February 16, 2017

BrR County Rating Example

Collect Information

Existing Plans

Inspection Notes

-BM 7 - 3 EXP STRANDS -BM 8 - IEXP STRAND

Confirm Plans Beam Size Span Length Out-to-Out Coping

Note Deterioration

BIAS Data

AGE	OF SERVICE	
27.	Year Built:	1972
GEO	METIC DATA	
48.	Maximum Span Length:	69.2 ft.
50A.	Sidewalk/Curb Left:	0 ft.
51.	Bridge Roadway Width:	31.8 ft.
32.	Approach Roadway Width.	22 ft.
34.	Skew:	10 Degree(s)

Box Beam Standard Drawings

- Material Properties from Bridge Standard PB6
 - Prestressed Concrete
 - ➢ f'ci = 4000 psi
 - ➢ f'c = 5000 psi
 - Prestressing Strands
 - 7 Wire Stress Relieved
 - 250,000 psi or 270,000 psi
 - Interior Diaphragm Locations

SPECFICATIONS: AAS40 Signaland Specifications for Highway Bridges, 1963 Edition.

- DADHECCH: 6 Disphragens of microsco for coors up to 50 and 8 Disphragens of the total points for space from 50 to 75 and of quarter points are 75. DRAWINGS: They county and calculations much be submitted by the mean failure trans to the conserver. These the head of the colors arises are calculations and for colors and for colors arises are calculated by the mean failed of the colors arise, and the colors are an area to the color of the colors are an area to the color of the colors are and the colors are an area to the colors are and the colors are an area to the color of the colors are area to the color of the colors are area to the color of the color of the colors are area to the color of the color
 - The presences of steel shall be 7 wire stress releared strends of 250,000 PSS, minimum tensile strend for standard strands and 270,000 PSS, minimum tensile strength for the high strength promote as snown in teoles.
- COMPOSITE BEAMS: PBSA and PB98 designed with & composite abo (ft Sass RSI.) and 35 lbs. per as. ft. 1 future wearing purface.

Interior Beams 33"x45"x73' Non-Composite Assume B-33 3-9 Prestressed Non-Composite Box Beam 3'-9" Wide Bridge Standard PB 7A

Exterior Beams 33"x48"x 73' Composite Assume CB-33 Prestressed Non-Composite Box Beam 4'-0" Wide Bridge Standard PB 9A

	5100	12	-	1	2	3	· · · ·	/	2	13	
SRAN	Leco	73.00	\$57	200		1.5	1'57	RAND		1.5	
0	4	ŝ.	No.	Row	R BOND INPEAK	ia de la compañía de la compa	No.	Row	+BOND BREAK	in the	WEIGHT
49	30.0	183	25			1	14	7		100	1/04.3
	36	F		1.8-1		-	_	1			45200
		2.01	27	171			72			1	
61	26			2	a wat had not make the set		13	2			10.000
		10 44		3		1		3		++	46,600
63	14"	2.20	28	 6 			16	1			
			-	3 1	and the second se			2			49,000
	4.0	3.22	29	7			77	7			
60	×4		1	2			-	2		 	69300
		2.57	29	-7-1		-		3			49,500
67	1/2		1	2			10				
			-	3				- <u>*</u> -			50,700
ca	56-	2.75	-29	6		1	19	1.1	182:9		
•2	-//-	_	_Z_	- <u>*</u>	- Alexandria alabid serverale res-			2			50.00
	1.	2.95	29	7		-	20	3	0.001.0		
7/	78		-71	2	The LE LEWIS CO.			2	L		58 (CO

Build BrR Model

Bridge Description

- Bridge ID = BIAS Asset Name
- NBI = BIAS Asset Code
- Description should include:
 - Name of individual responsible for the load rating
 - Name of individual responsible for review
 - Dates for each of the above

a	BIAS Asset Name	
	Bridge ID: BIAS Asset Na	Ame NBI Structure ID (8): BIAS Asset Code Template Superstructures BiAS Asset Code Bridge Completely Defined
	Description Description	(cont'd) Alternatives Global Reference Point Traffic Custom Agency Fields
	Name: N	NBI=BIAS Asset Code (PCBB) Year Built: 1971
	Description: S E E	Single Span Continuous Prestressed Concrete Box Beam Bridge Bridge Rated by: Andrew Hipskind (United Consulting) on January 25, 2017 Bridge Reviewed by: Jennifer Hart (United Consulting) on February 13, 2017 INDOT Reviewed by:
	Location:	Length: 73.00 ft

Define Materials

Start by copying materials from Library and make adjustments as needed.

Name: PSC 5	ks De	scription: F	Prestressed Concrete	
	Compressive strength at 28 days (f'c) =	5.000	ksi	
	Initial compressive strength (f'ci) =	4.000	ksi	
	Coefficient of thermal expansion =	0.000006	0000 1/F	
	Density (for dead loads) =	0.150	kcf	
	Density (for modulus of elasticity) =	0.145	kcf	
	Std Modulus of elasticity (Ec) =	4074.28	ksi	
	LRFD Modulus of elasticity (Ec) =	4291.19	ksi	
	Std Initial modulus of elasticity =	3644.15	ksi	
	LRFD Initial modulus of elasticity =	3986.55	ksi	
	Poisson's ratio =	0.200		
	Composition of concrete =	Normal		
	Modulus of rupture =	0.537	ksi	
'(7w-270) LR De	scription: Low relaxation 1/2"/Seven	Wire/fpu =	270 Apply	
Ctrand diameter -	0.5000			
Strand diameter =	0.153			
Strand type =	Stress Believed			
Ultimate tensile strength (Fu) =	270.000 ksi			
Yield strenath (Fv) =	243.000 ksi			
Modulus of elasticity (E) =	28500.00 ksi			
Transfer length (Std) =	25.0000 in			
Transfer length (LRFD) =	30.0000 in			
2 . ,	0.520 lb/ft			
Unit load per length =	ILST IN			
Unit load per length =	Epoxy coated			

Define Beam Shapes

Build beams with dimensions that match the standard drawings

Define Railing / Appurtenances

bridge rail each side.

Create Superstructure Definition

New Superstructure Definition			
Girder System Superstructure		Girder System Superstructure Definition	
Floor System Superstructure		Definition Analysis Specs Engine	
Floor Line Superstructure		Name: 9 Beam System	Frame Structure Simplified Definition
Truss System Superstructure Truss Line Superstructure		Description:	Deck type:
Reinforced Concrete Slab System Superstructure	-		Concrete
Concrete Multi-Cell Box Superstructure			-
	r	Default Units: US Customary Lenter Span Lengths Along the Reference	For PS only
		Number of spans: 1 Line:	Average humidity:
		Number of girders: 9 Span (ft) 1 72 33	70.000 %
		12.00	Member Alt. Types
			III Steel IV P/S
			R/C

Create Load Cases

Start by adding Default Load Case Descriptions delete the ones not used.

•
•

Create Framing Plan

	🗛 Schematics: Framing Plan View
A Structure Framing Plan Details	
Number of spans = Layout Diaphragms Girder Spacing Orientation	County Bridge NBI≕County Bridge NBI (PCBB) - 9 Beam System 02/14/17
Support Skew (Degrees) 1 -10.0000 2 -11.0000	
Z -10.0000 Girder Girder Spacing (ft) Bay Start of Girder 1 3.88 2 3.75 3 3.75 4 3.75 5 3.75 6 3.75 7 3.75 8 3.88	PSCBB1 PSCBB2 PSCBB2 PSCBB3 PSCBB3 PSCBB3 PSCBB4 PSCBB5 PSCBB6 PSCBB6 PSCBB6 PSCBB7 - DET PSCBB9 Jack PSCBB9 Jack PSCBB4 PSCBB9 Jack PSCBB4 PSCBB9 Jack PSCBB4 PSCBB9 Jack PSCBB4 PSCBB4 PSCBB5 PSCBB5 PSCBB5 PSCBB5 PSCBB6 PSCBB5 PSCBB6 PSCBB5 PSCBB6 PSCBB5 PSCBB6 PSCB6 PSC

View Schematic icon provides a graphic of the structure to compare with plans/sketches

Create Structure Typical Section

	🗛 Schematics: Bridge Typical Cross Section View
A Structure Typical Section	
Distance from left edge of deck to superstructure definition ref. line Deck thickness	County Bridge NBI=County Bridge NBI (PCBB) - 9 Beam System 02/14/17
Left overhang	35'-0"
Deck Deck (Cont'd) Parapet Median Railing Generic Sidewalk Lane Position Striped Lanes W Superstructure definition reference line is within the bridge deck. Distance from left edge of deck to 17.50 <	32'-4"
Superstructure definition reference line = It It Distance from right edge of deck to superstructure definition reference line = 17.50 ft	— Deck Thickness 6"
Left overhang = 2.38 ft 2.38 ft Computed right overhang = 2.37 ft 2.37 ft	Travelway 1
	PSQBB1 PSQBB2 PSQBB3 PSQBB4 PSQBB5 PSQBB6CBB7 -P34DBB8 - DE+SQBB9 CB 33x48B-33 x3'-9B-33 x3'-9B-33 x3'-9B-33 x3'-9B-33 x3'-9B-33 x3'-9B-33 x3'-9'CB 33x48 2'-4 1/2'3'-10 1/2'' 3'-9'' 3'-9'' 3'-9'' 3'-9'' 3'-9'' 3'-9'' 3'-9'' 3'-9'' 3'-9'' 3'-9'' 3'-9'' 3'-9'' 3'-9''

BrR uses information in this dialog box to calculate dead loads.

Define Concrete Stress Limits & Strand Properties

			🕰 Stress Limit Sets - Concrete			
SUPERSTRUCTURE DEFINI	ITIONS					
🖮 🖬 9 Beam System			Name:			
	mic Load Allowance		Description:			
Load Case Des	cription					
Framing Plan D	Detail		Loncrete Material:			
DIS Dianhragm Los	ding Selection			LFD	LRFD	
	all Contine		Initial allowable compression:	2.400 ksi	2.400 ksi	
Structure Typic	al Section		Initial allowable tension:	0.190 ksi	0.190 ksi	
	Loads		Final allowable compressions	3,000	3,000	
Stress Limits			Final allowable compression.	ksi	s.soo ksi	
σ _m Concrete	Limits		Final allowable tension:	0.425 ksi	0.425 ksi	
📄 🔤 Prestress Prope	erties		Final allowable DL compression:	2.000 ksi	2.250 ksi	
🔤 🚮 Strands			Final allowable slab compression:	ksi	ksi	
	A Prestress Properties		Final allowable compression:	2.000 ksi	2.000 ksi	
	Name: Strands		(LL + 1/2(Pe + DL))			
					OK Apply	Cancel
	General P/S Data Loss Data - Lump Sum Loss Data - PCI					
	P/S strand material: 1/2" (7W-270) LR 🔹	Jacking stress ratio:	0.750			
	Loss method: AASHTO Refined -	P/S transfer stress ratio:				
		Transfer time:	24.0 Hours			
		Ago at dock placements	28.00 Days			
		Age at deck placement.	27375.00			
	Loss Data - AASHTU	Final age:	Days			
	Percentage DL: 0.0 %					
	🕜 luckula electia gaine					
		ОК	Apply Cancel			

Build Individual Members

Select Control Options

Generate at 10th points except at supports

Generate at support face & critical shear points

Provide information for Effective Supports within model

Calculate Live Load Distribution Factor

I PSCBBI Hember Loads Supports MEMBER ALTERNATIVES I PSC BB1 (E) (C) Impact / Dynamic Load Allowance	imme in Members	🂫 Live Load Dis	tribution				
Impact / Dynamic Load Allowance Impact / Dynamic Load Allowance <td>■ I PSCBB1 Supports I PSC BB1 (E) (C) I Default Materials</td> <td>Standard LF Distribution © Use V Allow dist</td> <td>FD Factor Input Method Simplified Method ribution factors to be</td> <td>Use Advar</td> <td>nced Method effects of permit</td> <td>loads with routine</td> <td>traffic</td>	■ I PSCBB1 Supports I PSC BB1 (E) (C) I Default Materials	Standard LF Distribution © Use V Allow dist	FD Factor Input Method Simplified Method ribution factors to be	Use Advar	nced Method effects of permit	loads with routine	traffic
 Shrinkage/Time Beam Details Effective Supports Mild Steel Layout Strand Layout Span 1 Deck Profile Haunch Profile Interior Diaphragms Shear Reinforcement Ranges Points of Interest 	LL List, Live Load Distribution	Lanes		Distribution (Wheel	Factor s)		
 Beam Details Effective Supports Mild Steel Layout Strand Layout Span 1 Deck Profile Haunch Profile Interior Diaphragms Shear Reinforcement Ranges Points of Interest 	投 Shrinkage/Time	Loaded	Shear	Shear at Supports	Moment	Deflection	
Effective Supports Multi-Lane 0.673 0.753 0.673 0.444 Multi-Lane 0.673 0.753 0.673 0.444 Multi-Lane 0.673 0.753 0.673 0.444 Compute from Typical Section View Calcs OK Apply Cancel	🗕 Beam Details	1 Lane	0.673	0.753	0.673	0.222	
Points of Interest	Effective Supports Image: Mild Steel Layout Image: Mild Steel Layout Image: Strand Layout Image: Span 1 Image: Deck Profile Image: Maunch Profile Image: Maunch Profile Image: Shear Reinforcement Ranges Image: Shear Re	Mult-Lane Compute Typical Ser	from tion	0.753	0.673	0.444	Apply Cancel
		•					· ·

BrR uses beam information and bridge geometry to compute LLD factors. This does not automatically update when revisions are made to the model.

Assign Beam Details

Assign previously defined materials to individual beams

Layout Strands

Define Deck Profile

÷	MEMBERS														
	Em I PSCBB1	🗛 D	eck Profile											• ×	ζ
		Тур	e: PS Precast Box]											
	🚡 Supports	De	eck Concrete Reinforcement												
	🖮 💼 MEMBER ALTERNATIVES														
	I PSC BB1 (E) (C)				Start		End	Structural	Start Effective	End Effective	Start Effective	End Effective	1		
	🖥 Default Materials		Material	Support Number	Distance (ff)	Length (ft)	Distance (ft)	Thickness	Flange Width (Std)	Flange Width (Std)	Flange Width (LRFD)	Flange Width (LRFD) n			
	Impact / Dynamic I		Class A (US)	1 -	0.00	72 33	72.33	6 0000	(in) 51 7500	(in) 51 7500	(in) 0 0000	(in) 0 0000 8	4		
	LL Live Load Distributi				0.00	12.00	72.00	0.0000	01.1000	01.1000	0.0000	0.0000 0.	_		
	🕓 Shrinkage/Time														
	🐱 Beam Details														
	Effective Supports														
	🖽 📖 Mild Steel Layout														
	📄 🧰 Strand Layout														
			·												
	📼 Deck Profile		Compute from Typical Section								New	Duplicate	De	lete	
	📼 Haunch Profile										ОК	Apply		Cancel	
	🧰 Interior Diaphragm														
	📖 🕮 Shear Reinforcemer	nt Ra	anges												
	📄 Points of Interest														

Deck profile is used to calculate effective flange width and not dead loads

Define Shear Reinforcement Ranges

Perform Load Rating

Define Analysis Settings and Perform Rating

SUPERSTRUCTURE DEFINITIONS Supervision Su	Analysis Settings	<u>r</u>
DLS Diaphragm Loading Selection 	As Requested Apply Preference Setting: None Vehicles Output Engine Description Vehicles Both directions Refresh Temporary Vehicles Vehicles Vehicles Vehicles Add to Atternate Military Loading Add to H 15-44 H 20-44 H 20-44 Particles H 20-44 Particles H 5 2044 Particles NRL SU5 SU5 SU6 SU7 Type 3 3 Tupe 3.3 Tupe 3.3 Tupe 3.3 Sure Template	Select Analysis Settings icon to select rating method and vehicles to rate.

Highlight Beam (or System) and select Analyze Icon to perform load rating.

BrR View Analysis Results

🗛 Analysis Results - PSC BB1																							
Report Type Rating Results Summary	✓ Lane.	/Impact Loadin; s Requested	g Type	Display Fo Mutiple ra	ormat ating lev	els per n	ow	•															
Live Load	Live Load Type	Rating Method	Inventory Load Rating (Ton)	Operating Load Rating (Ton)	Legal Opera ting Load Rating (Ton)	Permit Invento ry Load Rating (Ton)	Permit Operati ng Load Rating (Ton)	Inventory Rating Factor	Operating Rating Factor	Legal Opera ting Rating Facto r	Permit Invento ry Rating Factor	Permit Operating Rating Factor	Inventory Location (ft)	Inventory Location Span-(%)	Operating Location (ft)	Operating Location Span-(%)	Legal Operat ng Locatio n (ft)	Legal Opera ing Locati on Span- %)	Per mit Pern Inv Inve ent or ory Loc Lo or (cat Spa ion (% (ft)	mit Permit Opera y ng at Locat n n- (ft)	P e ati io C P e r a	Inventory Limit State	Operating Limit State
H 20-44	Lane	LFD	33.24	55.51	1			1.662	2.775				36.17	1 - (50.0)	36.17	1 - (50.0)	/				Design Flexure - Concrete	Design Flexure - Conc
HS 20-44	Lane	LFD	59.83	99.91				1.662	2.775				36.17	1 - (50.0)	36.17	1 - (50.0)						Design Flexure - Concrete	Design Flexure - Conc
H 20-44	Axle Load	LFD	37.06	61.89	1			1.853	3.094				36.17	1 - (50.0)	36.17	1 - (50.0))					Design Flexure - Concrete	Design Flexure - Conc
HS 20-44	Axle Load	LFD	43.56	72.74				1.210	2.021	1			36.17	1 - (50.0)	36.17	1 - (50.0))					Design Flexure - Concrete	Design Flexure - Conc
4																							
AASHTO LFR Engine Version 6.7.1.3001 Analysis Preference Setting: None																							
																							Close

- **Controlling Rating** (HS20 Inv = 1.210)
- Limiting Condition (Design Flexure Concrete)
- Location (36.17 ft, or 50% of Span 1)

After the controlling location and condition is identified, use the View Spec Check icon to identify the limiting AASHTO Code reference.

🚊 🚥 SUPERSTRUCTURE DEFINITIONS	Specification Checks for PSC BB1 - 21 of 592				
🖃 🖬 🖬 9 Beam System	Guerstructure Component	Specification Reference	Limit State	Flex. Sense	Pass/Fail
Impact / Dynamic Load Allowance	Prestress Calculations	✓ 6B.5.3.3 PS Concrete Compressive Stress		N/A	Passed
Load Case Description	🗄 🦲 Stage 1	✓ 6B.5.3.3 PS Concrete Tensile Stress		N/A	Passed
Framing Plan Detail	i Stage 2	✓ 6B.5.3.3 PS Flexure Rating		N/A	Passed
UL3 Diaphragm Loading Selection	Stage 3	6B.5.3.3 PS Moment Capacity		N/A	General Comp.
Superstructure Loads		✓ 6B.5.3.3 PS Shear Rating		N/A	Passed
Superstructure cours	Span 1 - 162 ft	✓ 6B.5.3.3 PS Steel Tensile Stress		N/A	Passed
Prestress Properties	Span 1 - 1.75 ft.	🖺 8.16.2.7 Design Assumptions		N/A	General Comp.
🗑 🛄 Shear Reinforcement Definitions	□ Span 1 - 4.50 ft.	9.15.2.3 Concrete - Cracking Stress		N/A	General Comp.
🖃 🚥 💼 MEMBERS	📄 Span 1 - 7.23 ft.	✓ 9.17 Flexural Strength		N/A	Passed
⊨ I PSCBB1		9.18.2.1 Ductility Limits - Minimum Steel		N/A	General Comp.
👫 Member Loads		9.20.1.3 Nominal Shear Capacity		N/A	General Comp.
🗛 Supports		9.20.2.1 Shear Strength Provided by Concrete		N/A	General Comp.
MEMBER ALTERNATIVES		9.20.2.2 Shear Strength Provided by Concrete		N/A	General Comp.
i PSC BB1 (E) (C)		9.20.2.3 Shear Strength Provided by Concrete		N/A	General Comp.
	Span 1 - 50.63 ft.	9.20.2.5 Shear Strength Provided by Concrete		N/A	General Comp.
Member Loads	Span 1 - 57.87 ft.	9.20.3.1 Shear Strength Provided by Web Reinforcement		N/A	General Comp.
	Span 1 - 65.10 ft.	9.28 Embedment of Prestressed Strand		N/A	General Comp.
	Span 1 - 07.83 ft.	Computation of Vp		N/A	General Comp.
T PSCBB4	Span 1 - 70.36 ft.	PS Basic Properties Calculation		N/A	General Comp.
I PSCBB5	Span 1 - 72.33 ft.	PS Gross Composite Section Properties		N/A	General Comp.
		Stresses		N/A	General Comp.

Tip: Select individual Specification References and dial in to additional detailed computations.

Thank You!

For additional questions, please contact:

Jennifer Hart O: 317-895-2585 E: Jennifer.hart@ucindy.com

1625 N Post Rd Indianapolis, IN 46219 www.ucindy.com

