ORX SECTION 3 – GEOTECHNICAL SEISMIC DESIGN CHALLENGES

Presented by:

Scott T. Roosa, PE – SME

INTRODUCTION - BIO

SCOTT T. ROOSA, PE

Scott has more than 20 years of experience providing geotechnical engineering services and is a registered engineer in Indiana and Michigan. His experience and expertise includes work focused primarily on publicly funded transportation projects with geotechnical involvement ranging from bridge foundations, earthen embankments, earth retention systems, dams, slide corrections, and pavement design. Scott has experience performing pressuremeter and pile driving analyzer (PDA) testing, as well as installing and monitoring geotechnical instrumentation for transportation and tunneling projects. Scott has split his career between Indiana and Michigan, and has spent most of the last 10 to 12 years focusing on design-build projects.

Scott is a graduate of Michigan Technological University in Houghton, Michigan, and resides in Kalamazoo, Michigan, with his wife and two children.

OUTLINE

- Project Team and Overview
- Pursuit Phase
 - o Performance criteria and design requirements
 - o RID subsurface information and geotechnical baseline report.
- Design Phase
 - Supplemental geotechnical information
 - Iterative design
 - Collaboration with INDOT team
- Construction
 - Static uplift test + PDA
 - Pile evaluation throughout construction

PROJECT TEAM

INDOT

HNTB, PARSONS, TERRACON

ORX CONSTRUCTORS

WALSH CONSTRUCTION TRAYLOR BROS. CONSTRUCTION

AMERICAN STRUCTUREPOINT

JACOBS ENGINEERING

SME

PROJECT

- APPROXIMATELY \$200M DESIGN-BUILD
 - Early meetings in April 2023
 - Pursuit from June to November 2023
 - Letting November 2023
- BRIDGES 1, 3, & 5
 - BRIDGE 1 SB I-69 OVER FLOODPLAIN
 - 21* SPANS ABOUT 4,000 FT LONG
 - o BRIDGE 3 SB I-69 OVER EAGLE CREEK
 - 12 SPANS ABOUT 1,800 FT LONG
 - o BRIDGE 5 EB VMP TO SB I-69
 - 11 SPANS ABOUT 1,700 FT LONG

DESIGN PERFORMANCE CRITERIA

HIGHLIGHTS

- Section 3 construction complete in time to facilitate Section 2
- No pavement in Section 3*
- Seismic Excerpt from Contract Documents:
- a. Design shall have the following general performance requirements:
- b. 1,000-yr event. The structures shall resist earthquake loads with only minor damage and remain open to traffic with only minimal inspections and/or repairs; and;
- c. 2,500-yr event. The structures may be subject to significant (but repairable damage) but shall be available to emergency/security vehicles immediately and re-opened for public use within a few months after repairs have been completed

RID GEOTECHNICAL INFORMATION

Geotechnical Data Report

- Summary of subsurface information obtained including:
 - SPT/CPT Borings at most proposed bents/piers and islands;
 - Geophysical testing including MASW and refraction profiles; and
 - Laboratory testing

RID GEOTECHNICAL BASELINE REPORT

Geotechnical Baseline Report (GBR)

- Intended to establish contractual baseline for anticipated ground conditions. Document included:
 - Site-specific seismic response spectra;
 - Liquefaction considerations for design spreading + settlement;
 - Static and seismic loading conditions for global stability analyses;
 - Design and testing requirements for deep foundations (UPLIFT!)
 - Anticipated outline of former urban landfill

GEOTECHNICAL BASELINE REPORT

Excerpt from GBR depicting urban landfill limits near existing VMP

GEOTECHNICAL BASELINE REPORT

Table 6.3.2.1: Summary of Embankment Seismic Stability Performance

Embankment	Station ¹	Location	A _s (2,500-yr) ²	S _{D1} ³	H (ft) ⁴	α ⁵	0.5αA _s ⁶	FS ⁷	k _γ ⁸	Disp. (in.) ⁹	Disp. 84% Confidence (in.) ¹⁰	Shake Avg Disp. (in.) ¹¹	Shake Disp. 84% Confidence (in.) ¹²
South	4151+00	Bridges 1 & 2 South Abutments	0.394	0.342	22	0.868	0.171	0.8	0.094	4.0	7.9	1.4	1.9
Middle	4205+00	Bridges 1 & 2 North Abutments & Bridges 3 & 4 South Abutments	0.428	0.331	26	0.841	0.180	0.8	0.089	4.4	8.7	1.6	2.1
North	4235+00	Bridges 3 & 4 North Abutments	0.439	0.363	30	0.827	0.182	0.8	0.107	3.5	7.1	0.6	0.9
E-N Ramp	135+50 ¹³	Bridge 7 East Abutment	0.451	0.316	26	0.831	0.187	0.9	0.141	1.6	3.1	1.3	1.7
Pond Bank ¹⁴	4221+00	Underneath Bridges 3 & 4	0.467	0.261	(19) ¹⁵	N/A ¹⁶	0.234	1.0	0.234	0.4	0.7	Negligible	Negligible
E-S Ramp	110+00	Bridge 5 West Abutment	0.439	0.363	39	0.771	0.169	0.9	0.114	2.8	5.6	0.8	1.0

¹Along I-69 Mainline unless otherwise noted

²Peak Ground Acceleration for a 2,500-yr seismic event

³Spectral response acceleration parameter at 1 sec

⁴Max embankment or slope height

⁵Embankment height reduction factor (GEC 3 Eq 6-3)

⁶Seismic load coefficient used in pseudo static analysis assuming 1 to 2 in. of permanent displacement are permissible

⁷Factor of safety resulting from pseudo static analysis. If 1.1 or greater, the embankment meets seismic stability requirements without further analysis

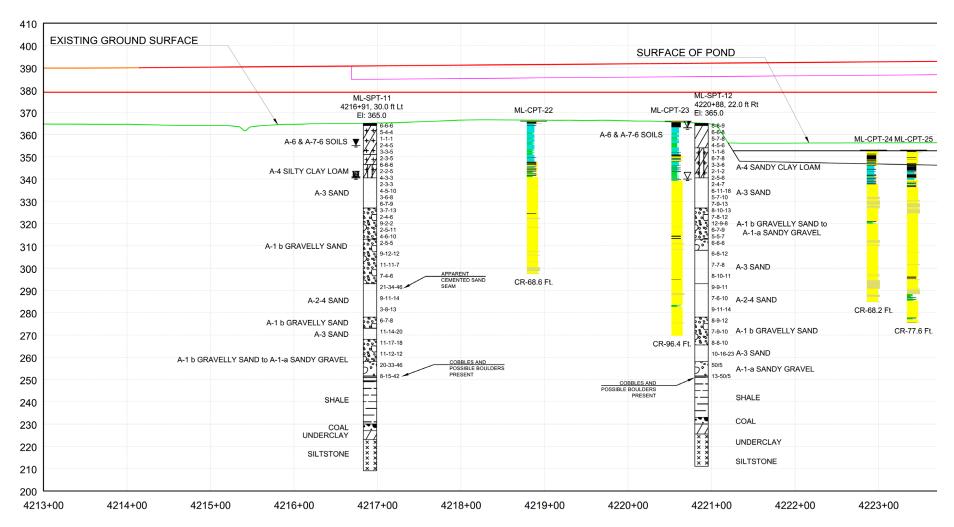
⁸Seismic acceleration coefficient where factor of safety in pseudo static analysis is 1.0 (used to calculate displacement)

⁹Estimated permanent seismic displacement in the down slope direction from GEC 3 Eq 6-7

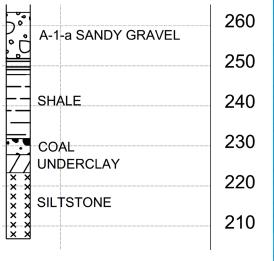
¹⁰Estimated displacement at the 84% confidence level (twice the estimated displacement)

¹¹Estimated permanent seismic displacement from SHAKE Newmark analysis. Average of 14 different time histories

¹²Estimated displacement from SHAKE analysis at the 84% confidence level. Average plus standard deviation


¹³Along E-N Ramp, near Mainline Station 4245+00

¹⁴Not an embankment, but the slope at the pond underneath Bridges 3 & 4


¹⁵Height of slope neglecting sediment at the bottom of the pond

¹⁶Not used for existing slopes or embankments less than 20 ft in height

GEOTECHNICAL BASELINE REPORT

TYPICAL ROCK PROFILE:
10-15 FT OF SOFT SHALE
3-5 FT OF COAL
2-5 FT OF "UNDERCLAY"
HARD SILTSTONE

Excerpt from GBR depicting subsurface profile at Bridge 3

PURSUIT PHASE

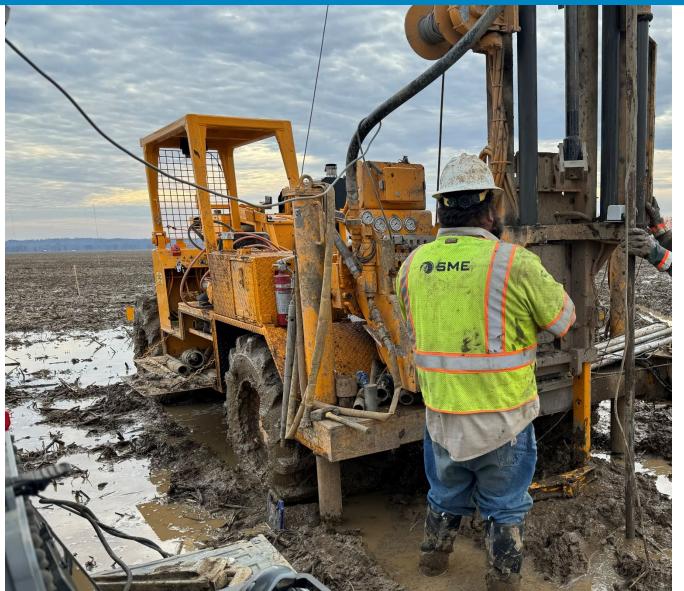
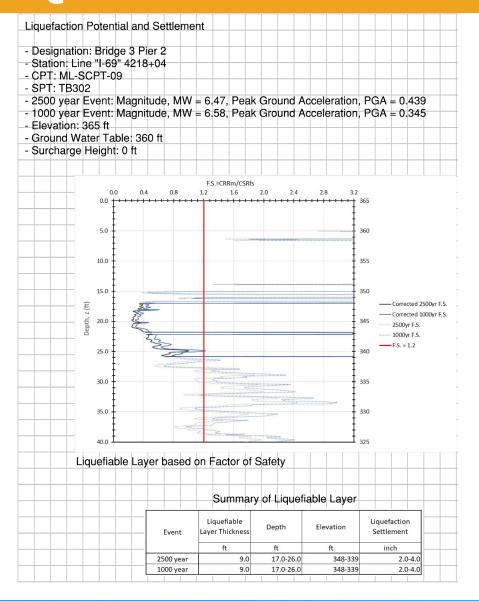

PILES OR SHAFTS?!?

Photo by Traylor Bros.


CONGRATULATIONS - YOU'RE BEHIND!

CONGRATULATIONS - YOU'RE BEHIND!

COLLABORATION

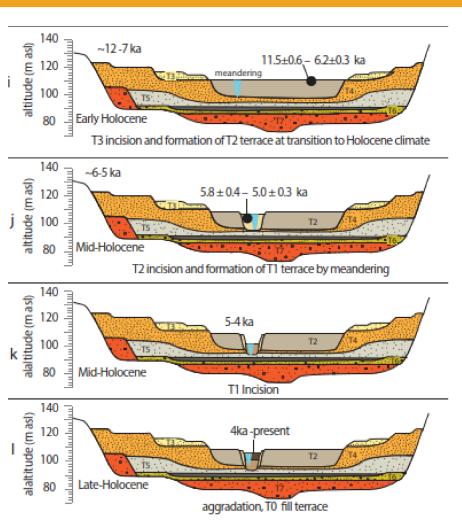
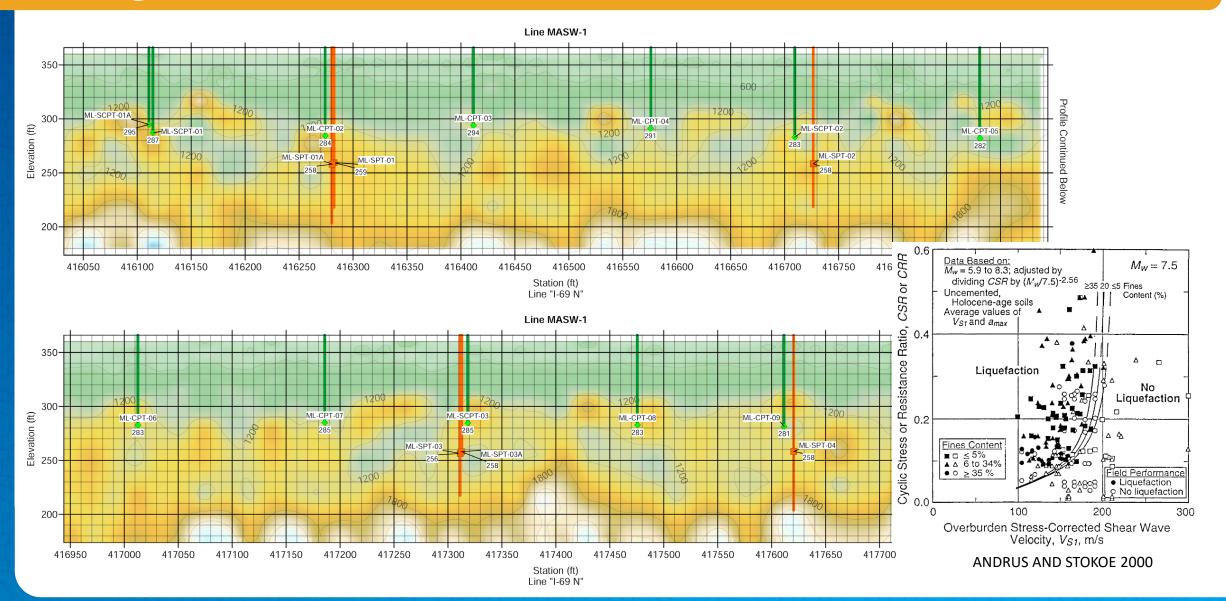
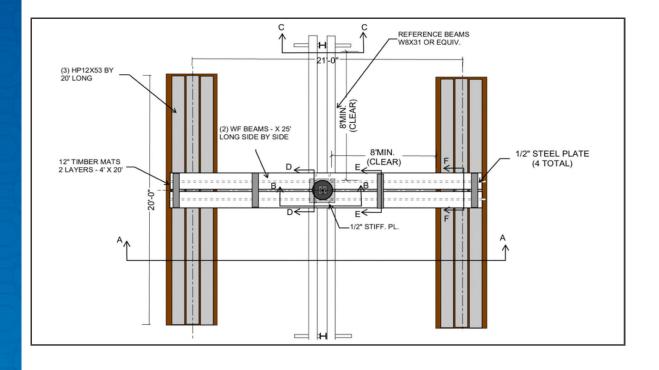
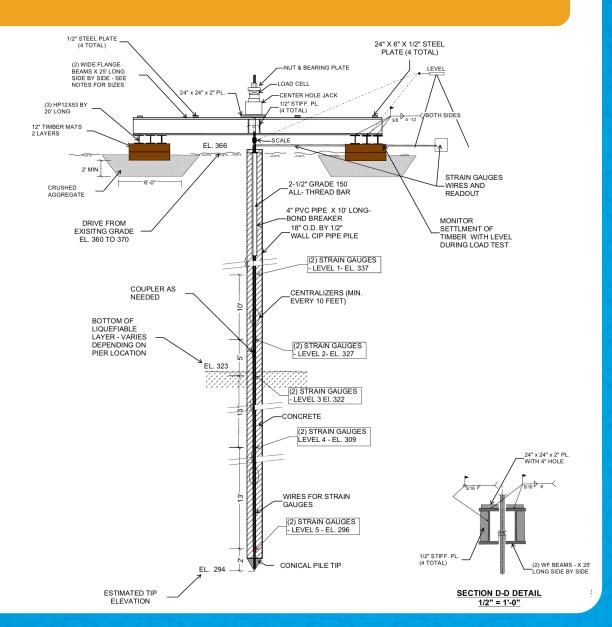

DESIGN-BUILD TEAM AND INDOT TEAM WORKING TOGETHER

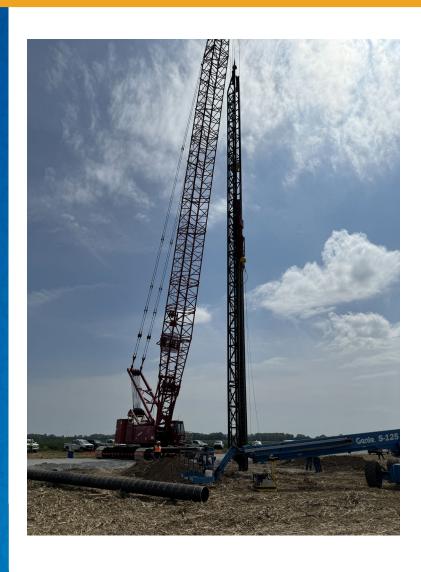
- Design "over the shoulder" reviews
- From Geotech perspective, started with subsurface investigation plans
 - Intent was to include design rationale and assumptions with early subsurface plans to begin dialogue between teams.

KEY GEOTECHNICAL ELEMENTS

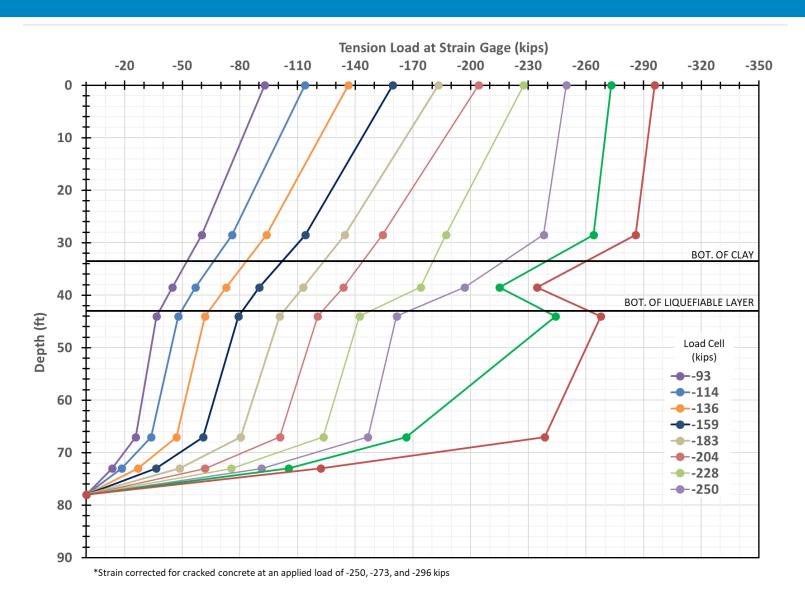
- Settlement No Pavement!
- Liquefaction determination Performance criteria
- Global stability analyses
- Deep foundation analyses static and seismic conditions 18-in. SEC Pipes
- Uplift

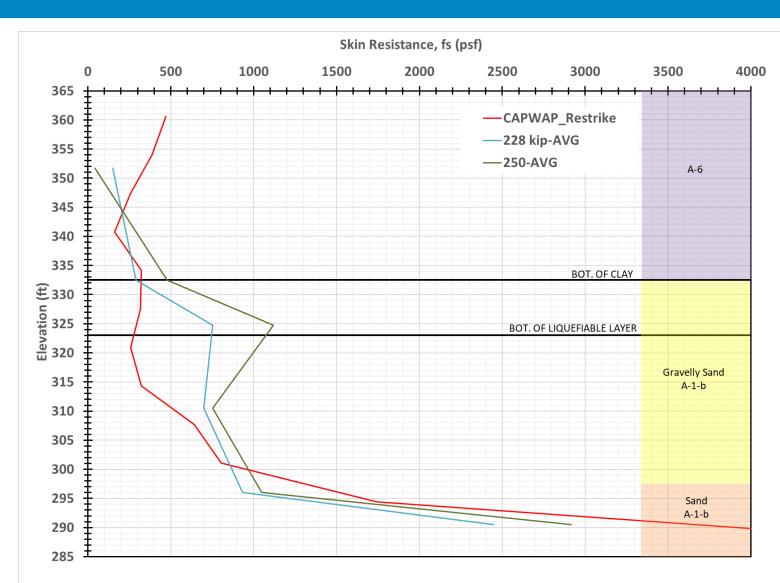
LIQUEFACTION DETERMINATION


Image 2: Terrace development over the past 22,000 years, from Counts, et all (2004)

LIQUEFACTION DETERMINATION





	Nordlund Method	0.35
	α-method	0.25
	β-method	0.20
Uplift Resistance of	λ-method	0.30
Single Piles, φ _{up}	SPT-method	0.25
	CPT-method	0.40
	Static load test	0.60
	Dynamic test with signal matching	0.50

PILE DRIVING AND ANALYSIS

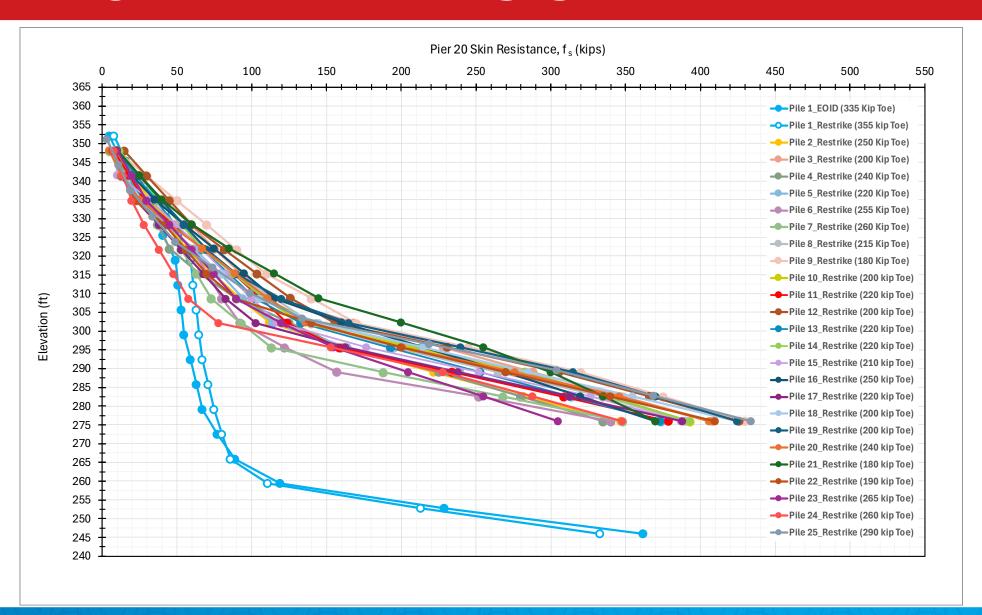
Bent	No.5		No	.6	No	1.7	No	.8
Pile Size, Type & Grade	18"x1/2"		18"x5/8" Pipe Pile, Gr. 50		18"x5/8" Pipe Pile, Gr. 50		18"x5/8" Pipe Pile, Gr. 50	
Case	Static	Seismic	Static	Seismic	Static	Seismic	Static	Seismic
Permanent Pile Load (Q) - Service (kips)	N/A		N/A		N/A		N/A	
Factored Design Load, Q, (kip)	253	303	253	311	163	303	214	312
Factored Design Soil Resistance, R.(kips)	253	303	253	311	163	303	214	312
Resistance Factor, φ _{on}	0.7	1.0	0.7	1.0	0.7	1.0	0.7	1.0
Nominal Soil Resistance, R, (kips)	365	303	365	311	235	303	310	312
Scour Zone Friction, R, (kips)	29	N/A	35	N/A	38	N/A	37	N/A
Est. Skin Resistance at Btm. Of Liquefiable Soil (ft)	N/A	38	N/A	53	N/A	58	N/A	55
Nominal Driving Resistance, R (kips)	394	341	400	364	273	361	347	367
Factored Uplift (kips)	41	157	42	160	N/A	164	N/A	142
Uplift Resistance Factor	0.5	0.8	0.5	0.8	N/A	0.8	N/A	0.8
Nominal Soil Resistance, R (kip)	82	197	84	200	N/A	205	N/A	178
Nominal Drag Load (kips)(DL)	N/A	38	N/A	53	N/A	58	N/A	55
Estimated Pile Tip Elevation (ft.)	277		276		281		282	
Testing Method	Standard Specifications Section 701.05(b)							

Bent	No.9		No.10		No.11		No.12		
Pile Size, Type & Grade	18"x5/8" Pipe Pile, Gr. 60		18"x5/8" Pipe Pile, Gr. 50		18"x5/8" Pipe Pile, Gr. 50		18"x1/2" Pipe Pile, Gr. 50		
Case	Static*	Seismic**	Static*	Seismic**	Static*	Seismic**	Static	Seismic	
Permanent Pile Load (Q) - Service (kips)	N/A		N/A		N/A		201		
Factored Design Load, Q, (kip)	266	518	249	413	249	406	357	267	
Factored Design Soil Resistance, R ₍ (kips)	266	518	249	413	249	406	357	267	
Resistance Factor, φ _{en}	0.7	1.0	0.7	1.0	0.7	1.0	0.7	1.0	
Nominal Soil Resistance, R (kips)	380	518	360	413	360	406	510	267	
Scour Zone Friction, R,,,,,, (kips)	35	N/A	48	N/A	47	N/A	N/A	N/A	
Est. Skin Resistance at Btm. Of Liquefiable Soil (ft)	N/A	62	N/A	46	N/A	51	N/A	41	
Nominal Driving Resistance, R (kips)	415	580	408	459	407	457	510	308	
Factored Uplift (kips)	N/A	115	11	70	11	105	N/A	N/A	
Uplift Resistance Factor	N/A	0.8	0.5	0.8	0.5	0.8	N/A	N/A	
Nominal Soil Resistance, R. (kip)	N/A	144	22	88	22	132	N/A	N/A	
Nominal Drag Load (kips)(DL)	N/A	62	N/A	46	N/A	51	147	41	
Estimated Pile Tip Elevation (ft.)	2	60	281		282		264		
Testing Method	Standard Specifications Section 701.05(b)								

^{*} Static loads consider the application of post tensioning force and construction sequence of soil anchor application. Controlling strength leve design loads are reported in all cases where pretensioning does not control.

Bent	No.9			
Pile Size, Type & Grade	18"x5/8" Pipe Pile, Gr. 60			
Case	Static*	Seismic**		
Permanent Pi l e Load (Q) - Service (kips)	N	/A		
Factored Design Load, Q, (kip)	266	518		
Factored Design Soil Resistance, R (kips)	266	518		
Resistance Factor, φ _ω	0.7	1.0		
Nominal Soil Resistance, R, (kips)	380	518		
Scour Zone Friction, R, (kips)	35	N/A		
Est. Skin Resistance at Btm. Of Liquefiable Soil (ft)	N/A	62		
Nominal Driving Resistance, R (kips)	415	580		
Factored Uplift (kips)	N/A	115 *		
Uplift Resistance Factor	N/A	0.8		
Nominal Soil Resistance, R., (kip)	N/A	144		
Nominal Drag Load (kips)(DL)	N/A	62		
Estimated Pile Tip Elevation (ft.)	260			
Testing Method				

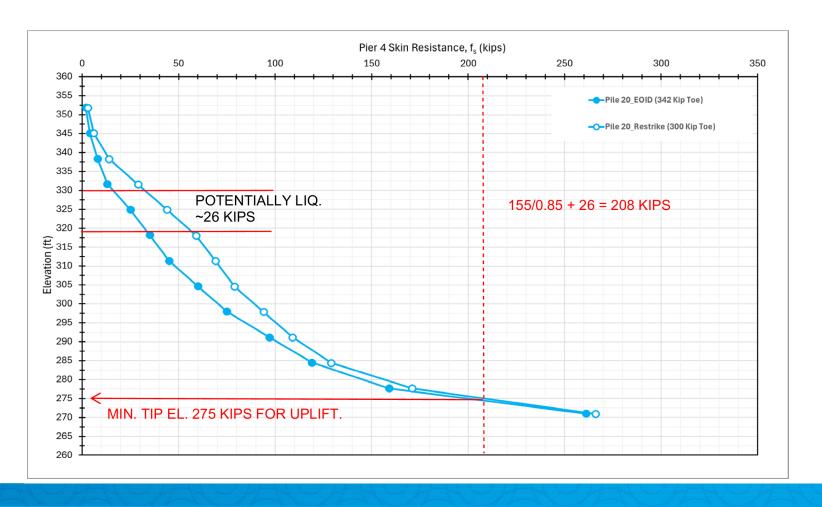
^{**} Seismic Loads include load sharing with soil anchors and corner pile group effects. See Sheet 101 for load sharing details.


PILE DRIVING AND ANALYSIS

PILE GROUP LAYOUT WITH SOIL ANCHOR OPTIONS

Detail shown is for soil anchors on one corner region. Details are similar for any and all corners where the minimum uplift capacity is not met.

PDA + CAPWAP ANALYSIS



PDA + CAPWAP ANALYSIS

		Strength	Seismic		Required Uplift	Required	Liq Layer	Est. Skin Resistance in	CAPWAP Skin	Nominal Uplift	
١		Max Comp.	Max Comp.	Max Tension	Resistance	R_ndr	Н	Liq. Layer	Resistance	Resistance	1
ı	Pier	(kips)	(kips)	(kips)	(kips)	(kips)	(ft)	(kips)	(kips)	(kips)	
	4	273	462	123	155	516	11	26	266	200.1	OK

Pier 4 Example: 266*0.85 - 26 = 200.1 kips => 200 > 155 kips

OK!

ALL PILES IN PLACE!!!

Bridge 5 Pier 11 Footing Form – 8/13/25