Sideswipe	All			Signal		15		20				Cross-section
Prohibit turns	All turns	All	All				1		45		40	90	
Restrict parking near intersections (to offstreet)	All	All					28		49		8	90	
	Ped	All					15		30				
Vary speed	All	All	Rural				6		100(1-EXP(0.019(V-55))); V=majorroad speed limit (or design speed) (mph)				
	All	All	Urban				6		100(1-EXP(0.005(V-40))); V=majorroad speed limit (or design speed) (mph)				
LIGHTING													
Improve lighting at intersection	Ped	Fatal					5		78	87			
	Ped	Injury					5		42	18			

Page 80

<Previous Next>

Safe Roads for a Safer Future
Investment in roadway safety saves lives

[^0]
APPENDIXI

Route Information

Project Information

ROUTE TYPE: State Road
ROUTE: 56
LENGTH: . 1
START RP: $116+4$
END RP: 116 + 14
LOCATION: At Boatman Road (CR 200W) west of Scottsburg

CITY:

COUNTY NAME: Scott

DISTRICT: Seymour

WORK CATEGORY: Intersection Improvement Project

WORK TYPE: Intersection Improvement, Roundabout

ASSET GROUP: Safety

SCORE: 80

Project Costs

Des \#	CN Costs	RW Costs	PE Costs	Other Costs	Total Costs
1800210 (*Origin Des)	\$1,884,000.00	\$0.00	\$250,000.00	\$0.00	\$2,134,000.00

Cost are from latest stage: CN = CN, RW = RW1+RW2, PE =PE1+PE2, Other= UT1+UT2+RR1+RR2+CE+RQP+WZP
INITIAL STATEMENT OF ESSENTIAL PROJECT NEED(PROBLEM): The current intersection is in a reverse curve segment, and is at a skew with a 25 degree angle. 45% of the crashes are right angle crashes, and crash narratives have indicated a trend that drivers are not aware of the intersection. Crash narratives also indicate that drivers are unaware that the intersection is a two way stop rather than a four way stop when approaching from the Northbound and Southbound directions. A fatal crash and two incapacitating injury crashes have been recorded within the last three years, and the index of crash frequency rates at 3.21.
INITIAL STATEMENT OF ESSENTIAL PROJECT PURPOSE: The intent of this project is to improve the safety of the intersection and reduce the frequency and severity of crashes that occur by reconstructing the intersection as a roundabout.

PRIOR PLANNING, ENGINEERING OR OTHER STUDY OR ACTIVITY PROMPTING AND SUPPORTING THE PROJECT:

ANTICIPATED ENVIRONMENTAL STUDY: Cateqorical Exclusion
ADDITIONAL ENGINEERING NEEDED TO ESTABLISH DEFINITE PROJECT IMPROVEMENTS: No ANTICIPATED NUMBER OF MONTHS TO COMPLETE:

ADDITIONAL COMMENTS:

Attachments

Name Do_ Document Type Description

$$
\begin{aligned}
P D_{\text {Equivalent }} & =58 h+6 y+2 \\
& =58(1+6)+6(5)+(21) \\
& =457
\end{aligned}
$$

$$
A_{\text {nival }} P D_{\text {equiv. }}=P D_{\text {equiv. }} / 5
$$

$$
=457 / 5=91 \text { crashes per year }
$$

$$
C R=A_{\text {annual }} P D_{\text {equiv. }} \times C R F_{\text {composite }}
$$

$$
C E_{\text {safety }}=A / C R
$$

Conventional	$C E_{\text {safety }}=472,000 / 28=\$ 2,571$ per $P D_{\text {air crash reduced }}$
Roundabout	$C E$ safety $=\$ 06,000 / 52=\$ 2,038$ per $P D_{\text {equiv cash reduced }}$
Offset T	$C E$ safety $=$

Index of Crash Frequency and Cost - Form F1			Page 1/2
Location	SR 56 and Boatman Rd		
Scottsburg, Scott County			
GIS			
Post			
Analyst	Damon Brown		
Date			
INPUT			
Road Facility Type		Unsignalized Urban State-Local Intersection	
Major Road AADT (veh/day)			10589
T-intersection Indicator (1 if present, 0 otherwise)			0
Major Collector Indicator for Crossing Local Road (1 if present, 0 otherwise)			1
First Year with Crash Data (yyyy)			2014
Last Year with Crash Data (yyyy)			2016
Number of Crashes (crash/period)			
Fatal and Incapacitating Injury Crashes			3
Non-Incapacitating and Possible Injury Crashes			2
Property Damage Only Crashes			14
Route or Road Type		Unsignalized Urban	ersection
Average Crash Costs (\$)			
Fatal and Incapacitating Injury Crashes			279300
Non-Incapacitating and Possible Injury Crashes			31400
Property Damage Only Crashes			6500
Crash Cost Year (yyyy)			2017
OUTPUT			
Expected Crash Frequency (crash/year)			
Fatal and Incapacitating Injury Crashes			0.029
Non-Incapacitating and Possible Injury Crashes			0.19
Property Damage Only Crashes			0.75
All Crashes			0.97
Index of Crash Frequency			3.15
Index of Crash Cost			1.89

Index of Crash Frequency and Cost - Form F1

Location	SR 56 and Boatman Rd	
Scottsburg, Scott County		
GIS		
Post		

Page 85

[^0]: Privacy Policy | Freedom of Information Act (FOIA) | Accessibility | Web Policies \& Notices | No Fear Act | Report Waste, Fraud and Abuse | U.S. DOT Home | USA.gov | WhiteHouse.gov

 Federal Highway Administration | 1200 New Jersey Avenue, SE | Washington, DC 20590 | 202-366-4000

