

REMEDIATION WORK PLAN

FORMER RJ REFINERY COUNTY ROAD 350 SOUTH PRINCETON, INDIANA 47670

ATC PROJECT NO. 170IFA0010

JUNE 8, 2019

PREPARED FOR:

INDIANA DEPARTMENT OF ENVIRONMENTAL MANAGEMENT INDIANA BROWNFIELDS PROGRAM 100 NORTH SENATE AVENUE, ROOM 1275 INDIANPOLIS, INDIANA 46204 ATTENTION: MS. MICHELE OERTEL

ATC Group Services, LLC

6149 Wedeking Avenue Building D, Suite 2 Evansville, Indiana 47715

Phone+1 812 477 1176Fax+1 812 477 1195

www.atcgroupservices.com

June 8, 2019

Ms. Michele Oertel Indiana Department of Environmental Management Indiana Brownfields Program 100 North Senate Avenue, Room 1275 Indianapolis, Indiana 46204

Re: **Remediation Work Plan** Former RJ Refinery Princeton, Indiana 47670 ATC Project No. 170IFA0010 BFD Site No. #4050006

Dear Ms. Oertel:

ATC Group Services, LLC (ATC) is pleased to provide the Indiana Brownfields Program (IBP) with the attached Remediation Work Plan (RWP) for the above referenced facility. This Remediation Work Plan has been prepared and formatted in accordance with the *Remediation Closure Guide* dated March 22, 2012.

This document provides details regarding the evaluation of various remedial technologies for the Site. The results of this evaluation indicate the most effective clean-up alternative for contaminants of concern is to implement In-Site Chemical Oxidation (ISCO) by injecting sodium persulfate catalyzed with a sodium hydroxide solution into the subsurface to enhance the natural degradation of the residual hydrocarbons present in the water-bearing zone. Vacuum extraction is also selected as an appropriate clean-up alternative in order to remove lightnon aqueous phase liquids (LNAPL) from the groundwater column beneath the Site.

We appreciate the opportunity to assist you with this project. If you have any questions concerning information contained in this RWP, please do not hesitate to call either of the undersigned below.

Sincerely,

ATC Group Services LLC

Brian L. Kleeman, LPG (# 2370) Senior Project Geologist Direct Line +1 812 647 2452 brian.kleeman@atcgs.com

Christopher J. Bishop, LPG (#1236) Senior Project Manager Direct Line +1 317 579 4015 <u>chris.bishop@atcgs.com</u>

Table of Contents

1	INTRODUCTION	4
1.1 1.2	SITE INFORMATION OVERVIEW OF PREVIOUS INVESTIGATIONS	
2	GEOLOGIC DATA	7
2.1	GEOLOGIC AND HYDROGEOLOGIC INFORMATION	7
3	SITE CONDITIONS	8
3.1 3.2 3.3 3.4 3.5	DETERMINATION OF PRESENT AND FUTURE LAND USE ASSESSMENT OF POTENTIALLY SUSCEPTIBLE AREAS ECOLOGICAL SCREENING ASSESSMENT POTENTIAL EXPOSURE PATHWAYS 3.4.1 Soil Exposure 3.4.2 Groundwater Exposure 3.4.3 Construction Worker Occupational 1 CONTAMINANTS OF CONCERN	8 9 9 9 11
4	REMEDIATION PLAN1	2
4.1 4.2 4.3 4.4 4.5 4.6	CLEANUP STANDARDS AND OBJECTIVES. 1 REMEDIATION ALTERNATIVES. 1 SOIL REMEDIATION ALTERNATIVES. 1 4.3.1 Soil Remediation –Excavation. 1 GROUNDWATER REMEDIATION ALTERNATIVES. 1 4.4.1 Pump and Treat Technology 1 4.4.2 Enhanced Fluid Recovery 1 4.4.3 Groundwater Remediation – In-Situ Technologies. 1 4.4.4 Containment Slurry Wall. 1 ENVIRONMENTAL RESTRICTIVE COVENANT 1 COST ANALYSIS 1	12 13 13 13 14 14 15
5	SELECTED REMEDY 1	7
5.1 5.2	CLOSURE REPORT AND DATA MANAGEMENT1 PROJECT SCHEDULE	
6	REFERENCES1	8

Tables

- Table 1:
 Summary of Soil Analytical Results VOCs/Metals October 2016
- Table 2:Summary of Soil Analytical Results SVOCs October 2016
- Table 3:Summary of Soil Analytical Results VOCs/PCBs April 2018
- Table 4:Summary of Soil Analytical Results PAHs April 2018
- Table 5:
 Summary of Soil Analytical Results VOCs/PCBs November 2018
- Table 6:Summary of Soil Analytical Results PAHs November 2018
- Table 7:
 Summary of Groundwater Analytical Results VOCs/Metals November 2016
- Table 8:Summary of Groundwater Analytical Results SVOCs November 2016
- Table 9:Summary of Groundwater Analytical Results VOCs/PCBs May 2018 to
April 2019
- Table 10:Summary of Groundwater Analytical Results PAHs May 2018 to April 2019

Figures

- Figure 1: Vicinity Map
- Figure 2: Site Plan
- Figure 3: Potentiometric Surface Map
- Figure 4: Soil Analytical Map
- Figure 5: Groundwater Analytical Map

Appendices

- Appendix A Boring Logs
- Appendix B Summary of Estimated Costs
- Appendix C Project Schedule
- Appendix D Health and Safety Plan (HASP)

1 Introduction

Based on a review of historical records, the Site operated as an oil refinery from circa 1950s to 1970s. Bulk storage and processing of several substances including but not limited to crude oil, naphtha, No.2 and No.5 fuel oil, gasoline, diesel, and kerosene occurred on the Site. The Site was owned and/or operated by Princeton Mining Company, R.J. Oil & Refining Company, Crystal-Princeton Refining Company, Northland Oil & Refining Company, and Indiana Refining Company since 1973.

Multiple investigations (Section 1.2) have been conducted at the Site including subsurface soil and groundwater sampling, groundwater elevation monitoring, and laser induced fluorescence (LIF) modeling. Based on the results of the prior investigations, it was concluded that prior uses associated with the refinery have impacted the soil and groundwater at the Site that will require remediation.

This document includes the components of the RWP outline provided in the general report formats prescribed in the Remediation Closure Guide (RCG).

1.1 Site Information

The Site is located north of County Road 350 South in Princeton, Gibson County, Indiana 47670. The Site is located approximately 0.2 miles west of Highway 41 and is part of the southwest quarter of Section 30, Township 2 South, Range 10 West. The Site is an irregular-shaped lot totaling approximately 36.07 acres and is currently unoccupied. The Vicinity Map is located in **Figure 1**.

The Princeton, Indiana Topographic Quadrangle Map (USGS, dated 1959, photorevised 1989) indicates the ground surface has an elevation of approximately 470 to 490 feet above mean sea level (MSL). The topography across the Site and surrounding area generally slopes to the west. According to information obtained from the Beacon-Gibson County GIS website, the Site is identified as parcel number 26-12-30-300-000.968-027. The Site is currently zoned Heavy Manufacturing (M-2).

During a Site walk on March 31, 2016, miscellaneous debris, metal piping, concrete structures, and trash were observed on several areas of the Site. Much of the Site consisted of overgrown vegetation and wooded areas. Several depressions, marsh areas, and ponds were also noted across the Site. The debris appears to be remnants from former structures demolished on the Site. The Site Plan is located in **Figure 2**.

1.2 **Overview of Previous Investigations**

Phase I Environmental Site Assessment – April 25, 2016

According to ATC's *Phase I Environmental Site Assessment* (ESA), multiple *recognized environmental conditions* (RECs) and ASTM non-scope conditions were identified at the Site. The following RECs or ASTM non-scope conditions were identified in the Phase I ESA:

- Historical use of the Site as an oil refinery. Prior owners of the Site include Princeton Mining Company, R.J. Oil & Refining Company, Crystal-Princeton Refining Company, Northland Oil & Refining Company, and Indiana Refining Company since 1973.
- ATC interviewed Mr. Kenneth McDaniel, Senior Environmental Manager with the Indiana Department of Environmental Management (IDEM), regarding the past clean-up activities on

the Site. Mr. McDaniel was the IDEM representative and Project Manager of the clean-up activities from 1989 to 1994. IDEM observed two apparent injection wells on the Site, which were reportedly used to dispose of waste generated by the refinery. Waste was drained into the wells which lead into the subsurface mine approximately 412 feet below the Site. Mr. McDaniel stated that low levels of polychlorinated biphenyls (PCBs) were encountered in many of the ASTs and crude oil on the Site. Mr. McDaniel stated that sumps and a septic system were used at the Site to discharge on-Site chemicals/wastes, which Mr. McDaniel felt eventually lead to the on-Site injection wells. According to Mr. McDaniel, IDEM performed on-Site solidification of oil and substances that could not be recycled and buried them on the north portion of the Site near former AST No. 39. No soil and groundwater sampling was conducted at the Site following clean-up activities

- Bulk storage of several substances including but not limited to crude oil, naphtha, No.2 and No.5 fuel oil, gasoline, diesel, and kerosene occurred on the Site. Multiple oil spills, the discharge of wastes into a subsurface mine, leaky ASTs and piping, the use of a septic system and sumps, illegal dumping, and burial of oil sludge were noted on the Site.
- ATC observed several piles of debris including metal piping, drums (rusted and empty), and concrete rubble on the central and southwest portions of the Site. Several mounds of soil were also observed on the Site. It is unknown if other materials / debris are present in the soil mounds.
- Dark brown stained water was observed in a pond on the north end of the Site.
- Past use as an oil refinery, reported spills, and disposal of wastes using injection wells on the Site are potential subsurface vapor migration sources.
- Suspect asbestos containing materials (ACMs) were identified on the Site in the form of asphalt coating, pipe compounds and orange insulation debris. Suspect ACMs were observed as debris on the Site in poor condition.

Multiple assessments have been completed at the property that have been documented by ATC in the following reports:

- Phase II Limited Subsurface Investigation (LSI), dated January 23, 2017,
- Asbestos Survey Report, dated January 25, 2017,
- Phase II Further Site Investigation and Asbestos Abatement Report, dated June 21, 2018,
- Phase II Further Site Investigation, dated September 21,2018,
- Quarterly Monitoring Report, dated September 27,2018,
- Phase II Further Site Investigation, dated January 16, 2019,
- Quarterly Monitoring Report, March 20, 2019,
- Pilot Study, April 8, 2019, and
- Quarterly Monitoring Report, dated April 24, 2019.

A total of 122 soil borings have been advanced at the Site to allow for soil and groundwater sample collection/evaluation. A total of 174 soil samples and 116 groundwater samples have been collected at the Site since 2016. There are currently 19 monitoring wells installed at the Site, and quarterly groundwater monitoring is currently ongoing.

Based on the historical laboratory analytical results, multiple contaminants of concern (CoCs) were detected in the soil and groundwater samples collected at the Site at concentrations

exceeding their respective RCG Screening Levels (SLs). Most notably, mercury, 1,2,4trimethylbenzene (TMB), xylenes, and n-hexane were detected in the soil at concentrations exceeding their respective RCG excavation direct contact SLs. Benzene and naphthalene have been detected above the RCG commercial/industrial vapor exposure SL in the groundwater beneath the Site.

In order to further evaluate presence of LNAPL beneath the Site, a LIF assessment was conducted in July 2018. Based on the results of the LIF assessment, twenty-eight (28) out of the thirty-five (35) borings received LNAPL responses, which indicates a strong potential for the presence of LNAPL across the Site at depths ranging between 2 and 38 feet below ground surface (bgs). The highest LNAPL responses were detected generally between 100% and 400% at approximately 20 feet and 35 feet bgs. Multiple waveforms were identified with the LNAPL responses, which could indicate that multiple LNAPL types (i.e. gasoline, fuel oil, diesel, etc.) are present at the Site.

Based on historical gauging data, light non-aqueous phase liquids (LNAPL) has been detected above the groundwater up to approximately 10 feet in thickness. LNAPL thicknesses have been measured in monitoring wells MW-1, MW-2R, MW-8, MW-9, MW-10, MW-11, MW-12, MW-13, MW-16, MW-17, and MW-18.

On March 29-30, 2018, approximately one (1) cubic yard of regulated asbestos containing materials (RACM) was removed from the Site by a licensed abatement contractor and disposed of at Advanced Disposal Blackfoot Landfill in Winslow, Indiana. Since the RACM appears to have been removed from the Site, asbestos removal is not addressed in this RWP.

A pilot study was performed at the Site to determine the effectiveness of a remediation approach. Seven (7) injection points IP-1 to IP-7 were installed at the Site in the vicinity of monitoring well MW-8. On March 12-13, 2019, groundwater remediation activities were performed on the Site, which was focused at the seven (7) injections point locations and monitoring well MW-8. Remediation activities included enhanced fluid recovery of approximately 650 gallons of impacted groundwater using a vacuum extraction truck. Approximately 4,690 gallons of 15% sodium persulfate catalyzed with sodium hydroxide were injected into the seven (7) injection points utilizing a mobile injection trailer simultaneously with the vacuum extraction.

2 Geologic Data

2.1 Geologic and Hydrogeologic Information

The U.S. Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) Web Soil Survey classifies the soil at the property as primarily Udorthents (cut and fill). The table summarizes below the soils present at the property.

	Summ	ary of Soil Classif	ication	
Soil Identification	Landform Type	Slope Properties	Drainage Class	Permeability
Alford silt loam	Loess hills	Moderate sloping	Well-drained	Moderately high to high
Ragsdale silt loam	Lake plain depressions	Nearly level	Poorly-drained	Moderately high to high
Reesville silt loam	Lake plains	Nearly level	Somewhat poorly-drained	Moderately high to high
Udorthents	Cut and filled	Not provided	Not provided	Not provided
Uniontown silt Ioam	Lake terraces	Nearly level to moderately sloping	Moderately well to well-drained	Moderately high

Wisconsinan to Holocene-age alluvium and silt generally forms the unconsolidated material below the property. The unconsolidated material is expected to have a thickness of approximately 50 to 100 feet. The soil samples collected during prior investigations indicate that the shallow stratigraphy of the Site consists of concrete, topsoil, and gravel, underlain generally by mixtures of clay (CL), clayey silt (ML), and sand (SW) within the upper 50 feet. Soil vapor screening results recorded during the soil sampling activities were reported from 0.0 parts per million (ppm) to 4,600 ppm. Soil boring logs generated from prior investigations are attached in **Appendix A**.

Pennsylvanian-age Patoka and Shelburn formations consisting of shale and sandstone form the bedrock below the property. The surface of the bedrock has an elevation of approximately 400 to 450 feet above MSL. Regionally, the bedrock surface dips to the southwest in the study area. None of the soil borings advanced at the Site have been extended to bedrock. The deepest boring completed on-Site extends to a depth of 50 feet bgs.

Brown Ditch appears to drain the study area. The ditch is located approximately 450 feet northwest of the Site and generally flows from east to west. Regional groundwater flow direction is generally influenced by major hydrogeologic features such as a river or lake. Surface and/or bedrock topography may also influence regional groundwater flow direction. Based on prior investigations, groundwater flow is to the east-southeast beneath the eastern portion of the Site, and to the west beneath the western portion of the Site. The depth to groundwater measurements observed during the April 2019 gauging event ranged between 1.80 to 38.22 feet below the top of the monitoring well casings. The approximate hydraulic gradient under the eastern portion of the Site is 0.05 feet / foot (MW-14 to MW-16), and 0.08 feet / foot (MW-7 to MW-6) under the western portion of the Site. A potentiometric surface map with data from the April 2019 gauging event is presented on **Figure 3**.

3 Site Conditions

3.1 Determination of Present and Future Land Use

The property is an approximately 36.07-acre lot and is currently unoccupied. Much of the property consists of overgrown vegetation and wooded areas. Several depressions, marsh areas, and ponds were noted across the property. Future usage is expected to be commercial/industrial in nature. The properties to the north and portions east are agricultural. Residential land is present to the south, west, and portions east. A trucking business is also located south of the property. The Site location and adjacent areas are illustrated on **Figure 2**.

3.2 Assessment of Potentially Susceptible Areas

The National Wetlands Database maintained by the United States Fish and Wildlife Service (USFWS) was reviewed to determine if the Site was within, or in close proximity to, registered wetlands. Based on the review, wetlands were identified on the Site in the form of freshwater ponds, freshwater emergent wetlands, and a freshwater riverine. Freshwater emergent and forested wetlands, and a freshwater riverine were also located approximately 400 feet to the northwest of the Site.

The glacial sand and gravel aquifer located beneath the Site is hydraulically connected to the Brown Ditch-Skelton Creek Watershed. The McCleansboro Group is the bedrock aquifer beneath the Site. The bedrock beneath the Site includes fractures and erosional features that could provide a preferential pathway for the migration of contaminated groundwater into bedrock aquifers. The bedrock aquifer beneath the Site consists of mostly shale and sandstone of the McCleansboro Group, which is hydraulically connected to the Wabash River.

A review of the Water Well Database, maintained by the Indiana Department of Natural Resources (IDNR), identified thirteen water wells (18070 to 18074, 204808, 204815, 204818, 204823, 204865, 204868, 204870, and 204873) within one-half mile of the Site. Water well 204823 was identified on the Site. Based on communication with IDEM, this well has been abandoned. Water well 204808 is shown south of the Site. Based on communication with the landowner, water well 204808 is no longer active, and could not be identified in the field for abandonment. Municipal water supply to the Site and surrounding properties is currently provided by Gibson Water, Inc. utility.

Parks, recreational areas, or hospitals are not located in the immediate vicinity of the Site.

3.3 Ecological Screening Assessment

Potentially affected species of flora and fauna

The Site and surrounding area supports numerous species of flora and fauna, including small mammals, reptiles and birds. The Site has been vacant since the 1970s and will likely be redeveloped with potential buildings and paved surfaces that will minimize its use by the local flora and fauna. The depth to groundwater limits the potential exposure of CoCs to flora and fauna beyond the Site boundaries.

Potentially affected species of flora and fauna on the Endangered Species List

The USFWS website was searched for the federally listed threatened, endangered, proposed, and candidate species in Gibson County, Indiana. The Indiana Bat, Northern Long-Eared Bat, Least Tern, Fat Pocketbook, Fanshell, and Bald Eagle (recovered) were listed for Gibson County.

Given the presence of dense vegetation, wooded areas, and wetland areas, critical habitat of such species could be present on the Site. All state and federal regulations regarding potential endangered species should be followed prior to future development of the Site. Based on the soil analytical results and depth to groundwater, exposure to on-Site contamination appears minimal for on-Site species.

Potential or observed effects of contamination on vegetation or wildlife populations

Based on Site observations, there appears to be isolated areas across the Site around former AST saddles, pipelines, etc. where stressed vegetation and black staining are visible. It is unknown how the stressed vegetation and surface staining has affected vegetation or wildlife at the Site.

3.4 Potential Exposure Pathways

An evaluation of the three default exposure pathways: soil exposure, groundwater exposure, and vapor exposure is discussed in the following paragraphs.

3.4.1 Soil Exposure

Soil exposure pathways may include:

- direct contact with skin (dermal absorption route);
- inhalation of CoCs on soil particulates and dust (ingestion and inhalation routes);
- volatilization from soil into the air (inhalation route);
- soil consumption (ingestion and dermal absorption routes); and
- CoC migration from soil to groundwater.

Since future use is expected to be commercial/industrial, CoC concentrations are not expected to an exposure concern in soil at depths of less than 2 feet, with the exception of adsorbed mercury detected in in the soil at B-16 (0-2). Although volatile CoCs are present in the soil and volatilization from soil to air is possible, the absence of occupied on-site buildings limit the potential exposure through inhalation and direct contact. CoC migration from soil to groundwater (groundwater ingestion) is a potential soil exposure pathway.

3.4.2 Groundwater Exposure

Groundwater exposure pathways may include:

- Volatilization from water to air (inhalation route);
- Direct contact with skin (dermal absorption route); and
- Water consumption (ingestion route).

Based on available data collected from the monitoring wells, groundwater has been impacted with CoCs at concentrations in exceedance of IDEM RCGs. The depth to groundwater beneath the Site is approximately 1.8 to 38 feet bgs and volatilization from water to air is possible. However, the absence of on-Site buildings limit the potential exposure through inhalation and direct contact.

Based on the IDNR Water Well Database, water well 204423 is located on the Site and water well 204808 is located on the south adjacent property. As noted in Section 3.2, water well 204423 has been abandoned and well 204808 is currently not in use. ATC attempted to abandon well

204808, but was unable to locate it due to being buried and inactive. The absence of potable wells at the Site indicates a low potential for ingestion of impacted groundwater.

3.4.3 Construction Worker Occupational

Direct contact to CoCs by construction worker occupational exposure may occur during excavation activities. Possible scenarios for this activity on or near the Site would include soil excavation, building construction, or utility line installation/repair. Exposure to the pockets of impacted soils at the Site is possible by this pathway. Use of the appropriate personal protective equipment and practicing standard health and safety procedures could reduce the potential for this type of exposure. The HASP for this project should be followed during all Site work, and is provided as **Appendix D**.

3.5 Contaminants of Concern

Based on the soil analytical results from previous investigations, mercury (B-16 (0-2)), 1,2,4-TMB (B-1 (23-24) and SB-12 (6-8')), xylenes (SB-12 (6-8') and MW-8 (12'14')), and n-hexane (B-1 (23-24) and SB-12 (6-8')) were detected in the soil at concentrations above their respective RCG excavation SLs. Multiple CoCs including arsenic, 1,2,4-TMB, 1,3,5-TMB, benzene, ethylbenzene, isopropylbenzene, methylene chloride, PCE, toluene, n-propylbenzene, 1-methylnaphthalene, 2-methylnaphthalene, 2,4-dinitrotoluene, naphthalene, and PCBs (Arochlor 1248) were detected in one or more soil samples at concentrations exceeding the RCG residential direct contact and/or MTG SLs, respectively. A summary of the historical soil analytical data is provided on **Tables 1** through **6**, and depicted on **Figure 4**.

Based on the groundwater results from previous investigations, benzene and/or naphthalene have been historically detected at concentrations exceeding the RCG commercial/industrial vapor exposure SL in one or more groundwater samples collected from B-1, B-3, B-15, B-21, B-25, MW-1, MW-2, MW-2R, MW-6, MW-8 to MW-13, and MW-15 to MW-19. Benzene was also detected above the RCG residential vapor exposure SL in one or more groundwater samples collected from B-30, B-36, and MW-14. Naphthalene was also detected at concentrations exceeding the RCG residential vapor exposure SL in one or more groundwater samples collected from B-1, B-3, MW-1, MW-2R, MW-8, MW-9, MW-11, MW-12, MW-13, MW-15, MW-16, and MW-18.

Multiple CoCs including arsenic, lead, isopropylbenzene, n-butylbenzene, benzene,

1,2-dichloroethane, cis-1,2-dichloroethene, ethylene dibromide, n-hexane, toluene, xylenes (total), ethylbenzene, n-propylbenzene, 1,2,4-TMB, 1,3,5-TMB, benzo(a)anthracene, benzo(a)pyrene, dibenz(a,h)anthracene, 1-methylnaphthalene, 2-methylnaphthalene, naphthalene, and PCBs (Arochlor 1260) were detected in one or more groundwater samples that exceeded their respective RCG TAP residential SLs. A summary of the historical groundwater analytical data is provided on **Tables 7** through **10**, and depicted on **Figure 5**.

The targeted contamination zones appear to be concentrated on the south-central portion of the Site and off-Site properties to the east/southeast. Once remediation activities are complete and CoC concentrations are at acceptable levels, an environmental restrictive covenant (ERC) may be necessary to further protect human health and the environment.

4 Remediation Plan

The remediation plan outlines available remedial strategies and evaluates the effectiveness of each in remediating the COCs detected in the subsurface soil and groundwater within the immediate vicinity of the Former RJ Refinery Site.

4.1 Cleanup Standards and Objectives

The cleanup criteria selected for the COCs identified in the subsurface soils and groundwater are those listed in IDEM's Remediation Closure Guide (RCG) dated March 22, 2012, updated March 2019. The RCG provides various SLs based on the proposed land use and potential exposure. Although the Site is expected to be redeveloped as commercial/industrial land, nearby residential development should also be considered as part of the clean-up goals at the Site. The clean-up objective will include the remediation of impacted groundwater with CoC concentrations exceeding the RCG commercial/industrial vapor exposure SLs beneath the Site, and CoC concentrations exceeding the RCG residential vapor exposure SL adjacent to the Site. The remedial action will also address the presence of LNAPL under the Site to reduce to stable/acceptable levels. These remedial actions are designed to prevent unacceptable levels of human health risk from exposure to COCs in soil, groundwater and indoor air quality. The clean-up goals for groundwater at the Site are presented below:

		Groundwater Cl	ean-up Objectives
Contaminant of Concern	Sample Locations	RCG Residential Vapor Exposure Screening Level	RCG Commercial/ Industrial Vapor Exposure Screening Level
Benzene	B-1, B-3, B-15, B-21, B-25, B-30, B-36, MW-1, MW-2R, MW-6, MW-8 to MW-13, MW-15 to MW-19	28 ug/L	120 ug/L
Naphthalene	B-1, B-3, MW-1, MW-2R, MW-18	110 ug/L	460 ug/L

ug/L = micrograms per liter

Multiple CoC concentrations were also detected in groundwater samples above their respective RCG tap residential SLs; however, since the region's potable water is supplied through the municipality, ingestion and direct contact exposure does not appear to be of concern. Furthermore, an ERC may be necessary to further protect human health and the environment.

4.2 Remediation Alternatives

This section examines the technological effectiveness of each potential technology in relation to the Site-specific characteristics discussed above. ATC has considered the following criteria in evaluating the remedial options at the Site:

- Technical feasibility;
- Prevention of further migration of the dissolved hydrocarbon constituents;
- Speed of remediation; and
- Cost-effectiveness.

Treatment technologies that prevent human exposure to impacted groundwater and soil have also been evaluated.

4.3 Soil Remediation Alternatives

Options available for soil remediation consisted of no action, soil excavation with subsequent off-Site disposal, and implementation of in-situ technologies through the use of a remediation system.

4.3.1 Soil Remediation – Excavation

According to the IDEM, approximately 132,500 square feet would need to be excavated 20 to 25 feet bgs to address the upper NAPL layer. Assuming 25% of the excavated material would require landfill disposal, a total of approximately 34,351 tons (based on the conversion factor of 1.4 tons per cubic yard) of soil would require landfill disposal or ex-situ treatment to achieve cleanup goals. NAPL and dissolved-phase contaminated groundwater would require on-Site treatment (including applicable permits) or off-Site disposal. Estimated costs to complete the soil excavation totaled approximately \$4,000,000.

The IDEM evaluated limiting excavation to address only the most heavily contaminated areas. However, even the most limited removal actions still exceeded \$2,000,000 and this remedial option was determined cost prohibitive and not a viable remedial technology.

4.4 Groundwater Remediation Alternatives

Options available for groundwater remediation consisted of pump and treat technologies, enhanced fluid recovery, and various in-situ technologies including the use of a remediation system, enhanced soil mixing, ISCO, and monitored natural attenuation.

4.4.1 Pump and Treat Technology

Conventional groundwater pumping and treatment technology has proven to be effective in removing and containing dissolved hydrocarbons in groundwater. This is accomplished by establishing a groundwater capture zone, typically requiring a series of recovery wells or trenches. In addition to removing and containing the dissolved hydrocarbons, groundwater pump and treatment systems also remediate hydrocarbons in the saturated soil and groundwater via extraction. Through groundwater pumping, groundwater flow is induced in the direction of the recovery wells or trenches. As groundwater flows toward the wells, hydrocarbons adsorbed to the saturated soil particles will desorb into the captured groundwater, which is then pumped to the surface for treatment. This remedial technique typically operates for a longer period of time than other remedial options because the hydrocarbons must be drawn through the subsurface to recovery wells.

In some instances, the effectiveness of conventional groundwater pumping and treatment can be limited as the rate of desorption may be relatively slow. In such instances, a prolonged remediation time may be necessary to achieve the groundwater closure objectives. Based on the large area of contamination and thickness of the NAPL plume(s), the number of recovery wells required (determined by pilot testing) could be significant and extracted liquids would need to be pre-treated prior to disposal. This remedial option seems cost prohibitive and is not a viable remedial technology.

4.4.2 Enhanced Fluid Recovery

Enhanced fluid recovery (EFR) events are commonly used to periodically recover groundwater containing LNAPL and dissolved phase hydrocarbons. A mobile vacuum tank truck (vac truck) is typically utilized to perform EFR events. A vac-truck provides a mobile high vacuum source that can be attached to one or several wells at a given time. Thus, EFR events allow the flexibility to concentrate removal efforts at those locations which warrant it. Utilizing EFR events at a Site with localized elevated dissolved COC concentrations can be a cost effective alternative to the implementation of a permanent water recovery and treatment system. However, the remedial timeframe is extended due to only periodic operation. Based on the elevated CoC concentrations over a large area, this remedial approach does not appear to be a technically feasible option for this Site.

4.4.3 Groundwater Remediation – In-Situ Technologies

In-situ groundwater treatment consists of various technologies where air, bacteria, chemicals, or nutrients are injected into the groundwater. Injecting nutrients, chemicals, or bacteria typically enhance the biological degradation of the contaminants dissolved in the groundwater. Air sparging is another in-situ technology capable of treating groundwater. Unlike chemical or bacteria injection, potential clogging of injection points and pore spaces is less likely to occur with an air sparge system.

4.4.3.1 Air Sparging

Air sparging is a groundwater remediation technique that involves injecting air under pressure into the saturation zone. The injected air, which then travels upward through groundwater, strips volatile hydrocarbons from the groundwater and, through the addition of oxygen present in the injected air, also enhances the natural aerobic biodegradation. The volatilized hydrocarbons move with the injected air to the unsaturated zone, where a network of SVE points typically captures them. As with the SVE application previously discussed, recovered hydrocarbon vapors are then treated, if necessary, and discharged to the atmosphere.

The combined air sparging and SVE technique is limited to constituents which can readily be volatilized or biodegraded, such as BTEX, and to highly permeable, granular soils with few heterogeneities. Additionally, the system design may also be limited by the presence of potential subsurface vapor conduits, such as utility trenches, which can result in the transport of hydrocarbon vapors into unintended areas.

The primary advantage of air sparging and SVE is that it consists of in-situ treatment of the groundwater, thereby eliminating the need for an aboveground groundwater treatment system and water discharge or disposal. SVE also has the advantage of providing for the remediation of unsaturated soil containing adsorbed hydrocarbons. The disadvantages to air sparging and SVE are the subsurface limitations on its application and the lack of hydraulic control; however, curtains of air sparge wells can be installed to create treatment zones which groundwater flows through.

The cohesive soils associated with the vadose zone would appear to limit the amount of hydrocarbon vapors collected through SVE technologies. Since the elevated CoC concentrations detected in the groundwater at the Site may represent the presence of non-aqueous phase liquids (NAPL), the implementation of an air sparging system could potentially spread NAPL beneath the Site causing a greater zone of impact. Based on a review of the remedial alternative evaluation criteria, air sparging is not recommended based on the subsurface geology and elevated CoC concentrations present in the groundwater beneath the Site.

4.4.3.2 In-Situ Enhanced Soil Mixing

In-Situ Enhanced Soil Mixing (ISESM) is generally an effective method to address contaminated soil. Augers ranging in diameter from three (3) to twelve (12) feet would be used to mix soils up to approximately 40 feet bgs. Enhancements such as injection of heated air in combination with vapor extraction, injection of oxidants, or injection of grout (e.g., bentonite clay or cement) may be a viable alternative to retard off-Site migration by immobilizing shallow NAPL within the southern (downgradient) portion of the Site. However, the estimated cost to perform ISESM would be in excess of \$1,500,000 and this remedy was determined cost prohibitive and not a viable remedial technology.

4.4.3.3 In-Situ Chemical Oxidation

The IDEM consulted an outside subcontractor to provide a cost estimate to address the Site using In-Situ Chemical Oxidation (ISCO). Due to the high levels of NAPL and oxidant demand, the recommended remedial strategy combined ISCO and vacuum extraction (vacuum truck). The proposed treatment area includes 122 injection/extraction wells advanced to 30 feet bgs in the south-central to southeast portion of the Site.

Approximately 670 gallons of 15% sodium persulfate catalyzed with sodium hydroxide would be injected into each of the 122 injection locations. Vacuum extraction would be utilized prior to, during, and following injection activities to facilitate the effectiveness of the treatment chemistry. All extracted fluids would be stored in mobile frac tanks prior to off-Site disposal.

The work would take approximately 10 days to complete and the estimated cost of \$785,000 is within the available budget. The ISCO is considered a viable remedial option.

4.4.3.4 Monitored Natural Attenuation

Natural attenuation processes commonly occur in the subsurface where hydrocarbons are present. After the source area is remediated, natural attenuation processes may be effective in degrading residual hydrocarbons. Based on the current concentrations of dissolved hydrocarbons and NAPL at the Site, natural attenuation alone does not appear to be the best remedial option.

4.4.4 Containment Slurry Wall

Containment slurry walls typically include a groundwater pumping system to collect contaminated groundwater and reduce migration around or through the slurry wall. Given the long-term hydraulic monitoring required, the technology is not considered a viable remedial option.

4.5 Environmental Restrictive Covenant

In order to protect human health and the environment, an environmental restrictive covenant (ERC) is recommended to be placed on the Site. The ERC may consider the following provisions and restrictions:

- The Owner shall not use or allow the use of groundwater at the Site for any purpose without IDEM's approval.
- The Owner shall not use the Site for residential purposes, including, but not limited to, daily care facilities (i.e. schools, child care centers, nursing homes, etc.).
- Excavation restrictions without IDEM's approval may be necessary.

4.6 Cost Analysis

A consideration to cost effectiveness was given to the applicable remedial options. A summary of the estimated costs associated with remediation alternatives is provided in **Appendix B**.

5 Selected Remedy

Based on the evaluation of remedial alternatives, the selected remedy for the Site will include the ISCO option. Remediation activities will include the extraction of impacted groundwater and NAPL from installed injection points using a vacuum extraction truck. Existing monitoring wells may also be used for additional extraction. A mobile injection trailer will be utilized to administer the injection of 15% sodium persulfate catalyzed with sodium hydroxide into 122 injection points. Approximately 670 gallons of injection solution (mixed on-Site) will be pumped into each injection point using air-tight piping and hoses. Injection operations is expected to be combined with vacuum extraction during remediation activities. All extracted fluids would be stored in mobile frac tanks prior to off-Site disposal.

Following remediation activities, an environmental restrictive covenant (ERC) may be prepared and recorded for the Site and nearby properties to act as an institutional control against human exposure to residual hydrocarbons.

5.1 Closure Report and Data Management

Once remediation activities have been implemented at the Site and cleanup goals have been achieved, a Remediation Completion Report will be prepared and submitted to the IDEM.

All data generated during the remediation activities will be managed and presented to the IDEM in communications or reports. All electronic submittals will follow the IDEM's Electronic Data Submittal Guidelines.

5.2 **Project Schedule**

The schedule represents an eighteen (18) week time frame only. The schedule is based on no delays being caused by EPA or IDEM's approval process or from the selected vendors and subcontractors, other than the time frame provided in the schedule. The projected schedule has been provided in **Appendix C**.

6 References

ATC Group Services LLC, Asbestos Survey Report, dated January 25, 2017.

ATC Group Services LLC, Phase I Environmental Site Assessment, April 25, 2016.

ATC Group Services LLC, Phase II Further Site Investigation, dated January 16, 2019.

ATC Group Services LLC, Phase II Further Site Investigation, dated September 21,2018.

ATC Group Services LLC, *Phase II Further Site Investigation and Asbestos Abatement Report*, dated June 21, 2018.

ATC Group Services LLC, *Phase II Limited Subsurface Investigation* (LSI), dated January 23, 2017.

ATC Group Services LLC, *Pilot Study*, April 8, 2019.

ATC Group Services LLC, Quarterly Monitoring Report, dated April 24, 2019.

ATC Group Services LLC, Quarterly Monitoring Report, March 20, 2019.

ATC Group Services LLC, Quarterly Monitoring Report, dated September 27,2018.

Federal Emergency Management Agency (FEMA), Environmental Systems Research Institute, Digital Q3 Flood Data (<u>http://www.esri.com/hazards/makemap.html</u>).

Indiana Department of Environmental Management (IDEM), *RCG (Remediation Closure Guide)*, March 22, 2012.

Indiana Geological Survey (IGS) digital *Indiana Map*, accessed April 2010, (<u>www.indianamap.org/index.html</u>).

National Wetlands Inventory (NWI) digital wetland map (<u>http://www.nwi.fws.gov/</u>).

USDA NRCS Web Soil Survey: http://websoilsurvey.nrcs.usda.gov/app/HomePage.htm.

United States Geological Survey (USGS), *Princeton, Indiana Topographic Quadrangle Map*, 7.5 Minute Series, dated 1959, photorevised 1989.

Tables

- Table 1:
 Summary of Soil Analytical Results VOCs/Metals October 2016
- Table 2:Summary of Soil Analytical Results SVOCs October 2016
- Table 3:Summary of Soil Analytical Results VOCs/PCBs April 2018
- Table 4:
 Summary of Soil Analytical Results PAHs April 2018
- Table 5:
 Summary of Soil Analytical Results VOCs/PCBs November 2018
- Table 6:
 Summary of Soil Analytical Results PAHs November 2018
- Table 7:
 Summary of Groundwater Analytical Results VOCs/Metals November 2016
- Table 8:
 Summary of Groundwater Analytical Results SVOCs November 2016
- Table 9:Summary of Groundwater Analytical Results VOCs/PCBs May 2018 to
April 2019
- Table 10:Summary of Groundwater Analytical Results PAHs May 2018 to April 2019

												Table 1												
								5	Summary	of Analytic		esults - VO r RJ Refine	Cs/Metal	s - Octobe	er 2016									
												Road 350 S												
							· · · ·				Princeton	, Indiana 4	17670											
					Detect	ted Metals	(ppm)				1		T	1	1	Detected V	/OCs (ppm)		1	1	1		
Sample ID	Sample Depth (ft)	Date Sampled	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	1,2,4- Trimethylbenzene	1,3,5- Trimethylbenzene	2-Butanone (MEK)	Acetone	Benzene	Ethylbenzene	Isopropylbenzene	Methylene Chloride	Tetrachloroethene	Toluene	n-Hexane	n-Propylbenzene	p-lsopropyltoluene	sec-Butylbenzene	tert-Butylbenzene
	eening Soil ntact Reside		9.5	21,000	99	NE*	400	3.1	550	81	180	28,000	85,000	17	81	270	490	110	820	140	260	NE*	150	180
D	eening Soil Direct Contac rcial/Industr	ct	30	100,000	980	NE*	800	3.1	5,800	220	180	28,000	100,000	51	250	270	3,200	170	820	140	260	NE*	150	180
	eening Soil ntact Excava	•	920	100,000	1,900	NE*	1,000	3.1	9,800	220	180	28,000	100,000	1,800	480	270	3,300	170	820	140	260	NE*	150	180
	IDEM Screening Groundwater Soil MTG Residential 2016 5.9 1,700 7.5 100,000 270 2.1 5.3 0.44 3.4 23 57 0.051 16 15 0.025 0.045 14 210 25 NE* 120 31															31								
B-1 0-2 10/25/2016 7.8 121 <0.59 18.2 9.9 <0.24 <1.2 <0.0044 <0.0020 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044															<0.0044									
B-1 0-2 10/25/2016 7.8 121 <0.59 18.2 9.9 <0.24 <1.2 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044 <0.0044															<1.10 <0.0047									
B-2	8-10	10/25/2016	8.5	48.8	<0.54	16.8	10.1	<0.24	<1.1	<0.475	<0.475	<2.37	<9.49	<0.475	<0.475	<0.475	<1.90	<0.475	<0.475	<0.475	<0.475	<0.475	<0.475	<0.475
B-3	0-2	10/25/2016	12.3	91.3	< 0.51	19.6	12.7	<0.24	<1.0	<0.0055	<0.0055	<0.0277	<0.111	<0.0055	< 0.0055	< 0.0055	< 0.0222	<0.0055	< 0.0055	<0.0055	< 0.0055	< 0.0055	< 0.0055	< 0.0055
B-3 BLIND DUF	24-25 PLICATE 1	10/25/2016	8.2 9 1	29.8 85.6	<0.53 <0.59	10.4 15.8	8.7 10.3	<0.24 <0.23	<1.1 <1.2	16.3 <0.488	4.75 <0.488	<1.17 <2.44	<4.69 <9.76	0.127 <0.488	7.40 <0.488	0.761 4.98	<0.938 <1.95	<0.235 <0.488	0.393 <0.488	19.5 <0.488	3.37 6.57	<0.235 <0.488	0.405 3.29	<0.235 <0.488
B-4	0-2	10/25/2016	11.0	70.9	<0.54	17.4	12.7	<0.23	<1.1	<0.0053	<0.0053	<0.0263	<0.105	<0.0053	<0.0053	<0.0053	<0.0210	<0.0053	<0.0053	<0.0053	< 0.0053	< 0.0053	<0.0053	<0.0053
B-4	28-30	10/25/2016	4.2	27.8	<0.56	12.8	9.2	<0.23	<1.1	<0.0046	< 0.0046	<0.0231	<0.0922	<0.0046	< 0.0046	< 0.0046	<0.0184	<0.0046	< 0.0046	< 0.0046	<0.0046	< 0.0046	<0.0046	< 0.0046
B-5 B-5	0-2 8-10	10/25/2016 10/25/2016	12.3 4.3	95.3 48.6	<0.50 <0.58	34.1 13.1	15.9 7.3	<0.23 <0.25	<1.0 <1.2	<0.0056 <0.0048	<0.0056 <0.0048	<0.0281 <0.0242	<0.112 <0.0970	<0.0056 <0.0048	<0.0056 <0.0048	<0.0056 0.0894	<0.0225 <0.0194	<0.0056 <0.0048	<0.0056 <0.0048	<0.0056 <0.0048	<0.0056 0.578	<0.0056 <0.0048	<0.0056 0.153	<0.0056 <0.0048
B-6	0-10	10/25/2016	25.7	82.8	<0.56	23.9	10.9	<0.25	<1.1	<0.0048	<0.0048	<0.0242	<0.0970	<0.0048	<0.0048	<0.0034	<0.0194	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048
B-6	32-34	10/25/2016	4.0	31.7	<0.49	11.6	8.0	<0.23	<0.97	<0.0047	<0.0047	<0.0235	<0.0941	<0.0047	<0.0047	<0.0047	<0.0188	<0.0047	< 0.0047	< 0.0047	< 0.0047	<0.0047	<0.0047	<0.0047
B-7	0-2	10/26/2016	24.4	113	< 0.53	42.8	64.7	< 0.24	<1.1	< 0.0046	< 0.0046	< 0.0231	< 0.0925	< 0.0046	< 0.0046	< 0.0046	< 0.0185	< 0.0046	< 0.0046	< 0.0046	< 0.0046	< 0.0046	< 0.0046	< 0.0046
B-7 B-8	26-28 0-2	10/26/2016 10/25/2016	11.4	49.9 74.9	<0.57 <0.60	17.4 19.4	12.5 18.3	<0.23 <0.28	<1.1 <1.2	<0.0043 <0.561	<0.0043 <0.561	<0.0217 <2.81	<0.0867 <11.2	<0.0043	<0.0043 2.96	<0.0043 9.78	<0.0173 <2.25	<0.0043 <0.561	<0.0043 <0.561	<0.0043 <0.561	<0.0043 40.7	<0.0043 <0.561	<0.0043 5.80	<0.0043 <0.561
B-8	4-6	10/25/2016	9.1	102	<0.61	16.6	16.0	<0.24	<1.2	<0.510	<0.510	<2.55	<10.2	1.09	< 0.510	8.41	<2.04	<0.510	<0.510	0.890	28.3	<0.510	4.45	<0.510
B-9	0-2	10/25/2016	9.9	63.9	<0.54	22.8	10.9	<0.24	<1.1	<0.510	<0.510	<2.55	<10.2	<0.510	<0.510	1.89	<2.04	<0.510	<0.510	<0.510	6.53	<0.510	1.45	<0.510
B-9 B-10	6-8 0-2	10/25/2016	6.7 15.2	51.3 74.9	<0.58 <0.59	13.6 24.4	8.8 14.5	<0.26 <0.26	<1.2 <1.2	<0.509 <0.0060	<0.509 <0.0060	<2.54 <0.0300	<10.2 <0.120	0.969 <0.0060	<0.509 <0.0060	3.24 <0.0060	<2.03 <0.0240	<0.509 <0.0060	<0.509 <0.0060	<0.509 <0.0060	10.7 <0.0060	<0.509 <0.0060	2.21 <0.0060	<0.509 <0.0060
B-10 B-10	8-10	10/25/2016	3.2	67.4	<0.59	12.3	5.8	<0.26	<1.2	<0.0060 86.6	25.9	<0.0300	<0.120	0.287	33.8	4.68	<0.0240	<0.0060	<0.209	37.2	20.8	0.623	2.08	<0.209
B-11	0-2	10/28/2016	12.9	73.2	<0.59	18.4	14.0	<0.24	<1.2	<0.0048	<0.0048	<0.0240	< 0.0962	<0.0048	<0.0048	<0.0048	<0.0192	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048
B-11	8-10	10/28/2016	4.6	38.8	< 0.50	13.0	6.5	<0.22	<1.0	<0.482	<0.482	<2.41	<9.65	<0.482	<0.482	0.857	<1.93	<0.482	<0.482	1.10	1.04	0.615	0.506	<0.482
B-12 B-12	0-2 4-6	10/27/2016 10/27/2016	<u>10.4</u> 9.1	73.8 74.8	<0.51 <0.57	18.3 14.3	31.1 9.9	<0.20 <0.24	<1.0 <1.1	<0.0052 <0.499	<0.0052 <0.499	<0.0260 <2.50	<0.104 <9.99	<0.0052 <0.499	<0.0052 <0.499	<0.0052 0.896	<0.0208 <2.00	<0.0052 <0.499	<0.0052 <0.499	<0.0052 <0.499	<0.0052 1.37	<0.0052 <0.499	<0.0052 1.95	<0.0052 <0.499
B-13	0-2	11/1/2016	20.8	74.6	<0.50	18.2	20.6	<0.24	<1.0	<0.0047	<0.0047	<0.0236	<0.0946	<0.0047	<0.0047	<0.0047	<0.0189	<0.0047	0.0054	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047
B-13	4-6	11/1/2016	9.5	171	<0.54	20.1	9.8	<0.26	<1.1	<1.32	<1.32	<6.58	<26.3	2.44	<1.32	3.45	<5.27	<1.32	<1.32	6.65	6.39	1.64	2.19	<1.32
B-14 B-14	0-2 6-8	10/28/2016 10/28/2016	6.0 8.8	60.5 60.1	<0.54 <0.58	12.3 13.2	9.6 8.2	<0.21 <0.25	<1.1 <1.2	<0.0050 <1.34	<0.0050 <1.34	<0.0252 <6.72	<0.101 <26.9	<0.0050 <1.34	<0.0050 <1.34	<0.0050 2.82	<0.0202 <5.38	<0.0050 <1.34	<0.0050 <1.34	<0.0050 <1.34	<0.0050 7.74	<0.0050 <1.34	<0.0050 1.68	<0.0050 <1.34
B-14 B-15	0-8	10/28/2016	8.5	75.8	<0.58	13.2	8.2 18.6	<0.25	<1.2	0.171	0.0412	< <u>0.72</u> 0.0448	<26.9 0.197	<1.34 0.0761	0.0185	0.0262	<0.0221	< 0.0055	<0.0055	<0.0055	0.0718	<1.34 0.0252	0.0145	<0.0055
B-15	6-8	10/31/2016	7.6	86.8	<0.54	17.7	9.5	<0.25	<1.1	<0.507	<0.507	<2.54	<10.1	7.74	1.40	3.51	<2.03	<0.507	< 0.507	2.46	11.0	2.02	1.94	<0.507
B-16	0-2	10/28/2016	10.3	86.1	< 0.50	12.1	40.6	5.7	<1.0	< 0.0054	< 0.0054	<0.0271	<0.108	< 0.0054	< 0.0054	< 0.0054	0.0250	< 0.0054	< 0.0054	< 0.0054	< 0.0054	< 0.0054	< 0.0054	< 0.0054
B-16 B-17	14-16 0-2	10/28/2016 10/31/2016	5.7 5.5	65.6 57.5	<0.60 <0.46	20.5 9.6	13.2 11.5	<0.25 <0.22	<1.2 <0.93	<1.23 <0.0048	<1.23 <0.0048	<6.15 <0.0241	<24.6 <0.0966	0.468 <0.0048	<1.23 <0.0048	<1.23 <0.0048	5.59 <0.0193	<1.23 <0.0048	<1.23 <0.0048	<1.23 <0.0048	<1.23 <0.0048	<1.23 <0.0048	<1.23 <0.0048	<1.23 <0.0048
B-17 B-17	8-10	10/31/2016	5.5	41.5	<0.40	10.0	5.7	<0.22	<1.0	<0.0048	<0.0048	<0.0241	<0.0959	<0.0048	<0.0048	<0.0048	<0.0193	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048
B-18	0-2	10/31/2016	10.7	125	<0.50	18.7	14.0	<0.24	<0.99	<0.0048	<0.0048	<0.0239	<0.0954	<0.0048	<0.0048	<0.0048	<0.0191	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048

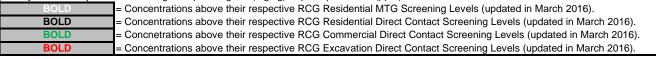
								\$	Summary	of Analytic	cal Soil R Forme County F	Fable 1 esults - VC r RJ Refine Road 350 S	ery South	s - Octobe	er 2016									
					Detec	ted Metals	(maa)				Princetor	, Indiana 4	7670			Detected V	/OCs (ppm)						
Sample ID	Sample Depth (ft)	Date Sampled	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	1,2,4- Trimethylbenzene	1,3,5- Trimethylbenzene	2-Butanone (MEK)	Acetone	Benzene	Ethylbenzene	Isopropylbenzene	Methylene Chloride	Tetrachloroethene	Toluene	n-Hexane	n-Propylbenzene	p-lsopropyltoluene	sec-Butylbenzene	tert-Butylbenzene
	eening Soil ntact Reside	-	9.5	21,000	99	NE*	400	3.1	550	81	180	28,000	85,000	17	81	270	490	110	820	140	260	NE*	150	180
IDEM Scr D	eening Soil irect Contac	Exposure ct	30	100,000	980	NE*	800	3.1	5,800	220	180	28,000	100,000	51	250	270	3,200	170	820	140	260	NE*	150	180
IDEM Scr	rcial/Industr eening Soil ntact Excava	Exposure	920	100,000	1,900	NE*	1,000	3.1	9,800	220	180	28,000	100,000	1,800	480	270	3,300	170	820	140	260	NE*	150	180
	ening Groun Residential		5.9	1,700	7.5	100,000	270	2.1	5.3	0.44	3.4	23	57	0.051	16	15	0.025	0.045	14	210	25	NE*	120	31
B-18 BLIND DUF		10/31/2016	17.1 6.7	147 107	<0.57 <0.58	20.1 16.3	9.4 7.3	<0.24 <0.25	<1.1 <1.2	<0.506 <0.509	<0.506 <0.509	<2.53 <2.54	<10.1 <10.2	1.47 1.07	0.844 <0.509	4.91 2.01	<2.02 <2.04	<0.506 <0.509	<0.506 <0.509	14.6 7.62	12.4 5.47	1.28 <0.509	2.57 1.10	<0.506 <0.509
B-19 B-19 BLIND DUF	0-2 6-8 PLICATE 3	10/27/2016 10/27/2016	7.0 6.9 7.7	63.0 83.2 96.3	<0.55 <0.51 <0.62	14.9 14.3 15.2	26.8 8.5 8.9	<0.25 <0.23 <0.26	<1.1 <1.0 <1.2	0.0385 <0.489 <0.508	0.0090 <0.489 <0.508	0.0564 <2.45 <2.54	<0.109 <9.79 <10.2	0.0268 <0.489 <0.508	0.0726 <0.489 <0.508	0.0336 <0.489 0.645	<0.0218 <1.96 <2.03	<0.0054 <0.489 <0.508	<0.0054 <0.489 <0.508	0.0939 <0.489 <0.508	0.0785 <0.489 1.25	0.0202 <0.489 <0.508	0.0370 <0.489 0.683	<0.0054 <0.489 <0.508
B-20 B-20	0-2 14-16	10/28/2016 10/28/2016	9.0 5.0	162 57.4	<0.55 <0.54	8.5 15.9	19.1 9.0	<0.25 <0.23	<1.1	<0.0052	<0.0052 <2.31	<0.0258 <11.5	<0.103 <46.1	<0.0052 <2.31	<0.0052 3.72	<0.0052 2.82	<0.0207 <9.22	<0.0052 <2.31	<0.0052 <2.31	<0.0052 <2.31	<0.0052 4.09	<0.0052 <2.31	<0.0052 <2.31	<0.0052 <2.31
B-21	0-2	10/27/2016	4.6	159	<0.56	9.7	11.5	<0.22	<1.1	<0.237	<0.237	<1.19	<4.74	<0.237	0.239	1.22	<0.949	<0.237	<0.237	<0.237	4.30	<0.237	0.762	<0.237
B-21 B-22	24-26 0-2	10/27/2016 10/27/2016	3.7	21.8 86.3	<0.49 <0.51	7.5 14.7	7.2 23.5	<0.24 <0.22	<0.99 <1.0	41.9 <0.0059	12.2 <0.0059	<5.52 <0.0293	<22.1 <0.117	27.4 <0.0059	24.6 <0.0059	2.38 <0.0059	<4.41 <0.0234	<1.10 <0.0059	84.6 <0.0059	59.7 <0.0059	8.59 <0.0059	<1.10 <0.0059	<1.10 <0.0059	<1.10 <0.0059
B-22	6-8	10/27/2016	8.5	73.3	<0.57	15.0	8.8	<0.24	<1.1	<0.503	<0.503	<2.51	<10.1	< 0.503	< 0.503	5.14	<2.01	<0.503	<0.503	<0.503	17.7	<0.503	2.94	<0.503
B-23 B-23	0-2 6-8	10/31/2016 10/31/2016	10.0 9.1	93.8 73.9	<0.52 <0.60	10.4 13.9	13.1 11.6	<0.22 <0.26	<1.0 <1.2	0.0328	0.0071 23.9	<0.0276 <2.03	<0.110 <8.14	<0.0055 15.8	<0.0055 26.1	<0.0055 3.14	<0.0221 <1.63	<0.0055 <0.407	<0.0055 <0.407	<0.0055 6.24	<0.0055 14.9	<0.0055 1.50	<0.0055 1.91	<0.0055 <0.407
B-24	0-2	10/28/2016	8.7	91.0	< 0.52	14.9	34.6	< 0.23	<1.0	<0.0051	<0.0051	<0.0254	<0.102	< 0.0051	< 0.0051	< 0.0051	< 0.0203	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.0051	< 0.0051
B-24 B-25	20-22 0-2	10/28/2016 10/31/2016	2.0 6.8	24.2 63.4	<0.60 <0.45	7.4 10.7	6.6 16.0	<0.23 0.66	<1.2 <0.91	21.7 <0.0039	< 0.0039	<2.81 <0.0197	<11.2 <0.0786	<0.562 0.0123	0.758 <0.0039	1.52 0.0541	<2.25 <0.0157	<0.562 <0.0039	<0.562 <0.0039	27.1 <0.0039	2.96 0.0720	2.88 <0.0039	2.55 0.0529	<0.562 <0.0039
B-25 BLIND DUF	2-4	10/31/2016	9.3	68.1	< 0.50	13.5	16.0	<0.25	<1.0	32.8	8.98	<2.48	<9.92	0.213	6.64	18.7	<1.98	< 0.496	< 0.496	1.17	34.9	5.67	12.2	< 0.496
B-26	0-2	10/31/2016	<u>10.6</u> 11.1	70.4 74.4	<0.53 <0.56	14.5 16.9	16.5 12.4	<0.25 <0.23	<1.1 <1.1	<0.0053	0.738 <0.0053	<2.34 <0.0267	<9.37 <0.107	<0.468 <0.0053	0.783 <0.0053	8.16 <0.0053	<1.87 <0.0214	<0.468 <0.0053	<0.468 <0.0053	<0.468 <0.0053	18.1 <0.0053	0.811 <0.0053	5.80 <0.0053	<0.468 <0.0053
B-26	6-8	10/31/2016	4.3	56.9	< 0.50	15.0	7.9	< 0.25	< 0.99	6.78	1.35	<2.38	<9.50	<0.475	1.45	<0.475	<1.90	<0.475	<0.475	1.95	1.42	<0.475	<0.475	<0.475
B-27 B-27	0-2 6-8	10/31/2016 10/31/2016	22.9 3.9	65.6 56.1	<0.51 <0.52	12.3 13.3	30.0 8.2	<0.21 <0.25	<1.0 <1.0	<0.152 <0.456	<0.152 <0.456	<0.761 <2.28	<3.04 <9.13	<0.152 <0.456	<0.152 <0.456	<0.152 <0.456	<0.609 <1.83	<0.152 <0.456	<0.152 <0.456	<0.152 <0.456	<0.152 <0.456	<0.152 <0.456	<0.152 <0.456	<0.152 <0.456
B-28 B-28	0-2 8-10	10/26/2016 10/26/2016	4.3 3.3	98.1 52.4	<0.51 <0.50	12.3 12.0	8.8 6.7	<0.23 <0.22	<1.0 <1.0	<0.0047 <0.0041	<0.0047 <0.0041	<0.0234 <0.0204	<0.0937 <0.0816	<0.0047 <0.0041	<0.0047 <0.0041	<0.0047 <0.0041	<0.0187 <0.0163	<0.0047 <0.0041	<0.0047 <0.0041	<0.0047 <0.0041	<0.0047 <0.0041	<0.0047 <0.0041	<0.0047 <0.0041	<0.0047 <0.0041
B-29	0-2	10/26/2016	13.7	113	<0.58	25.0	11.7	<0.23	<1.2	<0.0041	<0.0048	<0.0204	<0.0966	<0.0048	<0.0048	<0.0048	<0.0193	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048
B-29 B-30	6-8 0-2	10/26/2016 10/26/2016	7.5 6.7	52.9 86.5	<0.56 <0.56	14.6 13.7	8.4 12.8	<0.22 <0.23	<1.1 <1.1	<0.0038 0.0158	<0.0038 0.0051	<0.0192 <0.0224	<0.0770 <0.0896	<0.0038 <0.0045	<0.0038 0.0088	<0.0038 <0.0045	<0.0154 <0.0179	<0.0038 <0.0045	<0.0038 <0.0045	<0.0038 <0.0045	<0.0038 <0.0045	<0.0038 <0.0045	<0.0038 <0.0045	<0.0038 <0.0045
B-30	12-14	10/26/2016	3.6	44.9	<0.50	12.2	9.0	<0.25	<1.0	37.3	9.46	<1.07	<4.29	2.46	16.6	1.84	<0.858	<0.215	<0.215	26.0	7.82	0.290	0.912	<0.215
B-31 B-31	0-2 4-6	10/26/2016 10/26/2016	9.8 6.4	78.9 52.8	<0.50 <0.53	15.5 10.9	11.1 7.1	<0.23 <0.25	<1.0 <1.1	<0.0055 <0.0048	<0.0055 <0.0048	<0.0277 <0.0242	<0.111 <0.0969	<0.0055 <0.0048		<0.0055 <0.0048		<0.0055 <0.0048	<0.0055 <0.0048	<0.0055 <0.0048	<0.0055 <0.0048	<0.0055 <0.0048	<0.0055 <0.0048	<0.0055 <0.0048
B-32	0-2	10/26/2016	13.0	102	<0.51	18.3	13.2	<0.22	<1.0	<0.0054	<0.0054	<0.0272	<0.109	<0.0054	<0.0054	<0.0054	<0.0217	<0.0054	<0.0054	<0.0054	< 0.0054	<0.0054	<0.0054	<0.0054
B-32 B-33	4-6 0-2	10/26/2016 10/25/2016	7.8 12.7	51.2 59.9	<0.55 <0.51	15.3 19.3	8.1 13.9	<0.26 <0.25	<1.1 <1.0	<0.125 <0.0048	<0.125 <0.0048	<0.625 <0.0240	<2.50 <0.0961	<0.125 <0.0048	<0.125 <0.0048	<0.125 <0.0048	0.640 <0.0192	<0.125 <0.0048	<0.125 <0.0048	<0.125 <0.0048	<0.125 <0.0048	<0.125 <0.0048	<0.125 <0.0048	<0.125 <0.0048
B-33	4-6	10/25/2016	6.7	56.2	<0.55	10.9	8.6	<0.26	<1.1	<0.523	<0.523	<2.61	<10.5	<0.523	0.574	3.34	<2.09	<0.523	<0.523	<0.523	4.75	0.527	3.62	<0.523
B-34 B-34	0-2 8-10	10/25/2016 10/25/2016	14.3 1.9	103 50.7	<0.57 <0.54	20.4 16.2	25.0 9.8	<0.22 <0.25	<1.1 <1.1	<0.0057 27.6	<0.0057	<0.0286 <0.0228	<0.114 <0.0912	<0.0057	<0.0057 13.3	<0.0057 1.68	<0.0229 <0.0182	<0.0057 <0.0046	<0.0057 <0.0046	<0.0057 12.4	<0.0057 5.37	<0.0057 0.194	<0.0057 0.239	<0.0057 <0.0046
B-35	0-2	10/25/2016	10.6	68.2	<0.52	16.9	10.4	<0.23	<1.0	<0.0052	<0.0053	<0.0266	<0.106	<0.0053	<0.0053	<0.0053	<0.0213	<0.0053	<0.0053	<0.0053	< 0.0053	<0.0053	<0.0053	<0.0053
B-35 B-36	6-8 0-2	10/25/2016 11/1/2016	<u>4.0</u> 5.5	48.3 62.1	<0.56 <0.49	13.8 10.8	6.2 10.6	<0.23 <0.21	<1.1 <0.98	77.9 <0.0050	25.2 <0.0050	<1.18 <0.0250	<4.71 <0.100	0.174 <0.0050	20.7 <0.0050	4.00 <0.0050	<0.942 <0.0200	<0.235 <0.0050	<0.235 0.0062	<0.235 <0.0050	15.9 <0.0050	1.28 <0.0050	2.50 <0.0050	<0.235 <0.0050

								\$	Summary	of Analyti	cal Soil Re Forme County R	Table 1 esults - VC r RJ Refine coad 350 S , Indiana 4	ery South	s - Octobe	er 2016									
					Detec	ted Metals	(ppm)				Princeton	, Indiana 4	1010			Detected V	OCs (ppm)							
Sample ID	Sample Depth (ft)	Date Sampled	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	1,2,4- Trimethylbenzene	1,3,5- Trimethylbenzene	2-Butanone (MEK)	Acetone	Benzene	Ethylbenzene	Isopropylbenzene	Methylene Chloride	Tetrachloroethene	Toluene	n-Hexane	n-Propylbenzene	p-IsopropyItoluene	sec-Butylbenzene	tert-Butylbenzene
	reening Soil Intact Reside	-	9.5	21,000	99	NE*	400	3.1	550	81	180	28,000	85,000	17	81	270	490	110	820	140	260	NE*	150	180
Comme	reening Soil Direct Conta ercial/Indust	ct rial 2016	30	100,000	980	NE*	800	3.1	5,800	220	180	28,000	100,000	51	250	270	3,200	170	820	140	260	NE*	150	180
Direct Co	reening Soil ontact Excav	ation 2016	920	100,000	1,900	NE*	1,000	3.1	9,800	220	180	28,000	100,000	1,800	480	270	3,300	170	820	140	260	NE*	150	180
IDEM Scree MTG	3.4	23	57	0.051	16	15	0.025	0.045	14	210	25	NE*	120	31										
B-37 0-2 11/1/2016 12.7 37.7 <0.53 18.8 15.2 <0.23 <1.1 <0.0072 <0.0072 <0.0072 <0.0360 <0.144 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072 <0.0072															<0.461 <0.0072									
B-37 B-37	18-20	11/1/2016	2.8	10.5	< 0.55	5.4	4.7	<0.23	<1.1	<0.0072	<0.0072	<0.0300	<0.0969	<0.0072	<0.0072	<0.0072	<0.0288	<0.0072	<0.0072	<0.0072	<0.0072	<0.0072	<0.0072	<0.0072
B-38	0-2	11/1/2016	11.6	93.3	<0.58	22.0	11.6	<0.26	<1.2	<0.0046	<0.0046	<0.0228	<0.0913	<0.0046	<0.0046	<0.0046	<0.0183	<0.0046	<0.0046	<0.0046	<0.0046	<0.0046	<0.0046	<0.0046
B-38 B-39	8-10	11/1/2016	8.4	83.3	<0.57	21.9	13.5	<0.24	<1.1	<0.0046	<0.0046	<0.0229	<0.0917	< 0.0046	<0.0046	< 0.0046	<0.0183	< 0.0046	<0.0046	< 0.0046	<0.0046	<0.0046	<0.0046	<0.0046 <0.0052
	0-2 PLICATE 6	11/1/2016	7.0 10.6	84.1 63.9	<0.55 <0.50	10.7 16.6	29.0 11.1	<0.22 <0.23	<1.1 <1.0	<0.0052 <0.0052	<0.0052 <0.0052	<0.0260 <0.0261	<0.104 <0.104	<0.0052 <0.0052	<0.0052 <0.0052	<0.0052 <0.0052	<0.0208 <0.0209	<0.0052 <0.0052	<0.0052 <0.0052	<0.0052 <0.0052	<0.0052 <0.0052	<0.0052 <0.0052	<0.0052 <0.0052	<0.0052
B-39	18-19	11/1/2016	5.1	39.0	<0.52	9.6	8.0	<0.25	<1.0	<0.241	<0.241	<1.20	<4.82	<0.241	<0.241	<0.241	< 0.963	<0.241	<0.241	<0.241	<0.241	<0.241	<0.241	<0.241
B-40	0-2	11/1/2016	9.1	83.3	< 0.55	12.7	17.0	< 0.22	<1.1	< 0.0048	< 0.0048	< 0.0239	< 0.0956	< 0.0048	< 0.0048	< 0.0048	< 0.0191	< 0.0048	< 0.0048	< 0.0048	< 0.0048	< 0.0048	< 0.0048	< 0.0048
B-40 B-41	8-10 0-2	11/1/2016 10/31/2016	6.1 11.3	128 63.6	<0.60 <0.57	13.1 18.7	10.9 12.0	<0.26 <0.25	<1.2 <1.1	<0.0049 <0.0051	<0.0049 <0.0051	<0.0247 <0.0256	0.115 <0.102	<0.0049 <0.0051	<0.0049 <0.0051	<0.0049 <0.0051	<0.0197 <0.0204	<0.0049 <0.0051						
B-41	8-10	10/31/2016	3.6	66.1	<0.53	26.8	6.6	<0.23	<1.1	<0.0046	<0.0046	<0.0228	<0.0910	< 0.0046	< 0.0046	<0.0046	<0.0182	<0.0046	< 0.0046	< 0.0046	< 0.0046	< 0.0046	< 0.0046	< 0.0046
B-42	0-2	10/26/2016	6.4	62.2	< 0.59	16.9	14.2	<0.24	<1.2	< 0.0050	< 0.0050	<0.0249	< 0.0998	< 0.0050	< 0.0050	< 0.0050	< 0.0200	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050	< 0.0050
B-42 B-43	8-10 0-2	10/26/2016 11/1/2016	5.9 4.8	55.8 70.9	<0.54 <0.62	17.4 8.0	7.6 12.6	<0.23 <0.26	<1.1 <1.2	<0.0045 <0.0048	<0.0045 <0.0048	<0.0225 <0.0242	<0.0899 <0.0968	<0.0045 <0.0048	<0.0045 <0.0048	<0.0045 <0.0048	<0.0180 <0.0194	<0.0045 <0.0048						
B-43	8-10	11/1/2016	7.8	103	< 0.56	13.3	12.0	<0.20	<1.1	<0.0048	<0.0048	<0.0242	<0.0908	<0.0048	<0.0048	<0.0048	<0.0194	<0.0048	<0.0048	<0.0043	<0.0048	<0.0048	<0.0048	<0.0048
B-44	0-2	11/1/2016	10.2	78.5	<0.56	16.7	19.2	<0.24	<1.1	<0.0050	<0.0050	<0.0249		<0.0050		<0.0050			0.0082	<0.0050		<0.0050	<0.0050	<0.0050
B-44 B-45	33-35 0-2	11/1/2016 10/31/2016	3.7 8.0	32.0 50.3	<0.55 <0.52	13.1 11.7	9.0 13.6	<0.24 <0.23	<1.1 <1.0	<0.0038 <0.0044	<0.0038 <0.0044	<0.0191 <0.0221	<0.0765 <0.0882	<0.0038 <0.0044	<0.0038 <0.0044	<0.0038 <0.0044	<0.0153 <0.0176	<0.0038 <0.0044						
B-45	24-26	10/31/2016	8.3	146	<0.52	14.1	9.9	<0.23	<1.1	<0.0044	<0.0044	<0.0221	<0.0839	<0.0044	<0.0044	<0.0044		<0.0044	<0.0044	<0.0044	<0.0044	<0.0044	<0.0044	<0.0044
B-46	0-2	10/27/2016	10.5	69.7	<0.49	17.1	12.6	<0.23	<0.98	< 0.0052	<0.0052	<0.0259	<0.103	<0.0052	<0.0052	<0.0052	<0.0207	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052	<0.0052
B-46 B-47	8-10 0-2	10/27/2016 10/27/2016	3.0 11.9	62.8 75.4	<0.50 <0.51	13.2 20.2	6.0 12.3	<0.22 <0.22	<1.0 <1.0	<0.0048 <0.0051	<0.0048 <0.0051	<0.0239 <0.0253	<0.0957 <0.101	<0.0048 <0.0051	<0.0048 <0.0051	<0.0048 <0.0051	<0.0191 <0.0203	<0.0048 <0.0051						
B-47 B-47	24-26	10/27/2016	2.8	26.6	<0.51	12.1	9.9	<0.22	3.7	<0.0051	<0.0051	<0.0253	<0.0812	<0.0051	<0.0051	<0.0051	<0.0203	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051
B-48	0-2	10/27/2016	7.1	69.5	<0.55	14.3	9.2	<0.24	<1.1	<0.0044	<0.0044	<0.0219	<0.0875	<0.0044	<0.0044	<0.0044	<0.0175	<0.0044	<0.0044	<0.0044	<0.0044	<0.0044	<0.0044	< 0.0044
B-48 B-49	5-6 0-2	10/27/2016 10/27/2016	4.8	71.7 73.8	<0.54 <0.56	14.2 14.6	23.4 10.8	<0.27 <0.23	<1.1 <1.1	<0.0057 <0.0051	<0.0057 <0.0051	0.0487	0.283	<0.0057 <0.0051	<0.0057 <0.0051	<0.0057 <0.0051	<0.0228 <0.0203	<0.0057 <0.0051						
B-49 B-49	12-14	10/27/2016	7.6	48.1	< 0.56	14.6	8.1	<0.23	<1.1	<0.0051	<0.0031	<0.0254	<0.102	<0.0031	<0.0031	<0.0031	<0.0203	<0.0051	<0.0051	<0.0051	<0.0031	<0.0031	<0.0031	<0.0031
B-50	0-2	10/27/2016	9.9	85.9	<0.56	17.8	11.6	<0.23	<1.1	< 0.0046	<0.0046	<0.0232	<0.0927	<0.0046	<0.0046	<0.0046	<0.0185	< 0.0046	<0.0046	< 0.0046	<0.0046	<0.0046	<0.0046	<0.0046
B-50	12-14	10/27/2016	8.9	171	< 0.97	26.7	26.3	<0.43	2.9	17.3	5.82	<0.0530	<0.212	0.0740	2.24	0.623	<0.0424	0.0595	0.970	1.81	2.21	0.519	0.482	<0.0106
B-51 B-51	0-2	10/26/2016 10/26/2016	4.0 4.8	51.8 52.5	<0.50 <0.52	10.7 11.5	11.3 8.1	<0.21 <0.23	<1.0 <1.0	<0.0053 <0.151	<0.0053 <0.151	<0.0263 <0.753	<0.105 <3.01	<0.0053 <0.151	<0.0053 <0.151	<0.0053 <0.151	<0.0210 <0.602	<0.0053 <0.151						
B-52	0-2	10/26/2016	9.0	53.8	<0.50	10.3	9.4	<0.23	<0.99	<0.0048	<0.0048	<0.0239	<0.0958	<0.0048	<0.0048	<0.0048	<0.0192	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048
B-52	4-6 PLICATE 2	10/26/2016	4.8	66.2	< 0.51	19.8	7.0	<0.25	<1.0	<0.0041	<0.0041	<0.0205	<0.0820	< 0.0041	<0.0041	<0.0041	< 0.0164	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	0.0456	0.0091
BLIND DU	0-2	10/26/2016	5.3 8.8	60.9 75.9	<0.54 <0.52	13.6 14.6	6.6 9.7	<0.24 <0.23	<1.1 <1.0	<0.0045 <0.0044	<0.0045 <0.0044	<0.0225 <0.0219	<0.0902 <0.0875	<0.0045 <0.0044	<0.0045 <0.0044	<0.0045 <0.0044	<0.0180 <0.0175	<0.0045 <0.0044	<0.0045 <0.0044	<0.0045 <0.0044	<0.0045 <0.0044	<0.0045 <0.0044	0.0410	0.0069 <0.0044
B-53	8-10	10/26/2016	5.6	41.5	<0.53	11.4	5.0	<0.24	<1.1	<0.0047	<0.0047	<0.0236	<0.0945	<0.0047	<0.0047	<0.0047	<0.0189	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047
B-54	0-2	10/27/2016	11.7	67.0	0.56	180	111	0.52	1.3	<0.0045	< 0.0045	< 0.0225	< 0.0898	< 0.0045	< 0.0045	< 0.0045	<0.0180	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0045	< 0.0045
B-54	2-4	10/27/2016	7.3	152	<0.76	24.1	16.0	<0.31	2.1	6.90	1.91	<0.0417	<0.167	0.0190	0.639	0.341	0.0760	0.0274	0.199	0.0302	0.903	0.438	0.309	<0.0083

								5	Summary	of Analytic	cal Soil Re Forme County F	Fable 1 Esults - VC r RJ Refine Road 350 S I, Indiana 4	ery South	s - Octobe										
					Detec	ted Metals	(ppm)			e	e	Ş					/OCs (ppm) පු				ð	е	e	e
Sample ID	Sample Depth (ft)	Date Sampled	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	1,2,4- Trimethylbenzene	1,3,5- Trimethylbenzene	2-Butanone (MEK)	Acetone	Benzene	Ethylbenzene	Isopropylbenzene	Methylene Chloride	Tetrachloroethene	Toluene	n-Hexane	n-Propylbenzene	p-Isopropyltolue	sec-Butylbenzen	tert-Butylbenzen
	EM Screening Soil Exposure rect Contact Residential 2016 9.5 21,000 99 NE* 400 3.1 550 81 180 28,000 85,000 17 81 270 490 110 820 140 260 NE* 150 180																							
D Comme	ect Contact Residential 2016 3.0 9.0																							
	eening Soil ntact Excava		920	100,000	1,900	NE*	1,000	3.1	9,800	220	180	28,000	100,000	1,800	480	270	3,300	170	820	140	260	NE*	150	180
	ening Groun Residential		5.9	1,700	7.5	100,000	270	2.1	5.3	0.44	3.4	23	57	0.051	16	15	0.025	0.045	14	210	25	NE*	120	31
B-55	0-2	10/27/2016	11.2	124	<0.58	21.0	10.3	<0.26	<1.2	<0.0050	<0.0050	<0.0248	<0.0994	<0.0050	<0.0050	<0.0050	<0.0199	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
B-55 TRIP BL	16-18	10/27/2016 10/25/2016	7.8 NA*	52.0 NA*	<0.53 NA*	17.0 NA*	8.4 NA*	<0.25 NA*	<1.1 NA*	<0.0044 <0.0050	<0.0044 <0.0050	<0.0221 <0.0250	<0.0885 <0.100	<0.0044 <0.0050	<0.0044 <0.0050	<0.0044 <0.0050	<0.0177 <0.0200	<0.0044 <0.0050						
TRIP BL		10/25/2016	NA*	NA NA*	NA*	NA*	NA*	NA*	NA*	<0.0050	<0.0050	<0.0250	<0.100	<0.0050	<0.0050	<0.0050	<0.0200	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
TRIP BL		10/26/2016	NA*	NA*	NA*	NA*	NA*	NA*	NA*	< 0.0050	< 0.0050	<0.0250	<0.100	< 0.0050	< 0.0050	<0.0050	<0.0200	<0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
TRIP BL		10/27/2016	NA*	NA*	NA*	NA*	NA*	NA*	NA*	<0.0050	<0.0050	<0.0250	<0.100	<0.0050	<0.0050	<0.0050	<0.0200	<0.0050	0.0118	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
TRIP BL TRIP BL		10/31/2016	NA*	NA* NA*	NA* NA*	NA*	NA*	NA*	NA*	< 0.0050	<0.0050	<0.0250	<0.100	< 0.0050	<0.0050	<0.0050	<0.0200	<0.0050	< 0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050
Notes:		11/1/2016	NA*	INA"	NA"	NA*	NA*	NA*	NA*	<0.0050	<0.0050	<0.0250	<0.100	<0.0050	<0.0050	<0.0050	<0.0200	<0.0050	0.0131	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	tablished / N	IA* = not analy	/zed																					
		zed for volatile							Metals using	g SW 846 N	lethod 6010	B and 7470).											
		e table were no nted in milligra						els.																
BOLD	esuits preser	= Concentrati						Groundwat	er Screenin	a Levels (ur	odated in M	arch 2018)												
BOLD		= Concentrati																						
BOLD		= Concentrati	ons above	their respec	tive RCG C	Commercial	Direct Cont	act Screeni	ng Levels (updated in N	March 2018).												
BOLD		= Concentrati	ons above	their respec	tive RCG E	xcavation D	irect Conta	ct Screenin	g Levels (u	pdated in M	arch 2018).													

			Summa	ry of Anal	ytical Soil Forme	r RJ Refine	ery	October 2	2016			
						Road 350 S I, Indiana 4						
					Thildeton			OCs (ppm))			
Sample ID	Sample Depth (ft)	Date Sampled	1-Methylnaphthalene	2,4-Dimethylphenol	2,4-Dinitrotoluene	2-Methylnaphthalene	2-Methylphenol (o-Cresol)	3&4-Methylphenol (m&p Cresol)	Fluorene	Naphthalene	Phenanthrene	Phenol
	eening Soil ntact Reside	•	250	1,800	24	340	4,500	NE*	3,400	53	NE*	27,000
D Comme	eening Soil Virect Contac rcial/Industi	ct rial 2016	390	16,000	74	3,000	41,000	NE*	30,000	170	NE*	100,000
Direct Cor	eening Soil ntact Excav	ation 2016	390	34,000	3,400	6,800	87,000	NE*	68,000	3,100	NE*	100,000
MTG	ening Groun Residential	2016	1.2	8.5	0.065	3.7	15	NE*	110	0.11	NE*	67
B-1	0-2	10/25/2016	<0.410	<0.410	<0.410	<0.410	<0.410	<0.410	<0.410	<0.410	<0.410	<0.410
B-1 B-2	23-24 0-2	10/25/2016 10/25/2016	3.85 <0.376	<0.443 <0.376	0.571 <0.376	5.56 <0.376	<0.443 <0.376	<0.443 <0.376	<0.443 <0.376	6.32 <0.376	<0.443 <0.376	<0.443 <0.376
B-2 B-2	8-10	10/25/2016	<0.376	< 0.376	<0.375	< 0.375	< 0.375	< 0.376	< 0.395	<0.376	< 0.375	<0.395
B-3	0-2	10/25/2016	<0.385	<0.385	<0.385	<0.385	<0.385	<0.385	<0.385	< 0.385	<0.385	<0.385
B-3	24-25	10/25/2016	0.632	<0.390	<0.390	1.19	<0.390	<0.390	< 0.390	1.17	<0.390	<0.390
BLIND DUP	-		2.61	<0.393	<0.393	3.66	<0.393	<0.393	<0.393	1.51	<0.393	<0.393
B-4	0-2	10/25/2016	<0.386	<0.386	<0.386	<0.386	<0.386	<0.386	<0.386	< 0.386	<0.386	<0.386
B-4	28-30	10/25/2016	< 0.397	< 0.397	< 0.397	< 0.397	< 0.397	< 0.397	< 0.397	< 0.397	< 0.397	< 0.397
B-5	0-2	10/25/2016	<0.378	<0.378	<0.378	<0.378	<0.378	<0.378	<0.378	<0.378	<0.378	<0.378
B-5 B-6	8-10 0-2	10/25/2016 10/25/2016	<0.416 <0.395	<0.416 <0.395	<0.416 <0.395	<0.416 <0.395	<0.416 <0.395	<0.416 <0.395	<0.416 <0.395	<0.416 <0.395	<0.416 <0.395	<0.416 <0.395
B-6	32-34	10/25/2016	<0.393	< 0.384	<0.384	<0.393	<0.393	<0.393	< 0.384	<0.393	< 0.393	<0.384
B-7	0-2	10/26/2016	<3.81	<3.81	<3.81	<3.81	<3.81	<3.81	<3.81	<3.81	<3.81	<3.81
B-7	26-28	10/26/2016	<0.398	<0.398	<0.398	<0.398	<0.398	<0.398	<0.398	<0.398	<0.398	<0.398
B-8	0-2	10/25/2016	0.872	<0.433	<0.433	1.48	<0.433	<0.433	<0.433	<0.433	<0.433	<0.433
B-8	4-6	10/25/2016	5.98	<0.410	<0.410	9.39	<0.410	<0.410	0.457	<0.410	0.944	<0.410
B-9	0-2	10/25/2016	3.69	< 0.416	< 0.416	5.39	< 0.416	< 0.416	< 0.416	< 0.416	0.564	< 0.416
B-9	6-8	10/25/2016	3.06	<0.401	<0.401 <0.422	4.79	<0.401	<0.401	<0.401	<0.401	0.403	<0.401
B-10 B-10	0-2 8-10	10/25/2016 10/25/2016	<0.422 <0.387	<0.422 <0.387	<0.422	<0.422 0.642	<0.422 <0.387	<0.422 <0.387	<0.422 <0.387	<0.422	<0.422 <0.387	<0.422 <0.387
B-10 B-11	0-2	10/28/2016	<0.403	<0.403	<0.403	<0.403	<0.403	<0.403	<0.403	<0.403	<0.403	<0.403
B-11	8-10	10/28/2016	< 0.384	< 0.384	< 0.384	< 0.384	< 0.384	< 0.384	< 0.384	< 0.384	< 0.384	< 0.384
B-12	0-2	10/27/2016	<0.352	<0.352	<0.352	<0.352	<0.352	<0.352	<0.352	<0.352	<0.352	<0.352
B-12	4-6	10/27/2016	2.53	<0.410	<0.410	<0.410	<0.410	<0.410	<0.410	<0.410	<0.410	<0.410
B-13	0-2	11/1/2016	< 0.364	< 0.364	< 0.364	< 0.364	< 0.364	< 0.364	< 0.364	< 0.364	< 0.364	< 0.364
B-13 B-14	4-6 0-2	11/1/2016 10/28/2016	1.43 <0.354	<0.409 <0.354	<0.409 <0.354	<0.409 <0.354	<0.409 <0.354	<0.409 <0.354	<0.409 <0.354	<0.409 <0.354	<0.409 <0.354	<0.409 <0.354
B-14 B-14	6-8	10/28/2016	0.737	<0.354	<0.354	0.878	<0.354	<0.354	<0.354	<0.354	<0.354	<0.354
B-14 B-15	0-0	10/31/2016	1.46	<0.380	<0.380	0.854	<0.380	<0.380	<0.380	<0.380	<0.380	<0.380
B-15	6-8	10/31/2016	48.3	<4.06	<4.06	55.7	<4.06	<4.06	<4.06	<4.06	<4.06	<4.06
B-16	0-2	10/28/2016	<0.371	<0.371	<0.371	<0.371	<0.371	<0.371	<0.371	<0.371	<0.371	<0.371
B-16	14-16	10/28/2016	<0.413	6.78	<0.413	<0.413	6.29	4.83	< 0.413	<0.413	< 0.413	4.27
B-17 B-17	0-2 8-10	10/31/2016 10/31/2016	< 0.354	<0.354 <0.360	<0.354 <0.360	<0.354 <0.360	<0.354 <0.360	<0.354 <0.360	<0.354 <0.360	<0.354 <0.360	<0.354 <0.360	<0.354 <0.360
B-17 B-18	0-2	10/31/2016	<0.360 <0.392	<0.360	<0.360	<0.360	<0.360	<0.360	<0.360	<0.360	<0.360	<0.360
B-18	6-8		0.903	<0.413	<0.413	1.53	<0.413	<0.413	<0.413	<0.332	<0.413	<0.413
BLIND DUF		10/31/2016	1.24	<0.413	<0.413	2.21	<0.413	<0.413	<0.413	<0.413	<0.413	<0.413
B-19	0-2	10/27/2016	<0.390	<0.390	<0.390	<0.390	<0.390	<0.390	<0.390	<0.390	<0.390	<0.390
B-19	6-8	10/27/2016	1.13	< 0.397	< 0.397	1.15	< 0.397	< 0.397	< 0.397	< 0.397	< 0.397	< 0.397
BLIND DUF			3.55	<0.405	<0.405	4.42	<0.405	<0.405	< 0.405	<0.405	0.548	<0.405
B-20 B-20	0-2 14-16	10/28/2016 10/28/2016	<0.380 1.10	<0.380 0.564	<0.380 <0.391	<0.380 1.47	<0.380 0.430	<0.380 <0.391	<0.380 <0.391	<0.380 0.641	<0.380 <0.391	<0.380 1.40
B-20 B-21	0-2	10/28/2016	<0.379	<0.379	<0.391	<0.379	<0.379	<0.391	<0.391	<0.379	<0.391	<0.379
B-21 B-21	24-26	10/27/2016	7.42	<0.380	<0.380	13.2	<0.380	<0.380	<0.380	14.7	<0.380	<0.380
B-22	0-2	10/27/2016	<0.354	< 0.354	< 0.354	< 0.354	< 0.354	< 0.354	< 0.354	< 0.354	< 0.354	< 0.354
B-22	6-8	10/27/2016	3.00	<0.407	<0.407	4.58	<0.407	<0.407	<0.407	<0.407	<0.407	<0.407
B-23	0-2	10/31/2016	<0.368	<0.368	<0.368	<0.368	<0.368	<0.368	<0.368	<0.368	<0.368	<0.368

			Summa	ry of Analı	ytical Soil Forme	Table 2 Results - r RJ Refine toad 350 S	ery	October 2	2016			
						, Indiana 4						
							Detcted SV	/OCs (ppm))		-	
Sample ID	Sample Depth (ft)	Date Sampled	1-Methylnaphthalene	2,4-Dimethylphenol	2,4-Dinitrotoluene	2-Methylnaphthalene	2-Methylphenol (o-Cresol)	3&4-Methylphenol (m&p Cresol)	Fluorene	Naphthalene	Phenanthrene	Phenol
	eening Soil ntact Reside	•	250	1,800	24	340	4,500	NE*	3,400	53	NE*	27,000
D	eening Soil irect Contae rcial/Industr	ct	390	16,000	74	3,000	41,000	NE*	30,000	170	NE*	100,000
Direct Cor	eening Soil ntact Excava	ation 2016	390	34,000	3,400	6,800	87,000	NE*	68,000	3,100	NE*	100,000
IDEM Scree MTG	ening Groun Residential	2016	1.2	8.5	0.065	3.7	15	NE*	110	0.11	NE*	67
B-23	6-8	10/31/2016	9.27	<0.421	<0.421	13.2	<0.421	<0.421	<0.421	8.50	<0.421	<0.421
B-24 B-24	0-2 20-22	10/28/2016	<0.385 1.66	<0.385 <0.393	<0.385 <0.393	<0.385 1.96	<0.385 <0.393	<0.385 <0.393	<0.385 <0.393	<0.385 0.558	<0.385 <0.393	<0.385 <0.393
B-25	0-2	10/20/2010	<0.338	<0.338	<0.338	<0.338	<0.338	<0.338	<0.338	<0.338	<0.338	<0.338
B-25	2-4	10/31/2016	1.17	<0.391	<0.391	1.50	<0.391	<0.391	<0.391	<0.391	<0.391	<0.391
BLIND DUP			1.62	< 0.386	< 0.386	1.82	< 0.386	< 0.386	< 0.386	< 0.386	< 0.386	< 0.386
B-26 B-26	0-2 6-8	10/31/2016 10/31/2016	<0.377 <0.386	<0.377 <0.386	<0.377 <0.386	<0.377 <0.386	<0.377 <0.386	<0.377 <0.386	<0.377 <0.386	<0.377 <0.386	<0.377 <0.386	<0.377 <0.386
B-20 B-27	0-0	10/31/2016	<0.351	<0.351	<0.351	<0.351	<0.351	<0.350	< 0.351	<0.350	<0.351	<0.351
B-27	6-8	10/31/2016	<0.402	<0.402	<0.402	<0.402	<0.402	<0.402	<0.402	<0.402	<0.402	<0.402
B-28	0-2	10/26/2016	<0.358	<0.358	<0.358	<0.358	<0.358	<0.358	<0.358	<0.358	<0.358	<0.358
B-28	8-10	10/26/2016	< 0.386	< 0.386	< 0.386	< 0.386	< 0.386	< 0.386	< 0.386	< 0.386	< 0.386	< 0.386
B-29 B-29	0-2 6-8	10/26/2016 10/26/2016	<4.00 <0.388	<4.00 <0.388	<4.00 <0.388	<4.00 <0.388	<4.00 <0.388	<4.00 <0.388	<4.00 <0.388	<4.00 <0.388	<4.00 <0.388	<4.00 <0.388
B-30	0-0	10/26/2016	< 0.374	< 0.374	<0.374	<0.374	< 0.374	<0.374	< 0.374	<0.374	<0.374	<0.374
B-30	12-14	10/26/2016	0.684	<0.387	<0.387	1.20	<0.387	< 0.387	< 0.387	1.34	<0.387	<0.387
B-31	0-2	10/26/2016	<3.61	<3.61	<3.61	<3.61	<3.61	<3.61	<3.61	<3.61	<3.61	<3.61
B-31	4-6	10/26/2016	< 0.399	< 0.399	< 0.399	< 0.399	< 0.399	< 0.399	< 0.399	< 0.399	< 0.399	< 0.399
B-32 B-32	0-2 4-6	10/26/2016 10/26/2016	<0.394 <0.408	<0.394 <0.408	<0.394 <0.408	<0.394 <0.408	<0.394 <0.408	<0.394 <0.408	<0.394 <0.408	<0.394 <0.408	<0.394 <0.408	<0.394 <0.408
B-32 B-33	0-2	10/25/2016	<0.380	<0.380	<0.380	<0.380	<0.380	<0.400	<0.400	<0.400	<0.380	<0.400
B-33	4-6	10/25/2016	< 0.399	< 0.399	< 0.399	<0.399	< 0.399	< 0.399	< 0.399	< 0.399	< 0.399	< 0.399
B-34	0-2	10/25/2016	<0.379	<0.379	<0.379	<0.379	<0.379	<0.379	<0.379	<0.379	<0.379	<0.379
B-34	8-10	10/25/2016	< 0.397	< 0.397	< 0.397	0.439	< 0.397	< 0.397	< 0.397	0.473	< 0.397	< 0.397
B-35 B-35	0-2	10/25/2016 10/25/2016	<0.375	< 0.375	<0.375	<0.375	<0.375	<0.375	<0.375	< 0.375	< 0.375	<0.375
B-35 B-36	6-8 0-2	10/25/2016	1.10 <0.349	<0.393 <0.349	<0.393 <0.349	2.29 <0.349	<0.393 <0.349	<0.393 <0.349	<0.393 <0.349	1.86 <0.349	<0.393 <0.349	<0.393 <0.349
B-36	10-12	11/1/2016	1.99	<0.398	<0.398	4.16	<0.398	<0.398	<0.398	3.86	<0.398	<0.398
B-37	0-2	11/1/2016	<0.383	<0.383	<0.383	<0.383	<0.383	<0.383	<0.383	<0.383	<0.383	<0.383
B-37	18-20	11/1/2016	< 0.365	< 0.365	< 0.365	< 0.365	< 0.365	< 0.365	< 0.365	< 0.365	< 0.365	< 0.365
B-38	0-2	11/1/2016	<0.405	<0.405	<0.405	<0.405	<0.405	<0.405	<0.405	<0.405	<0.405	<0.405
B-38 B-39	8-10 0-2	11/1/2016	<0.389 <0.374	<0.389 <0.374	<0.389 <0.374	<0.389 <0.374	<0.389 <0.374	<0.389 <0.374	<0.389 <0.374	<0.389 <0.374	<0.389 <0.374	<0.389 <0.374
BLIND DUF		11/1/2016	<0.374	<0.374	<0.374	<0.374	<0.374	<0.374	<0.374	<0.374	< 0.374	<0.374
B-39	18-19	11/1/2016	<0.397	<0.397	<0.397	<0.397	<0.397	<0.397	<0.397	<0.397	<0.397	<0.397
B-40	0-2	11/1/2016	< 0.363	< 0.363	< 0.363	< 0.363	< 0.363	< 0.363	< 0.363	< 0.363	< 0.363	< 0.363
B-40 B-41	8-10 0-2	11/1/2016 10/31/2016	<0.407 <0.402	<0.407 <0.402	<0.407 <0.402	<0.407 <0.402	<0.407 <0.402	<0.407 <0.402	<0.407 <0.402	<0.407 <0.402	<0.407 <0.402	<0.407 <0.402
B-41 B-41	<u>0-2</u> 8-10	10/31/2016	<0.396	<0.402	<0.402	<0.402	<0.402	<0.402	<0.402	<0.402	<0.396	<0.402
B-42	0-2	10/26/2016	<0.402	<0.402	<0.402	<0.402	<0.402	<0.402	<0.402	<0.402	<0.402	<0.402
B-42	8-10	10/26/2016	<0.399	<0.399	<0.399	<0.399	<0.399	<0.399	<0.399	<0.399	<0.399	<0.399
B-43	0-2	11/1/2016	< 0.413	< 0.413	<0.413	<0.413	< 0.413	< 0.413	< 0.413	< 0.413	< 0.413	<0.413
B-43	8-10	11/1/2016	<0.415	<0.415	<0.415	<0.415	<0.415	<0.415	<0.415	<0.415	<0.415	<0.415
B-44 B-44	0-2 33-35	11/1/2016 11/1/2016	<0.397 <0.372	<0.397 <0.372	<0.397 <0.372	<0.397 <0.372	<0.397 <0.372	<0.397 <0.372	<0.397 <0.372	<0.397 <0.372	<0.397 <0.372	<0.397 <0.372
<u>В-44</u> В-45	0-2	10/31/2016	<0.372	<0.372	<0.372	<0.372	<0.372	<0.372	<0.372	<0.372	<0.372	<0.372
B-45	24-26	10/31/2016	<0.391	<0.391	<0.391	<0.391	<0.391	<0.391	< 0.391	<0.391	< 0.391	<0.391
B-46	0-2	10/27/2016	<0.374	<0.374	<0.374	<0.374	<0.374	<0.374	<0.374	<0.374	<0.374	<0.374


						able 2						
			Summa	ry of Anal				October 2	2016			
						r RJ Refine	,					
						load 350 S						
					Princeton	, Indiana 4		· · · · · ·				
			<i>.</i>				Detcted SV	/OCs (ppm))			
Sample ID	Sample Depth (ft)	Date Sampled	1-Methylnaphthalene	2,4-Dimethylphenol	2,4-Dinitrotoluene	2-Methylnaphthalene	2-Methylphenol (o-Cresol)	3&4-Methylphenol (m&p Cresol)	Fluorene	Naphthalene	Phenanthrene	Phenol
	eening Soil ntact Reside		250	1,800	24	340	4,500	NE*	3,400	53	NE*	27,000
	eening Soil											
	irect Conta		390	16,000	74	3,000	41,000	NE*	30,000	170	NE*	100,000
	rcial/Indust											
	eening Soil ntact Excav		390	34,000	3,400	6,800	87,000	NE*	68,000	3,100	NE*	100,000
	ening Groun Residential		1.2	8.5	0.065	3.7	15	NE*	110	0.11	NE*	67
B-46	8-10	10/27/2016	<0.389	<0.389	<0.389	<0.389	<0.389	<0.389	<0.389	<0.389	<0.389	<0.389
B-47	0-2	10/27/2016	<0.358	<0.358	<0.358	<0.358	<0.358	<0.358	<0.358	<0.358	<0.358	<0.358
B-47	24-26	10/27/2016	<0.388	<0.388	<0.388	<0.388	<0.388	<0.388	<0.388	<0.388	<0.388	<0.388
B-48	0-2	10/27/2016	<0.368	<0.368	<0.368	<0.368	<0.368	<0.368	<0.368	<0.368	<0.368	<0.368
B-48	5-6	10/27/2016	<0.421	<0.421	<0.421	<0.421	<0.421	<0.421	<0.421	<0.421	<0.421	<0.421
B-49	0-2	10/27/2016	<3.75	<3.75	<3.75	<3.75	<3.75	<3.75	<3.75	<3.75	<3.75	<3.75
B-49	12-14	10/27/2016	< 0.398	< 0.398	< 0.398	< 0.398	< 0.398	< 0.398	< 0.398	< 0.398	< 0.398	< 0.398
B-50 B-50	0-2 12-14	10/27/2016	<0.369 6.48	<0.369 <0.672	<0.369 <0.672	<0.369	<0.369 <0.672	<0.369 <0.672	<0.369 <0.672	<0.369	<0.369 1.16	<0.369 <0.672
B-50 B-51	0-2	10/26/2016	<0.372	<0.672	<0.672	< 0.372	<0.672	<0.672	<0.672	<0.372	<0.372	<0.672
B-51 B-51	4-6	10/26/2016	<0.372	<0.372	<0.372	0.750	<0.372	<0.372	<0.372	<0.372	0.442	<0.372
B-51 B-52	0-2	10/26/2016	< 0.364	< 0.396	< 0.396	<0.364	< 0.396	< 0.396	< 0.396	< 0.396	<0.364	< 0.396
B-52 B-52	4-6		< 0.304	< 0.364	< 0.304	< 0.304	< 0.304	<0.304	< 0.364	< 0.304	< 0.304	<0.304
BLIND DUF		10/26/2016	< 0.399	< 0.399	< 0.399	< 0.399	< 0.399	<0.399	< 0.399	< 0.399	< 0.399	<0.399
B-53	0-2	10/26/2016	<3.63	<3.63	<3.63	<3.63	<3.63	<3.63	<3.63	<3.63	<3.63	<3.63
B-53	8-10	10/26/2016	<0.403	<0.403	<0.403	<0.403	<0.403	<0.403	<0.403	<0.403	<0.403	<0.403
B-54	0-2	10/27/2016	<0.375	<0.375	<0.375	<0.375	<0.375	<0.375	<0.375	<0.375	<0.375	<0.375
B-54	2-4	10/27/2016	14.2	<2.66	<2.66	12.0	<2.66	<2.66	<2.66	3.62	2.70	<2.66
B-55	0-2	10/27/2016	<0.413	<0.413	<0.413	<0.413	<0.413	<0.413	<0.413	<0.413	<0.413	<0.413
B-55	16-18	10/27/2016	<0.395	<0.395	<0.395	<0.395	< 0.395	< 0.395	< 0.395	< 0.395	< 0.395	< 0.395
Notes:												

Notes:

NE = not established / NA* = not analyzed

- Soil samples were analyzed for semi volatile organic compounds (SVOCs) via SW 846 Method 8270 SIM and PCBs using SW 846 Method 8082. - Analytes not listed in the table were not detected above their respective laboratory reporting levels.

- Analytical results presented in milligrams per kilogram (mg/kg) or parts per million (ppm).

							Tab										
				S	ummary o	of Analytic	al Soil Rea		Cs/PCBs	- April 201	8						
						С	ounty Roa		th								
						Pr	inceton, In										
								Detec	ted VOCs	(ppm)							
Sample ID	Date Collected	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	2-Butanone (MEK)	Acetone	Benzene	Ethylbenzene	Isopropylbenzene (Cumen	Toluene	Trichlorofluoromethane	Xylene (Total)	n-Butylbenzene	n-Hexane	n-Propylbenzene	p-lsopropyltoluene	sec-Butylbenzene	PCB-1248 (ppm)
IDEM Screening Gro Residen	tial 2018	1.6	1.7	23	57	0.051	16	15	14	66	200	64	210	25	NE	120	0.24
Contact Res		220	180	28,000	85,000	17	81	270	820	1,200	260	110	140	260	NE	150	3.2
IDEM Screening Sc	oil Exposure Direct cial/Industrial 2018	220	180	28,000	100,000	51	250	270	820	1,200	260	110	140	260	NE	150	9.5
	oil Exposure Direct	220	180	28,000	100,000	1,800	480	270	820	1,200	260	110	140	260	NE	150	560
SB-01 (0-2')	4/19/2018	<0.0046	<0.0046	<0.023	<0.092	<0.0046	<0.0046	<0.0046	<0.0046	<0.0046	<0.0092	<0.0046	<0.0046	<0.0046	<0.0046	<0.0046	<0.12
SB-01 (14-16')	4/19/2018	<0.24	<0.24	<1.2	<4.8	<0.24	<0.24	<0.24	<0.24	<0.24	<0.48	<0.24	<0.24	<0.24	<0.24	<0.24	<0.12
Blind Duplicate SB-02 (0-2')	4/19/2018	<0.29 <0.0053	<0.29 <0.0053	<1.4 <0.026	<5.8 <0.11	<0.29 <0.0053	<0.29 <0.0053	<0.29 <0.0053	<0.29 <0.0053	<0.29 <0.0053	<0.58 <0.011	<0.29 <0.0053	<0.29 <0.0053	<0.29 <0.0053	<0.29 <0.0053	<0.29 <0.0053	<0.13 <0.12
SB-02 (0-2) SB-02 (6-8')	4/19/2018	<0.0053	<0.0053	<0.026	<0.11	<0.0053	<0.0053	<0.0053 1.5	<0.0053	<0.0053	5.2	2.7	0.78	2.4	<0.0053	<0.0053 0.55	<0.12
SB-03 (0-2')	4/19/2018	< 0.0059	< 0.0059	<0.029	<0.12	< 0.0059	<0.0059	<0.0059	<0.0059	< 0.0059	<0.012	<0.0059	< 0.0059	<0.0059	< 0.0059	< 0.0059	<0.12
SB-03 (12-14')	4/19/2018	<0.23	< 0.23	<1.1	<4.6	< 0.23	< 0.23	<0.23	<0.23	<0.23	<0.46	<0.23	<0.23	<0.23	< 0.23	<0.23	<0.12
SB-04 (0-2')	4/18/2018	0.013	<0.0093	<0.047	<0.19	<0.0093	0.012	<0.0093	<0.0093	<0.0093	0.053	<0.0093	0.014	<0.0093	<0.0093	<0.0093	<0.12
SB-04 (10-12')	4/18/2018	21.8	5.5	<1.2	<4.8	3.3	10.0	1.3	<0.24	<0.24	11.9	2.9	<0.24	5.4	0.28	0.69	<0.12
SB-05 (0-2')	4/18/2018	<0.0046	<0.0046	<0.023	<0.092	<0.0046	<0.0046	<0.0046	<0.0046	<0.0046	<0.0092	<0.0046	<0.0046	< 0.0046	<0.0046	<0.0046	<0.11
SB-05 (12-14')	4/18/2018	86.9	21.1	<1.1	17.1	< 0.22	33.3	4.9	< 0.22	< 0.22	37.3	11.0	3.8	19.8	0.84	2.1	<0.12
SB-06 (0-2') SB-06 (18-20')	4/18/2018 4/18/2018	<0.0055 0.083	<0.0055 0.019	<0.027 <0.025	<0.11 <0.10	<0.0055 <0.0050	<0.0055 0.11	<0.0055 <0.0050	<0.0055 0.055	<0.0055 <0.0050	<0.011 0.32	<0.0055 <0.0050	<0.0055 <0.0050	<0.0055 0.011	<0.0055 <0.0050	<0.0055 <0.0050	<0.12 <0.13
SB-07 (0-2')	4/18/2018	< 0.0060	< 0.0060	<0.025	<0.10	<0.0050	< 0.0060	<0.0050	< 0.0050	<0.0050	<0.012	<0.0050	<0.0050	< 0.0060	<0.0050	<0.0050	<0.13
SB-07 (12-14')	4/18/2018	99.8	8.1	<1.3	<5.2	<0.26	2.1	4.7	<0.26	< 0.26	0.69	8.7	<0.26	22.4	0.68	3.0	<0.12
SB-08 (0-2')	4/19/2018	0.011	< 0.0046	<0.023	<0.091	0.0090	0.0093	< 0.0046	0.012	< 0.0046	0.039	< 0.0046	< 0.0046	< 0.0046	< 0.0046	< 0.0046	<0.11
SB-08 (16-18')	4/19/2018	72.5	21.6	<1.3	<5.4	1.8	34.1	4.4	1.9	<0.27	111	9.9	85.7	15.5	1.7	2.4	<0.12
SB-09 (0-2')	4/19/2018	0.43	<0.29	<1.4	<5.7	0.31	0.40	0.70	<0.29	<0.29	<0.57	0.63	<0.29	1.6	<0.29	0.45	<0.12
SB-09 (22-24')	4/19/2018	63.6	17.7	<2.7	<10.7	11.4	28.8	4.3	0.54	<0.54	83.9	9.1	60.8	13.7	2.4	2.5	<0.12
SB-10 (0-2')	4/20/2018	0.012	< 0.0056	<0.028	0.17	<0.0056	0.0061	< 0.0056	0.034	< 0.0056	0.040	< 0.0056	0.019	< 0.0056	< 0.0056	< 0.0056	<0.12
SB-10 (6-8') SB-11 (0-2')	4/20/2018 4/20/2018	4.3 0.012	<0.55 <0.0062	<2.7 <0.031	<11.0 <0.12	<0.55 0.0092	1.5 0.0086	0.84	<0.55 0.015	<0.55 <0.0062	<1.1 0.022	0.80	<0.55 0.021	2.0 <0.0062	<0.55 <0.0062	0.71	<0.13 <0.12
SB-11 (4-6')	4/20/2018	<0.59	<0.0002	<2.9	<11.7	<0.59	<0.59	0.90	<0.59	<0.0002	<1.2	1.1	<0.59	2.7	<0.0002	0.62	<0.12
SB-12 (0-2')	4/19/2018	< 0.0065	< 0.0065	< 0.033	<0.13	0.013	< 0.0065	< 0.0065	< 0.0065	< 0.0065	<0.013	<0.0065	< 0.0065	< 0.0065	< 0.0065	< 0.0065	<0.12
SB-12 (6-8')	4/19/2018	288	82.8	<2.5	<10.1	31.3	154	13.8	1.9	< 0.51	493	33.6	212	62.3	2.0	7.3	<0.13
MW-01 (0-2')	4/27/2018	<0.0050	<0.0050	<0.025	<0.10	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.12
MW-01 (14-16')	4/27/2018	< 0.0031	< 0.0031	0.030	< 0.062	< 0.0031	< 0.0031	< 0.0031	< 0.0031	< 0.0031	< 0.0062	< 0.0031	< 0.0031	< 0.0031	< 0.0031	< 0.0031	< 0.12
MW-02 (0-2')	4/27/2018	< 0.0058	< 0.0058	< 0.029	<0.12	< 0.0058	< 0.0058	<0.0058	< 0.0058	< 0.0058	<0.012	< 0.0058	< 0.0058	<0.0058	<0.0058	< 0.0058	<0.13
MW-02 (6-8') MW-03 (0-2')	4/27/2018 4/26/2018	<0.0056 <0.0056	<0.0056	<0.028	<0.11	<0.0056 <0.0056	<0.0056	<0.0056 <0.0056	<0.0056	<0.0056	<0.011	<0.0056	<0.0056	<0.0056	<0.0056	<0.0056	<0.13
MW-03 (0-2')	4/26/2018	<0.0056	<0.0056 4.7	<0.028 <2.0	<0.11 <8.0	<0.0056	<0.0056 2.7	<0.0056	<0.0056 <0.40	<0.0056 <0.40	<0.011 4.6	<0.0056 2.8	<0.0056 <0.40	<0.0056 5.1	<0.0056 <0.40	<0.0056 0.68	<0.13 <0.12
MW-04 (0-2')	4/26/2018	<0.0050	< 0.0050	<0.025	<0.10	<0.0050	<0.0050	<0.0050	<0.0050	<0.40	<0.010	<0.0050	<0.0050	<0.0050	<0.40	< 0.0050	<0.12
MW-04 (8-10')	4/26/2018	<0.0045	<0.0045	<0.020	<0.090	<0.0045	<0.0045	<0.0030	<0.0045	<0.0045	<0.0090	<0.0045	<0.0045	<0.0045	<0.0045	<0.0045	<0.12
MW-05 (0-2')	4/26/2018	< 0.0063	< 0.0063	< 0.031	<0.13	< 0.0063	< 0.0063	< 0.0063	< 0.0063	< 0.0063	<0.013	< 0.0063	< 0.0063	< 0.0063	< 0.0063	< 0.0063	<0.15
MW-05 (10-12') Blind Duplicate 3	4/26/2018	<0.0046 <0.0046	<0.0046 <0.0046	<0.023 <0.023	<0.092 <0.092	<0.0046 <0.0046	<0.0046 <0.0046	<0.0046 <0.0046	<0.0046 <0.0046	<0.0046 <0.0046	<0.0092 <0.0092	<0.0046 <0.0046	<0.0046 <0.0046	<0.0046 <0.0046	<0.0046 <0.0046	<0.0046 <0.0046	<0.12 <0.12
MW-06 (0-2')	5/1/2018	<0.0040	<0.0040	<0.025	<0.092	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.010	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	1.9
MW-06 (4-6')	5/1/2018	61.9	20.0	<2.6	<10.2	2.8	23.6	3.2	2.3	< 0.51	153	7.4	15.2	11.0	1.2	2.0	<0.13
MW-07 (0-2')	4/24/2018	< 0.0053	<0.0053	<0.026	<0.11	< 0.0053	<0.0053	< 0.0053	< 0.0053	< 0.0053	<0.011	<0.0053	< 0.0053	< 0.0053	<0.0053	< 0.0053	<0.12
MW-07 (4-6')	4/24/2018	<0.55	<0.55	<2.7	<11.0	<0.55	<0.55	10.6	<0.55	<0.55	<1.1	8.1	<0.55	26.2	<0.55	7.3	<0.13

							Tab	le 2									
				9	ummary	of Analytic	al Soil Re			- April 201	8						
				3	unnary c	n Analytic	Former R		C3/FCD3	- April 201	0						
						~			In								
							ounty Roa										
						Pi	rinceton, In										
							-	Detec	ted VOCs	(ppm)							
								ene									
		e	Je					Cumer		ne							
		,2,4-Trimethylbenzene	3,5-Trimethylbenzene					Ū		Trichlorofluoromethane							
		en	en	Ŷ				Je		net				U	ane	ne	PCB-1248
Sample ID	Date Collected	al de	yl d	(MEK)				zen		2 L	~	ne		Propylbenzene	p-lsopropyltoluene	Butylbenzene	(ppm)
		l l	eth				Ethylbenzene	en		on	Xylene (Total)	h-Butylbenzene		zué	/lto	en	(<i>)</i>
		, Ĕ	<u> </u>	2-Butanone		۵	, žu	sopropylbe		ofl	Ê	Jec	e	ad l	, do	ylb	
		Ē	Ē	tan	ŭ	en	be	do	ane	lor	Je	5	Hexane	, do	bre	But	
		4,	3,5	Bui	Acetone	Benzene	hyl	b	oluene	ich	rler	Bu	He	Pro	so	ec-E	
		1,2	1.0	2-1	Ă	B	Ш	lse	L L	Ľ.	×	Ę	Ŀ	Ŀ	4	se	
	oundwater Soil MTG	1.6	1.7	23	57	0.051	16	15	14	66	200	64	210	25	NE	120	0.24
IDEM Screening S	Residential 2018 200 25 000 17 91 270 920 1 200 260 140 260 NE 150 2 2																
DEM Screening Soil Exposure Direct 220 180 28,000 85,000 17 81 270 820 1,200 260 110 140 260 NE 150 3.2 IDEM Screening Soil Exposure Direct 200 180 28,000 85,000 17 81 270 820 1,200 260 110 140 260 NE 150 3.2																	
	cial/Industrial 2018	220	180	28,000	100,000	51	250	270	820	1,200	260	110	140	260	NE	150	9.5
	oil Exposure Direct	220	400	20.000	100.000	1 000	400	270	020	1 200	260	110	140	260	NE	450	560
Contact Exc	cavation 2018	220	180	28,000	100,000	1,800	480	270	820	1,200	260	110	140	260	NE	150	560
MW-08 (0-2')	4/25/2018	<0.0067	<0.0067	<0.034	<0.13	<0.0067	<0.0067	<0.0067	<0.0067	<0.0067	<0.013	<0.0067	<0.0067	<0.0067	<0.0067	<0.0067	<0.14
MW-08 (12-14')	4/25/2018	189	57.1	<2.4	<9.4	33.6	83.2	9.5	0.66	<0.47	419	18.0	54.6	35.0	3.0	5.0	<0.12
Blind Duplicate 2		135	40.0	<2.1	<8.5	24.8	58.2	7.0	0.49	<0.42	302	13.4	35.9	24.7	2.2	3.8	<0.12
MW-09 (0-2')	4/24/2018	<0.0062	< 0.0062	< 0.031	<0.12	<0.0062	<0.0062	< 0.0062	< 0.0062	< 0.0062	<0.012	< 0.0062	< 0.0062	< 0.0062	< 0.0062	< 0.0062	<0.12
MW-09 (8-10')	4/24/2018	137	40.4	<2.3	< 9.0	1.8	58.5	6.5	< 0.45	< 0.45	223	14.7	19.4	29.4	0.79	3.3	<0.12
MW-10 (0-2')	4/25/2018	0.0086	<0.0051	< 0.026	<0.10	< 0.0051	<0.0051	< 0.0051	< 0.0051	< 0.0051	0.011	<0.0051	<0.0051 0.81	< 0.0051	< 0.0051	< 0.0051	<0.11
MW-10 (6-8')	4/25/2018	< 0.50	< 0.50	<2.5	<10.0	2.1	<0.50 <0.0048	2.0	<0.50	< 0.50	<1.0	3.9		6.7	0.80	1.2	<0.13
MW-11 (0-2') MW-11 (12-14')	4/23/2018 4/23/2018	<0.0048 41.0	<0.0048	<0.024 <1.9	<0.095 <7.6	0.0080	<0.0048	0.080	<0.0048 <0.38	<0.0048 <0.38	<0.0095 56.0	0.088 4.8	<0.0048 44.7	0.34 8.4	<0.0048 0.42	0.055	<0.12 <0.12
MW-12 (0-2')	4/23/2018	0.040	0.012	<0.030	<0.12	< 0.0060	0.019	<0.0060	0.022	0.0085	0.10	4.0 <0.0060	0.0075	0.0077	<0.0060	<0.0060	<0.12
MW-12 (0-2) MW-12 (24-26')	4/23/2018	21.7	6.9	<1.9	<7.6	< 0.38	7.6	1.1	<0.38	<0.38	23.7	3.4	35.4	5.0	< 0.38	0.67	<0.13
MW-12 (2-4 20) MW-13 (0-2')	4/25/2018	< 0.0041	< 0.0041	<0.020	<0.081	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	<0.0081	<0.0041	<0.0041	<0.0041	<0.0041	<0.0041	<0.12
MW-13 (8-10')	4/25/2018	30.5	8.3	<1.1	<4.5	0.65	21.9	1.6	<0.23	<0.23	74.8	1.7	0.74	5.9	<0.23	0.48	<0.12
MW-14 (0-2')	4/30/2018	< 0.0051	< 0.0051	<0.025	<0.10	< 0.0051	< 0.0051	<0.0051	<0.0051	<0.0051	<0.010	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051	<0.13
MW-14 (6-8')	4/30/2018	< 0.46	<0.46	<2.3	<9.1	<0.46	<0.46	0.80	< 0.46	<0.46	<0.91	2.1	<0.46	3.2	<0.46	0.72	<0.12
MW-15 (0-2')	5/1/2018	< 0.0052	< 0.0052	< 0.026	<0.10	< 0.0052	<0.0052	< 0.0052	<0.0052	< 0.0052	< 0.010	<0.0052	< 0.0052	< 0.0052	< 0.0052	< 0.0052	<0.13
MW-15 (8-10')	5/1/2018	7.7	2.1	<1.2	<4.6	2.3	3.8	0.35	<0.23	<0.23	15.1	0.85	4.3	1.6	<0.23	<0.23	<0.12
MW-16 (0-2')	4/30/2018	<0.0053	<0.0053	<0.026	<0.11	< 0.0053	< 0.0053	< 0.0053	< 0.0053	< 0.0053	< 0.011	< 0.0053	< 0.0053	< 0.0053	< 0.0053	< 0.0053	<0.13
MW-16 (28-30')	4/30/2018	0.056	0.015	<0.021	<0.085	0.34	0.082	< 0.0042	0.014	< 0.0042	0.32	<0.0042	0.066	0.012	< 0.0042	< 0.0042	<0.12
Trip Blank	4/19/2018	<0.0050	<0.0050	<0.025	<0.10	< 0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.0050	<0.0050	< 0.0050	< 0.0050	NA
Trip Blank	4/20/2018	<0.0050	<0.0050	<0.025	<0.10	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	NA
Trip Blank	4/24/2018	<0.0050	<0.0050	<0.025	<0.10	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.0050	<0.0050		<0.0050	NA
Trip Blank	4/26/2018	<0.0050	<0.0050	<0.025	<0.10	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.0050	<0.0050		<0.0050	NA
Trip Blank	4/27/2018	<0.0050	<0.0050	<0.025	<0.10	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.0050	<0.0050		<0.0050	NA
Trip Blank	4/30/2018	<0.0050	<0.0050	<0.025	<0.10	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.0050	<0.0050		<0.0050	NA
Trip Blank	5/1/2018	<0.0050	<0.0050	<0.025	<0.10	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	NA
Notes:																	
- NE = not established						00 I I .				104015	10000						
	nalyzed for volatile organ						rinated biph	enyls (PCB	s) using SV	v-846 Metho	od 8082.						
- Analytes not listed in	the table were not detect	cted above t	neır respect	ive laborato	orv reporting	levels.											

Analytes not listed in the table were not detected above their respective laboratory reporting levels.
Soil analytical results presented in milligrams per kilogram (mg/kg) or parts per million (ppm).
Trip blanks presented in millgrams per liter (mg/L) or ppm.

BOLD BOLD

= Concentrations above their respective RCG Residential Migration to Groundwater Screening Levels (updated in March 2018).

= Concentrations above their respective RCG Residential Direct Contact Screening Levels (updated in March 2018).

= Concentrations above their respective RCG Commercial Direct Contact Screening Levels (updated in March 2018). = Concentrations above their respective RCG Excavation Direct Contact Screening Levels (updated in March 2018). BOLD BOLD

Table 4																			
						Summary	of Analyti		-	AHs - Apri	il 2018								
						Caninary	-	ormer RJ I			2010								
								unty Road											
								ceton, Indi		1									
								7			PAHs (ppm)								
		¢)	o,						e	e	ы		ne			ane			
		lene	2-Methylnaphthalene				ene		her				ace			,2,3-cd)pyrene			
Sample ID	Date Collected	-Methylnaphthal	tha	۵	ne		raci	e	ant	Benzo(g,h,i)perylen	Benzo(k)fluoranthe		thra			d(p;			
		hqi	hdı	ene	cenaphthylene	e	zo(a)anthi	enzo(a)pyrene	nor	i)pe	nor		nz(a,h)anthr	ene		3-0	ЭС	henanthrene	
		/Ina	/lna	aphthe	hth	cen	a)ar	(d(e	onlî(d)	g,h,	<)fli	e	a,h	-Iuoranthene	Q	1,2	alen	thr	
		ethy	ethy	nap	nap	Irac	zo(;	i)oz	l)oz	i)oz	l)oz	/se)zua	ran	ren)ou	hth	nan	ne
		-Ne	- P	Cel	cel	nth	enz	enz	en:	enz	enz	Chrysene	Dibe	onl	luo	ndeno(1	laphth	hei	yren
IDEM Screening Groun	dwater Soil MTG	-			₹		<u> </u>	<u> </u>	<u> </u>						<u> </u>		Z	<u> </u>	<u> </u>
Residential	2018	1.2	3.7	110	NE	1,200	2.1	4.7	60	NE	590	1,800	19	1,800	110	200	0.11	NE	260
IDEM Screening Soil Expo		250	340	5,000	NE	25,000	15	1.5	15	NE	150	1,500	1.5	3,400	3,400	15	53	NE	2,500
Residential IDEM Screening Soil Expo		200	040	0,000		23,000	10	1.5	10		100	1,000	1.0	0,400	0,400	10			2,000
Commercial/Indu		390	3,000	45,000	NE	100,000	210	21	210	NE	2,100	21,000	21	30,000	30,000	210	170	NE	23,000
IDEM Screening Soil Expo		200	6.000	100.000		100.000	10.000	500	10.000	NE	100.000	100.000	4.000	69.000	60.000	10.000	2 4 0 0	NE	E4 000
Excavation		390	6,800	100,000	NE	100,000	12,000	500	12,000		100,000	100,000	1,200	68,000	68,000	12,000	3,100	NE	51,000
SB-01 (0-2')	4/19/2018	< 0.0061	< 0.0061	<0.0061	< 0.0061	< 0.0061	< 0.0061	< 0.0061	< 0.0061	< 0.0061	< 0.0061	< 0.0061	< 0.0061	< 0.0061	< 0.0061	< 0.0061	< 0.0061	< 0.0061	< 0.0061
SB-01 (14-16') Blind Duplicate	4/19/2018	0.0068 0.0103	<0.0059 0.0072	<0.0059 0.0231	<0.0059 <0.0064	<0.0059 0.0461	<0.0059 0.0205	<0.0059 0.0079	<0.0059 0.0095	<0.0059 <0.0064	<0.0059 0.0095	<0.0059 0.0272	<0.0059 <0.0064	0.0064 0.117	0.0212 0.0344	<0.0059 <0.0064	<0.0059 0.0100	<0.0059 0.141	<0.0059 0.0825
SB-02 (0-2')	4/19/2018	0.116	0.166	< 0.0060	<0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	<0.0060	< 0.0060	< 0.0060	<0.0060	< 0.0060	< 0.0060	<0.0060	0.118	0.0260	< 0.0020
SB-02 (6-8')	4/19/2018	12.1	14.1	0.356	0.118	< 0.0062	0.0064	< 0.0062	<0.0062	<0.0062	< 0.0062	0.0181	< 0.0062	0.0191	0.242	< 0.0062	3.86	0.251	0.0420
SB-03 (0-2')	4/19/2018	0.0092	0.0111	<0.0062	<0.0062	<0.0062	<0.0062	<0.0062	<0.0062	<0.0062	<0.0062	<0.0062	<0.0062	<0.0062	<0.0062	<0.0062	0.0128	0.0073	<0.0062
SB-03 (12-14') SB-04 (0-2')	4/19/2018 4/18/2018	0.0181 0.587	<0.0060 0.684	<0.0060 <0.0304	<0.0060 <0.0304	<0.0060 0.126	<0.0060 <0.0304	0.0064 0.0438	<0.0060 0.0969	<0.0060 <0.0304	<0.0060	0.0118	<0.0060 0.0322						
SB-04 (0-2) SB-04 (10-12')	4/18/2018	0.387	0.084	<0.0058	<0.0058	<0.0058	<0.0304	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0438	<0.0058	<0.0058	0.344	0.0079	<0.00522
SB-05 (0-2')	4/18/2018	< 0.0056	< 0.0056	< 0.0056	< 0.0056	< 0.0056	< 0.0056	< 0.0056	< 0.0056	< 0.0056	< 0.0056	< 0.0056	< 0.0056	< 0.0056	< 0.0056	< 0.0056	<0.0056	<0.0056	< 0.0056
SB-05 (12-14')	4/18/2018	0.689	1.22	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	0.0063	<0.0059	1.14	0.0120	<0.0059
SB-06 (0-2')	4/18/2018	< 0.0062	< 0.0062	< 0.0062	< 0.0062	< 0.0062	< 0.0062	< 0.0062	< 0.0062	< 0.0062	< 0.0062	< 0.0062	< 0.0062	< 0.0062	< 0.0062	< 0.0062	< 0.0062	< 0.0062	< 0.0062
SB-06 (18-20') SB-07 (0-2')	4/18/2018 4/18/2018	<0.0063 <0.0057	<0.0063 <0.0057	<0.0063 <0.0057	<0.0063 <0.0057	<0.0063 <0.0057	<0.0063 <0.0057	<0.0063 0.0080	<0.0063 0.0087	<0.0063 0.0083	<0.0063 0.0068	<0.0063 0.0079	<0.0063 <0.0057	<0.0063 0.0068	<0.0063 <0.0057	<0.0063 0.0059	0.0082	<0.0063 <0.0057	<0.0063 0.0071
SB-07 (0-2) SB-07 (12-14')	4/18/2018	0.189	0.269	<0.0058	<0.0058	<0.0058	<0.0058	< 0.0058	< 0.0058	<0.0003	< 0.0008	< 0.0073	<0.0058	< 0.0058	<0.0058	< 0.0058	0.137	<0.0058	<0.0058
SB-08 (0-2')	4/19/2018	0.0098	0.0097	<0.0056	<0.0056	< 0.0056	<0.0056	<0.0056	<0.0056	<0.0056	< 0.0056	<0.0056	< 0.0056	<0.0056	<0.0056	< 0.0056	<0.0056	<0.0056	<0.0056
SB-08 (16-18')	4/19/2018	2.23	3.25	0.0378	0.0327	<0.0063	<0.0063	< 0.0063	<0.0063	<0.0063	<0.0063	0.0097	<0.0063	0.0127	0.0887	<0.0063	2.88	0.180	0.0115
SB-09 (0-2')	4/19/2018	0.0770	0.0894	< 0.0059	0.0784	0.0536	0.110	0.152	0.144	0.176	0.147	0.156	0.0692	0.133	< 0.0059	0.122	0.0357	0.0567	0.162
SB-09 (22-24') SB-10 (0-2')	4/19/2018 4/20/2018	2.12 <0.0613	2.61 <0.0613	0.0496	0.0339	<0.0059 <0.0613	<0.0059 <0.0613	<0.0059 <0.0613	<0.0059 <0.0613	<0.0059 <0.0613	<0.0059 <0.0613	0.0101 0.329	<0.0059 <0.0613	0.0134 <0.0613	0.0904 <0.0613	<0.0059 <0.0613	0.844 <0.0613	0.162	0.0094 <0.0613
SB-10 (6-8')	4/20/2018	0.162	0.0305	0.0090	< 0.0063	< 0.0063	< 0.0063	< 0.0063	< 0.0063	< 0.0063	< 0.0063	0.0225	< 0.0063	< 0.0063	0.0350	< 0.0063	< 0.0063	0.127	< 0.0063
SB-11 (0-2')	4/20/2018	<0.298	<0.298	<0.298	<0.298	<0.298	<0.298	<0.298	<0.298	<0.298	<0.298	<0.298	<0.298	<0.298	<0.298	<0.298	0.348	<0.298	<0.298
SB-11 (4-6')	4/20/2018	3.49	4.25	0.0560	0.0678	< 0.0323	< 0.0323	< 0.0323	< 0.0323	< 0.0323	< 0.0323	0.121	< 0.0323	< 0.0323	0.186	< 0.0323	< 0.0323	0.450	< 0.0323
SB-12 (0-2') SB-12 (6-8')	4/19/2018 4/19/2018	0.0661 0.0793	0.0684	<0.0306 <0.0315	0.0390	<0.0306 <0.0315	0.0630 <0.0315	0.0724	0.0674 <0.0315	0.0646 <0.0315	0.0837	0.0891	<0.0306 <0.0315	0.0755 <0.0315	<0.0306 <0.0315	0.0533	0.0309	<0.0306 <0.0315	0.0681 <0.0315
MW-01 (0-2')	4/19/2018	<0.0793	<0.0764	<0.0315	<0.0315	<0.0315	<0.0315	<0.0315	<0.0315	<0.0315	<0.0315	<0.0315	<0.0315	<0.0315	<0.0059	<0.0315	<0.0315	<0.0315	<0.0315
MW-01 (14-16')	4/27/2018	<0.0061	<0.0061	<0.0061	<0.0061	<0.0053	<0.0000	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	<0.0000	<0.0061	<0.0061	<0.0061	<0.0061	<0.0000	<0.0000
MW-02 (0-2')	4/27/2018	< 0.0063	< 0.0063	<0.0063	<0.0063	< 0.0063	0.0187	0.0216	0.0221	0.0153	0.0228	0.0290	<0.0063	0.0416	< 0.0063	0.0125	<0.0063	0.0187	0.0429
MW-02 (6-8')	4/27/2018	< 0.0066	< 0.0066	< 0.0066	< 0.0066	< 0.0066	< 0.0066	< 0.0066	< 0.0066	< 0.0066	< 0.0066	< 0.0066	< 0.0066	< 0.0066	< 0.0066	< 0.0066	< 0.0066	< 0.0066	< 0.0066
MW-03 (0-2') MW-03 (8-10')	4/26/2018 4/26/2018	<0.0063 1.16	<0.0063 2.08	<0.0063 0.0093	<0.0063 <0.0059	<0.0063 <0.0059	<0.0063 <0.0059	<0.0063 <0.0059	<0.0063 <0.0059	<0.0063 <0.0059	<0.0063 <0.0059	<0.0063 <0.0059	<0.0063 <0.0059	<0.0063 <0.0059	<0.0063 0.0107	<0.0063 <0.0059	<0.0063 1.66	<0.0063 0.0188	<0.0063 <0.0059
MW-04 (0-2')	4/26/2018	0.258	2.08	0.0093	<0.0059	<0.0059	<0.0059	<0.0059 0.109	0.0938	<0.0059	<0.0059 0.114	0.124	<0.0059 0.0285	<0.0059	0.0107	<0.0059	1.60	0.0188	0.190
MW-04 (8-10')	4/26/2018	<0.0060	<0.0060	< 0.0000	<0.0060	< 0.0060	< 0.0060	<0.0060	< 0.0000	<0.0060	<0.0060	<0.0060	<0.0060	<0.0060	< 0.0200	< 0.0000	<0.0060	<0.0060	<0.0060
MW-05 (0-2')	4/26/2018	<0.0074	<0.0074	<0.0074	<0.0074	<0.0074	0.0368	0.0435	0.0445	0.0327	0.0397	0.0496	0.0121	0.0792	<0.0074	0.0294	<0.0074	0.0239	0.0686
MW-05 (10-12')	4/26/2018	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	<0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060
Blind Duplicate 3 MW-06 (0-2')	5/1/2018	<0.0060 0.0349	<0.0060 0.0556	<0.0060 <0.0074	<0.0060 <0.0074	<0.0060 <0.0074	<0.0060 <0.0074	<0.0060 <0.0074	<0.0060 <0.0074	<0.0060 <0.0074	<0.0060 0.0366	<0.0060 0.0092	<0.0060 <0.0074						
MW-06 (4-6')	5/1/2018	2.27	4.39	<0.0074 0.0176	<0.0074 0.0116	<0.0074	<0.0074	<0.0074	<0.0074	<0.0074	<0.0074	<0.0074	<0.0074	<0.0074 0.0072	<0.0074	<0.0074	3.48	0.0092	<0.0074 0.0148
MW-07 (0-2')	4/24/2018	<0.0062	< 0.0062	< 0.0062	< 0.0062	<0.0062	< 0.0062	<0.0062	<0.0062	0.0070	<0.0062	<0.0062	<0.0062	< 0.0012	<0.0220	<0.0062	<0.0062	0.0065	<0.0062
- (/																			

	Table 4 Summary of Analytical Soil Results - PAHs - April 2018																		
						Summary	of Analysi				1 2019								
						Summary				апз - арп	1 2010								
								ormer RJ											
								•	350 South										
							Prin	ceton, Indi	ana 47670										
						-			-	Detected F	PAHs (ppm)				-	-			
Sample ID	Date Collected	-Methylnaphthalene	2-Methylnaphthalene	cenaphthene	cenaphthylene	nthracene	enzo(a)anthracene	enzo(a)pyrene	enzo(b)fluoranthene	enzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	uorene	ndeno(1,2,3-cd)pyrene	aphthalene	Phenanthrene	Pyrene
IDEM Scrooning Group	dwater Seil MTG	+	5	Ă	Ă	Ā	ă	ă	ă	ă	ă	Ū	ā	Ē		<u>_</u>	Ž	<u> </u>	Ę,
Residential 2018												200	0.11	NE	260				
IDEM Screening Soil Exposure Direct Contact Residential 2018 250 340 5,000 NE 25,000 15 1.5 15 NE 150 1,500 1.5 3,400 3,400 15 53 NE													2,500						
IDEM Screening Soil Exposure Direct Contact Commercial/Industrial 2018 390 3,000 45,000 NE 100,000 210 21 210 NE 2,100 21 30,000 210 170 NE													23,000						
IDEM Screening Soil Expo Excavation	sure Direct Contact	390	6,800	100,000	NE	100,000	12,000	500	12,000	NE	100,000	100,000	1,200	68,000	68,000	12,000	3,100	NE	51,000
MW-07 (4-6')	4/24/2018	3.99	5.27	0.0429	0.0421	<0.0067	<0.0067	<0.0067	<0.0067	<0.0067	<0.0067	0.0347	<0.0067	<0.0067	0.164	<0.0067	0.420	0.298	0.0282
MW-08 (0-2')	4/25/2018	0.0366	0.0615	< 0.0346	< 0.0346	< 0.0346	< 0.0346	< 0.0346	< 0.0346	< 0.0346	< 0.0346	<0.0346	< 0.0346	< 0.0346	<0.0346	< 0.0346	0.0362	<0.0346	< 0.0346
MW-08 (12-14')	4/25/2018	9.03	14.9	0.128	0.0548	0.0420	0.0090	<0.0061	< 0.0061	<0.0061	<0.0061	0.0164	<0.0061	0.0255	0.150	< 0.0061	11.8	0.224	0.0460
Blind Duplicate 2	4/23/2010	7.74	13.1	0.107	0.0411	0.0420	0.0088	<0.0060	<0.0060	<0.0060	< 0.0060	0.0186	<0.0060	0.0270	0.137	<0.0060	10.5	0.217	0.0472
MW-09 (0-2')	4/24/2018	0.0314	0.0438	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	0.0162	<0.0061	<0.0061
MW-09 (8-10')	4/24/2018	0.624	1.18	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	1.26	0.0079	<0.0059
MW-10 (0-2')	4/25/2018	0.0420	0.0561	<0.0055	<0.0055	0.0139	0.0209	0.0378	0.0177	0.104	0.0216	0.0447	0.0101	0.0275	<0.0055	0.0296	0.0450	0.0597	0.0905
MW-10 (6-8')	4/25/2018	12.3	15.3	0.223	0.0871	0.146	0.0134	0.0072	<0.0064	<0.0064	<0.0064	0.0387	<0.0064	0.0312	0.333	< 0.0064	<0.0064	0.769	0.122
MW-11 (0-2')	4/23/2018	0.0913	0.0242	< 0.0063	< 0.0063	< 0.0063	<0.0063	<0.0063	< 0.0063	< 0.0063	<0.0063	<0.0063	< 0.0063	< 0.0063	< 0.0063	< 0.0063	<0.0063	< 0.0063	< 0.0063
MW-11 (12-14')	4/23/2018	0.905	1.59	0.0064	< 0.0059	< 0.0059	< 0.0059	< 0.0059	< 0.0059	<0.0059	< 0.0059	<0.0059	<0.0059	<0.0059	0.0164	< 0.0059	1.64	0.0282	< 0.0059
MW-12 (0-2')	4/23/2018	0.0412	0.0647	< 0.0065	< 0.0065	< 0.0065	< 0.0065	< 0.0065	< 0.0065	< 0.0065	< 0.0065	< 0.0065	< 0.0065	< 0.0065	< 0.0065	< 0.0065	0.0599	0.0076	< 0.0065
MW-12 (24-26')	4/23/2018	0.583	1.03	< 0.0059	< 0.0059	< 0.0059	< 0.0059	< 0.0059	< 0.0059	< 0.0059	< 0.0059	< 0.0059	< 0.0059	< 0.0059	0.0069	< 0.0059	0.825	0.0168	< 0.0059
MW-13 (0-2')	4/25/2018	<0.0061	<0.0061	< 0.0061	< 0.0061	< 0.0061	< 0.0061	< 0.0061	< 0.0061	< 0.0061	< 0.0061	< 0.0061	< 0.0061	< 0.0061	< 0.0061	< 0.0061	<0.0061	< 0.0061	< 0.0061
MW-13 (8-10')	4/25/2018	2.42	4.03	0.0201	0.0166	< 0.0064	< 0.0064	< 0.0064	< 0.0064	< 0.0064	< 0.0064	< 0.0064	< 0.0064	0.0088	0.0559	< 0.0064	4.17	0.113	0.0151
MW-14 (0-2')	4/30/2018	< 0.0064	< 0.0064	< 0.0064	< 0.0064	< 0.0064	< 0.0064	< 0.0064	< 0.0064	< 0.0064	< 0.0064	< 0.0064	< 0.0064	< 0.0064	< 0.0064	< 0.0064	< 0.0064	< 0.0064	< 0.0064
MW-14 (6-8')	4/30/2018	0.532	0.266	0.0062	<0.0058	< 0.0058	<0.0058	< 0.0058	< 0.0058	< 0.0058	< 0.0058	< 0.0058	<0.0058	< 0.0058	0.0134	< 0.0058	0.222	0.0292	<0.0058
MW-15 (0-2')	5/1/2018	0.0793	0.114	< 0.0327	< 0.0327	< 0.0327	< 0.0327	< 0.0327	< 0.0327	< 0.0327	< 0.0327	<0.0327	<0.0327	< 0.0327	< 0.0327	< 0.0327	0.190	0.0357	<0.0327
MW-15 (8-10')	5/1/2018	0.209	0.395	<0.0059	<0.0059	<0.0059	< 0.0059	< 0.0059	<0.0059	< 0.0059	<0.0059	<0.0059	< 0.0059	< 0.0059	<0.0059	<0.0059	0.385	<0.0059	<0.0059
MW-16 (0-2') MW-16 (28-30')	4/30/2018	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063	< 0.0063	<0.0063		<0.0063	<0.0063	<0.0063
	4/30/2018	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058	<0.0058
 NE = not established / NA* Soil samples were analyzed Analytes not listed in the tal Analytical results presented BOLD BOLD BOLD 	BOLD = Concentrations above their respective RCG Residential Direct Contact Screening Levels (updated in March 2018).																		
BOLD	 Concentrations about 	ve their res	pective RC	G Excavatio	on Direct Co	ontact Scree	ening Levels	s (updated i	n March 20 ⁻	18).									

	= Concentrations above their respective RCG	
BOLD		

- **BOLD** = Concentrations above their respective RCG Excavation Direct Contact Screening Levels (updated in March 2018).

	Table 5 Summary of Analytical Soil Results - VOCs/PCBs November 2018													
			Summary	of Analyt				s Noveml	oer 2018					
						er RJ Refi								
						Road 350								
					Princeto	on, Indiana								
							Detec	ted VOCs	(ppm)	-	-			
Sample ID			1,3,5-Trimethylbenzene	Benzene	Ethylbenzene	Isopropylbenzene	Toluene	Trichloroethene	Xylene (Total)	n-Butylbenzene	n-Hexane	n-Propylbenzene	p-Isopropyltoluene	sec-Butylbenzene
	oundwater Soil MTG tial 2018	1.6	1.7	0.051	16	15	14	66	200	64	210	25	NE	120
IDEM Screening So Contact Res	-	220	180	17	81	270	820	1,200	260	110	140	260	NE	150
IDEM Screening So Contact Commerce	ial/Industrial 2018	220	180	51	250	270	820	1,200	260	110	140	260	NE	150
IDEM Screening So Contact Exce	-	220	180	1,800	480	270	820	1,200	260	110	140	260	NE	150
MW-2R (0-2')	11/13/2018	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051	<0.01	<0.0051	<0.0051	<0.0051	<0.0051	<0.0051
MW-2R (36-38')	11/13/2018	95.5	28.6	4	30.3	5.4	32	0.5	194	11.5	51	16.3	1.8	2.9
Blind Duplicate		<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.011	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054
MW-17 (2-4')	11/12/2018	<0.0053	<0.0053	<0.0053	<0.0053	< 0.0053	< 0.0053	<0.0053	<0.011	<0.0053	< 0.0053	<0.0053	< 0.0053	< 0.0053
MW-17 (38-40')	11/12/2018	16	4.5	< 0.4	3.2	0.68	1.9	< 0.4	17.4	2.4	1.3	3.3	< 0.4	0.52
MW-18 (0-2')	11/13/2018	< 0.0056	< 0.0056	<0.0056	< 0.0056	< 0.0056	< 0.0056	< 0.0056	< 0.011	< 0.0056	< 0.0056	< 0.0056	< 0.0056	< 0.0056
MW-18 (36-38') MW-19 (0-2')	<u>11/13/2018</u> 11/13/2018	87.2 <0.0063	25.6 <0.0063	8 <0.0063	39 <0.0063	4.9 <0.0063	82.6 <0.0063	<0.26 <0.0063	197 <0.013	9.5 <0.0063	88 <0.0063	13.9 <0.0063	1.4 <0.0063	2.6 <0.0063
MW-19 (34-36')	11/13/2018	<0.0063 0.0056	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063	<0.0063	<0.013	<0.0053	0.011	<0.0063	<0.0063	<0.0053
Trip Blank	11/13/2018	< 0.0050	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.01	<0.0054	< 0.0050	<0.0054	<0.0054	<0.0054
Notes:	11/10/2010	10.0000	1010000	-0.0000	10.0000	.0.0000	.0.0000	.0.0000	10.01	10.0000	10.0000	10.0000	.0.0000	10.0000
- NE = not established /	/NA* = not analvzed													
	alyzed for volatile organ	c compound	ds (VOCs) v	via SW 846	Method 826	50 polvchlor	inated biphe	envls (PCBs) usina SW	-846 Metho	d 8082.			
	he table were not detec								,					
-	presented in milligrams													
	in millgrams per liter (m													
BOLD	= Concentrations above	• • • •		Residential	Migration to	Groundwa	ter Screenir	ng Levels (u	pdated in M	larch 2018)				
BOLD	= Concentrations above	•			-			-	•	,				
BOLD	= Concentrations above	•						•	,					
BOLD	= Concentrations above	e their respe	ctive RCG I	Excavation	Direct Conta	act Screenir	ng Levels (u	pdated in M	larch 2018)					

						Summ	-	alytical So Former County Ro	able 6 bil Results RJ Refiner bad 350 Sc Indiana 47	y outh									
Sample ID	Date Collected	1-MethyInaphthalene	2-MethyInaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene
	Groundwater Soil Iential 2018	1.2	3.7	110	NE	1,200	2.1	4.7	60	NE	590	1,800	19	1,800	110	200	0.11	NE	260
-	oil Exposure Direct idential 2018	250	340	5,000	NE	25,000	15	1.5	15	NE	150	1,500	1.5	3,400	3,400	15	53	NE	2,500
Contact Commerce	oil Exposure Direct cial/Industrial 2018	390	3,000	45,000	NE	100,000	210	21	210	NE	2,100	21,000	21	30,000	30,000	210	170	NE	23,000
	oil Exposure Direct avation 2018	390	6,800	100,000	NE	100,000	12,000	500	12,000	NE	100,000	100,000	1,200	68,000	68,000	12,000	3,100	NE	51,000
MW-2R (0-2')	11/13/2018	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061	<0.0061
MW-2R (36-38')	11/13/2018	7.2	12.7	0.038	0.04	0.033	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	0.016	<0.0059	0.015	0.078	<0.0059	12	0.17	0.022
Blind Duplicate		<0.0062	<0.0062	<0.0062	<0.0062	<0.0062	0.0079	0.0095	0.01	0.0074	0.011	0.01	<0.0062	0.015	<0.0062	0.007	<0.0062	0.0063	0.012
MW-17 (2-4')	11/12/2018	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0060
MW-17 (38-40')	11/12/2018	1.8	3	0.014	0.011	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	<0.0059	0.039	<0.0059	2.7	0.048	<0.0059
MW-18 (0-2')	11/13/2018	0.025	0.045	<0.0064	0.0073	<0.0064	0.025	0.029	0.032	0.021	0.034	0.032	0.0085	0.046	<0.0064	0.021	0.046	0.019	0.042
MW-18 (36-38')	11/13/2018	0.63	1.1	0.0062	0.0054	0.0065	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	<0.0054	0.01	<0.0054	0.58	0.028	<0.0054
MW-19 (0-2')	11/13/2018	0.018	0.046	<0.0059	0.01	0.0069	0.013	0.023	0.033	0.024	0.02	0.023	0.0098	0.025	<0.0059	0.018	0.019	0.013	0.03
MW-19 (34-36')	11/13/2018	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053	<0.0053
Notes: - NE = not establishe	ed / NA* = not analyze	d																	

- Soil samples were analyzed for polynuclear aromatic hydrocarbons (PAHs) using SW 846 Method 8270.

- Analytes not listed in the table were not detected above their respective laboratory reporting levels.

- Analytical results presented in milligrams per kilogram (mg/kg) or parts per million (ppm).

BOLD

BOLD = Concentrations above their respective RCG Residential Migration to Groundwater Screening Levels (updated in March 2018).

BOLD = Concentrations above their respective RCG Residential Direct Contact Screening Levels (updated in March 2018).

= Concentrations above their respective RCG Commercial Direct Contact Screening Levels (updated in March 2018).

BOLD = Concentrations above their respective RCG Excavation Direct Contact Screening Levels (updated in March 2018).

	Table 7 Summary of Groundwater Analytical Results - VOCs/Metals - November 2016																				
					Sun	nmary of (Groundwa		tical Resu mer RJ Re		/Metals -	Novembe	er 2016								
									ty Road 35	•											
									eton, Indian												
			Detec	cted Metals	(ppm)								Detec	ted VOCs (ppm)			-			
Sample ID	Date Sampled	Arsenic	Barium	Cadmium	Chromium	Lead	1,1,2- Trichloroethane	1,2,4- Trimethylbenzene	1,3,5- Trimethylbenzene	Benzene	Chlor obenzene	Ethylbenzene	Isopropylbenzene (Cumene)	Toluene	Xylene (Total)	cis-1,2- Dichloroethene	n-Butylbenzene	n-Hexane	n-Propylbenzene	p-Isopropyltoluene	sec-Butylbenzene
IDEM Screening Grour 20	ndwater Tap Residential 016	0.01	2	0.005	0.1	0.015	0.005	0.015	0.12	0.005	0.1	0.7	0.45	1	10	0.07	1	1.5	0.66	NE*	2
	Vapor Exposure Residential 2016	NE*	NE*	NE*	NE*	NE*	0.011	NE*	NE*	0.028	NE*	NE*	NE*	NE*	NE*	NE*	NE*	NE*	NE*	NE*	NE*
	Vapor Exposure ercial/Industrial 2016	NE*	NE*	NE*	NE*	NE*	0.046	NE*	NE*	0.12	NE*	NE*	NE*	NE*	NE*	NE*	NE*	NE*	NE*	NE*	NE*
B-1 Blind Dr	11/7/2016	0.0328	0.114	<0.0020	0.0343	0.0824	<0.100	1.97	0.459	9.93	<0.100	2.33	<0.100	18.4	13.2	<0.100	<0.100	0.577	0.307	<0.100	<0.100
Blind Du B-3	plicate 1 11/7/2016	0.0298 <0.0100	0.100 0.0737	<0.0020 <0.0020	0.0243	0.0696 <0.0100	<0.100 <0.0050	2.00 0.603	0.473	12.4 0.305	<0.100 0.0051	2.37 1.06	<0.100 0.0478	22.4 0.298	13.5 3.02	<0.100 <0.0050	<0.100 <0.0050	0.533	0.304 0.158	<0.100 <0.0050	<0.100 0.0066
B-3	11/7/2016	<0.0100	0.0388	<0.0020	<0.0100	<0.0100	<0.0050	0.0144	<0.0050	< 0.0050	<0.0050	0.0084	<0.0050	0.0082	0.0404	<0.0050	<0.0050	0.0083	< 0.0050	<0.0050	<0.0050
B-6	11/9/2016	<0.0100	0.174	<0.0020	0.0137	<0.0100	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0100	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050
B-7	11/8/2016	< 0.0100	0.0726	<0.0020	< 0.0100	< 0.0100	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0100	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
B-15 B-16	11/11/2016 11/14/2016	<0.0100 <0.0100	0.133 0.186	<0.0020 <0.0020	<0.0100 <0.0100	<0.0100 <0.0100	<0.0050 <0.0050	0.0421 0.0128	0.0181	0.126 0.0220	<0.0050 <0.0050	0.0688	0.0095	<0.0050 <0.0050	0.0670	<0.0050 <0.0050	0.0111 <0.0050	0.0283	0.0222	<0.0050 <0.0050	<0.0050 <0.0050
B-18	11/14/2016	<0.0100	0.123	<0.0020	< 0.0100	<0.0100	<0.0050	< 0.0050	<0.0050	0.0181	< 0.0050	<0.0050	< 0.0050	<0.0050	<0.0100	< 0.0050	< 0.0050	0.0171	< 0.0050	<0.0050	<0.0050
B-19	11/8/2016	<0.0100	0.592	<0.0020	<0.0100	<0.0100	<0.0050	<0.0050	<0.0050	< 0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0100	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050
B-20 B-21	11/14/2016 11/8/2016	<0.0100 <0.0100	0.138 0.0328	<0.0020 <0.0020	<0.0100 <0.0100	<0.0100 0.0173	<0.0050 <0.0500	0.0123 1.68	<0.0050 0.386	0.0051 32.9	<0.0050 <0.0500	0.0071 1.53	<0.0050 0.0629	<0.0050 21.4	<0.0100 9.06	<0.0050 0.871	<0.0050 0.0765	<0.0050 0.199	<0.0050 0.243	<0.0050 <0.0500	<0.0050 <0.0500
B-21 B-24	11/1/2016	0.0124	0.0328	<0.0020	<0.0100	<0.0173	<0.0500 0.0065	0.173	0.0456	0.0135	< 0.0050	0.0262	0.0629	<0.0050	0.0662	< 0.0050	0.0765	0.199	0.243	0.0135	0.0113
B-25	11/14/2016	0.0370	0.732	<0.0020	0.0695	0.0528	< 0.0050	0.713	0.129	1.09	< 0.0050	0.660	0.0666	0.126	2.47	< 0.0050	0.0318	0.219	0.112	0.0188	0.0155
B-29	11/9/2016	< 0.0100	0.0931	< 0.0020	< 0.0100	< 0.0100	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0100	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
B-30 B-36	11/8/2016 11/14/2016	<0.0100 <0.0100	0.0874	<0.0020 <0.0020	<0.0100 <0.0100	<0.0100 <0.0100	<0.0050 <0.0050	0.157	0.0446	0.0463	<0.0050 <0.0050	0.117 0.107	0.0094 0.0086	<0.0050 <0.0050	0.529 0.398	<0.0050 <0.0050	0.0116	0.0869	0.0291 0.0167	<0.0050 <0.0050	<0.0050 <0.0050
B-37	11/11/2016	<0.0100	0.0612	<0.0020	<0.0100	<0.0100	<0.0050	< 0.0050	<0.0200	< 0.0050	< 0.0050	<0.0050	< 0.0050	<0.0050	<0.0100	<0.0050	<0.0050	< 0.0050	< 0.0050	<0.0050	<0.0050
B-39	11/11/2016	<0.0100	0.0474	<0.0020	<0.0100	<0.0100	< 0.0050	< 0.0050	<0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050	< 0.0050	<0.0100	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050
B-40	11/10/2016	0.0123	0.283	0.0021	0.0111	<0.0100	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0100	<0.0050	<0.0050	< 0.0050	< 0.0050	<0.0050	<0.0050
B-43	11/10/2016	<0.0100	0.132	<0.0020	< 0.0100	< 0.0100	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0100	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050
B-44 B-45	11/10/2016 11/11/2016	<0.0100 <0.0100	0.0800	<0.0020 <0.0020	<0.0100 <0.0100	<0.0100 <0.0100	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0100 <0.0100	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050	<0.0050	<0.0050 <0.0050	<0.0050 <0.0050
B-43	11/9/2016	<0.0100	0.0636	<0.0020	<0.0100	<0.0100	<0.0050	<0.0050	<0.0050		<0.0050	<0.0050	<0.0050	<0.0050	<0.0100	<0.0050	<0.0050		<0.0050		<0.0050
B-49	11/9/2016	<0.0100	0.0565	<0.0020	<0.0100	<0.0100	< 0.0050	< 0.0050	<0.0050		< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0100	< 0.0050	< 0.0050	<0.0050	< 0.0050	<0.0050	<0.0050
B-50	11/9/2016	<0.0100	0.140	<0.0020	<0.0100	<0.0100	<0.0050	0.0062	<0.0050		< 0.0050	<0.0050	< 0.0050	<0.0050	<0.0100	<0.0050	< 0.0050	<0.0050			<0.0050
B-51 Blind Di	11/9/2016 uplicate 2	<0.0100	0.139	<0.0020 <0.0020	<0.0100	<0.0100 <0.0100	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050		<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0100 <0.0100	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050
Billio Do B-55	11/9/2016	<0.0100 0.0150	0.144 0.283	<0.0020	<0.0100 0.0670	<0.0100 0.0217	<0.0050	<0.0050	<0.0050		<0.0050	<0.0050	<0.0050	<0.0050	<0.0100	<0.0050	<0.0050	<0.0050		<0.0050	<0.0050
L-1	11/10/2016	< 0.0100	0.082	<0.0020	< 0.0100	< 0.0100	<0.0050	<0.0050	<0.0050		<0.0050	<0.0050	<0.0050	<0.0050	<0.0100	<0.0050	<0.0050	<0.0050		<0.0050	<0.0050
L-2	11/10/2016	<0.0100	0.0529	<0.0020	<0.0100	<0.0100	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050	<0.0050	<0.0100	<0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	<0.0050
L-3	11/10/2016	< 0.0100	0.0848	<0.0020	< 0.0100	< 0.0100	< 0.0050	< 0.0050	< 0.0050		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0100	< 0.0050	< 0.0050	< 0.0050		< 0.0050	< 0.0050
L-4 S-1	11/11/2016 11/11/2016	<0.0100 <0.0100	0.0410	<0.0020 <0.0020	<0.0100 <0.0100	<0.0100 <0.0100	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050		<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0100 <0.0100	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050		<0.0050 <0.0050	<0.0050 <0.0050
Trip Blank1	11/8/2016	NA*	NA*	NA*	NA*	NA*	<0.0050	<0.0050	<0.0050		< 0.0050	<0.0050	<0.0050	<0.0050	<0.0100	<0.0050	<0.0050		<0.0050		<0.0050
Trip Blank2	11/9/2016	NA*	NA*	NA*	NA*	NA*	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0100	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050
Trip Blank3	11/10/2016	NA*	NA*	NA*	NA*	NA*	< 0.0050	< 0.0050	< 0.0050		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0100	< 0.0050	< 0.0050	< 0.0050		<0.0050	< 0.0050
Trip Blank4	es:																				
	= Not Established/ NA*= Not Analyzed output the organic compounds (VOCs) via SW 846 Method 8260 and RCRA Metals via SW 846 Methods 6010B and 7470.																				
								etais via SV		005 00 10B	anu 7470.										
	halytes not listed in the table were not detected above their respective laboratory detection levels. Halytical results presented in milligrams per liter (mg/L) or parts per million (ppm).																				
BOLD	= Concentrations above	their respec	ctive Reme	diation Clos)16).								
BOLD	= Concentrations above	their respec	ctive Reme	diation Clos	ure Guide (RCG) Resi	dential Vand		Screening	Levels (upp	lated in Ma	arch 2016)									,

BOLD
BOLD
BOLD

= Concentrations above their respective Remediation Closure Guide (RCG) Residential Vapor Exposure Screening Levels (updated in March 2016). = Concentrations above their respective Remediation Closure Guide (RCG) Commercial Vapor Exposure Screening Levels (updated in March 2016).

Table 8 Summary of Groundwater Analytical Results - SVOCs - November 2016 Former RJ Refinery County Road 350 South Princeton, Indiana 47670																
						Princet	on, Indiana									
			-		-	-		Dete	cted SVOC	s (ppm)				-		
Sample ID	Date Sampled	1-Methyinaphthalene	2,4-Dimethylphenol	2-Methyinaphthalene	2-Methylphenol (o-Cresol)	3&4-Methylphenol (m&p Cresol)	Benzo(a)anthracene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Dibenz(a,h)anthracene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Phenol
•	Groundwater Tap tial 2016	0.011	0.36	0.036	0.93	NE*	0.00012	0.00034	NE*	0.0034	0.000034	0.29	0.00034	0.0017	NE*	5.8
_	Vapor Exposure Residential 2016	NE*	NE*	NE*	NE*	NE*	NE*	NE*	NE*	NE*	NE*	NE*	NE*	0.11	NE*	NE*
IDEM Screening	Vapor Exposure ercial/Industrial 2016	NE*	NE*	NE*	NE*	NE*	NE*	NE*	NE*	NE*	NE*	NE*	NE*	0.46	NE*	NE*
B-1 Blind Du	11/7/2016 Iplicate 1	0.0374	<0.0100	0.0519	<0.0100	<0.0100	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.0010	<0.00010	0.181	<0.0010	<0.0100
Blind DU B-3	11/7/2016	0.0255	<0.0100 <0.0100	0.0389 0.0382	<0.0100 <0.0100	<0.0100 <0.0100	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.0010 <0.0010	<0.00010 <0.00010	0.124 0.126	<0.0010 <0.0010	<0.0100 <0.0100
B-4	11/7/2016	< 0.0010	<0.0100	< 0.0010	<0.0100	<0.0100	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.0010	<0.00010	0.0012	<0.0010	<0.0100
B-6	11/9/2016	<0.0010	<0.0100	<0.0010	<0.0100	<0.0100	< 0.00010	< 0.00010	< 0.00010	<0.00010	<0.00010	<0.0010	< 0.00010	<0.0010	<0.0010	<0.0100
B-7	11/8/2016	<0.0010	<0.0100	<0.0010	<0.0100	<0.0100	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.0010	<0.00010	0.0013	<0.0010	<0.0100
B-15	11/11/2016	0.0389	< 0.0100	0.0380	< 0.0100	< 0.0100	<0.00010 <0.00010	<0.00010 <0.00010	< 0.00010	< 0.00010	<0.00010	0.0012	< 0.00010	0.0317	0.0015	<0.0100
B-16 B-18	<u>11/14/2016</u> 11/14/2016	<0.0010 <0.0010	0.168 <0.0100	<0.0010 <0.0010	0.134 <0.0100	0.130 <0.0100	<0.00010	<0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.00010 <0.00010	<0.0010 <0.0010	<0.00010 <0.00010	<0.0010 <0.0010	<0.0010 <0.0010	0.0695
B-10 B-19	11/8/2016	<0.0010	<0.0100	<0.0010	<0.0100	<0.0100	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.0010	<0.00010	<0.0010	<0.0010	<0.0100
B-20	11/14/2016	0.0016	0.0182	0.0015	0.0127	<0.0100	< 0.00010	< 0.00010	0.00011	< 0.00010	0.00012	<0.0010	<0.00010	<0.0010	<0.0010	<0.0100
B-21	11/8/2016	0.0246	<0.0100	0.0349	<0.0100	0.0149	<0.00050	< 0.00050	<0.00050	<0.00050	<0.00050	<0.0050	<0.00050	0.0779	<0.0050	0.0145
B-24	11/11/2016	0.0309	< 0.0100	0.0263	< 0.0100	< 0.0100	<0.00010	< 0.00010	< 0.00010	< 0.00010	<0.00010	0.0013	<0.00010	0.0216	0.0014	< 0.0100
B-25 B-29	<u>11/14/2016</u> 11/9/2016	0.0717 <0.0010	<0.0100 <0.0100	0.0821 <0.0010	<0.0100 <0.0100	<0.0100 <0.0100	<0.0010 <0.00010	<0.0010 <0.00010	<0.0010 <0.00010	<0.0010 <0.00010	<0.0010 <0.00010	<0.0100 <0.0010	<0.0010 <0.00010	0.103 <0.0010	<0.0100 <0.0010	0.0341
B-29 B-30	11/8/2016	<0.0010	<0.0100	<0.0010	<0.0100	<0.0100	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.0010	<0.00010	0.0028	<0.0010	<0.0100
B-36	11/14/2016	<0.0010	< 0.0100	< 0.0010	< 0.0100	< 0.0100	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.00010	< 0.0010	< 0.00010	< 0.0010	< 0.0010	<0.0100
B-37	11/11/2016	<0.0010	<0.0100	<0.0010	<0.0100	<0.0100	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.0010	<0.00010	<0.0010	<0.0010	<0.0100
B-39	11/11/2016	<0.0010	< 0.0100	< 0.0010	< 0.0100	<0.0100	< 0.00010	<0.00010	<0.00010	<0.00010	<0.00010	< 0.0010	<0.00010	<0.0010	<0.0010	< 0.0100
B-40 B-43	<u>11/10/2016</u> 11/10/2016	<0.0010 <0.0025	<0.0100 <0.0250	<0.0010 <0.0025	<0.0100 <0.0250	<0.0100 <0.0250	<0.00010 <0.00025	<0.00010 <0.00025	<0.00010 <0.00025	<0.00010 <0.00025	<0.00010 <0.00025	<0.0010 <0.0025	<0.00010 <0.00025	<0.0010 <0.0025	<0.0010 <0.0025	<0.0100 <0.0250
B-43 B-44	11/10/2016	<0.0023	<0.0250	<0.0023	<0.0250	<0.0250			<0.00023		<0.00025		<0.00023		<0.0025	<0.0250
B-45	11/11/2016	<0.0010	<0.0100	<0.0010	<0.0100	<0.0100	<0.00010	<0.00010			<0.00010	<0.0010	<0.00010	<0.0010	<0.0010	<0.0100
B-47	11/9/2016	<0.0010	<0.0100	<0.0010	<0.0100	<0.0100	< 0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.0010	<0.00010	<0.0010	<0.0010	<0.0100
B-49	11/9/2016	< 0.0010	< 0.0100	< 0.0010		< 0.0100	0.00011	0.00020			< 0.00010	< 0.0010		< 0.0010	< 0.0010	< 0.0100
B-50	11/9/2016	0.0011	<0.0100 <0.0100	<0.0010 <0.0010	<0.0100 <0.0100	<0.0100 <0.0100				<0.00010 <0.00010	<0.00010 <0.00010	<0.0010 <0.0010	<0.00010 <0.00010	<0.0010 <0.0010	<0.0010 <0.0010	<0.0100 <0.0100
B-51 Blind Du	11/9/2016 Iplicate 2	<0.0010	<0.0100	<0.0010	<0.0100 <0.0100	<0.0100					<0.00010 <0.00010	<0.0010	<0.00010	<0.0010 <0.0010	<0.0010 <0.0010	<0.0100
B-55	11/9/2016	<0.0010	<0.0100	<0.0010	<0.0100	<0.0100		<0.00010			<0.00010	<0.0010	<0.00010	<0.0010	<0.0010	<0.0100
L-1	11/10/2016	<0.0010	<0.0100	<0.0010	<0.0100	<0.0100					<0.00010	<0.0010	<0.00010	<0.0010	<0.0010	<0.0100
L-2	11/10/2016	<0.0010	<0.0100	<0.0010	<0.0100	<0.0100	< 0.00010	< 0.00010	<0.00010		<0.00010	<0.0010	<0.00010	<0.0010	<0.0010	<0.0100
L-3	11/10/2016	< 0.0010	< 0.0100	< 0.0010		< 0.0100			< 0.00010			< 0.0010		<0.0010	< 0.0010	< 0.0100
L-4 S-1	11/11/2016	<0.0010	<0.0100	<0.0010 <0.0010		<0.0100			<0.00010	<0.00010 <0.00010	<0.00010		<0.00010	<0.0010	<0.0010	<0.0100
Notes:	11/11/2016	<0.0010	<0.0100	<0.0010	<0.0100	<0.0100	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.0010	<0.00010	<0.0010	<0.0010	<0.0100
-NE = Not Established/ - Groundwater samples - Analytes not listed in t	= Not Established/ NA*= Not Analyzed oundwater samples were analyzed for semi volatile organic compounds (SVOCs) using SW 846 Method 8270SIM. alytes not listed in the table were not detected above their respective laboratory detection levels. alytical results presented in milligrams per liter (mg/L) or parts per million (ppm).															

BOLD	= Concentrations above their respective Remediation Closure Guide (RCG) Residential Tap (Direct Contact) Screening Levels (updated in March 2016).
BOLD	= Concentrations above their respective Remediation Closure Guide (RCG) Residential Vapor Exposure Screening Levels (updated in March 2016).
BOLD	= Concentrations above their respective Remediation Closure Guide (RCG) Commercial Vapor Exposure Screening Levels (updated in March 2016).

			Summary	of Analy	rtical Gro	undwato	Table 9			ov 2018 +/	o April 20 [.]	10					
			Summary				mer RJ Re			ay 2010 lu	5 April 20	19					
							y Road 38										
						Prince	ton, Indiar	na 47670	_								
		(q						-	Detec	ted VOCs	(ppb)		1	-	-	-	1
Sample ID	Date Sampled	PCB - Arochlor 1260 (ppb)	,2,4-Trimethylbenzene	,2-Dibromoethane (EDB)	1,2-Dichloroethane	,3,5-Trimethylbenzene	Benzene	Ethylbenzene	lsopropylbenzene (Cumene)	Toluene	Xylene (Total)	cis-1,2-Dichloroethene	n-Butylbenzene	n-Hexane	n-Propylbenzene	p-lsopropyltoluene	sec-Butylbenzene
IDEM Screening Gro	oundwater Tap		-	~		-											
Residential IDEM Screening Va	2019	0.078	56	0.05	5	60	5	700	450	1,000	10,000	70	1,000	1,500	660	NE	2,000
Groundwater Resi	idential 2019	NE	NE	NE	50	NE	28	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
Groundwater Commerc	ial/Industrial 2019	NE	NE	NE	210	NE	120	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
MW-1	05/10/2018 8/15/2018	<0.10 <0.10	2,600 2,300	<250 <250	<250 <250	690 600	14,300 11,900	2,900 2,400	<250 <250	19,000 14,000	14,700 11,600	<250 <250	<250 <250	340 600	440 400	<250 <250	<250 <250
	11/29/2018	<0.10	2,300 16,400	<250 <500	<250 <500	4,200	14,300	2,400 4,100	620	22,100	25,200	<230 <500	1,900	590	2,700	<250 <500	<250 <250
	2/13/2019	<0.10	28,100	<500	<500	7,500	12,800	15,500	1,600	29,300	84,400	<500	2,800	1,900	6,000	<500	740
	4/4/2019	<0.10	1,430	<500	<500	<500	8,850	2,070	<500	15,600	10,100	<500	<500	628	<500	<500	<500
MW-2	05/09/2018	<0.10	250	<5.0	<5.0	64	1,200	250	26	270	570	<5.0	7.9	160	63	<5.0	<5.0
	8/14/2018						Not	sampled	due to ins	ufficient v	water volu	те					
MW-2R	11/27/2018	<0.10	1,400	5.3	<5.0	280	7,300	1,900	86	4,900	11,000	<5.0	25	510	190	5.3	8.7
	2/12/2019	<0.10	1,800	<5.0	<5.0	400	8,200	2,100	92	5,500	11,300	<5.0	35	660	270	6.2	11
	4/3/2019	<0.10	1,260	<50.0	<50.0	294	4,700	1,680	73.0	2,920	6,950	<50.0	<50.0	442	178	<50.0	<50.0
MW-3	05/09/2018	<0.10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
	8/14/2018	<0.10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
	11/27/2018	<0.10 <0.10	<5.0	<5.0	<5.0 <5.0	<5.0	<5.0	<5.0	<5.0 <5.0	<5.0	<10.0	<5.0	<5.0	<5.0 <5.0	<5.0	<5.0	<5.0
	2/12/2019 4/3/2019	<0.10 <0.10	<5.0	<5.0	<5.0 <5.0	<5.0 <5.0	<5.0	<5.0		<5.0 <5.0	<5.0	<5.0	<5.0	<5.0 <5.0	<5.0	<5.0 <5.0	<5.0 <5.0
MW-4	05/09/2018	<0.10	<5.0 <5.0	<5.0 <5.0	<5.0	<5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0	<10.0 <10.0	<5.0 <5.0	<5.0 <5.0	<5.0	<5.0 <5.0	<5.0	<5.0
10100-4	8/14/2018	<0.10	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0	<5.0 <5.0	<5.0 <5.0	<5.0	<10.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0
	11/27/2018	<0.10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
	2/12/2019	<0.10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
	4/3/2019	<0.10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
MW-5	05/09/2018	<0.10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
	8/14/2018	<0.10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
	11/27/2018	<0.10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
	2/12/2019	<0.10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
	4/3/2019	<0.10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
MW-6	05/09/2018	<0.10	<5.0	<5.0	<5.0	<5.0	6.6	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
	8/14/2018	<0.10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
	11/27/2018	<0.10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0	<5.0	<10.0	<5.0	<5.0	<5.0	< 5.0	<5.0	<5.0
	2/12/2019 4/4/2019	<0.10 <0.10	<5.0 11.6	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0 46.8	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
MW-7	05/09/2018	<0.10	<5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	175 <5.0	9.6 <5.0	<5.0 <5.0	<5.0 <5.0	46.8 <10.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0
10100-7	8/14/2018	<0.10 <0.10	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<10.0 <10.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0
	11/28/2018	<0.10	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<10.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0
	2/12/2019	<0.10	<5.0 <5.0	<5.0	<5.0	<5.0 <5.0	5.3	<5.0	<5.0	<5.0	<5.0	<5.0 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0
	4/4/2019	<0.10	<5.0	<5.0	<5.0	5.9	8.4	<5.0	114	<5.0	<10.0	<5.0	20.6	<5.0	209	<5.0	15.4

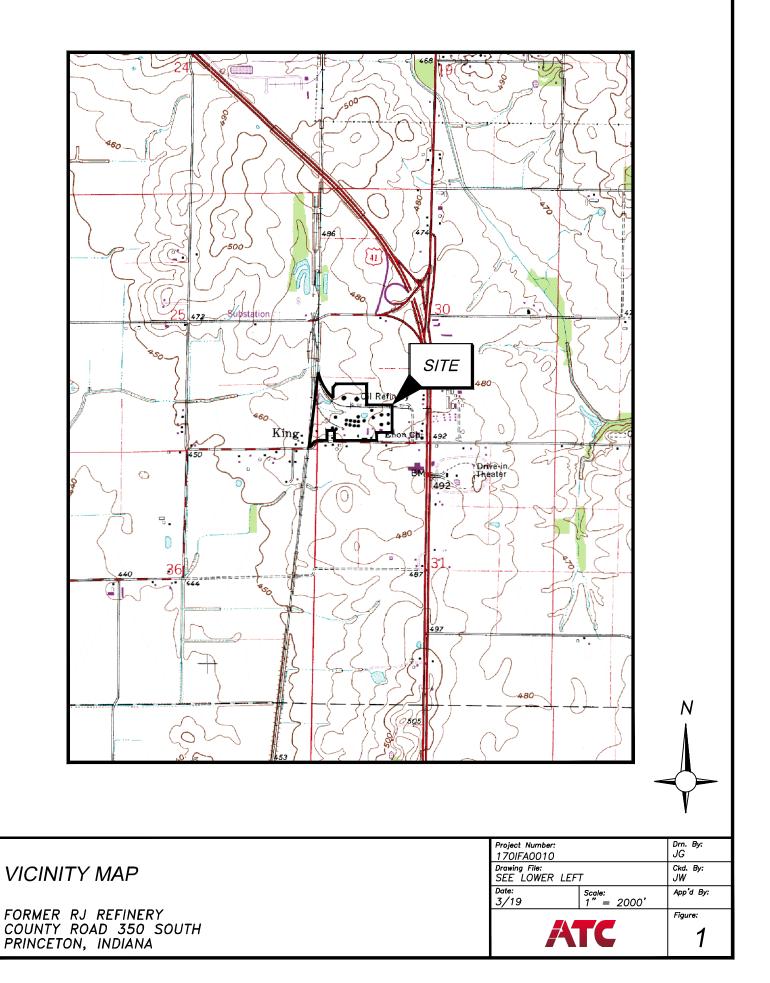
			Summary	y of Analy	tical Gro	For	mer RJ R	- VOCs/F efinery	PCBs - Ma	ay 2018 to	o April 20	19					
							ty Road 3										
						Prince	eton, India	na 47670	Dotor	ted VOCs	(nnh)						
		(qdd)	0	e e		0			Dettet								
Sample ID	Date Sampled	PCB - Arochlor 1260 (p	1,2,4-Trimethylbenzene	1,2-Dibromoethane (EDB)	1,2-Dichloroethane	1,3,5-Trimethylbenzene	Benzene	Ethylbenzene	Isopropylbenzene (Cumene)	Toluene	Xylene (Total)	cis-1,2-Dichloroethene	n-Butylbenzene	n-Hexane	n-Propylbenzene	p-lsopropyltoluene	sec-Butylbenzene
IDEM Screening Gi Residentia	al 2019	0.078	56	0.05	5	60	5	700	450	1,000	10,000	70	1,000	1,500	660	NE	2,000
IDEM Screening V Groundwater Res		NE	NE	NE	50	NE	28	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
IDEM Screening V Groundwater Commer		NE	NE	NE	210	NE	120	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
MW-8	05/10/2018	<0.10	3,400	<250	<250	900	25,400	3,400	<250	24,000	17,700	910	<250	0.68	0.62	<250	<250
	8/15/2018	<0.10	1,900	<250	<250	520	32,200	2,700	<250	23,900	12,900	<250	<250	1,200	380	<250	<250
	11/29/2018 2/14/2019	<0.10 <0.10	8,700 6.700	<500 <50.0	<500 <50.0	2,400 2,000	26,000 14,100	7,000 5,000	550 360	32,200 12,400	36,400 26,700	1,300 870	710 530	2,400 1,400	1,900 1,300	<500 85	<500 150
	4/5/2019	<0.10	1,510	<250.0	<250.0	372	25,300	2,430	<250	12,400	12,300	951	<250	351	<250	<250	<250
MW-9	05/10/2018	<0.10	1,200	<5.0	<5.0	290	15,200	1,700	100	6,100	7,700	<5.0	50.0	290	260	7.4	15
	8/15/2018	<0.10	1,500	<50.0	<50.0	420	19,300	2,500	120	8,100	9,700	<50.0	59	570	310	<50.0	<50.0
	11/29/2018	<0.10	4,200	<500	<500	1,100	22,100	4,600	<500	14,100	21,300	<500	<500	<500	790	<500	<500
	2/14/2019	<0.10	3,700	<250	<250	860	26,300	4,400	3,300	17,100	21,100	<0.25	8,100	890	14,200	830	1,700
MW-10	4/5/2019 05/10/2018	<0.10 <0.10	1,540	<500 <5.0	<500 <5.0	<500 21	20,300 410	2,540 74	<500 14	10,200 <5.0	<u>12,000</u> 77	<500 <5.0	<500 7.7	<500 22	<500 25	<500 <5.0	<500 <5.0
(Blind Duplicate)	5/10/2018	<0.10	63 74	<5.0 <5.0	<5.0 <5.0	25	410	87	14	< <u>5.0</u> 6.6	91	<5.0 <5.0	8.6	22	23	< <u>5.0</u> 5.1	<5.0 <5.0
(Billa Bapiloato)	8/14/2018	<0.10	39	<5.0	<5.0	15	290	58	8.0	<5.0	46	<5.0	5.2	7.4	13	<5.0	<5.0
	11/28/2018	<0.10	34	<5.0	<5.0	14	520	72	11	<5.0	46	<5.0	<5.0	19	18	<5.0	<5.0
	2/13/2019	<0.10	22	<5.0	<5.0	11	580	55	8.8	<5.0	32	<5.0	7.3	19	17	<5.0	<5.0
	4/4/2019	<0.10	<50.0	<50.0	<50.0	<50.0	529	67.4	<50.0	<50.0	<100	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0
MW-11	05/10/2018	<0.10	1,700	<50.0	<50.0	430	12,200	2,300	93	10,500	9,700	<50.0	64 60	240	280	<50.0	<50.0
	8/15/2018 11/29/2018	<0.10 <0.10	1,600 1,500	<5.0 <5.0	<5.0 <5.0	430	15,400 12,500	2,200 2 300	99 71	12,800	10,300	<5.0 <5.0	69 26	250 660	210 200	11 5.8	20 11
(Blind Duplicate)	11/29/2018	<0.10	1,900	<250	<250	290 450	11,600	2,300 2,700	<250	13,000 11,500	10,900 12,900	<250	<250	620	200	<250	<250
() _ up outo,	2/13/2019	<0.10	11,900	<250	<250	9,800	14,200	14,500	1,600	25,800	37,900	<250	3,100	1,400	7,300	380	840
	4/4/2019	<0.10	1,040	<500	<500	<500	9,570	1,750	<500	8,040	8,380	<500	<500	<500	<500	<500	<500
(Blind Duplicate)	4/4/2019	<0.10	1,320	<250	<250	322	11,000	2,030	<250	9,300	9,710	<250	<250	<250	<250	<250	<250
MW-12	05/10/2018	<0.10	1,400	<5.0	<5.0	350	5,300	1,700	87	9,100	8,100	<5.0	50	360	240	11	14 16
	8/15/2018 11/28/2018	<0.10 <0.10	1,100 2,300	<5.0 <5.0	<5.0 <5.0	220 600	3,100 2,600	1,200 780	78 140	2,600 840	7,000 5,200	<5.0 <5.0	47 180	480 710	160 280	<5.0 56	16 72
	2/13/2019	<0.10	11,300	<120	<120	1,900	3,300	2,000	250	2,700	11,500	<120	670	270	990	160	200
	4/4/2019	<0.10	956	<100	<100	234	3,030	987	<100	1,640	4,760	<100	<100	267	141	<100	<100
MW-13	05/10/2018	<0.10	2,400	<50.0	<50.0	630	13,400	3,000	120	9,600	12,400	<50.0	81	220	380	<50.0	<50.0
	8/15/2018	<0.10	3,700	<5.0	< 5.0	270	17,600	6,300	90	10,400	<10.0	<5.0	45	1,200	190	7.6	15
	11/28/2018 2/13/2019	<0.10 <0.10	1,500 2,900	<250 <5.0	<250 <5.0	390 660	14,100 16,700	2,500 3,000	<250 110	10,600 13,200	12,700 16,100	<250 <5.0	<250 99	410 270	<250 370	<250 12	<250 22
	4/4/2019	<0.10	2,900	<5.0 <250	<5.0 <250	382	8,060	3,000 2,510	<250	8,030	12,800	<3.0 <250	99 <250	270	<250	<250	<250
MW-14	05/09/2018	<0.10	210	<5.0	<5.0	73	120	120	10	690	1,000	<5.0	11	<5.0	24	<5.0	<5.0
	8/14/2018	<0.10	15	<5.0	14	11	9.9	<5.0	<5.0	14	50	<5.0	<5.0	<5.0	5.7	<5.0	<5.0
	11/28/2018	<0.10	<5.0	<5.0	13	<5.0	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
	2/13/2019	<0.10	<5.0	<5.0	<5.0	<5.0	22	<5.0	<5.0	17	21	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
	4/4/2019	<0.10	<5.0	<5.0	12.1	<5.0	<5.0	<5.0	<5.0	<5.0	<10.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0

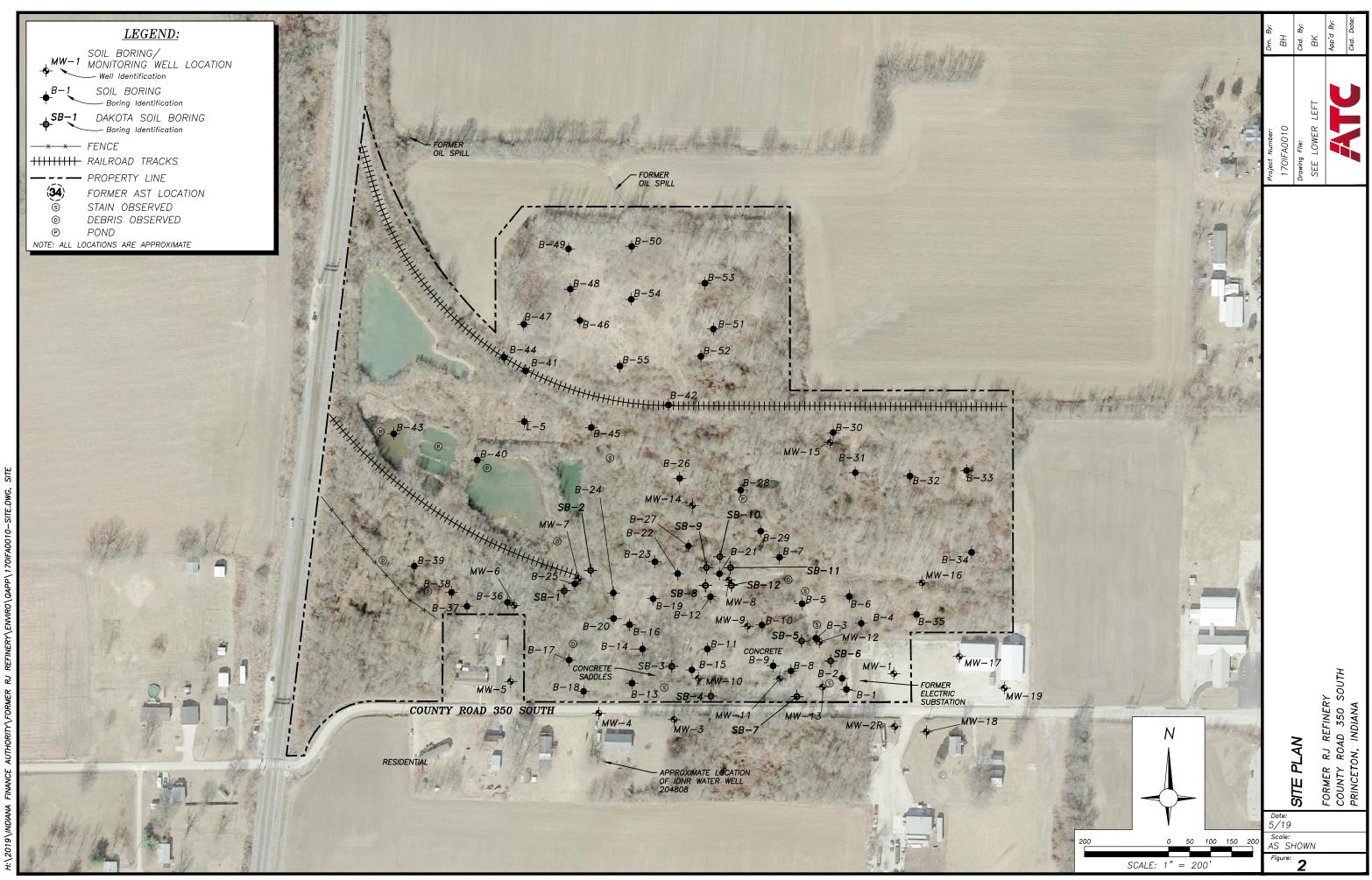
			Summary	of Analy	rtical Gro	For Count	mer RJ R ty Road 3	- VOCs/F efinery			o April 20	19					
									Detec	ted VOCs	(ppb)						
Sample ID	Date Sampled	PCB - Arochlor 1260 (ppb)	1,2,4-Trimethylbenzene	1,2-Dibromoethane (EDB)	1,2-Dichloroethane	1,3,5-Trimethylbenzene	Benzene	Ethylbenzene	Isopropylbenzene (Cumene)	Toluene	Xylene (Total)	cis-1,2-Dichloroethene	n-Butylbenzene	n-Hexane	n-Propylbenzene	p-lsopropyltoluene	sec-Butylbenzene
IDEM Screening Gr Residentia		0.078	56	0.05	5	60	5	700	450	1,000	10,000	70	1,000	1,500	660	NE	2,000
IDEM Screening Va Groundwater Res	apor Exposure	NE	NE	NE	50	NE	28	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
IDEM Screening Va Groundwater Commer	apor Exposure	NE	NE	NE	210	NE	120	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
MW-15	05/10/2018	<0.10	920	<5.0	<5.0	260	3,000	1,300	77	<5.0	4,300	<5.0	32	120	210	5.3	9.8
	8/15/2018	<0.10	740	<5.0	<5.0	140	3,800	1,000	52	<5.0	2,500	<5.0	22	17	100	<5.0	8.3
(Blind Duplicate)	8/15/2018	<0.10	1,000	<5.0	<5.0	130	3,600	1,100	49	12	3,000	<5.0	<5.0	22	90	9.3	7.6
、 , ,	11/28/2018	<0.10	830	<5.0	<5.0	140	3,100	1,300	59	<5.0	2,600	<5.0	18	<5.0	160	<5.0	8.5
	2/14/2019	0.83	1,900	<5.0	<5.0	250	5,500	2,400	87	<5.0	6,000	<5.0	37	<5.0	260	<5.0	14
	4/4/2019	<0.10	952	<250	<250	<250	2,780	1,200	<250	<250	2,800	<250	<250	<250	<250	<250	<250
MW-16	05/10/2018	<0.10	6,000	<250	<250	9,400	10,200	3,500	2,000	24,800	18,600	<250	2,500	2,900	7,100	370	610
	8/15/2018	<0.10	2,700	16	<250	280	6,700	2,400	96	12,700	11,700	<5.0	77	2,300	210	12	23
	11/28/2018	<0.10	1,900	17	<5.0	440	4,300	1,800	120	9,600	9,400	<5.0	59	560	220	12	21
	2/14/2019	<0.10	3,900	<5.0	<5.0	920	6,800	2,900	110	19,900	16,100	<5.0	100	280	580	12	21
(Blind Duplicate)	2/14/2019	<0.10	2,900	<120	<120	660	5,800	2,400	<120	16,400	12,500	<120	<120	360	430	<120	<120
	4/4/2019	<0.10	3,240	<250	<250	765	4,570	3,340	<250	14,300	16,600	<250	<250	<250	517	<250	<250
MW-17	11/29/2018	<0.10	550	<5.0	<5.0	130	5,100	860	37	3,200	3,900	<5.0	18	160	100	<5.0	5.5
	2/13/2019	<0.10	203,000	<500	<500	13,900	5,500	9,600	2,100	11,400	60,500	<500	6,300	2,300	9,500	730	1,300
	4/3/2019	<0.10	1,140	<125	<125	288	8,180	1,080	<125	2,720	5,150	<125	<125	358	211	<125	<125
MW-18	11/27/2018	<0.10	2,100	16	<5.0	490	3,600	2,700	120	11,200	12,100	<5.0	41	530	220	10	17
	2/12/2019	<0.10	50,400	<250	<250	6,800	10,300	10,100	1,200	60,300	148,000	<250	2,700	530	4,900	320	590
	4/3/2019	<0.10	2,950	<250	<250	677	9,380	2,610	<250	3,560	12,400	<250	<250	<250	459	<250	<250
MW-19	11/29/2018	< 0.10	11	<5.0	<5.0	<5.0	12,900	57	<5.0	120	120	<5.0	<5.0	5.4	<5.0	<5.0	<5.0
	2/13/2019	<0.10	<5.0	<5.0	48	<5.0	8,300	<0.025	15	<5.0	35	19	<5.0	<5.0	<5.0	<5.0	< 5.0
Trin Diant	4/3/2019	<0.10	<250	<250	<250	<250	4,930	<250	<250	<250	<500	<250	<250	<250	<250	<250	<250
Trip Blank	05/09/2018	NA NA	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
	8/14/2018 11/20/2018	NA NA	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
		NA NA	<5.0	<5.0	<5.0 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
	2/12/2019 4/3/2019	NA NA	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <10.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0 <5.0
Notes: -NE = not established/ NA' - Groundwater samples we - Analytes not listed in the - Analytical results present BOLD BOLD BOLD	*= not analyzed ere analyzed for volatile table were not detecte	e organic c d above the liter (μg/L) c ve their res ve their res	ompounds eir respecti or parts per pective Re pective Re	(VOCs) via ve laborato billion (pp mediation mediation	a SW 846 bry detection b). Closure Go Closure Go	Method 82 on levels. uide (RCG uide (RCG	260 and po i) Resident i) Resident	llychorinate tial Tap (Di tial Vapor E	ed biphenyl rect Conta Exposure S	ls (PCBs) [,] ct) Screen Screening I	via SW 846 ing Levels ₋evels (upc	Method & (updated i lated in Ma	3082. in March 20 arch 2019)	019).	NO.0	~0.0	.0.0

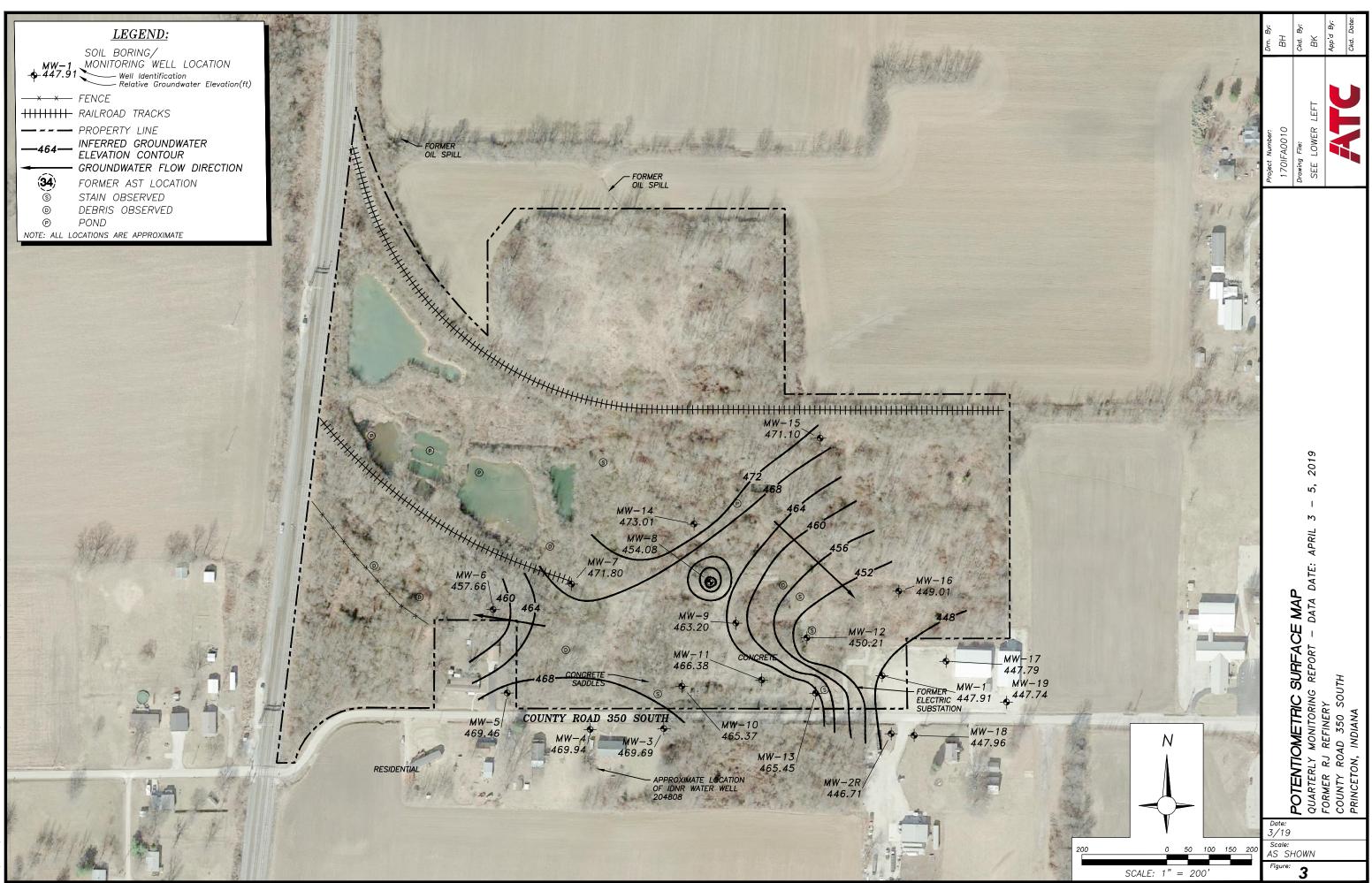
BOLD	= Concentrations above their respective Remediation Closure Guide (RCG) Residential Tap (Direct Contact) Screening Levels (updated in March 2019).
BOLD	= Concentrations above their respective Remediation Closure Guide (RCG) Residential Vapor Exposure Screening Levels (updated in March 2019).
BOLD	= Concentrations above their respective Remediation Closure Guide (RCG) Commercial Vapor Exposure Screening Levels (updated in March 2019).

				Sumn	nary of A	nalytical		Table 1 vater Res mer RJ R	ults - PAł	ls - May∶	2018 to A	pril 2019							
							Coun	ty Road 3	50 South										
							Prince	eton, India											
				1		1	1			Detected I	PAHs (ppb I	<u>)</u>		1		0		_	
Sample ID	Date Sampled	1-Methylnaphthalene	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene
IDEM Screening Gro Residentia		11	36	530	NE	1,800	0.3	0.2	2.5	NE	25	250	0.25	800	290	2.5	1.7	NE	120
IDEM Screening Va Groundwater Res	por Exposure idential 2019	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	110	NE	NE
IDEM Screening Va Groundwater Commerc		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	460	NE	NE
MW-1	05/10/2018	238	376	3.8	<1.0	<0.10	0.21	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<1.0	6.4	<1.0	479	7.3	<1.0
	8/15/2018	52.5	98.4	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<1.0	1.3	<1.0	284	1.4	<1.0
	11/29/2018	73.2	112	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<1.0	1.3	<1.0	230	2	<1.0
	2/13/2019	49.0	64.5	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<1.0	1.2	<1.0	135	1.3	<1.0
	4/4/2019	38.5	36.9	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50 <0.50	<0.10	<1.0	<1.0	<0.10	125	<1.0	<1.0
MW-2	05/09/2018 8/14/2018	<1.0	1	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10 t sampled	<0.10	<0.10 sufficient	<0.50 water volu	<0.10	<1.0	<1.0	<1.0	3.0	<1.0	<1.0
MW-2R	11/27/2018	71	25.1	<0.10	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<1.0	<1.0	<1.0	17.1	<1.0	<1.0
	2/12/2019	20.2	30.6	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<1.0	<1.0	<1.0	132	<1.0	<1.0
	4/3/2019	15.5	23.8	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<1.0	<1.0	<0.10	117	<1.0	<1.0
MW-3	05/09/2018	<1.0	<1.0	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	8/14/2018	<1.0	<1.0	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	11/27/2018	<1.1	<1.1	<1.1	<1.1	<0.11	<0.11	<0.10	<0.10	<0.10	<0.10	<0.53	<0.10	<1.0	<1.1	<1.0	<1.1	<1.1	<1.0
	2/12/2019	<1.0	<1.0	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	4/3/2019	<1.0	<1.0	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<1.0	<1.0	<0.10	<1.0	<1.0	<1.0
MW-4	05/09/2018	<1.0	<1.0	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	8/14/2018	<1.0	<1.0	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.50	<0.10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	11/27/2018 2/12/2019	<1.1	<1.1	<1.1	<1.1	<0.11	<0.11 <0.10	<0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.53 <0.50	<0.10	<1.0	<1.1	<1.0 <1.0	<1.1	<1.1	<1.0
	4/3/2019	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10	<0.10	<0.10	<0.50	<0.10 <0.10	<1.0 <1.0	<1.0 <1.0	<0.10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0
MW-5	05/09/2018	<1.0	<1.0	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	8/14/2018	<1.0	<1.0	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	11/27/2018	<1.0	<1.0	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.52	<0.10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	2/12/2019	<1.0	<1.0	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	4/3/2019	<1.0	<1.0	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<1.0	<1.0	<0.10	<1.0	<1.0	<1.0
MW-6	05/09/2018	<1.0	<1.0	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	8/14/2018	<1.0	<1.0	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	11/27/2018	<1.0	<1.0	<1.0	<1.0	<0.10	< 0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	2/12/2019	<1.0	<1.0	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
MW-7	4/4/2019 05/09/2018	<1.0 21.2	<1.0 11.5	<1.0 <1.0	<1.0 <1.0	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.50 <0.50	<0.10 <0.10	<1.0 <1.0	<1.0 <1.0	<0.10 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0
10100-7	8/14/2018	65.6	52.7	<1.0	<1.0 <1.0	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.50 <0.50	<0.10 <0.10	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	3.9	<1.0 <1.0	<1.0 <1.0
	11/28/2018	54.5	17.9	<1.1	<1.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.56	<0.10	<1.0	<1.1	<1.0	<1.1	<1.1	<1.0
	2/12/2019	46.3	15.9	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	4/4/2019	17.5	9.1	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<1.0	<1.0	<0.10	<1.0	<1.0	<1.0

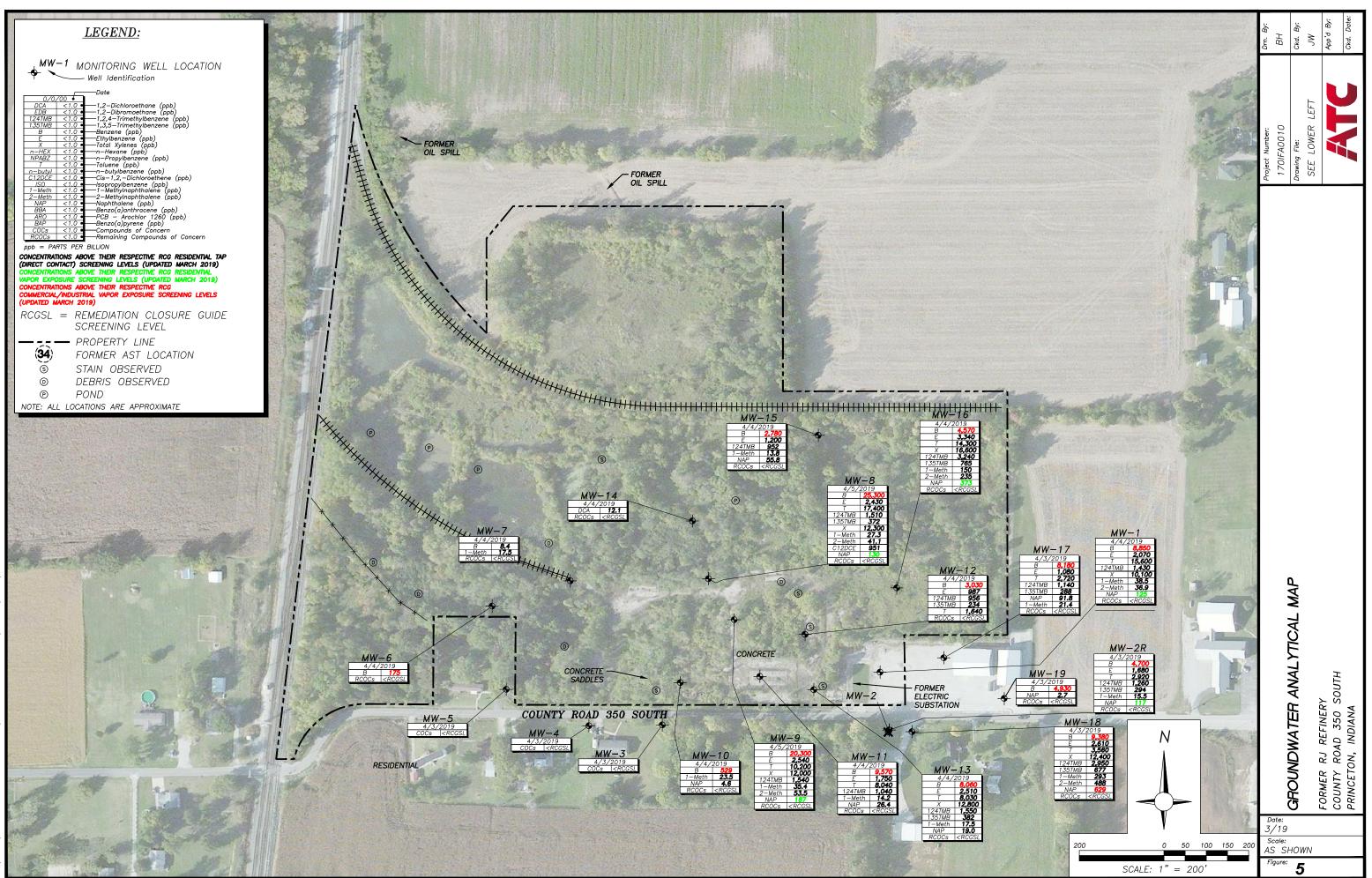
				Summ	nary of A	nalytical	For	Table 1 ater Res mer RJ R vy Road 3	ults - PAH efinery	ls - May 2	2018 to A	pril 2019							
									na 47670										
										Detected F	PAHs (ppb)							
Sample ID	Date Sampled	1-Methylnaphthalene	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene
IDEM Screening Gro Residential		11	36	530	NE	1,800	0.3	0.2	2.5	NE	25	250	0.25	800	290	2.5	1.7	NE	120
IDEM Screening Va Groundwater Resi		NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	110	NE	NE
IDEM Screening Va Groundwater Commerc	por Exposure	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	460	NE	NE
MW-8	05/10/2018	67.6	134	1.4	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<1.0	<1.0	2.3	<1.0	216	3.5	<1.0
	8/15/2018	63.4	184	1.5	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<1.0	<1.0	2.3	<1.0	285	4.1	<1.0
	11/29/2018	275	424	<5.0	<5.0	<0.50	0.76	<1.0	<1.0	<1.0	<1.0	<2.5	<1.0	<1.0	5.8	<1.0	522	11.3	<1.0
	2/14/2019	6,020	9,740	72.4	<10.0	<1.0	8.1	2.1	1.4	1.4	<1.0	19.2	<1.0	15.4	83.5	<1.0	8,440	238	30.1
	4/5/2019	27.3	41.1	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<1.0	<1.0	<0.10	130	<1.0	<1.0
MW-9	05/10/2018	17.6	27.9	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<1.0	<1.0	<1.0	98.5	<1.0	<1.0
	8/15/2018	24.4	39.4	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<1.0	<1.0	<1.0	183	<1.0	<1.0
	11/29/2018	64.2	95.7	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.50	<0.10	<1.0	1.2	<1.0	221	2.3	<1.0
	2/14/2019	163	269	2.2	<1.0	<0.10	0.31	<0.10	<0.10	<0.10	<0.10	< 0.50	<0.10	<1.0	3.4	<1.0	417	8.2	<1.0
	4/5/2019	35.4	53.5	<1.0	<1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	< 0.50	<0.10	<1.0	<1.0	<0.10	187	<1.0	<1.0
MW-10	05/10/2018	19.6	12.8	<1.0	<1.0	<0.10	<0.10	< 0.10	<0.10	<0.10	<0.10	< 0.50	<0.10	<1.0	<1.0	<1.0	18.1	<1.0	<1.0
(Blind Duplicate)	5/10/2018	30.6	20.2	<1.0	<1.0	<0.10	<0.10	< 0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<1.0	<1.0	<1.0	28	<1.0	<1.0
	8/14/2018 11/28/2018	35.6	21.3 24.2	<1.0	<1.0	< 0.10	<0.10	<0.10 <0.10	<0.10	<0.10	<0.10	< 0.50	<0.10 <0.10	<1.0	<1.0	<1.0	43.5	<1.0 1.3	<1.0
	2/13/2019	46.9 37.4	24.2 9.8	1.4 <1.0	<1.0 <1.0	0.16 <0.10	<0.11 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.55 <0.50	<0.10 <0.10	<1.0 <1.0	1.2 <1.0	<1.0 <1.0	39.1 20.2	1.3 <1.0	<1.0 <1.0
	4/4/2019	23.5	9.8 4.3	<1.0 <1.0	<1.0 <1.0	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.50 <0.50	<0.10 <0.10	<1.0 <1.0	<1.0 <1.0	<0.10	4.6	<1.0 <1.0	<1.0 <1.0
MW-11	05/10/2018	35.9	53.3	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<1.0	<1.0	<1.0	145	1.2	<1.0
	8/15/2018	50	78.9	<1.0 <1.0	<1.0	<0.10 <0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<1.0 <1.0	<1.0	<1.0 <1.0	241	3.3	<1.0
	11/29/2018	54.2	79	<1.0	<1.1	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.53	<0.10	<1.0	1.4	<1.0	212	2.6	<1.0
(Blind Duplicate)	11/29/2018	57.9	85.2	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<1.0	1.6	<1.0	225	2.9	<1.0
(2/13/2019	488	788	<10.0	<10.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<1.0	<10.0	16.0	<1.0	742	36.1	<10.0
	4/4/2019	14.2	15.8	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<1.0	<1.0	<0.10	26.4	<1.0	<1.0
(Blind Duplicate)	4/4/2019	38.3	42.7	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<1.0	<1.0	<0.10	158	<1.0	<1.0
MW-12	05/10/2018	53.3	78.8	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<0.50	<5.0	<1.0	<0.50	181	<1.0	<1.0
	8/15/2018	28.3	43.5	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<0.50	<5.0	<1.0	<0.50	83.3	<1.0	<1.0
	11/28/2018	69.7	96.9	1.2	<1.2	<0.12	<0.12	<0.50	<0.50	<0.50	<0.50	<0.59	<0.50	<5.0	1.7	<0.50	97.2	2	<1.0
	2/13/2019	1,170	1,740	16.1	<5.0	<0.50	2.3	<0.50	<0.50	<0.50	<0.50	3.8	<0.50	<5.0	24.0	<0.50	1,210	52.6	5.9
	4/4/2019	<1.0	<1.0	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<1.0	<1.0	<0.10	<1.0	<1.0	<1.0
MW-13	05/10/2018	63.4	109	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<1.0	1	<0.10	322	1.2	<1.0
	8/15/2018	37	64.9	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.50	<0.10	<1.0	<1.0	<0.10	233	<1.0	<1.0
	11/28/2018	55.4	90.3	<1.0	<1.0	< 0.10	<0.10	< 0.10	< 0.10	<0.10	<0.10	< 0.50	<0.10	<1.0	<1.0	<0.10	294	1.4	<1.0
	2/13/2019	28.7	43.0	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	< 0.50	<0.10	<1.0	<1.0	<0.10	210	<1.0	<1.0
	4/4/2019	17.5	15.7	<1.0	<1.0	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.50	<0.10	<1.0	<1.0	<0.10	19.0	<1.0	<1.0


							Prince	ton, india	na 47670	Detected F	PAHs (ppb)							
Sample ID	Date Sampled	1-Methylnaphthalene	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pvrene
IDEM Screening Gr Residentia		11	36	530	NE	1,800	0.3	0.2	2.5	NE	25	250	0.25	800	290	2.5	1.7	NE	12
IDEM Screening Va Groundwater Res	idential 2019	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	110	NE	NE
IDEM Screening Va roundwater Commer	· ·	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	460	NE	N
MW-14	05/09/2018 8/14/2018 11/28/2018 2/13/2019	9.5 <1.0 <1.0 <1.0	6.8 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0	<0.10 <0.10 <0.10 <0.10	<0.10 <0.10 <0.10 <0.10	<0.10 <0.10 <0.10 <0.10	<0.10 <0.10 <0.10 <0.10	<0.10 <0.10 <0.10 <0.10	<0.10 <0.10 <0.10 <0.10	<0.50 <0.50 <0.50 <0.50	<0.10 <0.10 <0.10 <0.10	<1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0	<0.10 <0.10 <0.10 <0.10	8.6 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0	<1 <1 <1 <1
MW-15	4/4/2019 05/10/2018	<1.0 12.5	<1.0 22.8	<1.0 <1.0	<1.0 <1.0	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.50 <0.50	<0.10 <0.10	<1.0 <1.0	<1.0 <1.0	<0.10 <0.10	<1.0 119	<1.0 <1.0	<1 <1
(Blind Duplicate)	8/15/2018 8/15/2018 11/28/2018 2/14/2019 4/4/2019	10.3 12 13.7 25.3 13.8	16 17.8 19.9 40.0 20.5	<1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0	<0.10 <0.10 <0.10 <0.10 <0.10	<0.10 <0.10 <0.10 <0.10 <0.10	<0.10 <0.10 <0.10 <0.10 <0.10	<0.10 <0.10 <0.10 <0.10 <0.10	<0.10 <0.10 <0.10 0.15 <0.10	<0.10 <0.10 <0.10 <0.10 <0.10	<0.50 <0.50 <0.50 <0.50 <0.50	<0.10 <0.10 <0.10 0.17 <0.10	<1.0 <1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0 <1.0	<0.10 <0.10 <0.10 0.12 <0.10	74 78.1 87.5 140 55.8	<1.0 <1.0 <1.0 <1.0 <1.0	<1 <1 <1 <1 <1
MW-16	05/10/2018 8/15/2018 11/28/2018 2/14/2019	31.4 28.4 72.2 47.5	567 54.9 121 80.4	2.2 <1.0 <1.1 <1.0	1.6 <1.0 <1.1 <1.0	0.73 <0.10 <0.11 <0.11	0.39 <0.10 <0.11 <0.10	<0.10 <0.10 <0.10 <0.10 <0.10	<0.10 <0.10 <0.10 <0.10 <0.10	<0.10 <0.10 <0.10 <0.10 <0.10	<0.10 <0.10 <0.10 <0.10 <0.10	0.55 <0.50 <0.56 <0.50	<0.10 <0.10 <0.10 <0.10 <0.10	<1.0 <1.0 <1.0 <1.0 <1.0	3.7 <1.0 <1.1 <1.0	<0.10 <0.10 <0.10 <0.10 <0.10	758 136 244 143	6.4 <1.0 <1.1 <1.0	<1 <1 <1 <1 <1
(Blind Duplicate)	2/14/2019 4/4/2019	77.8 150	109 235	<1.0 <1.0	<1.0 <1.0	<0.10 <0.10	<0.10 0.16	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.10 <0.10	<0.50 <0.50	<0.10 <0.10	<1.0 <1.0	<1.0 1.5	<0.10 <0.10	200 373	1.2 2.6	<1 <1
MW-17	11/29/2018 2/13/2019 4/3/2019	3.2 330 21.4	5 555 34.7	<1.0 3.2 <1.0	<1.0 <1.0 <1.0	<0.10 <0.10 <0.10	<0.10 0.57 <0.10	<0.10 <0.10 <0.10	<0.10 <0.10 <0.10	<0.10 <0.10 <0.10	<0.10 <0.10 <0.10	<0.50 0.64 <0.50	<0.10 <0.10 <0.10	<1.0 <1.0 <1.0	<1.0 4.6 <1.0	<0.10 <0.10 <0.10	17.5 665 91.8	<1.0 10.2 <1.0	<1 1. <1
MW-18	11/27/2018 2/12/2019 4/3/2019	58.5 1,080 293	92.5 1,910 488	<1.0 <20.0 2.6	<1.0 <20.0 <1.0	<0.10 <0.10 <2.0 <0.10	<0.10 <0.10 <2.0 0.23	<0.10 <0.10 <2.0 <0.10	<0.10 <0.10 <2.0 0.10	<0.10 <0.10 <2.0 <0.10	<0.10 <0.10 <2.0 <0.10	<0.50 <0.50 <10.0 <0.50	<0.10 <0.10 <2.0 <0.10	<20.0 <20.0 <1.0	<1.0 <20.0 4.0	<0.10 <0.10 <2.0 <0.10	267 1,890 629	1.2 25.2 6.7	<1 <2 <'
MW-19	11/29/2018 2/13/2019 4/3/2019	<1.0 <1.0 <1.0	<1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0	<0.10 <0.10 <0.10 <0.10	<0.10 <0.10 <0.10 <0.10	<0.10 <0.10 <0.10 <0.10	<0.10 <0.10 <0.10 <0.10	<0.10 <0.10 <0.10 <0.10	<0.10 <0.10 <0.10 <0.10	<0.50 <0.50 <0.50 <0.50	<0.10 <0.10 <0.10 <0.10	<1.0 <1.0 <1.0	<1.0 <1.0 <1.0 <1.0	<1.0 <0.10 <0.10	<1.0 <1.0 2.7	<1.0 <1.0 <1.0	< < <


 Concentrations above their respective Remediation Closure Guide (RCG) Residential Tap (Direct Contact) Screening Levels (updated in March 2019).
 Concentrations above their respective Remediation Closure Guide (RCG) Residential Vapor Exposure Screening Levels (updated in March 2019).
 Concentrations above their respective Remediation Closure Guide (RCG) Commercial Vapor Exposure Screening Levels (updated in March 2019).
 Concentrations above their respective Remediation Closure Guide (RCG) Commercial Vapor Exposure Screening Levels (updated in March 2019). BOLD BOLD BOLD


Figures

- Vicinity Map Site Plan


- Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Potentiometric Surface Map Soil Analytical Map Groundwater Analytical Map

Appendix A

Soil Boring Logs

		Development C							
PROJECT NAME PROJECT LOCATIC		bad 350 South							
		Indiana 47670							
	· · · · · ·								TEST DATA
Data Otartad	10/25/16			roho	[
Date Started Date Completed	10/25/16	Boring Method _ Sampler OD	Geop	2.0					
Drill Foreman	Z. Vaughn	· -	. Jenn		-			ors	
_		·		- -	_			Total Photoionizable Vapors (ppm)	Sampling Notes
	SOIL CLASSIFICA	TION	E			Recovery (ft)	dwater	hotoion	
	SURFACE ELEVA	TION	Stratum Depth	Depth Scale	Sample No.	Recove	Groundwater	Total F (ppm)	
CONCRETE			/ 0.5	-	1			0.0	
Light brown, c	dry SILTY CLAY (CL	_)			2	4.6		0.0	
				- - 5 —	3	4.0		0.0	
				-	4	-		0.0	
- very moist b	elow 15 ft				5	5.0		0.0	
				10 -	6	-		0.0	
				-	7	5.0		0.0	
				- - 15 —	8	0.0		0.0	
- sandy clay b	pelow 15 ft			-	9	-		0.0	The soil samples collected from 0-2 ft and 23-24 ft intervals were submitted from laboratory analysis.
					10	5.0		0.0	
				20 -	11			0.0	
			23.0	-	12	5.0		917	
	et, fine to medium Sa between 24-25 ft	AND (SW)		25 -	13	-	¥	850	Olive green staining and hydrocarbon odor between 23-24 ft and 25-30 ft.
- • • • • - • • • • - • • • •				25 -	14	-		806	
					15	3.0		170	
Bottom of Bor	ring at 30 ft		30.0	30 —					
	-								
									Drillers License No. 2581
TPV - Total Photo-	Ionization Vapors			oth to C					HSA - Hollow Stem Augers
TFV - Total Flame- PPM - Parts Per Mi ND - None Detect PVC - Polyvinyl Ch NA - Not Analyzed	Ionization Vapors Ilion ted Ioride	<u>⊻</u> _	Noted or At Comp After Cave De	oletion 		hole		<u>3.0</u> ft. <u>3.8</u> ft. <u></u> ft. <u></u> ft.	CFA - Continuous Flight Auge HA - Hand Auger BLR - Bailer BP - Bladder Pump PP - Peristaltic Pump
IND - INUL ALIALYZE	u	-				-			SP - Submersible Pump Page 1 of 1

CLIENT PROJECT NAME		Development C J Refinerv						ndiana	
PROJECT LOCATIO		oad 350 South							002 #
	-	Indiana 47670							
	DRILLING and S	AMPLING INFORM	ATION						TEST DATA
Date Started	10/25/16	Boring Method	Geop	robe					
Date Completed	10/25/16		0.000	2.0					
Drill Foreman		Inspector R	. Jenn		-			oors	
								Photoionizable Vapors	Sampling Notes
	SOIL CLASSIFICA	TION	<u> </u>		ole	Recovery (ft)	Groundwater	Photoic	
	SURFACE ELEVA		Stratum Depth	Depth Scale	Sample No.	Reco	Grou	Total I (ppm)	
			0.5		1			1.0	
Light brown, c	ry SILTY CLAY (CL	_)		-					
-				-	-				
				-	2	-		0.4	
				_]	4.8		0.4	
				_					
				-	3	-			
				-	3			0.3	
- light green s	andy clay below 5.0) ft		5 -	-				The soil samples collected from 0-2 ft and 8-10 ft
				-					intervals were submitted from laboratory analysis.
				-	4			7.0	
				-	-				Light green/black staining and hydrocarbon odor
					-	5.0			between 5-10 ft.
				-	5			10.0	
				-				10.0	
				-	-				
Bottom of Bor	ing at 10 ft		10.0	10 -					
									Drillers License No. 2581
TPV - Total Photo-		•	<u>De</u> Noted or	<u>pth to (</u> n Drillir			<u>er</u>	 ft.	HSA - Hollow Stem Augers CFA - Continuous Flight Aug
TFV - Total Flame- PPM- Parts Per Mi	llion	Σ,	At Comp	oletion	(open	hole)	ft.	HA - Hand Auger BLR - Bailer
ND - None Detect PVC - Polyvinyl Ch	loride		After Cave De		hour	s -		ft. ft.	BP - Bladder Pump
NA - Not Analyze	d	194 V	Cave De	μιι		-		II.	PP - Peristaltic Pump SP - Submersible Pump
									Page 1 of 1

	Economic Development CT NAME Former RJ Refinery		n of Sol					3-3 70SWIN05P
	CT LOCATION County Road 350 South							
	Princeton, Indiana 4767	0						
	DRILLING and SAMPLING INFOR	RMATION					TEST DATA	N
Date	Started 10/25/16 Boring Method	d Geop	robe					
	Completed 10/25/16 Sampler OD		2.0 in					
Drill	Foreman <u>Z. Vaughn</u> Inspector	R. Jenn	ings			pors		
						Total Photoionizable Vapors (ppm)	Samplin	g Notes
	SOIL CLASSIFICATION	ε	<u>o</u>	No. IL Recovery (ft)	Groundwater	Photoior		
	SURFACE ELEVATION	Stratum Depth	Depth Scale Sample	No. Recov	Groun			
⁄///└	OPSOIL with trace concrete		= 1			0.0		
Ľ	ight brown, dry SILTY CLAY (CL)			4.1		0.0		
				_		0.0		
				_		0.0		
// -	very moist below 7.0 ft			50				
	and day below 0.5 ft			5		0.0		
-	sandy clay below 9.5 ft			;		0.0		
				, 5.0		0.0		
			15 - 8	_		0.0		
)		0.0		
				4.6		0.0	The soil samples collected	l from 0-2 ft and 24-25 ft
			20 -			1.2	intervals were submitted fr	om laboratory analysis.
				1				
	ight gray, moist, fine to medium SAND (SW)	23.0	1	² 5.0		1.5		
			25 - 1	3		730	Light olive green staining a between 24-35 ft.	and hydrocarbon odor
		27.0	= 1	4		237	Detween 24-55 It.	
Ľ	ight brown, very moist SANDY CLAY (CL)			5 5.0		95.1		
// -	wet at 29.7 ft		30 - 1	_	Ē	650		
				_		91.0		
				7 5.0				
	Bottom of Boring at 35 ft	35.0	35 - 1	8		75.0		
FV - PPM- ND - PVC-	Parts Per Million None Detected	Noted or	oletion (op ho	ools en hole	2	9.7 ft. 9.7 ft. ft. ft. ft.	CFA HA	 A - Hollow Stem Augers A - Continuous Flight Aug - Hand Auger - Bailer - Bladder Pump - Peristaltic Pump - Submersible Pump

J	Economic Development C ECT NAME Former RJ Refinery FOTH CONTION County Road 250 South							
J	ECT LOCATION County Road 350 South Princeton, Indiana 47670							
	DRILLING and SAMPLING INFORM			[TEST DATA
	te Started 10/25/16 Boring Method _ te Completed 10/25/16 Sampler OD	Geop	2.0	- in				
	Il Foreman <u>Z. Vaughn</u> Inspector F	R. Jenn		-			ors	
				_		2	Total Photoionizable Vapors (ppm)	Sampling Notes
	SOIL CLASSIFICATION	E		Ð	ery (ft)	dwate	Photoic	
	SURFACE ELEVATION	Stratum Depth	Depth Scale	Sample No.	Recovery (ft)	Groundwater	Total F (ppm)	
	TOPSOIL with trace wood fragments	0.5	-	1			0.0	
	Light brown, dry SANDY CLAY (CL)		-	2	3.4		0.5	
			5 -	3	0.4		0.5	
				4	-		0.0	
				5	4.7		0.0	
			10 -	6	-		0.0	
	- moist silty clay between 10.5-22 ft			7	-		0.0	
				8	2.3		0.0	
			15 -	9			0.0	
				10	4.2		0.0	The soil samples collected from 0-2 ft and 28-30 f
			20 -	11			0.0	intervals were submitted from laboratory analysis.
	- very moist below 22 ft			12	47		0.0	
			25 -	13	4.7		0.0	
				14	-		0.0	
				15	4.8	¥	0.0	
	- wet at 29.9 ft		30 -	16		۰	0.0	
				17			0.0	
		35.0		18	5.0		0.0	
	Bottom of Boring at 35 ft		35 —		1			
								Drillers License No. 2581
V PM O /C	A - Parts Per Million - None Detected ■ Detected ■ Detected	De Noted of At Comp After Cave De	oletion 	ng Too (open	ols hole	_2	9.9 ft. 8.4 ft. ft. ft.	HSA - Hollow Stem Augers CFA - Continuous Flight Au HA - Hand Auger BLR - Bailer BP - Bladder Pump PP - Peristaltic Pump SP - Submersible Pump

CLIENT PROJECT NAME		<u>: Development C</u> J Refinery						ndiana	
PROJECT LOCATIC		-							
	Princeton	, Indiana 47670							
	DRILLING and S	AMPLING INFORM	ATION						TEST DATA
Date Started	10/25/16	Boring Method	Geop	robe					
Date Completed	10/25/16			2.0	_ in.				
Drill Foreman	Z. Vaughn	Inspector R	. Jenn	ings	_			tpors	
								Photoionizable Vapors	Sampling Notes
	SOIL CLASSIFICA	ATION	<u> </u>	5 0	ole	Recovery (ft)	Groundwater	Photoio)	
	SURFACE ELEVA	ATION	Stratum Depth	Depth Scale	Sample No.	Reco	Grou	Total I (ppm)	
			0.5		1			0.7	
Light brown, o	dry, crumbly CLAY ((CL)							
-				-	-				
				-	2	-		0.3	
]	5.0		0.0	
-				-	-				
-				-	3			0.0	
				5				0.0	
- olive green t	to black, very moist	silty clay							The soil samples collected from 0-2 ft and 8-10 ft intervals were submitted from laboratory analysis.
-				-	4	-			
				-				2.5	
				-					Light olive green/black staining and hydrocarbon
				-		5.0			odor between 5-10 ft.
-				-	5			24.5	
-				-	-				
			10.0	10 -					
Bottom of Bor	ring at 10 ft			10 -					
									Drillers License No. 2581
TPV - Total Photo-				oth to (er		HSA - Hollow Stem Augers
TFV - Total Flame PPM- Parts Per Mi	-Ionization Vapors		Noted or At Comp)	ft. ft.	CFA - Continuous Flight Aug HA - Hand Auger
ND - None Detect PVC - Polyvinyl Ch	ted	¥.	After					ft.	BLR - Bailer BP - Bladder Pump
NA - Not Analyze		題	Cave De	pth		-		ft.	PP - Peristaltic Pump SP - Submersible Pump
									Page 1 of 1

ENT Economic Developm DJECT NAME Former RJ Refinery							
DJECT NAME Former RJ Refinery DJECT LOCATION County Road 350 S						JOB #	1703000056
Princeton, Indiana 4							
DRILLING and SAMPLING I						TEST	νατα
		roho					
Date Started 10/25/16 Boring M Date Completed 10/25/16 Sampler	/lethod <u>Geop</u>	2.0 i	n				
	or R. Jenn				ors		
		- -			Photoionizable Vapors		
					lizabl	San	npling Notes
			Ē	ater	otoior		
SOIL CLASSIFICATION	Stratum	tt e e	No. Recovery (ft)	Groundwater	al Pho n)		
SURFACE ELEVATION		Depth Scale	No. Recover	Gro	Total I (ppm)		
			1		0.0		
Light brown, dry, crumbly CLAY (CL)			2 4.2		0.0		
		5 -	3		0.0		
			4		0.0		
- very moist silty clay below 7.0 ft			5 5.0		0.0		
			6		0.0		
- light gray, moist sandy clay below 12 ft			7 4.8		0.0		
		15 -	8		0.0		
- dark gray and very moist below 16 ft			9		0.0		
			4.0		0.0	The soil samples coll	ected from 0-2 ft and 32-34 f ted from laboratory analysis.
		20 -	11		0.0		teo nom laboratory analysis.
					0.0		
			12 5.0				
		25 -	13		0.0		
			14		0.0		
			15 5.0	₽	0.0		
		30 -	16		0.0		
			17 5 0	•	0.0		
- wet at 33 ft	35.0		5.0	*	0.0		
Bottom of Boring at 35 ft	33.0	35 —	18		0.0		
						Drillers License No. 2	2581
PV - Total Photo-Ionization Vapors		pth to Gro				T DIMEIS LICENSE INU. 2	HSA - Hollow Stem Augers
FV - Total Flame-Ionization Vapors PM - Parts Per Million	● Noted o				<u>3.0</u> ft. 9.4 ft.		CFA - Continuous Flight Au HA - Hand Auger
C - Polyvinyl Chloride	▼ After _	h		,_ _	ft.		BLR - Bailer BP - Bladder Pump
A - Not Analyzed	盧 Cave De	epth			ft.		PP - Peristaltic Pump SP - Submersible Pump

	T Economic Development Co ECT NAME Former RJ Refinery									
JE	ECT LOCATION County Road 350 South									
	Princeton, Indiana 47670									
	DRILLING and SAMPLING INFORMA	TION		[TEST DATA		
	e Started 10/26/16 Boring Method	Geopi		-						
	e Completed 10/26/16 Sampler OD I Foreman Z. Vaughn Inspector R.	Jenn	2.0 ings	-			ors			
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		UCIIII	ings	-			e Vapo			
							izable	Sampling Notes		
	SOIL CLASSIFICATION				(ft)	ater	Photoionizable Vapors			
		Stratum Depth	ale a	Sample No.	Recovery (ft)	Groundwater	al Pho m)			
71	SURFACE ELEVATION	Str	Depth Scale		Rec	Grc	O (ppm)			
	Light brown, dry CLAYEY SAND (SC)	2.0	-	1						
	Light brown, dry SANDY CLAY (CL)		-	2	4.6		0.0			
			5 -	3			0.0			
			-	4			0.0			
			-	5	5.0		0.0			
			10 -	6	-		0.0			
	- light gray, moist silty clay below 11 ft		-	7			0.0			
			-	8	3.8		0.0			
			15 -	9	-		0.2			
	- light brown below 17 ft				4.1		0.2	The soil samples collected from 0-2 ft and 26-28 f		
			20 -	10			-	intervals were submitted from laboratory analysis.		
			-	11			0.0			
				12	5.0		0.0			
			25 -	13			0.0			
		28.0	-	14]		0.0			
	Light brown, wet, fine to medium SAND (SW) with interbedded sandy clay		-	15	5.0	•	0.0			
	menocuted sandy day		30 -	16			0.0			
•				17	5.0		0.0			
	Light gray, moist SILTY CLAY (CL)	34.0 35.0	35 -	18	0.0		0.0			
	Bottom of Boring at 35 ft		55							
					<u> </u>			Drillers License No. 2581		
V PM D /C	- Parts Per Million - None Detected ■ A A A A A A A A A A A A A A A A A A A	<u>De</u> loted or at Comp ater ave De	letion 	ig Too (open	ols hole	2	8.0 ft. ft. ft. ft.	HSA - Hollow Stem Augers CFA - Continuous Flight Au HA - Hand Auger BLR - Bailer BP - Bladder Pump PP - Peristaltic Pump		

		<u>c Development C</u>							
		J Refinery							JOB # 170SWIN05P
ROJECT LOCATIO		oad 350 South							
		n, Indiana 47670							
		SAMPLING INFORM		_	[TEST DATA
Date Started	10/25/16	_ Boring Method _	Geopi						
Date Completed	<u>10/25/16</u>	_ Sampler OD _	lonn	2.0	-			ors	
Drill Foreman	Z. vaugnn	_ Inspector	. Jenn	Jennings				Photoionizable Vapors	
							Groundwater	zable	Sampling Notes
						(ft)		oioniz	
	SOIL CLASSIFIC	ATION	_ Ę _	5 0	ole	Recovery (ft)		Phot	
	SURFACE ELEV	ATION	Stratum Depth	Depth Scale	Sample No.	Reco	Grou	Total I (ppm)	
CONCRETE a	and debris				1			69.0	
				-	-				
			2.0	-	-				
Olive green, m	noist SILTY CLAY	(CL)	2.0	-	2			37.0	
				-		3.2			
				-	-				
				-	3			400	
				-				420	
				5 -]				The soil samples collected from 0-2 ft and 4-6 ft intervals were submitted from laboratory analysis.
				-		-			intervals were submitted normaboratory analysis.
				-	4			250	
				-	1				Olive green/black staining and hydrocarbon odor
					1	4.1			between 2-10 ft.
				-	5			180	
				-	-				
			10.0	-	1				
Bottom of Bor	ing at 10 ft			10 -		1			
									Drillers License No. 2581
TPV - Total Photo-I	Ionization Vanore			oth to (er	1	HSA - Hollow Stem Augers
TFV - Total Flame- PPM- Parts Per Mil	Ionization Vapors		Noted or At Comp)	ft. ft.	CFA - Continuous Flight Au HA - Hand Auger
ND - None Detect	ed	T .	After				/	ft.	BLR - Bailer BP - Bladder Pump
PVC - Polyvinyl Chl NA - Not Analyzed		题	Cave De	pth		-		 ft.	PP - Peristaltic Pump
									SP - Submersible Pump Page 1 of 1

ROJECT NAME		<u>: Development C</u> I Befinery		BORING # B-9 JOB # 170SWIN05P													
ROJECT NAME		oad 350 South															
	-	, Indiana 47670															
									TEST DATA								
Date Started	10/25/16	_ Boring Method _		rohe	[
Date Completed		Sampler OD		2.0													
Drill Foreman		Inspector R	R. Jennings														
								le Va	O a service a Niete a								
								nizab	Sampling Notes								
	SOIL CLASSIFIC	ATION	_			ery (ft)	dwater	Photoionizable Vapors									
	SURFACE ELEVA	ATION	Stratum Depth	Depth Scale	Sample No.	Recovery (ft)	Groundwater	Total P (ppm)									
	and debris		57 1	00	1			34.0									
				-				54.0									
Olive green in	Olive green, moist SILTY CLAY (CL)			moist SILTY CLAY (CL)			en, moist SILTY CLAY (CL)		moist SILTY CLAY (CL)		1.5	-	-				
give give i, i		(=)		-	2			196									
						4.5											
					-												
				-	3			177									
				5 -]												
					-				The soil samples collected from 0-2 ft and 6-8 ft intervals were submitted from laboratory analysis.								
				-	4	-		340									
	-l70#			-	-												
- very moist b	elow 7.0 It			_	-	3.0			Olive green staining and hydrocarbon odor betwee 2-10 ft.								
					5			144									
				-	-												
			10.0	-	-												
Bottom of Bor	ring at 10 ft			10 -													
				oth to (dwat			Drillers License No. 2581								
TPV - Total Photo- TFV - Total Flame-			Noted or	n Drillir	ng Too	ols		 ft.	HSA - Hollow Stem Augers CFA - Continuous Flight Au								
PPM - Parts Per Mi ND - None Detect	PM- Parts Per Million D - None Detected ▼				(open hour)	ft. ft.	HA - Hand Auger BLR - Bailer								
	/C - Polyvinyl Chloride					 -		ft.	BP - Bladder Pump PP - Peristaltic Pump								
, -									SP - Submersible Pump Page 1 of 1								

OUECT NAME Former RJ Refinery JOB # 1/05 WINDSP OCUMENT Read 350 South Princeton, Indiana 47670 TEST DATA Date Started 1025/16 Boring Method Geograde Date Completed Sampler OD 2.0 n. Date Started 1025/16 Boring Method Geograde TEST DATA Date Completed Sampler OD 2.0 n. Test DATA Date Started 1025/16 Boring Method Geograde Test DATA Date Completed Sampler OD 2.0 n. Test DATA Date Completed Sampler OD 2.0 n. Test DATA SuperAcce ELEVATION Set B G g g g g g g g g g g g g g g g g g g	CLIENT PROJECT NAME		<u>: Development C</u> J Refinery													
TEST DATA DRILLING and SAMPLING INFORMATION TEST DATA Data Completed 10/25/16			-													
Date Started 10/25/16 Sampler OD 2.0 in. Drill Foreman Z. Vaughn Inspector R. Jennings inspector Sampler OD Diff Foreman Z. Vaughn Inspector R. Jennings inspector Sampling Notes SUBFACE ELEVATION Inspector Inspector Inspector Inspector Inspector Upth trown, dry, flaky SANDY CLAY (CL) 0.5 1 Inspector Inspector Inspector - very moist sity clay below 5.0 ft 0 1 Inspector Inspector Inspector Inspector Implementation of Boring at 10 ft 10.0 10 Inspector Inspector Inspector Inspector Inspector PV - Total Ploto-Ionization Vapors TYP - Total Flore-Ionization Vapors TYP - Tota		Princeton	, Indiana 47670													
Date Completed 10/25/16 Sampler OD 2.0 in. offer of the second s		DRILLING and S	AMPLING INFORM	ATION						TEST DATA						
Date Completed 10/25/16 Sampler OD 2.0 in. Drill Foreman Z. Vaugin Inspector R. Jennings SOIL CLASSIFICATION 9 6 9	Date Started	10/25/16	Boring Method	Geop	robe											
TOPSOIL 0.5 1 1.5 Light brown, dry, flaky SANDY CLAY (CL) 0.5 1 1.5 - very moist silty clay below 5.0 ft 0 5 4 7.0 - very moist silty clay below 5.0 ft 5 4 718 183 Bottom of Boring at 10 ft 10.0 10 10 607 Olive green staining and hydrocarbon odor between 5-10 ft. TPV - Total Photo-konization Vapors PPM - Pais Per Million Vapors PPM - Pais Per Million Vapors PMM - Pais Per Million Vapors PMC - Rolyvinyl Chordre Depth to Groundwater - ft. HSA - Hollow Stem Augers - ft. Y - Nora Period Y Atter hours ft. Baller - Baller PMC - Rolyvinyl Chordre Baller - Baller PMC - Rolyvinyl Chordre Baller - Baller PMC - Rolyvinyl Chordre	Date Completed	10/25/16				_ in.										
TOPSOIL 0.5 1 1.5 Light brown, dry, flaky SANDY CLAY (CL) 0.5 1 1.5 - very moist silty clay below 5.0 ft 0 5 4 7.0 - very moist silty clay below 5.0 ft 5 4 718 183 Bottom of Boring at 10 ft 10.0 10 10 607 Olive green staining and hydrocarbon odor between 5-10 ft. TPV - Total Photo-konization Vapors PPM - Pais Per Million Vapors PPM - Pais Per Million Vapors PMM - Pais Per Million Vapors PMC - Rolyvinyl Chordre Depth to Groundwater - ft. HSA - Hollow Stem Augers - ft. Y - Nora Period Y Atter hours ft. Baller - Baller PMC - Rolyvinyl Chordre Baller - Baller PMC - Rolyvinyl Chordre Baller - Baller PMC - Rolyvinyl Chordre	Drill Foreman	Z. Vaughn	Inspector R	. Jenn	ennings		tpors									
TOPSOIL 0.5 1 1.5 Light brown, dry, flaky SANDY CLAY (CL) 0.5 1 1.5 - very moist silty clay below 5.0 ft 0 5 4 7.0 - very moist silty clay below 5.0 ft 5 4 718 183 Bottom of Boring at 10 ft 10.0 10 10 607 Olive green staining and hydrocarbon odor between 5-10 ft. TPV - Total Photo-konization Vapors PPM - Pais Per Million Vapors PPM - Pais Per Million Vapors PMM - Pais Per Million Vapors PMC - Rolyvinyl Chordre Depth to Groundwater - ft. HSA - Hollow Stem Augers - ft. Y - Nora Period Y Atter hours ft. Baller - Baller PMC - Rolyvinyl Chordre Baller - Baller PMC - Rolyvinyl Chordre Baller - Baller PMC - Rolyvinyl Chordre									nizable Va	Sampling Notes						
TOPSOIL 0.5 1 1.5 Light brown, dry, flaky SANDY CLAY (CL) 0.5 1 1.5 - very moist silty clay below 5.0 ft 0 5 4 7.0 - very moist silty clay below 5.0 ft 5 4 718 183 Bottom of Boring at 10 ft 10.0 10 10 607 Olive green staining and hydrocarbon odor between 5-10 ft. TPV - Total Photo-konization Vapors PPM - Pais Per Million Vapors PPM - Pais Per Million Vapors PMM - Pais Per Million Vapors PMC - Rolyvinyl Chordre Depth to Groundwater - ft. HSA - Hollow Stem Augers - ft. Y - Nora Period Y Atter hours ft. Baller - Baller PMC - Rolyvinyl Chordre Baller - Baller PMC - Rolyvinyl Chordre Baller - Baller PMC - Rolyvinyl Chordre		SOIL CLASSIFICA	ATION	<u> </u>		ole	very (ft)	ndwater	Photoic)							
TOPSOIL 0.5 1 1.5 Light brown, dry, flaky SANDY CLAY (CL) 0.5 1 1.5 - very moist silty clay below 5.0 ft 0 5 4 7.0 - very moist silty clay below 5.0 ft 5 4 718 183 Bottom of Boring at 10 ft 10.0 10 10 607 Olive green staining and hydrocarbon odor between 5-10 ft. TPV - Total Photo-konization Vapors PPM - Pais Per Million Vapors PPM - Pais Per Million Vapors PMM - Pais Per Million Vapors PMC - Rolyvinyl Chordre Depth to Groundwater - ft. HSA - Hollow Stem Augers - ft. Y - Nora Period Y Atter hours ft. Baller - Baller PMC - Rolyvinyl Chordre Baller - Baller PMC - Rolyvinyl Chordre Baller - Baller PMC - Rolyvinyl Chordre		SURFACE ELEVA	ATION	Stratu Deptr	Dept! Scale	Sam No.	Reco	Grou	Total (ppm)							
Light brown, dry, flaky SANDY CLAY (CL) - very moist sity clay below 5.0 ft - very moist sity clay below 5.0 ft - very moist sity clay below 5.0 ft - 4 - 718 Olive green staining and hydrocarbon odor between 5-10 ft. Drillers License No. 2581 Drillers License No. 2581 - 718 - 71	TOPSOIL															
- very moist sity clay below 5.0 ft - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	Light brown, c	dry, flaky SANDY Cl	LAY (CL)		-				_							
- very moist sity clay below 5.0 ft - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	-				-	-										
- very moist slty clay below 5.0 ft - very mois	-				-	2	-		7.0							
- very moist sity clay below 5.0 ft - very moi]	3.9		7.0							
- very moist sity clay below 5.0 ft - very moi					-											
- very moist sity clay below 5.0 ft - very moi	-				-	3	-									
 very moist sity clay below 5.0 ft very moist sity clay below 5.0 ft very moist sity clay below 5.0 ft The soil samples collected from 0-2 ft and 8-10 ft The soil samples collected from 0-2 ft and 8-10 ft The soil samples collected from 0-2 ft and 8-10 ft The soil samples collected from 0-2 ft and 8-10 ft The soil samples collected from 0-2 ft and 8-10 ft The soil samples collected from 0-2 ft and 8-10 ft The soil samples collected from 0-2 ft and 8-10 ft The soil samples collected from 0-2 ft and 8-10 ft The soil samples collected from 0-2 ft and 8-10 ft The soil samples collected from 0-2 ft and 8-10 ft The soil samples collected from 0-2 ft and 8-10 ft The soil samples collected from 0-2 ft and 8-10 ft The soil samples collected from 0-2 ft and 8-10 ft The soil samples collected from 0-2 ft and 8-10 ft The soil samples collected from 0-2 ft and 8-10 ft The soil samples collected from 0-2 ft and 8-10 ft The soil samples collected from 0-2 ft The soil samples collected for the soil samples collected from 0-2 ft The soil samples collected for the soil samples collected for the soil samples collected from 0-2 ft The soil samples collected for the soil samples for the soil samples collected for the soil samples for the so	-				-	Ĩ			183							
Bottom of Boring at 10 ft 10.0 10	- very moist s	lty clay below 5.0 ft			5 -]				The soil samples collected from 0-2 ft and 8-10 ft						
Bottom of Boring at 10 ft 10.0 10							_			intervals were submitted from laboratory analysis.						
Bottom of Boring at 10 ft 10.0 10 4.3 607 5-10 ft. Bottom of Boring at 10 ft 10.0 10 607 5-10 ft. 5-10 ft. TPV - Total Photo-Ionization Vapors TFV - Total Flame-Ionization Vapors PPM Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed Depth to Groundwater MID - None Detected PVC - Polyvinyl Chloride HSA - Hollow Stem Augers HSA - Hollow Stem Augers Ft.	-											-	4			718
Bottom of Boring at 10 ft 10.0 10 4.3 607 5-10 ft. Bottom of Boring at 10 ft 10.0 10 607 5-10 ft. 5-10 ft. TPV - Total Photo-Ionization Vapors TFV - Total Flame-Ionization Vapors PPM Parts Per Million ND - None Detected PVC - Polyvinyl Chloride NA - Not Analyzed Depth to Groundwater MID - None Detected PVC - Polyvinyl Chloride HSA - Hollow Stem Augers HSA - Hollow Stem Augers Ft.	-				-					Olive green staining and hydrocarbon odor between						
Bottom of Boring at 10 ft 10.0 10						1	4.3									
Bottom of Boring at 10 ft I<					-	5			607							
Bottom of Boring at 10 ft I<					-	-										
Bottom of Boring at 10 ft I<	-				-	-										
TPV - Total Photo-Ionization Vapors Depth to Groundwater HSA - Hollow Stem Augers TFV - Total Photo-Ionization Vapors Noted on Drilling Tools ft. CFA - Continuous Flight Aug PPM - Parts Per Million Image: Cave Depth Image: Cave Depth ft. BLR - Bailer PVC - Polyvinyl Chloride Image: Cave Depth ft. PP - Peristatic Pump	Bottom of Bor	ring at 10 ft		10.0	10 -		-									
TPV - Total Photo-Ionization Vapors Depth to Groundwater HSA - Hollow Stem Augers TFV - Total Flame-Ionization Vapors Noted on Drilling Tools		3														
TPV - Total Photo-Ionization Vapors Depth to Groundwater HSA - Hollow Stem Augers TFV - Total Flame-Ionization Vapors Noted on Drilling Tools																
TPV - Total Photo-Ionization Vapors Depth to Groundwater HSA - Hollow Stem Augers TFV - Total Flame-Ionization Vapors Noted on Drilling Tools																
TPV - Total Photo-Ionization Vapors Depth to Groundwater HSA - Hollow Stem Augers TFV - Total Flame-Ionization Vapors Noted on Drilling Tools																
TPV - Total Photo-Ionization Vapors Depth to Groundwater HSA - Hollow Stem Augers TFV - Total Flame-Ionization Vapors Noted on Drilling Tools																
TPV - Total Photo-Ionization Vapors Depth to Groundwater HSA - Hollow Stem Augers TFV - Total Flame-Ionization Vapors Noted on Drilling Tools																
TPV - Total Photo-Ionization Vapors Depth to Groundwater HSA - Hollow Stem Augers TFV - Total Flame-Ionization Vapors Noted on Drilling Tools																
IFV - Total Flame-Ionization Vapors Noted on Drilling Tools ft. CFA - Continuous Flight Aug PPM- Parts Per Million V At Completion (open hole) ft. HAA - Hand Auger HAA - Hand Auger BLR - Bailer PVC - Polyvinyl Chloride VA - Not Analyzed Cave Depth ft. PPM - Peristaltic Pump Provide Analyzed Provid Analyzed Provide Analyzed																
PPM- Parts Per Million ✓ At Completion (open hole) ft. HA - Hand Auger ND - None Detected ✓ After hours ft. BLR - Bailer PVC - Polyvinyl Chloride ✓ After hours ft. BP - Bladder Pump NA - Not Analyzed ✓ Cave Depth ft. PP - Peristaltic Pump			•					<u>er</u>	ft.	CFA - Continuous Flight Aug						
VD Anter Image: Anter Image	PPM - Parts Per Mi	illion .	$\overline{\Delta}$	At Comp	oletion	(open	hole)	ft.	HA - Hand Auger						
	PVC - Polyvinyl Ch	loride				hour	ς.			BP - Bladder Pump						
Page 1 of 1	NA - Not Analyze	a	1991. 		· · · · ·		-			SP - Submersible Pump						

CLIENT PROJECT NAME		<u>: Development C</u> J Refinerv						ndiana	BORING # B-11 JOB # 170SWIN05P	
PROJECT LOCATIC		oad 350 South								
	Princeton	, Indiana 47670								
	DRILLING and S	AMPLING INFORMA	TION		-				TEST DATA	
Date Started	10/28/16	Boring Method	Geop	robe						
Date Completed	10/28/16	Sampler OD	-	2.0	in.					
Drill Foreman	Z. Vaughn	Inspector R	. Jenn	Jennings				thors		
								ble V	Sampling Notes	
[1		(£	Groundwater	I Photoionizable Vapors		
	SOIL CLASSIFICA	ATION	<u> </u>	5.0	ole	Recovery (ft)				
	SURFACE ELEVA	ATION	Stratum Depth	Depth Scale	Sample No.	Reco	Grou	Total I (ppm)		
r///```	dry CLAYEY SILT (I		0.3	-	1			2.9		
Gray/olive gre	een, moist SILTY CI	LAY (CL)		-						
				-	-					
					2			2.4		
				-	-	5.0				
				-						
				-	3			255		
				5 —	-				The soil samples collected from 0-2 ft and 8-10 ft	
				-	-				intervals were submitted from laboratory analysis. MS/MSD samples were collected from the 0-2 ft	
				-	4			248	and 8-10 ft intervals.	
				-	-					
						5.0				
				-	5			267		
				-	-					
			10.0	-	-					
Bottom of Bor	ring at 10 ft			10						
				oth to C					Drillers License No. 2581	
TPV - Total Photo- TFV - Total Flame-	-Ionization Vapors		Noted or	n Drillin	g To	ols		 ft.	HSA - Hollow Stem Augers CFA - Continuous Flight Au	
PPM - Parts Per Mi ND - None Detect	ted		At Comp After)	<u></u> ft. ft.	HA - Hand Auger BLR - Bailer	
PVC - Polyvinyl Ch NA - Not Analyze	loride d		Cave De			-		ft.	BP - Bladder Pump PP - Peristaltic Pump	
-									SP - Submersible Pump Page 1 of	

CLIENT PROJECT NAME		Development Co						ndiana	BORING # JOB #	
		ad 350 South							300 #	
	-	Indiana 47670								
	DRILLING and S	AMPLING INFORMA							TEST [ATA
Date Started	10/27/16	Boring Method	Geop	robe						
Date Completed	10/27/16	Sampler OD	•	2.0	in.					
Drill Foreman	Z. Vaughn	Inspector R	. Jenn	ings	_			pors		
								Photoionizable Vapors	Sampling Notes	
	SOIL CLASSIFICA	TION	Ε_	_	ele	Recovery (ft)	Groundwater	Photoi		
	SURFACE ELEVA	TION	Stratum Depth	Depth Scale	Sample No.	Recov	Grour	Total I (ppm)		
Light brown, o	dry CLAYEY SILT (N	/L)		-	1			5.5		
				-						
				-		-				
					2	4.0		4.1		
				-	-	4.0				
				-		-				
				-	3			214		
Black/olive gr	een, moist SILTY C	 LAY (CL)	. 5.0	5 -	-				The soil samples colle	ected from 0-2 ft and 4-6 ft
				-		-			intervals were submit	ed from laboratory analysis.
-				-	4			44.6		
				-						
-				-		4.7				
-				-	5			133		
				-						
Dettern of Dev	ing at 10 ft		10.0	10 -		-				
Bottom of Bor	ing at 10 ft									
									Drillers License No. 2	581
TPV - Total Photo-			Depth to Groundwater						•	HSA - Hollow Stem Augers
TFV - Total Flame PPM- Parts Per Mi	llion		Noted or At Comp)	ft. ft.		CFA - Continuous Flight Auge HA - Hand Auger
ND - None Detect PVC - Polyvinyl Ch	loride	▼ A	After Cave De					ft.		BLR - Bailer BP - Bladder Pump
NA - Not Analyze		ι. Έ	Jave De	γui		-		II.		PP - Peristaltic Pump SP - Submersible Pump Page 1 of 1

		Development Co				B-13 170SWIN05P				
PROJECT NAME PROJECT LOCATIC		D Refinery Dad 350 South							JOB #	1/03//11/03
PROJECT LOCATIC		, Indiana 47670								
									TEST D	ΔΤΔ
Data Ctartad	11/1/16			raha						
Date Started Date Completed	11/1/16	Boring Method Sampler OD	Geopi	2.0						
Drill Foreman	Z. Vaughn		. Jenn		-			ors		
	-				_		-	Photoionizable Vapors	Sam	oling Notes
	SOIL CLASSIFIC	ATION	Ę	5.0	ole	Recovery (ft)	Groundwater	Photoi		
	SURFACE ELEVA	ATION	Stratum Depth	Depth Scale	Sample No.	Reco	Groui	Total I (ppm)		
- Gravel FILL				-	1			0.0		
				-						
			2.0	-		_				
Gray/olive gre	en, slightly moist S	ILTY CLAY (CL)			2	4.8		30.4		
-				-	-	4.0				
				-						
-				-	3			186		
-				5 -	-				The soil samples colle	cted from 0-2 ft and 4-6 ft
				-					intervals were submitte	ed from laboratory analysis.
-				-	4			44.3		
-				-	-					
- moist below	7.5 ft				1	4.7				
				-	5			15.2		
-				-	-					
-			10.0	-						
Bottom of Bor	ring at 10 ft			10 -						
									Drillers License No. 25	81
TPV - Total Photo-		_		oth to (er	#		HSA - Hollow Stem Augers
TFV - Total Flame PPM- Parts Per Mi	llion		Noted on Drilling Tools <u></u> ft. At Completion (open hole) <u></u> ft.							CFA - Continuous Flight Aug HA - Hand Auger
	VC - Polyvinyl Chloride					s _		<u></u> ft. ft.		BLR - Bailer BP - Bladder Pump
NA - Not Analyze		Red. (Jave De	γιι		-		<u> </u>		PP - Peristaltic Pump SP - Submersible Pump
										Page 1 of 1

	ROJECT NAME Former RJ Refinery								3-14 70SWIN05P	
PROJECT LOCATIC		oad 350 South								
	Princeton	, Indiana 47670								
	DRILLING and S	AMPLING INFORM	TION		ſ				TEST DAT	۹
Date Started	10/28/16	Boring Method	Geop	robe	_					
Date Completed	10/28/16	Sampler OD	_	2.0	_ in.					
Drill Foreman	Z. Vaughn	Inspector R	. Jenn	Jennings				tpors		
							<u>ب</u>	Total Photoionizable Vapors (ppm)	Sampling Notes	
	SOIL CLASSIFICA	ATION	E_	_	le	Recovery (ft)	Groundwater	Photoi		
	SURFACE ELEVA	ATION	Stratum Depth	Depth Scale	Sample No.	Reco	Groun	Total I (ppm)		
Light brown, c	dry CLAYEY SILT (I	ML)		-	1			0.0		
				-						
				-	2	-				
			3.0	-	1	5.0		0.0		
Black/olive gr	een, moist SILTY C	ELAY (CL)		-	-					
-				-	3	-		65.5		
				5 -				00.0		
-				-	-				The soil samples collected intervals were submitted f	d from 0-2 ft and 6-8 ft rom laboratory analysis.
				-	4			265		
-				-	-					
				-	1	5.0				
				-	5			160		
-				-	-					
-			10.0	- 10	1					
Bottom of Bo	ring at 10 ft			10 -						
									Drillers License No. 2581	
TPV - Total Photo-	Ionization Vapors			pth to (er	· · · · ·		A - Hollow Stem Augers
TFV - Total Flame PPM- Parts Per Mi	-Ionization Vapors		Noted or At Comp)	ft. ft.	HA	A - Continuous Flight Auge - Hand Auger
ND - None Detect PVC - Polyvinyl Ch	loride	Σ.	After		hour			ft.	BP	R - Bailer - Bladder Pump
NA - Not Analyze		μ <u>α</u> .	Cave De	pui		-		<u> </u>	PP SP	- Peristaltic Pump - Submersible Pump Page 1 of 1

CLIE PRO	NT JECT NAME		Development C		n of Sout				BORING # JOB #	B-15 170SWIN05P	
			oad 350 South						002 #		
			, Indiana 47670								
		DRILLING and S	AMPLING INFORM	ATION					TEST I	ОАТА	
Da	ate Started	10/31/16	Boring Method	Geop	robe						
	ate Completed	10/31/16	Sampler OD		2.0 in.						
Dr	rill Foreman	Z. Vaughn	Inspector	R. Jenn	ings			pors			
							-	Photoionizable Vapors)	San	npling Notes	
		SOIL CLASSIFICA	TION	Ę	L a lo	Recovery (ft)	Groundwater	l Photoi			
		SURFACE ELEVA		Stratum Depth	Depth Scale Sample No.	Reco	Groui	Total (ppm)			
	Light brown, d	ry CLAYEY SILT (N	۸L)	2.0	_ 1			0.0			
	Light brown/ol	ive green, moist SI	e green, moist SILTY CLAY (CL)			3.3		126			
						0.0		92.4			
					- 4			211			
					- 5	4.5		35.7			
					10 - 6			82.2			
					7	4.9		143			
					15 - 8			58.4			
					- 9			53.0	The soil samples colle intervals were submit	ected from 0-2 ft and 6-8 ft ted from laboratory analysis.	
					= 10	4.2		180			
					2011	_		42.1			
				24.0	12	5.0		39.2			
	Brown, wet, fir	ne to medium SANI	D (SW)	24.0	25 - 13		<u>.</u>	26.3			
	• • •				- 14	_		1.7			
	•				_ 15	5.0		2.3			
-	Bottom of Bor	ing at 30 ft		30.0	30						
		.									
									Drillers License No. 2	581	
TF\ PPI ND PV(ed loride	⊻ Į	Noted or	pth to Grour n Drilling Too bletion (oper hou epth	ols 1 hole)	2	5.0 ft. ft. ft. ft.		HSA - Hollow Stem Augers CFA - Continuous Flight Aug HA - Hand Auger BLR - Bailer BP - Bladder Pump PP - Peristaltic Pump SP - Submersible Pump Page 1 of 1	

ENT Economic Developm DJECT NAME Former RJ Refinery					ndiana				
DJECT LOCATION County Road 350 So							JOB #	1705111051	
Princeton, Indiana 4									
DRILLING and SAMPLING IN	FORMATION						TEST	DATA	
	ethod Geop	robe	[
Date Completed 10/28/16 Sampler	-	2.0	in.						
Drill Foreman <u>Z. Vaughn</u> Inspector	R. Jenn	ings	_			pors			
						ole Va		anling Noton	
						onizat	San	npling Notes	
SOIL CLASSIFICATION				ry (ft)	water	notoic			
SURFACE ELEVATION	Stratum Depth	Depth Scale	Sample No.	Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)			
Light brown, dry CLAYEY SILT (ML)	<u>ם מ</u>	ŏŏ	ທັž 1	Ĕ	Ō	은 요 0.0			
Black/olive green, moist SILTY CLAY (CL)	2.0		2			0.0			
Black/olive green, moist SILTY CLAY (CL)		-		4.0					
		5 -	3			61.3			
		_	4			57.8			
- black between 8-17 ft		-	5	4.0		60.2			
		10 -	6			359			
		-	7	5.0		167			
		15 -	8	0.0		1277			
			9			595			
- light brown below 17 ft		-	10	5.0		49.2	The soil samples coll	ected from 0-2 ft and 14-16 f	
		20 -				27.1	intervals were submit	ted from laboratory analysis.	
		-	11			10.2			
		-	12	3.5					
		25 -	13			143			
		-	14			7.7			
	30.0	-	15	4.3		0.0			
Light gray, wet, fine SAND (SW)	30.0	30 -	16		•	0.0			
• • • •		-	17	5.0		0.0			
• •	35.0	35 -	18	0.0		0.0			
Bottom of Boring at 35 ft									
							Drillers License No. 2	2581	
PV - Total Photo-Ionization Vapors FV - Total Flame-Ionization Vapors	De Noted o	<u>pth to (</u> n Drillir				0.0 ft.		HSA - Hollow Stem Augers CFA - Continuous Flight Au	
PM - Parts Per Million - None Detected	⊈ At Com	oletion	(open	hole		ft.		HA - Hand Auger BLR - Bailer	
/C - Polyvinyl Chloride A - Not Analyzed	T After I Cave De		hour	s _ _		<u></u> ft. ft.		BP - Bladder Pump PP - Peristaltic Pump	
								SP - Submersible Pump Page 1 of	

CLIENT PROJECT NAME		Development Co		n of S					BORING # B-17 JOB # 170SWIN05P	
		ad 350 South								
	-	Indiana 47670								
	DRILLING and S	AMPLING INFORMA	TION						TEST DATA	
Date Started	10/31/16	Boring Method	Geop	robe						
Date Completed	10/31/16	Sampler OD	<u></u>	2.0	- in.					
Drill Foreman	Z. Vaughn	Inspector R	Jenn	ings	_			pors		
								Photoionizable Vapors	Sampling Notes	
	SOIL CLASSIFICA	TION	Ę	5.0	ole	Recovery (ft)	Groundwater	Photoic		
	SURFACE ELEVA		Stratum Depth	Depth Scale	Sample No.	Reco	Groui	Total I (ppm)		
Light brown, c	Iry CLAYEY SILT (M	1L)		-	1			0.0		
-				-	2	4.7		0.0		
Light brown, c	hry SILTY CLAY (CL		4.0	-	3			0.0		
-				5	4			0.0	The soil samples collected from 0-2 ft and 8-10 ft intervals were submitted from laboratory analysis	
-				-	-	5.0				
-				-	5			0.0		
Bottom of Bor	ing at 10 ft		10.0	10						
									Drillers License No. 2581	
TPV - Total Photo- TFV - Total Flame- PPM- Parts Per Mi ND - None Detect PVC - Polyvinyl Ch NA - Not Analyzed	Ionization Vapors Ilion ed Ioride	⊻ µ ▼ A	<u>De</u> Noted or At Comp After Cave De	oletion 	ig Too	ols hole		ft. ft. ft. ft.	HSA - Hollow Stem Auger CFA - Continuous Flight A HA - Hand Auger BLR - Bailer BP - Bladder Pump PP - Peristaltic Pump SP - Submersible Pump Page 1 of	

CLIENT	-	Coalitio	n of Sout	thwe	st Ir	ndiana				
PROJECT NAME	-						JOB # 170SWIN05P			
PROJECT LOCATIO										
	Princeton, Indiana 47670)								
	DRILLING and SAMPLING INFOR	MATION		[TEST DATA			
Date Started	10/31/16 Boring Method	d Geop	robe							
Date Completed	10/31/16 Sampler OD		2.0 in.			S				
Drill Foreman	Z. Vaughn Inspector	R. Jenn	ings			apor				
						ble V	Sampling Notes			
						oniza				
	SOIL CLASSIFICATION	Stratum Depth		iry (ft)	watei	Photoionizable Vapors				
	SURFACE ELEVATION			Recovery (ft)	Groundwatei	Total PI (ppm)				
					Ū	년 <u>은</u> 0.3				
	Gravei/concrete debris (FILL) Light brown, dry CLAYEY SILT (ML)									
	Brown/gray, moist SILTY CLAY (CL)					2	4.3		0.0	
					5.0	5 3			0.0	
Biown/gray, II						32.5				
				5.8		58.5				
			10 - 6	-		132				
				_		14.8				
			7	4.2						
- gray below 1	5 ft		15 - 8	_		52.9				
			9			61.2				
			= 10	4.0		6.5	The soil samples collected from 0-2 ft and 6-8 ft intervals were submitted from laboratory analysis.			
			20 _ 11	-		4.6	The duplicate 4 sample was collected from the 6-8 ft interval.			
		22.0	12	-	è	0.0				
		25.0	-	4.8		0.0				
Gray, moist Sl	 LTY CLAY (CL)	23.0	25 _ 13	_						
			14			0.0				
			15	4.8		0.0				
			30 _ 16			16.2				
			17	-		1.0				
		35.0		5.0		0.0				
Bottom of Bori	ing at 35 ft	00.0	35 - 18	1						
							Drillers License No. 2581			
TPV - Total Photo-I	onization Vapors	De	pth to Grou	ndwat			HSA - Hollow Stem Augers			
TFV - Total Flame- PPM- Parts Per Mil	Ionization Vapors		n Drilling To pletion (ope			<u>2.0</u> ft. ft.	CFA - Continuous Flight Aug HA - Hand Auger			
ND - None Detecte	ed	After	hou		/	ft.	BLR - Bailer BP - Bladder Pump			
PVC - Polyvinyl Chl NA - Not Analyzed		a Cave De	pth			ft.	PP - Peristaltic Pump			
							SP - Submersible Pump Page 1 of 1			

7988 Centerpoint Drive, Suite 100 Indianapolis, IN 46256 (317) 849-4990 Fax (317) 849-4278

DJECT NAME DJECT LOCATIO Date Started Date Completed Drill Foreman	Former RJ Refinery County Road 350 Sout Princeton, Indiana 476 DRILLING and SAMPLING INFC 10/27/16 Boring Meth 10/27/16 Sampler OD Z. Vaughn Inspector	t h 70 DRMATION nod <u>Geor</u> D	orobe 2.(e) in.				JOB # 	170SWIN05P	
Date Started Date Completed Drill Foreman	Princeton, Indiana 476 DRILLING and SAMPLING INFC 10/27/16 Boring Meth 10/27/16 Sampler OD Z. Vaughn Inspector	70 DRMATION nod <u>Geor</u> D	2.0) in.				TEST I	DATA	
Date Completed	10/27/16 Boring Meth 10/27/16 Sampler OD Z. Vaughn Inspector	nod <u>Geop</u>	2.0) in.				TEST [DATA	
Date Completed	10/27/16 Sampler OD Z. Vaughn Inspector	D	2.0) in.						
Date Completed	10/27/16 Sampler OD Z. Vaughn Inspector	D	2.0) in.						
	Z. Vaughn Inspector		ninge	8						
2	SOIL CLASSIFICATION						pors			
2	SOIL CLASSIFICATION						able Va	Sam	pling Notes	
					y (ft)	vater	Total Photoionizable Vapors (ppm)			
Orea de litere erre		Stratum Depth	Depth Scale Sample		Recovery (ft)	Groundwater	Total Ph (ppm)			
		De St	۵ď	_	Be Be	Ğ	°⊢ ¹ d) 8.3			
Gray/olive gre	en, moist SILTY CLAY (CL)									
				2	4.7		35.2			
			5	3			105			
				4			235			
				5	4.7		52.5			
			10	- 6	_		94.6			
				- 7			47.6			
				1	5.0		82.8			
			15	- 8						
				9			163			
				10	4.8		71.7	The soil samples collected from 0-2 ft and 6-8 intervals were submitted from laboratory anal The duplicate 3 sample was collected from the	ted from laboratory analysis.	
			20	= 11			30.7	ft interval.	le was collected from the 6-8	
				12	5.0		45.5			
			25	13	-		17.7			
			20	14	_		4.3			
Light brown/o		28.0		15	5.0	۰	97.7			
(SW)	Set groon, wet, me to medium SAN		30	1	_		0.0			
•				16						
•				17	5.0		0.0			
Bottom of Bor	ing at 35 ft	35.0	35	18			0.0			
		 	epth to	D Groui	Idwat	er		Drillers License No. 2		
V - Total Flame-	onization Vapors Ionization Vapors	Noted of	n Dri	lling To	ols	2	<u>B.O</u> ft.		HSA - Hollow Stem Augers CFA - Continuous Flight Au	
PM - Parts Per Mi - None Detect	ed		-	n (opei <u></u> hou)	<u></u> ft. ft.		HA - Hand Auger BLR - Bailer	
C - Polyvinyl Ch O - Not Analyze		A Cave D			-		ft.		BP - Bladder Pump PP - Peristaltic Pump SP - Submersible Pump	

7988 Centerpoint Drive, Suite 100 Indianapolis, IN 46256 (317) 849-4990 Fax (317) 849-4278

ENT Economic Development C DJECT NAME Former RJ Refinery	BORING # JOB #	B-20 170SWIN05P					
DJECT LOCATION County Road 350 South							
Princeton, Indiana 47670							
DRILLING and SAMPLING INFORM	TEST DATA						
Date Started 10/28/16 Boring Method	Geop	robe					
Date Completed 10/28/16 Sampler OD		<u>2.0</u> in.			ις.		
Drill Foreman <u>Z. Vaughn</u> Inspector <u>F</u>	R. Jenn	ings			Vapoi		
					able	San	npling Notes
			(t	er	Total Photoionizable Vapors (ppm)		
SOIL CLASSIFICATION	E_	e		ldwat	Photo		
SURFACE ELEVATION	Stratum Depth	Depth Scale Sample	Recovery	Groundwater	Total I (ppm)		
Light brown, dry CLAYEY SILT (ML)		= 1			0.5		
Olive green, moist SILTY CLAY (CL)	2.0	2	5.0		75.0		
		5 _ 3			321		
		4	-		294		
		= 5	5.0		450		
		10 = 6	_		345		
		- 7	-		349		
		15 - 8	1.7		434		
			_		320		
- light to dark gray below 18 ft		= 0	4.0		106		
light to daily gray below to h		20 - 11	_		636	The soil samples coll	ected from 0-2 ft and 14-16 f
		12	_		22.6		ted from laboratory analysis.
			5.0		423		
			_		25.1		
		14 15	4 7		6.9		
		30 -			0.0		
			_		0.0		
			3.0		0.0		
- very moist and soft below 35 ft		35 _ 18	-		0.0		
		19	-				
	40.0	40 20	0.0		0.0		
Bottom of Boring at 40 ft		-					
						Drillers License No. 2	2581
	De	oth to Grou	ndwat	ər			HSA - Hollow Stem Augers
	Noted or	n Drilling To	ols		ft.		CFA - Continuous Flight Au
D - None Detected		bletion (ope <u></u> hou)	<u></u> ft. ft.		HA - Hand Auger BLR - Bailer
	Cave De		-		 ft.		BP - Bladder Pump PP - Peristaltic Pump
							SP - Submersible Pump Page 1 of

IENT Economic Development C								
ROJECT NAME Former RJ Refinery ROJECT LOCATION County Road 350 South						JOB # 170SWIN05P		
Princeton, Indiana 47670								
DRILLING and SAMPLING INFORM						TEST DATA		
Date Started 10/27/16 Boring Method		robo						
Date Completed 10/27/16 Sampler OD	Geop	2.0 in.						
Drill Foreman <u>Z. Vaughn</u> Inspector <u>F</u>	. Jenn				oors			
- · · · · ·		-			e Vap			
					ldabl	Sampling Notes		
SOIL CLASSIFICATION			Ĵ.	/ater	Total Photoionizable Vapors (ppm)			
	Stratum Depth	Depth Scale Sample	Recovery (ft)	Groundwater	al Pho m)			
SURFACE ELEVATION		Depth Scale Sampl	Bec 1	Gro				
	ر ا	- 1			15.3			
Brown/olive green, moist SILTY CLAY (CL)		- 2	5.0		351			
		3	0.0		253			
		5 - 3			200			
- very moist below 6.0 ft		_ 4			1263			
		_ 5	4.7		403			
		10 - 6	_		79.3			
					10.0			
		7	4.7		195			
		15 - 8	-		150			
- brown below 16 ft		- 9	-		344	The soil samples collected from 0-2 ft and 24-26 intervals were submitted from laboratory analysis		
			5.0					
		_ 10	5.0		264			
		20 _ 11	-		544			
Brown/olive green, moist, fine to medium SAND	22.0	- 12	-		1198			
(SW)			4.5					
		25 - 13		۰	1252			
		_ 14	1		1346			
		- 15	4.5		167			
• • • • • • • • • • • • • • • • • • •	30.0	30						
Bottom of Boring at 30 ft								
						Drillers License No. 2581		
PV - Total Photo-Ionization Vapors		pth to Grou				HSA - Hollow Stem Auger		
FV - Total Flame-Ionization Vapors		n Drilling To pletion (ope			5.0 ft. ft.	CFA - Continuous Flight A HA - Hand Auger		
ID - None Detected	After _	hou		/	ft.	BLR - Bailer BP - Bladder Pump		
VC - Polyvinyl Chloride	Cave De	epth	-		ft.	PP - Peristaltic Pump SP - Submersible Pump		
						Page 1 of		

	ENT	Economic Former R	Development C	oalitio		3-22 170SWIN05P					
			oad 350 South								
			, Indiana 47670								
		DRILLING and S	AMPLING INFORM	ATION						TEST DAT	A
[Date Started	Geop	robe								
	Date Completed	10/27/16 10/27/16	Sampler OD		2.0						
[Drill Foreman	Z. Vaughn	Inspector F						pors		
_									Total Photoionizable Vapors (ppm)	Samplir	ng Notes
		SOIL CLASSIFICA	ATION	<u></u>	<u> </u>		Recovery (ft)	Groundwater	Photoi		
		SURFACE ELEVA	TION	Stratum Depth	Depth Scale	Sample No.	Reco	Groun	Total I (ppm)		
-	Brown, dry CL	AYEY SILT (ML)				1			0.0		
							-				
-					-	2	4.8		0.0		
$\left\ \right\ $											
-	Gray/olive green, moist SILTY CLAY (CL)					3			0.0		
$-\parallel$				5.0	5 -	-				The soil samples collected from 0-2 ft and 6-8 ft	d from 0-2 ft and 6-8 ft
										intervals were submitted	from laboratory analysis.
						4			552		
-						-					
					-		5.0				
						5			310		
						_					
-				10.0		-					
ſ	Bottom of Bor	ing at 10 ft		- 10.0	10 -						
										Drillers License No. 2581	
TF Pl	FV - Total Flame- PM- Parts Per Mi			De Noted of At Comp		ng To	ols		ft. ft.	HSA - Hollow Stem Augers CFA - Continuous Flight A HA - Hand Auger	
P١	D - None Detect VC - Polyvinyl Ch A - Not Analyzed	loride	-	After Cave De		houi	rs _		ft. ft.	BL BP PP SP	- Peristaltic Pump

CLIENT PROJECT NAME		Development C	oalitio	BORING # B-23 JOB # 170SWIN05P						
PROJECT LOCATIC		oad 350 South								
	Princeton,	, Indiana 47670								
	DRILLING and S	AMPLING INFORMA	TION						TEST DATA	
Date Started	10/31/16	Boring Method	Geop	robe						
Date Completed	10/31/16	Sampler OD	2.0 in.							
Drill Foreman	Z. Vaughn	. Vaughn Inspector R.			-			tpors		
							r	Total Photoionizable Vapors (ppm)	Sampling Notes	
	_ <u>د</u>	5.0	ole	Recovery (ft)	Groundwater	Photoi)				
	SURFACE ELEVA	TION	Stratum Depth	Depth Scale	Sample No.	Reco	Grou	Total I (ppm)		
Light brown, c	Light brown, dry CLAYEY SILT (ML)				1			2.0		
				-						
_				-	2	-				
			3.0	-		5.0		27.2		
Brown/olive g	reen, moist SILTY (CLAY (CL)		-						
-				-	3	-				
-				-	Ĩ			344		
				5 -					The soil samples collected from 0-2 ft and 6-8 ft intervals were submitted from laboratory analysis.	
-					4	-			intervals were sublimited from aboratory analysis.	
-				-				543		
				_						
-				-	5	4.0				
				-				47.1		
				-						
Bottom of Bor	ring at 10 ft		10.0	10 -		-				
	ų -									
									Drillers License No. 2581	
TPV - Total Photo-	Ionization Vapors	•	<u>De</u> Noted or	<u>oth to (</u> Drillir			er	 ft.	HSA - Hollow Stem Augers CFA - Continuous Flight Auge	
TFV - Total Flame PPM- Parts Per Mi	illion	$\overline{\Sigma}$	At Comp	oletion	(oper	hole)	ft.	HA - Hand Auger BLR - Bailer	
ND - None Detect PVC - Polyvinyl Ch	loride	-	After Cave De		hour	s -		<u></u> ft. ft.	BLR - Bailer BP - Bladder Pump PP - Peristaltic Pump	
NA - Not Analyze	u		-			-			SP - Submersible Pump Page 1 of 1	

7988 Centerpoint Drive, Suite 100 Indianapolis, IN 46256 (317) 849-4990 Fax (317) 849-4278

ENT DJECT NAME	Economic De Former RJ Re									
		-							JOB #	TTUSWINUSF
	Princeton, Inc									
-	RILLING and SAMF								TEST I	ΔΤΔ
		Boring Method		roho	[
		Sampler OD		2.0	in.					
Drill Foreman	Jenn					ors				
	-			-				e Vap		
								lizabl	San	npling Notes
						(ft)	ater	Total Photoionizable Vapors (ppm)		
50	DIL CLASSIFICATIO	IN	Stratum Depth	e ‡	Sample No.	Recovery (ft)	Groundwater	al Pho n)		
SL	JRFACE ELEVATIO	N	Stra Dep	Depth Scale	San No.	Rec	Gro	-		
// • – – – – – – – – – – – – – – – – – –	CLAYEY SILT (ML)		1.0	-	1			0.0		
Gray/black/olive	green, moist SILTY (JLAY (GL)		-	2	4.0		0.0		
				5 -	3			8.3		
					4			155		
						5.0		177		
				10 -	5					
					6			77.3		
- light brown belo	- light brown below 12 ft				7	4.8		94.2		
				15 -	8			20.0		
				-	9			8.4		
					10	4.0		8.1		ected from 0-2 ft and 20-22 f
				20 -	11			450	Intervals were submit	ted from laboratory analysis.
				-	12	3.0		389		
				25 -	13			20.2		
			28.0	-	14			11.8		
Light brown, wet,	fine to medium SAN	 ID (SW)	20.0	-	15	5.0	<u>.</u>	5.6		
				30 -	16			0.0		
: - light gray below	30 ft				17			0.0		
			05.0	-		5.0		0.0		
Bottom of Boring	at 35 ft		35.0	35 —	18			0.0		
										504
	zation Vanasa		<u></u>	oth to C	<u>Arou</u> n	dwate	ər		Drillers License No. 2	581 HSA - Hollow Stem Augers
PV - Total Photo-Ioni FV - Total Flame-Ion PM - Borto Bor Millior	ization Vapors		loted or t Comp	n Drillin	g Too	ols	2	B.O ft.		CFA - Continuous Flight Au HA - Hand Auger
PM - Parts Per Millior D - None Detected			fter		open hour		/	ft. ft.		BLR - Bailer BP - Bladder Pump
/C - Polyvinyl Chloric A - Not Analyzed	16	题 C	ave De	pth		-		 ft.		PP - Peristaltic Pump SP - Submersible Pump

	NT JECT NAME		Development C Refinery						Iulalia			
			ad 350 South									
		Princeton,	Indiana 47670									
		DRILLING and S	AMPLING INFORM	ATION		ſ				TEST DATA		
Da	ate Started	10/31/16	Boring Method	Geop	robe							
Da	ate Completed	10/31/16	Sampler OD		2.0	in.			S			
Dr	ill Foreman	Z. Vaughn	Inspector	R. Jennings					'apor			
									able V	Sampling Notes		
						(tt	ter	Photoionizable Vapors				
		TION	_ <u></u>	۲o	e Iple		Groundwater	l Photo				
		SURFACE ELEVA	TION	Stratum Depth	Depth Scale	Sample No.	Recovery (ft)	Grou	Total I (ppm)			
	Gravel and sa			<u>ا</u> 0.5	-	1			13.8			
	Gray/olive gree	en, moist SILTY CL	.AT (UL)			2	3.8		890			
					3	0.0		49.7				
			5 —				770					
			_	4	4.7		-					
				5	4.7		270					
					10	6			174			
					-	7	10		79			
	- light brown b	olow 14 ft			-	8	4.2		21.6			
					15 —				282		ected from 0-2 ft and 2-4 ft ted from laboratory analysis.	
						9			202	The duplicate 5 samp	ble was collected from the 2-4	
					-	10	3.0		13.1			
					20 —	11			32.1			
				23.0	-	12			82.3			
	Gray, very mo	ist, fine to medium	SAND (SW)				3.0		339			
	- wet at 25 ft				25 —	13		.				
	0 0 0				-	14			600			
	• • •					15	4.2		45.1			
	Bottom of Bori	ng at 30 ft		30.0	30 —							
			oth to C		dwat			Drillers License No. 2				
TF\ PPI ND PV(/ - Total Photo-li / - Total Flame-l / - Parts Per Mil - None Detecte C - Polyvinyl Chli - Not Analyzed 	Depth to Groundwater Noted on Drilling Tools 25.0 At Completion (open hole) After hours Cave Depth							HSA - Hollow Stem Augers CFA - Continuous Flight Au HA - Hand Auger BLR - Bailer BP - Bladder Pump PP - Peristaltic Pump SP - Submersible Pump			

PROJECT LOCATION <u>County Road 350 South</u> Princeton, Indiana 47670 DRILLING and SAMPLING INFORMATION TEST DATA Date Started <u>10/31/16</u> Boring Method <u>Geoprobe</u> Date Completed <u>10/31/16</u> Sampler OD <u>2.0</u> in. Drill Foreman <u>Z. Vaughn</u> Inspector <u>R. Jennings</u> Source Source Source Structure Source Source Structure Source Structure Source Structure S		JOB # 170SWIN05P							B ()		
Solic CLASSIFICATION Image: Solic CLASSIFICATION I									-		PROJECT NAME
TEST DATA TEST DATA Date Started											PROJECT LOCATIO
Date Started 10/31/16 Boring Method Geoprobe in. Date Completed 10/31/16 Sampler OD 2.0 in. Drill Foreman Z. Vaughn Inspector R. Jennings soperation of the second s									ndiana 47670	Princeton,	
Date Completed 10/31/16 Sampler OD 2.0 in. Drill Foreman Z. Vaughn Inspector R. Jennings Sampling Notes SOIL CLASSIFICATION Image: Grad Grad Grad Grad Grad Grad Grad Grad		TEST DATA				Г		TION	MPLING INFORMA	DRILLING and SA	
Drill Foreman Z. Vaughn Inspector R. Jennings Some and the second						.		Geop	Boring Method	10/31/16	Date Started
Light brown, dry CLAYEY SILT (ML) Brown, moist SILTY CLAY (CL) Brown, moist SILTY CLAY (CL) 3.0 4 5 5 5 5.0 5 5 5 5 5 5 5 5 5 5 5 5 5			S			-					-
Light brown, dry CLAYEY SILT (ML) Brown, moist SILTY CLAY (CL) Brown, moist SILTY CLAY (CL) 3.0 4 5 5 5 5.0 4 5 5.0 5 5.0 5 5 5.0 5 5 5 5 5 5 5 5 5 5 5 5 5		Sampling Notes				-	ngs	Jenn	Inspector R.	Z. Vaughn	Drill Foreman
Light brown, dry CLAYEY SILT (ML) Brown, moist SILTY CLAY (CL) Brown, moist SILTY CLAY (CL) 3.0 4 5 5 5 5.0 4 5 5.0 5 5.0 5 5 5.0 5 5 5 5 5 5 5 5 5 5 5 5 5											
Light brown, dry CLAYEY SILT (ML) Brown, moist SILTY CLAY (CL) Brown, moist SILTY CLAY (CL) 3.0 4 5 5 5 5.0 4 5 5.0 5 5.0 5 5 5.0 5 5 5 5 5 5 5 5 5 5 5 5 5			oniza	r	æ						
Light brown, dry CLAYEY SILT (ML) Brown, moist SILTY CLAY (CL) Brown, moist SILTY CLAY (CL) 3.0 4 5 5 5 5.0 4 5 5.0 5 5.0 5 5 5.0 5 5 5 5 5 5 5 5 5 5 5 5 5			hotoi	dwate	ery (fi	Ð		C C	ION	SOIL CLASSIFICAT	
Light brown, dry CLAYEY SILT (ML) Brown, moist SILTY CLAY (CL) Brown, moist SILTY CLAY (CL) 3.0 4 5 5 5 5.0 4 5 5.0 5 5.0 5 5 5.0 5 5 5 5 5 5 5 5 5 5 5 5 5			otal F ppm)	aroun	Recov	sampl Jo.)epth Scale	stratur Depth	ION	SURFACE ELEVAT	
Brown, moist SILTY CLAY (CL) Brown, moist SILTY CLAY (CL) 3.0 4 5 4 5 5.0 5.0 5.0 5.0 5.0 5.0 5.0				0	ш			0.0	_)	Y CLAYEY SILT (M	Light brown, di
3.0 3.0 5.0 Green staining and hydrocarbon odor between the staining and			1.7				-				
Brown, moist SILTY CLAY (CL) Brown, moist SILTY CLAY (CL) 3.0 3.0 3.0 3.0 5.0 4 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0							-				_
Brown, moist SILTY CLAY (CL) Brown, moist SILTY CLAY (CL) 3.0 3.0 3.0 3.0 5.0 4 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0						2	-				
The soil samples collected from 0-2 ft and 6- intervals were submitted from laboratory ana 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -			1.7		5.0			3.0			
The soil samples collected from 0-2 ft and 6- intervals were submitted from laboratory and 5	en 3-8	Green staining and hydrocarbon odor betweer					-			SILTY CLAY (CL)	Brown, moist S
The soil samples collected from 0-2 ft and 6- intervals were submitted from laboratory and 225						3	-				-
The soil samples collected from 0-2 ft and 6- intervals were submitted from laboratory and 225			280			5	-				-
	8 ft	The soil samples collected from 0-2 ft and 6-8					5 -				
	19515.						-				-
			225			4	-				-
							-				
					5.0		_				
			17.0			5	-				-
							-				-
							- 10	10.0			
Bottom of Boring at 10 ft							10			ng at 10 ft	Bottom of Bori
Drillers License No. 2581		Drillers License No. 2581									
		HSA - Hollow Stem Aug CFA - Continuous Fligh	 ft.	<u>ər</u>					<u>●</u> N		
PPM - Parts Per Million	,	HA - Hand Auger	ft.)	hole	open	letion (t Comp	∑ A	lion	PPM - Parts Per Mil
PVC - Polyvinyl Chloride BP - Bladder Pump		BP - Bladder Pump			s_	hour			-	oride	PVC - Polyvinyl Chl
	n	SP - Submersible Pur			-						NA - Not Analyzed

CLIENT PROJECT NAME		: Development C						ndiana	BORING # JOB #	B-27 170SWIN05P		
PROJECT NAME		oad 350 South							000 #			
		, Indiana 47670										
			ATION						TEST D	ΑΤΑ		
Date Started	10/31/16	_ Boring Method _		rohe								
Date Completed	10/31/16	Sampler OD	acopi	2.0								
Drill Foreman	Z. Vaughn		. Jenn		-			oors				
								Total Photoionizable Vapors (ppm)	Sam	pling Notes		
	SOIL CLASSIFIC	ATION	_ <u></u>		le	Recovery (ft)	Groundwater	Photoic				
	SURFACE ELEVA		Stratum Depth	Depth Scale	Sample No.	Reco	Groui	Total I (ppm)				
Light brown, o	dry CLAYEY SILT (ML)		-	1			3.9				
	Gray/olive green, moist SILTY CLAY (CL)											
					2	-						
						4.3		16.3				
Grav/olive or					3	-						
- Chay/onvoight	Gray/olive green, moist SILTY CLAY (CL)			. _				32.5				
]				The soil samples colle	ected from 0-2 ft and 6-8 ft		
						-	4	-			intervals were submitted from laboratory analysis	
-				-	4			41.1				
				-	1							
				-	-	3.8						
-				-	5			29.5				
-				-	1							
]Ø			10.0	10 -]	-						
Bottom of Bo	ring at 10 ft											
										-01		
					Groun	dwate	er		Drillers License No. 2			
TPV - Total Photo- TFV - Total Flame	-Ionization Vapors		Noted or	n Drillir	ng Too	ols		ft.		HSA - Hollow Stem Augers CFA - Continuous Flight Aug		
PPM - Parts Per M ND - None Detec	ted		At Comp After		(oper hour)	<u></u> ft. ft.		HA - Hand Auger BLR - Bailer		
PVC - Polyvinyl Ch NA - Not Analyze	nloride	-	Cave De			-		ft.		BP - Bladder Pump PP - Peristaltic Pump		
										SP - Submersible Pump Page 1 of 1		

CLIENT		-	oalitio	n of S	Sout	hwe	st Ir	ndiana	
PROJECT NAME		-							JOB # 170SWIN05P
PROJECT LOCATIC									
	Princeton, India								
	DRILLING and SAMPL	NG INFORM	ATION		[TEST DATA
Date Started		ring Method _	Geop		-				
Date Completed		mpler OD		<u>2.0</u>	-			<u>د</u>	
Drill Foreman _	Z. Vaughn Ins	pector R	. Jenn			/apoi			
								able \	Sampling Notes
						(ft) tter	r	oniza	
	SOIL CLASSIFICATION		_		0	ery (ft	dwate	hotoi	
	SURFACE ELEVATION		Stratum Depth	Depth Scale	Sample No.	Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)	
Light brown	Iry CLAYEY SAND (SC)		5 T T T	ŏĎ	ΰŽ 1	Ē	G		
	Light brown, moist SANDY CLAY (CL)							0.0	
Light brown, r									
					2	4.7		0.0	
-									
-								0.0	
-				5 -	-				The soil samples collected from 0-2 ft and 8-10 ft
- moist silty cl	ay below 5.5 ft			-					intervals were submitted from laboratory analysis.
				-	4			0.0	
				-	-				
				_	-	4.3			
-				-	5	1		0.0	
				-				0.0	
				-	-				
Bottom of Bor	ing at 10 ft		10.0	10 -					
	3								
									Drillero Licence No. 2591
						dwat	er		Drillers License No. 2581
TPV - Total Photo- TFV - Total Flame-	Ionization Vapors		Noted of	n Drillir	ig Too	ols		 _ ft.	HSA - Hollow Stem Augers CFA - Continuous Flight Aug
PPM - Parts Per Mi ND - None Detect	ed		At Comp After)	<u></u> ft. ft.	HA - Hand Auger BLR - Bailer
PVC - Polyvinyl Ch NA - Not Analyze	loride		Cave De		noui	 -		ft.	BP - Bladder Pump PP - Peristaltic Pump
									SP - Submersible Pump Page 1 of 1

	-	nt Coalitio	n of Sout	hwes	st Ir	ndiana			
							JOB #	1705WIN05P	
OJECT LOCATI	Princeton, Indiana 476								
	DRILLING and SAMPLING INFO							DATA	
							TEST		
Date Started _ Date Completed		od <u>Geop</u> i	2.0 in.						
Drill Foreman	Z. Vaughn Inspector					ors			
	<u> </u>		<u>9</u> -			e Vap	Sampling Notes		
						izable			
	SOIL CLASSIFICATION			y (ft)	vater	Total Photoionizable Vapors (ppm)			
		Stratum Depth	Depth Scale Sample	Recovery (ft)	Groundwater	Total Ph (ppm)			
Light alive ar		De St		E E	ģ	은 호 7.5			
Light olive gr	een, moist SILTY CLAY (CL)		= 1						
			2	5.0		26.5			
			5 - 3			6.7	Light olive green stai between 4-10 ft.	ning and hydrocarbon odor	
			_ 4			57.9			
			= 5	4.8		9.7			
- light brown	below 10 ft		10 _ 6			6.8			
			- 7	4.9		0.8			
			15 - 8	-		0.1			
			- 9	_		0.2			
			- 10	5.0		0.4	The soil samples col	lected from 0-2 ft and 6-8 ft	
			20 - 11			0.6	intervals were submi	tted from laboratory analysis.	
						0.0			
			12	4.3		0.0			
			25 - 13			2.1			
	wet, fine to medium SAND (SW)	27.5	14	50	۰				
•••• •••• ••••			15 30	5.0		0.0			
* * * * * *			30 _ 16			0.0			
•••• •••			17	5.0		0.0			
•••• •••		35.0	35 _ 18			0.0			
Bottom of Bo									
						Drillers License No.	2581		
	sted hloride	Noted or	letion (ope	ols n hole)	2	7.5 ft. ft. ft. ft.		HSA - Hollow Stem Augers CFA - Continuous Flight Au HA - Hand Auger BLR - Bailer BP - Bladder Pump PP - Peristaltic Pump SP - Submersible Pump	

LIENT ROJECT NAME		Development C Refinery						BORING # JOB #	170SWIN05P	
ROJECT LOCATIO		ad 350 South								
	Princeton,	Indiana 47670								
	DRILLING and SA		ATION					TEST	DATA	
Date Started	10/26/16	Boring Method	Geop	robe						
Date Completed	10/26/16	Sampler OD	•	2.0 in						
Drill Foreman	Z. Vaughn	Inspector R	. Jenn	ings			tpors			
							zable Va	Sar	npling Notes	
	SOIL CLASSIFICAT	TION			ary (ft)	Groundwater	Photoionizable Vapors			
	SURFACE ELEVAT		Stratum Depth	Depth Scale Sample	No. Recovery (round	Total P (ppm)			
Light brown d	ry SANDY CLAY (CI		۵ď	ٽ ق <u>م</u>	zĔ	Ū	₽ <u>₽</u> 0.6			
Light brown, u		-,								
					4.8		0.4			
							197			
							780			
					. 5.0		618			
)		010	Hydrocarbon odor be	etween 8-20 ft.			
				10 6	6		147			
- moist silty cla	ay below 12 ft				,		992			
				5.0		55.2				
				15 - ')			The soil samples col	lected from 0-2 ft and 12-14	
				- 9)		154	Intervals were submi	tted from laboratory analysis	
					0 4.9	⊻	33.6			
				20 - 1	1		32.5			
Light brown v			23.0		² 5.0		51.1			
	_ ,			25 - 1	3	۰	20.4			
• • • • • • • • • • • • • • • • • • •				- 1	4		678			
					5.0		01.4			
			30.0	- 1 	5		21.1			
Bottom of Bor	Bottom of Boring at 30 ft									
						Drillers License No. 2	2581			
TPV - Total Photo-I	onization Vanors		De	oth to Gro	undwa		I		HSA - Hollow Stem Augers	
TFV - Total Flame- PPM- Parts Per Mil	Ionization Vapors			n Drilling T pletion (op			<u>5.0</u> ft. 9.0 ft.		CFA - Continuous Flight A HA - Hand Auger	
ND - None Detect PVC - Polyvinyl Chl	ed	Ţ,	After	ho			 ft.		BLR - Bailer BP - Bladder Pump	
NA - Not Analyzed		题(Cave Depth ft. PP - Peristaltic Pur						PP - Peristaltic Pump	
								SP - Submersible Pump Page 1 of		

		Development Co									
PROJECT NAME PROJECT LOCATIO		ad 350 South							JOB #		
		Indiana 47670									
		AMPLING INFORMA							TEST DATA		
Data Otaria d	10/26/16			raha	[
Date Started Date Completed	10/26/16	Boring Method Sampler OD	Geopi	<u>2.0</u>	- in						
Drill Foreman	Z. Vaughn		Jenn		-			ors			
	<u> </u>		••••		-			Photoionizable Vapors)	Sam	pling Notes	
	SOIL CLASSIFICA	TION	Ε_	_	ele	Recovery (ft)	Groundwater	Photoic			
	SURFACE ELEVA		Stratum Depth	Depth Scale	Sample No.	Recov	Grour	Total I (ppm)			
Light brown, d	ry SANDY CLAY (C	CL)		-	1			3.8			
-					-						
-					2	5.0		2.7			
-					1	5.0					
-					3			3.3			
ft	moist to very moist	silty clay below 4.5		5 -	-				The soil samples colle	ected from 0-2 ft and 4-6 ft	
-				-	-				intervals were submitt	ed from laboratory analysis.	
-				-	4			0.7			
				-							
-				_	-	50			Olive green staining b	etween 4.5-10 ft.	
-				-	5	5.0					
-				-				0.0			
				-	1						
Detterm of Dec	in		10.0	10 -							
Bottom of Bor	ing at 10 ft										
									Drillers License No. 2	581	
TPV - Total Photo-I		• N	<u>De</u> Noted or	<u>pth to (</u>			er	 ft.		HSA - Hollow Stem Augers CFA - Continuous Flight Auge	
TFV - Total Flame- PPM- Parts Per Mil	lion		At Comp	oletion	(open	hole)	ft.		HA - Hand Auger	
ND - None Detect PVC - Polyvinyl Chl		-	After Cave De		hour	s_		ft.		BLR - Bailer BP - Bladder Pump	
NA - Not Analyzed	- None Detected C - Polyvinyl Chloride					-		_ _ ft.		PP - Peristaltic Pump SP - Submersible Pump Page 1 of 1	

PROJECT LAGATION <u>County Road 350 South</u> Princeton, Indiana 47670 DRILLING and SAMPLING INFORMATION TEST DATA Date Started 10/26/16 Boring Method Geoprobe Date Completed 10/26/16 Sampler OD 2.0 in Drill Foreman Z. Yaughn Inspector R. Jennings SOLI CLASSIFICATION SURFACE ELEVATION Ulpht brown, dry, flaky SANDY CLAY (CL) Colive green, very moist silly clay below 5.0 ft Bottom of Boring at 10 ft Drill Foreman I to ft Bottom of Boring at 10 ft Bottom of Boring			-	nt Co								B-32
Princeton, Indiana 47670 DRILLING and SAMPLING INFORMATION Date Started 10/26/16 Sampler OD 2.0 in. Date Started 10/26/16 Sampler OD 2.0 in. Dill Foreman Z. Yaughn Inspector R. Jennings Sampling Notes SOIL CLASSIFICATION up gin of the started 0			-								JOB #	170SWIN05P
DRILLING and SAMPLING INFORMATION TEST DATA Date Started 10/26/16 Sampler OD 2.0 in. Drill Foreman Z. Vaughn Inspector R. Jennings Sampling Notes SOIL CLASSIFICATION Edg 6/8 /8 /8 /8 /8 /8 /8 /8 /8 /8 /8 /8 /8 /	ROJECT LOCATIO	-										
Date Started 10/26/16 Boring Method Geoprobe Date Completed 10/26/16 Sampler OD 2.0 in. Drill Foreman Z. Vaughn Inspector R. Jennings in. SOIL CLASSIFICATION Image: Completed for the second sec												
Date Completed 10/26/16 Sampler OD 2.0 in. Drill Foreman Z. Vaughn Inspector R. Jennings in. in. SOIL CLASSIFICATION inspector R. Jennings in. in. in. in. SURFACE ELEVATION in. in. in. in. in. in. in. Light brown, dry, flaky SANDY CLAY (CL) in. in. in. in. in. in. - - - - - - - 6.8 intervals were submitted from 0-2 ft and 4-6 - - - - - - - - - - - - - - - - - - - Light brown, dry, flaky SANDY CLAY (CL) -		DRILLING and S	AMPLING INFO	ORMA	TION		[TEST D	ΑΤΑ
Drill Foreman Z. Vaughn Inspector R. Jennings so s	Date Started		Boring Meth	nod	Geopi		-					
SURFACE ELEVATION Image: Base of							-			Ś		
SURFACE ELEVATION Image: Base of	Drill Foreman	Z. Vaughn	Inspector _	R.	Jenn	ings	-			/apor		
SURFACE ELEVATION Image: Box of B										able \	Sam	pling Notes
SURFACE ELEVATION Image: Bar and	[(1)	er	ioniza		
Light brown, dry, flaky SANDY CLAY (CL) - olive green, very moist silty clay below 5.0 ft - olive green, very moist silty clay below 5.0 ft - olive green, very moist silty clay below 5.0 ft 		SOIL CLASSIFICA	ATION		Er c	5 0	ole	very (f	ndwate	Photo)		
- olive green, very moist silty clay below 5.0 ft - olive green, very moist silty clay below 5.0 ft - olive green, very moist silty clay below 5.0 ft 		SURFACE ELEVA	TION		Stratu Depth	Dept ^t Scale	Samp No.	Reco	Groui	Total (ppm)		
- olive green, very moist silty clay below 5.0 ft - oliv	Light brown, d	lry, flaky SANDY Cl	LAY (CL)			-				6.8		
- olive green, very moist silty clay below 5.0 ft - oliv						-	-					
- olive green, very moist silty clay below 5.0 ft - olive green, very moist silty clay below 5.0 ft - olive green, very moist silty clay below 5.0 ft 						-	-					
- olive green, very moist silty clay below 5.0 ft - olive green, very moist silty clay below 5.0 ft - olive green, very moist silty clay below 5.0 ft 						-	2	1		6.0		
- olive green, very moist silty clay below 5.0 ft - olive green, very moist silty clay below 5.0 ft - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4						_]	4.6		0.0		
- olive green, very moist silty clay below 5.0 ft - olive green, very moist silty clay below 5.0 ft - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4						-	-					
- olive green, very moist silty clay below 5.0 ft - olive green, very moist silty clay below 5.0 ft - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4						-	3					
- olive green, very moist silty clay below 5.0 ft - olive green, very moist silty clay below 5.0 ft - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4						-				95.8		
10.0 10 10 10 10 10 10 10 10 10 10 10 10 10	- olive green, v	very moist silty clay	below 5.0 ft	t		5 —	1				The soil samples colle	cted from 0-2 ft and 4-6 ft
10.0 10 10 10 10 10 10 10 10 10 10 10 10 10						-					intervals were submitte	ed from laboratory analysis.
						-	4			4.2		
						-	-				Green staining and hy	drocarbon odor between 5-
								4.4				
						-	5			4.7		
						-	-					
					10.0	-	-					
	Bottom of Bor	ing at 10 ft			10.0	10 —		-				
		0										
Depth to Groundwater HSA - Hollow Stem Au						oth to (dwat.	⊇r			
TFV - Total Flame-Ionization Vapors Noted on Drilling Toolsft. CFA - Continuous Flight					oted or	n Drillir	g To	ols				HSA - Hollow Stem Augers CFA - Continuous Flight Au
PPM- Parts Per Million ND - None Detected ✓ After - bours - ft. HA - Hand Auger BLR - Bailer	PPM - Parts Per Mil	llion			-)			BLR - Bailer
PVC - Polyvinyl Chloride BP - Bladder Pump	PVC - Polyvinyl Chl	loride					noul	ъ_				BP - Bladder Pump
SP - Submersible Pu	ina - nut Allaly200							-		—		

			Development C								
	CT NAME		ad 350 South							JOB #	1705101005P
OJL	UT LOCATION		Indiana 47670								
			AMPLING INFORM							TEST	
. .	o				vaha	[
		<u>10/25/16</u> 10/25/16	Boring Method _ Sampler OD	Geop	<u>2.0</u>						
		Z. Vaughn		. Jenn		- ""			ors		
		_				_			e Vap		
									nizabl	Sampling Notes	
	ç	SOIL CLASSIFICA	TION	F		0	Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)		
	:	SURFACE ELEVA	TION	Stratum Depth	Depth Scale	Sample No.	Recov	Groun	Total F (ppm)		
/// -	FOPSOIL			/ 0.5	-	1			0.0		
L	ight brown, dr	y, crumbly CLAY (0	CL)		-	2	4.0		0.8		
					3	4.3		597	Hydrocarbon odor be	tween 4-18 ft	
// -	- light gray, moist silty clay below 5.5 ft				5 -	-	-		545		
						4	4.7		405		
					10 -	6	-		340		
					-	7	-		155		
						8	5.0		337		
					15 -	9	-		66.0		
						10	5.0		41.0	The soil samples coll	ected from 0-2 ft and 4-6 ft
					20 -	11			16.0	intervals were submi	ted from laboratory analysis.
					-	12	-		330		
-	light brown, w	et sandy clay below	v 23 ft		-	13	5.0	ē	35.0		
					25 -	14	-		15.0		
					-	15	5.0		9.5		
					30 -	16			4.2		
					-	17			3.1		
			(34.0	-		5.0		1.2		
	Brown, dry, fine to medium SAND (SW) Bottom of Boring at 35 ft			35.0	35 —	18			1.2		
										Drillers License No. 2	2581
PPM- Parts Per Million ND - None Detected			⊻ ⊻	Depth to Groundwater Noted on Drilling Tools 24.0 At Completion (open hole) After hours Cave Depth							HSA - Hollow Stem Augers CFA - Continuous Flight Au HA - Hand Auger BLR - Bailer BP - Bladder Pump PP - Peristaltic Pump SP - Submersible Pump

	Economic Development	t Coalitio	n of S	Sout	hwe	st Ir	ndiana			
	NAME Former RJ Refinery							JOB # 170SWIN05P		
JECI	LOCATION County Road 350 South Princeton, Indiana 4767									
	DRILLING and SAMPLING INFOF							TEST DATA	—	
Date Sta		d Geop								
	ompleted 10/25/16 Sampler OD		<u>2.0</u>	_			S			
Drill For	reman <u>Z. Vaughn</u> Inspector	R. Jenn	ings	-			/apo			
							able \	Sampling Notes		
					÷	ъ	Photoionizable Vapors	Samping Notes		
	SOIL CLASSIFICATION	_		0	Recovery (ft)	Groundwater	hoto			
	SURFACE ELEVATION	Stratum Depth	Depth Scale	Sample No.	BCOVE	ounc	Total P (ppm)			
	PSOIL	- 読置 」 1.5	ŏ ٽ ا	ທັž 1	Ĕ	Q	<u> </u>			
	The second secon									
				2	3.5		104			
line line			5 -	3			381	Hydrocarbon odor between 4-10 ft.		
- ligi	ht gray/light brown, moist silty clay below 5.0 ft			4	-		626			
				5	5.0		1401			
			10 -		-		197			
				6			-			
				7	5.0		193			
			15 -	8			7.0			
				9			249			
				10	5.0		9.8	The soil samples collected from 0-2 ft and 8-10) ft	
			20 -				41.3	intervals were submitted from laboratory analys	JIS.	
				11						
				12	5.0		13.8			
- ligł	ht brown, wet sandy clay below 23.5 ft		25 -	13		.	0.8			
				14	-		25.1			
				15	5.0		29.3			
			30 -		-		7.1			
				16						
		34.0		17	5.0	⊻	5.2			
	wn, dry, fine to medium SAND (SW)	35.0	35 -	18		-	3.3			
Bott	tom of Boring at 35 ft									
								Drillers License No. 2581		
=V - Tot PM- Pa D - No VC - Po	arts Per Million	● Noted o ☑ At Comp ▼ After	Depth to Groundwater Noted on Drilling Tools 24.5 ft. At Completion (open hole) 33.9 ft.					HSA - Hollow Stem Aug CFA - Continuous Flight HA - Hand Auger BLR - Bailer BP - Bladder Pump PP - Peristaltic Pump SP - Submersible Pum	t Αι	

ENT OJECT NAME	Economic Develop					Indiana	105 "	B-35 170SWIN05P		
OJECT LOCATION	County Road 350 S									
	Princeton, Indiana	7670								
DR	ILLING and SAMPLING I	VFORMATION					TEST	DATA		
Date Started10/2	25/16 Boring N	lethod <u>Geop</u>	robe							
	25/16 Sample		2.0	in.						
·		R. Jenr	nings			pors				
						able Va	Sar	npling Notes		
SOIL	CLASSIFICATION				y (ft) vater	Photoionizable Vapors				
	Stratum Depth	Depth Scale	Sample No.	Recovery (ft) Groundwater	otal Ph ppm)					
SURFACE ELEVATION TOPSOIL Light brown, dry, crumbly SANDY CLAY (CL) - light brown to gray, moist silty clay		ت م ر 0.5		ທີ່ຊັ່ 1		0.0	(ppm) 0.0			
		/				0.0				
				2 4	1.5					
			5 -	3		0.0				
			-	4		4200				
				5 3	3.9	13.0				
			10 -	6		9.0				
			-			6.5				
				7 5	5.0					
			15 -	8		3.5				
				9						
			=	10 0	0.0		The soil samples coll intervals were submit	ected from 0-2 ft and 6-8 ft ted from laboratory analysis.		
			20 -	11		0.0		, ,		
				12		0.0				
				4	1.2	2.0				
			25 -	13						
				14		2.1				
				15	1.8	1.7				
		31.0	30 —	16	ē	2.0				
Light brown, wet SI	LTY SAND (SM)			17		2.3				
		35.0		4	1.6	16.0				
Bottom of Boring at	35 ft	33.0	35 —	18						
							0501			
PV - Total Photo-loniza FV - Total Flame-loniza PM- Parts Per Million D - None Detected VC - Polyvinyl Chloride A - Not Analyzed	De ● Noted c ▽ At Com ▼ After _ 國 Cave D	pletion (g Tools	s _(31.0 ft. ft. ft. ft.	Drillers License No. 2	HSA - Hollow Stem Augers CFA - Continuous Flight Au HA - Hand Auger BLR - Bailer BP - Bladder Pump PP - Peristaltic Pump SP - Submersible Pump			

IENT Economic Development	Coalitio	n of Sout	hwe	st lı	ndiana			
ROJECT NAME Former RJ Refinery						JOB #	170SWIN05P	
ROJECT LOCATION County Road 350 South								
Princeton, Indiana 47670								
DRILLING and SAMPLING INFORM	MATION					TEST	DATA	
Date Started 11/1/16 Boring Method	Geop	robe						
Date Completed 11/1/16 Sampler OD		2.0 in.						
Drill Foreman Z. Vaughn Inspector	R. Jenn	ings			apor			
					ble V	San	npling Notes	
					Total Photoionizable Vapors (ppm)			
SOIL CLASSIFICATION	_		Recovery (ft)	Groundwater	Jotoic			
	Stratum Depth	Depth Scale Sample	cove	puno	Total Pł (ppm)			
	De Str		Be a	Ğ				
Light brown, dry SILTY CLAY (CL)					0.0			
		2	4.4		0.0			
		3	-		0.0			
- light gray/green and moist bbetween 5.5 and 14.5	ft	5 _ 5						
		4			290	Olive green and hydro ft.	ocarbon odor between 6-14.5	
		_ 5	5.0		9.6			
			-		1252			
		7	5.0		190			
		15 - 8	-		7.2			
		1	_		10.8	The soil samples coll	ected from 0-2 ft and 10-12 ft ted from laboratory analysis.	
		9			10.0			
		_ 10	3.3		4.8			
		20 - 11	-		212			
↓ ↓ Light brown, wet, fine to medium SAND (SW)	21.5		_	•	4.5			
		12	5.0		4.5			
		25 - 13			1.2			
	27.0	- 14	-		0.0			
Light gray, moist SILTY CLAY (CL)			5.0					
	30.0	- 15	0.0		7.5			
Bottom of Boring at 30 ft	- 50.0	30	1					
						Drillers License No. 2	2581	
TPV - Total Photo-Ionization Vapors		<u>pth to Grou</u> n Drilling To			1.5 ft.		HSA - Hollow Stem Augers CFA - Continuous Flight Aug	
PPM - Parts Per Million ⊈	At Com	pletion (ope	n hole		 ft.		HA - Hand Auger BLR - Bailer	
PVC - Polyvinyl Chloride	After	<u></u> hou epth	irs _		<u></u> ft. ft.		BP - Bladder Pump PP - Peristaltic Pump	
NA - Not Analyzed			-				SP - Submersible Pump	
							Page 1 of 1	

LIENT Economic Development ROJECT NAME Former RJ Refinery						
ROJECT LOCATION County Road 350 South						
Princeton, Indiana 4767	0					
DRILLING and SAMPLING INFOR	MATION		·			TEST DATA
Date Started11/1/16 Boring Method	d <u>Geop</u> i	robe				
Date Completed 11/1/16 Sampler OD	-				~	
Drill Foreman Z. Vaughn Inspector	R. Jenn	ings			apors	
					ble V	Sampling Notes
·				ř	Photoionizable Vapors	
SOIL CLASSIFICATION	Groundwater (1) Groundwater (1) Ground		dwate	hotoi		
SURFACE ELEVATION	Stratum Depth	Depth Scale Sample No.	lecov	Groundwater	Total F (ppm)	
Light brown, dry SILTY CLAY (CL)		- 1	ш. 	-	0.0	
		2	4.7		0.0	
		3			0.0	
		5				
		- 4			0.0	
		- 5	5.0		0.0	
		10				
- light brown and moist below 11 ft		- 6			0.0	
		- 7	5.0		0.0	The soil samples collected from 0-2 ft and 18-20 ft
		-	0.0		0.0	intervals were submitted from laboratory analysis.
		15 - 8			0.0	
		- 9	1		0.0	
		- 10	5.0		32.8	
Light brown, wet, fine to medium SAND (SW)	19.0				52.0	
- gray between 20-22 ft		2011	1		0.0	
		- 12		۰	0.0	
		-	5.0			
	25.0	- 13			0.0	
Bottom of Boring at 25 ft						
		oth to Grour	Indwate	er		Drillers License No. 2581
	Noted or	n Drilling To	ols	22	2.0 ft.	HSA - Hollow Stem Augers CFA - Continuous Flight Au
ND - None Detected	✓ At Comp ✓ After	oletion (oper <u></u> hou			ft. ft.	HA - Hand Auger BLR - Bailer BR - Bladder Bump
BVC Bolywinyd Chlorida	a Cave De		_		 ft.	BP - Bladder Pump PP - Peristaltic Pump SB - Submaraible Pump
						SP - Submersible Pump Page 1 of

CLIENT		Development C							
	Former RJ	-							JOB # 170SWIN05P
PROJECT LOCATIO		ad 350 South							
		Indiana 47670							
		AMPLING INFORM		_	[TEST DATA
Date Started	11/1/16	Boring Method	Geop						
Date Completed	<u>11/1/16</u>								
Drill Foreman _	Dhi Foreman <u>2. Vaugini</u> inspec			ings	-			Vapo	
								able	Sampling Notes
[1		£	er	ioniz	
	SOIL CLASSIFICATION		F		e	ery (f	dwat	Photo	
	SURFACE ELEVA	TION	Stratum Depth	Depth Scale	Sample No.	Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)	
			0.5	00	ທ Z 1		0		
	dry SILTY CLAY (CL))	- 0.5	-	1			0.2	
				-					
-				-	2	-			
				_	2	4.3		0.0	
				-					
				-					
-				-	3			0.0	
				5 -	-				The soil samples collected from 0-2 ft and 8-10 ft
-				-					intervals were submitted from laboratory analysis.
- moist below	6.0 ft			-	4			0.0	
-				-	-				
-				_	-	4.8			
-				-	5			0.0	
				-					
-				-					
Bottom of Bo	ring at 10 ft		10.0	10 -		1			
	5								
									Drillers License No. 2581
			 Dei	oth to (l dwat	er		
TPV - Total Photo-Ionization Vapors TFV - Total Flame-Ionization Vapors				n Drillir	ig Too	ols		 _ ft.	HSA - Hollow Stem Augers CFA - Continuous Flight Aug
PPM - Parts Per Million			At Comp After)	<u></u> ft. ft.	HA - Hand Auger BLR - Bailer
PVC - Polyvinyl Chloride					noui	 -		ft.	BP - Bladder Pump PP - Peristaltic Pump
	IA - Not Analyzed								SP - Submersible Pump Page 1 of 1

LIENT Economic Development Coalition of Southwest Indiana ROJECT NAME Former RJ Refinery								BORING # JOB #		
ROJECT NAME		ad 350 South							JOB #	TTUSWINUSP
		Indiana 4767								
	DRILLING and S	AMPLING INFOF	RMATION						TEST I	ОАТА
Date Started	11/1/16	Boring Metho		robe	Γ					
Date Completed	11/1/16	Sampler OD	a <u>acop</u> i	2.0 in.						
Drill Foreman	Z. Vaughn									
	SOIL CLASSIFICATION							Photoionizable Vapors	San	npling Notes
			Stratum Depth			very (ft)	Groundwater	Total Photoion (ppm)		
	SURFACE ELEVA	FACE ELEVATION		Depth Scale	Sampie No.	Recovery	Groui			
Light brown, c	dry CLAYEY SAND	(SC)			1			0.0		
Light brown, dry SANDY CLAY (CL)			2.0		2	4.2		0.0		
					3	4.2		0.0		
				5	4			0.0		
					5	4.9		0.0		
- moist to very	y moist silty clay bel	ow 10 ft		10 _	6			0.0		
	,,,,				7			0.0		
					8	5.0		0.0	intervals were submit The duplicate 6 samp	ected from 0-2 ft and 18-19 f ted from laboratory analysis. le was collected from the 0-2
				15	9			0.0	ft interval.	
			19.0		10	3.9		87	Light green staining a	nd hydrocarbon odor from
(222)	wet, fine to medium	SAND (SW)	19.0	20 -	11		.	7.9	18-19 ft.	,
- 0 0 0 0 - 0 0 0 - 0 0 0										
					12	5.0		5.7		
			25.0	25 -	13			3.4		
Bottom of Bo	ring at 25 ft									
									Drillers License No. 2	581
TPV - Total Photo-Ionization Vapors										HSA - Hollow Stem Augers
TFV - Total Photo- TFV - Total Flame PPM- Parts Per Mi ND - None Detect PVC - Polyvinyl Ch NA - Not Analyze	-Ionization Vapors illion ted Iloride	-	 Noted or ✓ At Comp ✓ Atter ✓ Cave De 	n Drilling bletion (c I	Тоо	ols 19.0 ft. n hole) ft.				CFA - Continuous Flight Au HA - Hand Auger BLR - Bailer BP - Bladder Pump PP - Peristaltic Pump SP - Submersible Pump

CLIENT PROJECT NAME		Development C						ndiana	
		oad 350 South							
	-	, Indiana 47670							
	DRILLING and S	AMPLING INFORM							TEST DATA
Date Started	11/1/16			robe					
Date Completed	11/1/16	Sampler OD in.							
Drill Foreman	Z. Vaughn		. Jenn		-			pors	
_							ar	Photoionizable Vapors	Sampling Notes
	SOIL CLASSIFICATION		Ę		le	Recovery (ft)	Groundwater	Photoic	
	SURFACE ELEVA	TION	Stratum Depth	Depth Scale	Sample No.	Reco	Grour	Total I (ppm)	
	n gravel Iry CLAYEY SILT (N		0.5	-	1			0.0	
	IIY ULATET SILI (1	vi∟)		-]				
				-	2			0.0	
				-		4.8			
				-	3	-		0.0	
				5 -				0.0	
			6.0	-	1	-			
Light gray, ver	ry moist SILTY CLA	(CL)		-	4			0.0	
				-	-	3.3			The soil samples collected from 0-2 ft and 8-10 ft
-				-	5	1	Ţ	0.0	intervals were submitted from laboratory analysis.
				-	1				
- wet at 10 ft				10 -	6	-	<u>۹</u>	0.0	
-				-	-				
				-	 	-			
-				-	7	4.2		0.0	
				-					
- light brown b	pelow 14 ft		15.0	-	8			0.0	
Bottom of Bor	ring at 15 ft		1	15 —		1			
									Drillers License No. 2581
TFV - Total Flame- PPM- Parts Per Mi ND - None Detect	PV - Total Photo-Ionization Vapors Depth to Groundwater FV - Total Flame-Ionization Vapors Noted on Drilling Tools 10.0 ft. X At Completion (open hole) 8.5 ft. X After hours ft. © Cave Depth ft. 								HSA - Hollow Stem Augers CFA - Continuous Flight Auge HA - Hand Auger BLR - Bailer BP - Bladder Pump PP - Peristaltic Pump SP - Submersible Pump Page 1 of 1

CLIENT PROJECT NAME		Development C						ndiana	BORING # B-41 JOB # 170SWIN05P	
PROJECT LOCATIC		oad 350 South							002 //	
	-	, Indiana 47670								
	DRILLING and S		TION						TEST DATA	
Date Started	10/31/16	Boring Method	Geop	robe						
Date Completed	10/31/16	Sampler OD								
Drill Foreman	Z. Vaughn	Inspector R	<u>. Jennings</u>					pors		
	SOIL CLASSIFICATION							Photoionizable Vapors	Sampling Notes	
			Ę		ole	Recovery (ft)	Groundwater	Photoic		
	SURFACE ELEVA	TION	Stratum Depth	Depth Scale	Sample No.	Reco	Groui	Total I (ppm)		
Light brown, c	dry SILTY CLAY (CI	_)		-	1			0.0		
				-						
				-		-				
					2	4.3		0.0		
				-	-	4.3				
				-						
				-	3			0.0		
				5 —	-				The soil samples collected from 0-2 ft and 8-10 ft	
				-					intervals were submitted from laboratory analysis. The MS/MSD 5 sample was collected from the 0-2	
- moist below	5.0 ft		4 0.0 ft interval.							
				-	-					
						1.7				
				-	5			0.0		
				-	-					
			10.0	-	-					
Bottom of Bor	ring at 10 ft		- 10.0	10 —						
									Drillers License No. 2581	
TPV - Total Photo-Ionization Vapors Depth to C TFV - Total Flame-Ionization Vapors ● Noted on Drillin PPM- Parts Per Million ✓ At Completion ND - None Detected ▼ After PVC - Polyvinyl Chloride ☑ Cave Depth NA - Not Analyzed ☑ Cave Depth					ig Too (oper	ols hole		ft. ft. ft. ft.	HSA - Hollow Stem Augers CFA - Continuous Flight Au HA - Hand Auger BLR - Bailer BP - Bladder Pump PP - Peristaltic Pump SP - Submersible Pump Page 1 of	

			Development Co								B-42 170SWIN05P
PROJECT NAM			ad 350 South							JOB #	
	AHON_		Indiana 47670								
	- -		AMPLING INFORMA							TEST	ΔΤΔ
Data Otaria d					aba						
Date Started Date Comple		<u>0/26/16</u> 0/26/16	Boring Method Sampler OD	2.0 in.							
Drill Foremar		. Vaughn						ors			
					<u>-</u>				Photoionizable Vapors	Sampling Notes	
	SOIL CLASSIFICATION			Ę	Ę	le	Recovery (ft)	Groundwater	Photoio)		
		JRFACE ELEVA		Stratum Depth	Depth Scale	Sample No.	Recov	Groun	Total I (ppm)		
Light bro	wn, dry (CLAYEY SAND	(SC)		-	1			0.0		
-12					-	-					
1/1				2.0	-						
Light bro	Light brown, moist SILTY CLAY (CL)				_	2			0.0		
-					-	-	3.3				
-					-	-					
					-	3			0.0		
					5						
-					-	-				The soil samples colle intervals were submit	ected from 0-2 ft and 8-10 ft ted from laboratory analysis.
-					-	4	-				, ,
-					-				0.0		
					-						
					_]	3.5				
-					-	5			0.0		
-					-	-					
				10.0	-	1					
Bottom o	of Boring	at 10 ft			10 -						
										Drillers License No. 2	581
						Grour	dwat	er			HSA - Hollow Stem Augers
TFV - Total Fl	TPV - Total Photo-Ionization Vapors					ng Too	ols		ft.		CFA - Continuous Flight Aug HA - Hand Auger
PPM - Parts P ND - None D	etected			At Comp After)	<u></u> ft. ft.		BLR - Bailer
	J - None Detected ▼ After hours ft. /C - Polyvinyl Chloride								BP - Bladder Pump PP - Peristaltic Pump SP - Submersible Pump Page 1 of 1		

IENT Economic Develor ROJECT NAME Former RJ Refiner						ndiana		
ROJECT LOCATION County Road 350	-						000 #	
Princeton, Indiana	47670							
DRILLING and SAMPLING	INFORMATION		ſ	ri			TEST	DATA
Date Started 11/1/16 Boring	Method Geop	robe	-					
Date Completed 11/1/16 Sampl		2.0	-			s		
Drill Foreman Z. Vaughn Inspec	tor R. Jenn	ings	-			/apor		
						able \	San	npling Notes
		1		(#)	ter	Total Photoionizable Vapors (ppm)		
SOIL CLASSIFICATION	§ _		ole	Recovery (ft)	Groundwater	Phot		
SURFACE ELEVATION	Stratum Depth	Depth Scale	Sample No.	Reco	Grou	Total (ppm		
Light brown, dry SILTY CLAY (CL)		-	1			0.0		
		-						
		-	2			0.0		
		-	-	1.0				
		-	3			0.0		
		5				0.0		
- gray and very moist below 5.0 ft		-		-				
		-	4			0.0		
			-	5.0			The soil samples coll	ected from 0-2 ft and 8-10 ft
		-	5			0.0	intervals were submit	ted from laboratory analysis.
		-						
- wet between 10-14 ft		10 -	6		<u>.</u>	0.0		
		-	-					
		-	7			0.0		
		-		2.8		0.0		
light brown balance 14.64		-						
- light brown below 14 ft	15.0	- 15 -	8	-		0.0		
Bottom of Boring at 15 ft								
							Drillers License No. 2	581
[D)/_ Total Photo Ionization Vanara	De	pth to C	<u>.</u> Groun	idwate	er			HSA - Hollow Stem Augers
 FPV - Total Photo-Ionization Vapors FFV - Total Flame-Ionization Vapors PPM- Parts Per Million 		n Drillin	g To	ols	1	<u>0.0</u> ft. ft.		CFA - Continuous Flight Au HA - Hand Auger
ND - None Detected	▼ After		hour			ft.		BLR - Bailer BP - Bladder Pump
PVC - Polyvinyl Chloride NA - Not Analyzed	超 Cave De	epth		-		 ft.		PP - Peristaltic Pump SP - Submersible Pump
								Page 1 of

ROJECT NAME Former RJ Refinery ROJECT LOCATION County Road 350 South	OJECT NAME Former RJ Refinery									
DRILLING and SAMPLING INFORMA	TION						TEST DATA			
Date Started 11/1/16 Boring Method Date Completed 11/1/16 Sampler OD Drill Foreman Z. Vaughn Inspector	_ in.			Flameionizable Vapors	Sampling Notes					
SOIL CLASSIFICATION	E		e	ery (ft)	Groundwater	lameio				
SURFACE ELEVATION	Stratum Depth	Depth Scale	Sample No.	Recovery (Groun	Total F (ppm)				
Gravel FILL / Light brown, slightly moist to moist SILTY CLAY (CL)	0.5	5 10 10 15 20 25 30 30 40	1 2 3 4 5 6 7 8 8 9 10 10 11 12 13 14 13 14 15 16 17 18 19 20	 4.7 4.0 4.0 5.0 2.7 4.7 4.3 	•	1.2 1.3 1.6 1.6 0.8 0.9 1.0 1.6 1.7 1.5 2.1 2.6 0.6 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1	The soil samples colle intervals were submitt	ected from 0-2 ft and 33-35 ft ed from laboratory analysis.		
TPV - Total Photo-Ionization Vapors TFV - Total Flame-Ionization Vapors ♀ N PPM- Parts Per Million ♀ A ND - None Detected ♀ A PVC - Polyvinyl Chloride ♀ C NA - Not Analyzed		581 HSA - Hollow Stem Augers CFA - Continuous Flight Aug HA - Hand Auger BLR - Bailer BP - Bladder Pump PP - Peristaltic Pump SP - Submersible Pump Page 1 of 1								

LIENT Economic Develop ROJECT NAME Former RJ Refine		ndiana						
ROJECT LOCATION County Road 350	South							
Princeton, Indiana	47670							
DRILLING and SAMPLING	INFORMATION		ſĒ				TEST	ОАТА
Date Started 10/31/16 Boring	Method Geop	robe						
	ler OD	2.0	in.			Ś		
Drill Foreman Z. Vaughn Inspec	ctor R. Jenn	ings				/apor		
						able /	San	npling Notes
SOIL CLASSIFICATION				y (ft)	vater	Total Photoionizable Vapors (ppm)		
SURFACE ELEVATION	Stratum Depth	Depth Scale	Sample No.	Recovery (ft)	Groundwater	Total Ph (ppm)		
Light brown, dry CLAYEY SILT (ML)	<u> </u>	ŏŏ -	ທັ Ž	Ĕ	Ō	년 <u>은</u> 1.0		
Light brown, moist SILTY CLAY (CL)	/		'			0.8		
		-	2	5.0				
		5 –	3			0.6		
			4			0.5		
		-	5	4.6		0.4		
		10 -	6			0.4		
		-	7			0.4		
				4.4		0.3		
		15 —	8			0.0		
			9	5.0				ected from 0-2 ft and 24-26 ft
		20 —	10	5.0		0.0	intervals were submit	ted from laboratory analysis.
		20	11			0.0		
and halve on the			12	5.0		0.0		
- gray below 23 ft		25 —	13			0.0		
<u></u>	27.0		14		•	0.0		
Light brown, wet, coarse SAND (SW)	28.0		15	5.0	-	0.0		
Light gray, moist SILTT OLAT (OL)		30 -	16			0.0		
						0.0		
				5.0				
Bottom of Boring at 35 ft	35.0	35 —	18			0.0		
							Drillers License No. 2	581
PV - Total Photo-Ionization Vapors FV - Total Flame-Ionization Vapors PM - Parts Per Million ID - None Detected PVC - Polyvinyl Chloride IA - Not Analyzed	Depth to Groundwater ● Noted on Drilling Tools 27.0 ✓ At Completion (open hole) ▼ After ● Cave Depth							HSA - Hollow Stem Augers CFA - Continuous Flight Aug HA - Hand Auger BLR - Bailer BP - Bladder Pump PP - Peristaltic Pump SP - Submersible Pump

PROJECT NAME Former RJ Refinery JOB # PROJECT LOCATION County Road 350 South	
Princeton, Indiana 47670 DRILLING and SAMPLING INFORMATION TEST I Date Started 10/27/16 Boring Method Geoprobe Date Completed 10/27/16 Sampler OD 2.0 in.	
DRILLING and SAMPLING INFORMATION TEST I Date Started 10/27/16 Boring Method Geoprobe Date Completed 10/27/16 Sampler OD 2.0 in.	
Date Started 10/27/16 Boring Method Geoprobe Date Completed 10/27/16 Sampler OD 2.0 in.	
Date Completed 10/27/16 Sampler OD 2.0 in.	npling Notes
Drill Foreman <u>Z. Vaughn</u> Inspector <u>R. Jennings</u>	npling Notes
	npling Notes
Solution Solution Condition Solution	
Construction Construction Total P Stratu NOILEATION Oppin Stratu	
Light brown, dry clayey silt	
Light brown, moist SILTY CLAY (CL) 5.0 5 The soil samples colle	ected from 0-2 ft and 8-10 ft
	ted from laboratory analysis.
3.8	
Bottom of Boring at 10 ft	
Drillers License No. 2	
TPV - Total Photo-Ionization Vapors Depth to Groundwater TFV - Total Flame-Ionization Vapors Noted on Drilling Tools 	HSA - Hollow Stem Augers CFA - Continuous Flight Aug
PPM- Parts Per Million	HA - Hand Auger BLR - Bailer
ND- None Detected▼ After hours ft.PVC - Polyvinyl ChlorideImage: Cave DepthImage: Cave DepthImage: Ft.NA- Not AnalyzedImage: Cave DepthImage: Ft.	BP - Bladder Pump PP - Peristaltic Pump SP - Submersible Pump Page 1 of 1

		Development C							
PROJECT NAME PROJECT LOCATIO		ad 350 South							JOB # 170SWIN05P
ROJECT LOCATIO	-	Indiana 47670							
	DRILLING and SA		ATION						TEST DATA
Date Started	10/27/16	Boring Method		rohe					
Date Completed	10/27/16	Sampler OD	-						
Drill Foreman	Z. Vaughn							ors	
							ar	Total Photoionizable Vapors (ppm)	Sampling Notes
SOIL CLASSIFICATION		TION	۶		θ	Recovery (ft)	Groundwater	Photoic	
	SURFACE ELEVATION		Stratum Depth	Depth Scale	Sample No.	Recov	Groun	Total F (ppm)	
Light brown, d	ry CLAYEY SILT (M	L)		-	1			0.0	
					2	4.7		0.0	
	Gray, moist SILTY CLAY (CL)			5 —	3	+./		0.0	
Gray, moist SI			6.0	-	4	-		0.0	
	· · ·				- 5	4.8		0.0	
				10 -	6	-		0.0	
				-	7	-		0.0	
				-	8	3.5		0.0	
				15	- 9	-		0.0	The soil samples collected from 0-2 ft and 24-26 ft intervals were submitted from laboratory analysis.
					10	3.5		0.0	
				20 -	11	-		0.0	
				-	12	-		0.0	
					13	3.9		0.0	
Gray/brown. w		AND (SW)	26.0	25	14	_	<u>.</u>	0.0	
	ILTY CLAY (CL)		28.0		15	4.4		0.0	
			30.0	30 -					
Bottom of Bori	ing at 30 ft								
							Drillers License No. 2581		
TPV - Total Photo-I TFV - Total Flame- PPM- Parts Per Mil ND - None Detectr PVC - Polyvinyl Chl NA - Not Analyzed	Depth to Groundwater Noted on Drilling Tools 26.0 At Completion (open hole) After hours Cave Depth						HSA - Hollow Stem Augers CFA - Continuous Flight Auge HA - Hand Auger BLR - Bailer BP - Bladder Pump PP - Peristaltic Pump SP - Submersible Pump Page 1 of 1		

		Development Co								
PROJECT NAME		-							JOB # 170SWIN05P	
PROJECT LOCATIC	-	bad 350 South								
	Princeton,	, Indiana 47670								
	DRILLING and S	AMPLING INFORMA	TION		I				TEST DATA	
Date Started	10/27/16	Boring Method	Geop	orobe_						
Date Completed	10/27/16									
Drill Foreman	Z. Vaughn	Inspector R	or <u>R. Jennings</u>					apors		
							zable V	Sampling Notes		
	SOIL CLASSIFICATION					Recovery (ft)	Groundwater	Photoionizable Vapors		
			SURFACE ELEVATION		Stratum Depth Scale No.	ecove	puno.	Total Pł (ppm)		
			۵. تو	ര്ഗ്		ř	Ğ			
	dry clayey silt			-	1			0.0		
				-						
_				_	2			0.0		
-				-	-	4.8				
-				-	-					
				-	3	-		0.0		
			5.0	5]			0.0		
Black, moist	SILTY CLAY (CL)			- J -	1				The soil samples collected from 0-2 ft and 5-6 ft intervals were submitted from laboratory analysis.	
lineht burgering (=)		<i>f</i> +		-	4	-				
iignt brown/ol	ive green below 6.0	п		-	4			0.0		
				-	1					
					1	4.0				
				-	5			0.0		
-12				-	-					
			10.0	-	-					
Bottom of Bo	ring at 10 ft		10.0	10 -		1				
									Drillers License No. 2581	
	PV - Total Photo-Ionization Vapors FV - Total Flame-Ionization Vapors				<u>Groun</u> Ig Too		er	 ft.	HSA - Hollow Stem Augers CFA - Continuous Flight A	
PPM - Parts Per M	illion	Į Į	At Comp	oletion	(oper	hole)	ft.	HA - Hand Auger BLR - Bailer	
PVC - Polyvinyl Ch	ND - None Detected				hour	s -		<u></u> ft. ft	BP - Bladder Pump	
NA - Not Analyze	國(La Cave Depthft.						PP - Peristaltic Pump SP - Submersible Pump		
									Page 1 of	

	AME Former RJ Refinery		n of Sout					
	OCATION County Road 350 South							
	Princeton, Indiana 47670							
	DRILLING and SAMPLING INFORM	/ ATION					TEST	DATA
Date Star	ted10/27/16 Boring Method	Geop	robe					
Date Corr			2.0 in.					
Drill Forer	man <u>Z. Vaughn</u> Inspector	R. Jenn	ings_			pors		
						Total Photoionizable Vapors (ppm)	San	npling Notes
	SOIL CLASSIFICATION	<u> </u>	e a e	Recovery (ft)	Groundwater	Photoio		
	SURFACE ELEVATION	Stratum Depth	Depth Scale Sample	Reco	Groui	Total (ppm)		
Light	brown, dry CLAYEY SAND (SC)		1		- 1	1.2		
			2	5.0		0.0		
/		5.0	5 - 3	0.0		0.0		
Light	brown/olive green, moist SILTY CLAY (CL)		4	-		0.0		
			= 5	5.0		0.0		
			10 = 6	-		0.0		
			- 7	-		9.5		
- liaht	brown between 14-20 ft			3.3		0.0		
Igin	blown between 14 20 ft			-		1.6		
				5.0		0.0		
			20 = 10			0.0		ected from 0-2 ft and 12-14 ft
- light	brown between 21-27 ft		=	-		0.0	intervals were submit	ted from laboratory analysis.
				4.5		0.0		
			25 - 13	-		0.0		
- light	gray below 27 ft			5.0		0.0		
			30 15			0.0		
						0.0		
		35.0		5.0	_	0.0		
Light	gray, wet, fine to medium SAND (SW)		35 - 18	-	Ē	0.0		
* * • *				5.0		0.0		
		40.0	40 20			0.0		
Bottor	m of Boring at 40 ft							
							Drillers License No. 2	581
FV - Tota PPM- Parts ND - None	s Per Million ♀ e Detected ♀ vinyl Chloride	Noted or	pth to Grou n Drilling To pletion (ope <u></u> hou pth	ols n hole)	3	5.0 ft. ft. ft. ft.	1	HSA - Hollow Stem Augers CFA - Continuous Flight Au HA - Hand Auger BLR - Bailer BP - Bladder Pump PP - Peristaltic Pump SP - Submersible Pump Page 1 of

CLIENT PROJECT NAME		Development Co J Refinery								<u>B-50</u> 170SWIN05P		
ROJECT LOCATIO		oad 350 South										
	-	Indiana 47670										
	DRILLING and S								TEST DATA			
Date Started	10/27/16	Boring Method	Geop	robe								
	10/27/16	Sampler OD	0.000	2.0								
Drill Foreman					. Vaughn Inspector R. Jennings							
								ble Va	Sar	npling Notes		
						/ (ft)	ater	Total Photoionizable Vapors (ppm)				
	SOIL CLASSIFICATION				Sample No.	Recovery (ft)	Groundwater	al Pho n)				
	SURFACE ELEVATION			Depth Scale	San No.	Rec	Gro	-				
Light brown, di	Light brown, dry CLAYEY SAND (SC)			-	1			0.0				
Light gray mo			3.0		2	4.7		0.0				
				5 -	3			19.8				
				-	4			10.1				
				-	5	4.5		10.1				
				10	6			12.1				
	- light brown between 16-29 ft				7	3.7		25.1				
				15 -	8	0.7		4.6				
- light brown be			prown between 16-29 ft			9			9.8			
			-	10	3.7		0.0					
				20 -	11			24.1	The soil samples col	lected from 0-2 ft and 12-14		
				-	12			11.5	intervals were submi	tted from laboratory analysis		
						4.7		4.1				
				25 –	13			0.5				
					14	5.0		0.0				
- gray below 29	9 ft			30 -	15	-		0.0				
				-	16			0.0				
					17	4.7						
124	etween 34-35 ft		36.0	35 -	18		ė	0.0				
Light gray, wet	t, fine to medium S	AND (SW)		-	19			0.0				
			40.0	40 -	20	5.0		0.0				
Bottom of Bori	ng at 40 ft			40 -								
									Drillers License No. 2	2581		
TPV - Total Photo-le		1	<u>De</u> Del Noted or	oth to C Drillin				6.0 _ft.	<u> </u>	HSA - Hollow Stem Augers CFA - Continuous Flight Au		
TFV - Total Flame-I PPM- Parts Per Mill	lion	Į Į	At Comp	letion	(open	hole		 ft.		HA - Hand Auger BLR - Bailer		
ND - None Detecte PVC - Polyvinyl Chlo	oride		After Cave De		hour	s_		<u></u> ft. ft.		BP - Bladder Pump		
NA - Not Analyzed	1			1		-				PP - Peristaltic Pump SP - Submersible Pump Page 1 of		

ENT OJECT NAME	•						Idialia		
	Princeton, Indiana 47670								
	DRILLING and SAMPLING INFORM	MATION		г				TEST	DATA
Date Started	10/26/16 Boring Method	Geopi	obe	-					
Date Completed	10/26/16 Sampler OD		2.0	-			ú		
Drill Foreman	Z. Vaughn Inspector	R. Jenn	ings	-			apor		
							tble V	San	npling Notes
					-t	er	Photoionizable Vapors		
	SOIL CLASSIFICATION	F		e	ery (f	dwate	hoto		
	SURFACE ELEVATION	Stratum Depth	Depth Scale	Sample No.	Recovery (ft)	Groundwater	Total F (ppm)		
TOPSOIL		の口 」 0.5	<u>-</u> -	ທ Z 1		0	0.0		
/./	y CLAYEY SAND (SC)		-				1.0		
		4.0	-	2	4.8		1.0		
Light gray/gree	n, moist SILTY CLAY (CL)		5	3			69.0		
			-	4			6.0		
- light brown a	nd very moist below 7.0 ft			5	5.0		4.2		
			- 10 —	5					
				6			3.1		
				7	5.0		2.1		
			-	8	0.0		1.1		
			15				10.7	The soil samples coll	ected from 0-2 ft and 4-6 ft ted from laboratory analysis.
			_	9			10.7		teo nom laboratory analysis.
			-	10	5.0		1.9		
			20 —	11			1.9		
- light gray belo	Suu 00 #		_	10			0.6		
			-	12	5.0				
- sandy clay be	low 24 ft , fine to medium SAND (SW)	24.8	25 —	13		۰	0.1		
ູຸ Ligni yiay, wet ໍໍ່			-	14			0.1		
。。。 。。				15	5.0		0.1		
		30.0	30 —						
Bottom of Bori	ng at 30 ft								
								Drillers License No. 2	581
PV - Total Photo-lo			oth to C				19 #		HSA - Hollow Stem Augers
FV - Total Flame-I PM- Parts Per Mill	ion $ agentation Taporo$	Noted or At Comp					4.8 ft. ft.		CFA - Continuous Flight Au HA - Hand Auger
D - None Detecte VC - Polyvinyl Chlorense	oride	After		hour	s _		<u></u> ft. ft.		BLR - Bailer BP - Bladder Pump
A - Not Analyzed		a Jave De	μπ		-		II.		PP - Peristaltic Pump SP - Submersible Pump

		Development C									
PROJECT NAME PROJECT LOCATIC		Dad 350 South							JOB # 170SWIN05P		
PROJECT LOCATIC		Indiana 47670									
									TEST DATA		
Data Otarita d				aba							
Date Started Date Completed	<u>10/26/16</u> 10/26/16	Boring Method Sampler OD	Geopi	<u>2.0</u>							
Drill Foreman	Z. Vaughn		Jenn		-			ors			
				_ J _	_		~	Total Photoionizable Vapors (ppm)	Sampling Notes		
	SOIL CLASSIFICA	TION	Ę_	5 a	ole	Recovery (ft)	Groundwater	Photoi			
	SURFACE ELEVA	TION	Stratum Depth	Depth Scale	Sample No.	Recov	Grour	Total I (ppm)			
Light brown, o	dry CLAYEY SAND	(SC)		-	1			0.0			
				-							
				-		-					
- 2				-	2	4.3		0.6			
				-	1						
				-	1	-					
			4.5	-	3			92.0			
	live green, moist Si	LTY CLAY (CL)		5 -	-				The soil samples collected from 0-2 ft and 4-6 ft		
				-					intervals were submitted from laboratory analysis. The duplicate 2 sample was collected from the 4-6		
-				-	4			42.0	ft interval.		
-				-	-						
				-	1	4.3					
				-	5	-		81.0			
-				-	-						
-			10.0	-	-						
Bottom of Bo	ring at 10 ft		10.0	10 -							
									Drillers License No. 2581		
TPV - Total Photo-	Ionization Vapors			oth to (ər		HSA - Hollow Stem Augers		
TFV - Total Flame PPM- Parts Per M	-Ionization Vapors		Noted or At Comp)	<u></u> ft. ft.	CFA - Continuous Flight Aug HA - Hand Auger		
ND - None Detect PVC - Polyvinyl Ch	ted	₹ /	After		hour		/	ft.	BLR - Bailer BP - Bladder Pump		
NA - Not Analyze		驞 (Cave De	pth		-		ft.	PP - Peristaltic Pump SP - Submersible Pump Page 1 of 1		

CLIENT		Development C	oalitio	n of S	Sout	hwe	st Ir	ndiana	
PROJECT NAME		-							JOB # 170SWIN05P
PROJECT LOCATIC		ad 350 South							
	Princeton,	Indiana 47670							
	DRILLING and SA		ATION		I		1		TEST DATA
Date Started	10/26/16	Boring Method	Geop	robe	-				
Date Completed	10/26/16	Sampler OD _		2.0	_ in.				
Drill Foreman	Z. Vaughn	Inspector R	. Jenn	ings	-			apor	
								> elc	Sampling Notes
								nizal	
	SOIL CLASSIFICAT	ΓΙΟΝ				iry (ft)	water	hotoic	
	SURFACE ELEVAT		Stratum Depth	Depth Scale	Sample No.	Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)	
				ŏŏ	ທໍ ž	Ĕ	Ū		
	dry CLAYEY SAND (S	SC)	0.5	-	+ '			0.0	
	-			-]				
				-					
-02				-	2	4.5		0.0	
Light brown, o	dry SILTY CLAY (CL)		3.0	-	-	4.5			
	,			-					
					3			0.0	
- moist below	4.5 ft			5 -	-				The soil samples collected from 0-2 ft and 8-10 ft
-				-					intervals were submitted from laboratory analysis.
-				-	4	-		0.0	
-				-	-	5.0			
-				-	5	5.0		0.0	
				-				0.0	
-				-					
Bottom of Bor	ing at 10 ft		10.0	10 -		-			
	ing at 10 it								
			<u> </u>		<u> </u>	<u> </u>			Drillers License No. 2581
TPV - Total Photo- TFV - Total Flame		•	<u>De</u> Noted or	<u>pth to (</u> n Drillir			<u>er</u>	 ft.	HSA - Hollow Stem Augers CFA - Continuous Flight Au
PPM - Parts Per Mi ND - None Detect	llion	Σ.	At Comp	oletion	(oper	n hole)	ft.	HA - Hand Auger BLR - Bailer
PVC - Polyvinyl Ch	loride		After Cave De		hour	rs _		<u></u> ft. ft.	BP - Bladder Pump PP - Peristaltic Pump
NA - Not Analyze	u	-	-			-			SP - Submersible Pump
									Page 1 of 1

CLIENT PROJECT NAME		<u>: Development C</u> J Refinerv		n of S					BORING # JOB #	<u>B-54</u> 170SWIN05P		
ROJECT LOCATIO		oad 350 South										
	-	, Indiana 47670										
	DRILLING and S	SAMPLING INFORM	ATION						TEST I	DATA		
Date Started	10/27/16	Boring Method	Geop	robe								
Date Completed	10/27/16	_ Sampler OD _		2.0								
Drill Foreman	Z. Vaughn	_ Inspector	. Jenn	ings	_			pors				
							r	Photoionizable Vapors	San	npling Notes		
	SOIL CLASSIFIC	ATION	= = _	50	ole	Recovery (ft)	Groundwater	Photoi				
	SURFACE ELEV	ATION	Stratum Depth	Depth Scale	Sample No.	Reco	Grou	Total I (ppm)				
Light brown, d	Iry CLAYEY SAND	(SC)			1			0.0				
Light brown/ol	live green, moist Sl	ILTY CLAY (CL)	1.0		-							
					2			51.6				
				.	4	4.7						
					-							
					3	-		7.5				
				5 -				7.5				
					-				The soil samples colle	ected from 0-2 ft and 2-4 ft ted from laboratory analysis.		
					4	-						
								6.6				
					_	5.0						
					5			1.9				
					-							
			10.0	10 -								
Bottom of Bor	ing at 10 ft											
									Drillers License No. 2	581		
PVC - Polyvinyl Chl	Ionization Vapors Ilion ed Ioride	, ∑,	<u>De</u> Noted or At Comp After Cave De	oletion 	ng Too (oper	ols 1 hole		ft. ft. ft. ft. ft.		HSA - Hollow Stem Augers CFA - Continuous Flight Au HA - Hand Auger BLR - Bailer BP - Bladder Pump PP - Peristaltic Pump		
ND - None Detect PVC - Polyvinyl Chl NA - Not Analyzed	ed Ioride	Σ.	After)	ft.		BLR - Bailer BP - Bladder Pump		

IENT Economic Development ROJECT NAME Former RJ Refinery					ndiana		
ROJECT LOCATION County Road 350 Sou							
Princeton, Indiana 47	7670						
DRILLING and SAMPLING INF	FORMATION					TEST	DATA
Date Started 10/27/16 Boring Me	ethod <u>Geop</u>	robe					
Date Completed 10/27/16 Sampler C		2.0	in.		s		
Drill Foreman Z. Vaughn Inspector	R. Jenn	ings			'apor		
					Photoionizable Vapors	Sar	npling Notes
SOIL CLASSIFICATION	Ē		No. Recovery (ft)	Groundwater	Photoic		
SURFACE ELEVATION	Stratum Depth	Depth Scale	No. Recove	Groun	Total I (ppm)		
Light brown, slightly moist CLAYEY SILT (ML)			1		0.0		
			2		0.0		
Light brown, moist SILTY CLAY (CL)	4.0	5 -	4.7 3		0.0		
			4		0.0		
			5 4.5		0.0		
		10 -	6		0.0		
			7 5.0		0.0		
		15 -	8		0.0		
			9		0.0	The soil samples coll intervals were submit	ected from 0-2 ft and 16-18 ft tted from laboratory analysis.
			10 5.0		0.0		
		20 -	11		0.0		
- gray below 22 ft			12		0.0		
	25.0]	12 5.0	•	0.0		
Light brown, wet, fine to medium SAND (SW)	27.0	1	14	-	0.0		
Gray, moist SILTY CLAY (CL)			50		0.0		
	30.0	30 -	15		0.0		
Bottom of Boring at 30 ft		30 -					
						Drillers License No. 2	2581
PV - Total Photo-Ionization Vapors FV - Total Flame-Ionization Vapors PM- Parts Per Million ID - None Detected PVC - Polyvinyl Chloride IA - Not Analyzed	De ♥ Noted o ☑ At Comp ♥ After ፼ Cave De	oletion (o ł	Tools	2	5.0 ft. ft. ft. ft.		HSA - Hollow Stem Augers CFA - Continuous Flight Au HA - Hand Auger BLR - Bailer BP - Bladder Pump PP - Peristaltic Pump SP - Submersible Pump Page 1 of

LIENT		nance Author	ity							
ROJECT NAME	Former R	J Refinery							JOB #	170IFA0010
ROJECT LOCATIO	County Ro	oad 350 South	and	J.S. Highw	ay 41				_	
	Princeton	, Indiana 4767	0						_	
	DRILLING and S	AMPLING INFOR	RMATIC	N					TEST	DATA
Date Started	4/27/18	Well Material		PVC						
	4/27/18	Well Diamete								
Drill Foreman	Z. Vaughan							ors		
Inspector	J. Winsett							Vapo		
Boring Method	Geoprobe	Development						able	S	ampling Notes
		Bevelopment	Wetho				L _	oniza		
S	OIL CLASSIFICAT	ION				Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)		
		-	Stratum Depth			ove	pund	m) Pr		
S	URFACE ELEVAT	ION	Stra Dep	Well Cale Diagra	Sar No.	Rec	Gro			
· ////	TY SANDY GRAV		0.5		≤ 1			0.0	A hand-auger wa	is used to advance the first five
Brown, slightly	moist, SILTY SAN	IDY CLAY (CL)			2			0.0	damaging unider	to reduce the possibility of the transferred underground utilities.
					3			0.0		
- very moist sil	ty clay below 5.0 ft	t		5 —	4			0.0		
						4.2				
				10 —	5	4.2		0.0		
					6			9.6		
- grayish brow	n and moist betwee	en 12-14.5 ft			7	4.3		22.8		
				15 —	8	4.5		49.5		
- orangish brov clay below 14.	wn with gray mottlir 5 ft	ng, moist, sandy			9			0.0		
						4.2		3.2		
				20 -	10	7.2				
					11			0.0	The soil samples	collected from the 0-2 ft and were submitted for laboratory
			23.5		12	4.3		0.0	analysis.	were submitted for laboratory
	o wet, very fine to	fine, CLAYEY	24.0	25 -	13			0.0		
SAND (SC)			26.0		14		•	0.0		
Brown, wet, ve	ry fine to fine, CLA					4.3		109		
(SC)			29.5 30.0	30 -	15			103		
Blank drilled	gray, wet, very find	e, <u>SAND (SP)</u> /	00.0		16					
					17					
Blank drilled				35 -	18					
					19					
							Į Į Į			
			40.0	40 =	20					
Bottom of Bori	ng at 40 ft									
										No. 0591
									Drillers License	NO. 2001
TPV - Total Photo- TFV - Total Flame- PPM- Parts Per Mil ND - None Detect PVC - Polyvinyl Chl NA - Not Analyzed	Ionization Vapors Ilion ed oride	-	⊈ At C ⊈ Afte	Depth to Gro ed on Drilling ompletion (op r 24 ho e Depth	Tools en hole	2 e) 3	7.4	ft.		HSA - Hollow Stem Augers CFA - Continuous Flight Aug HA - Hand Auger BLR - Bailer BP - Bladder Pump PP - Peristaltic Pump WP - Whale Pump

_IENT		ance Author	ity								
ROJECT NAME		-									170IFA0010
ROJECT LOCATION _	-	ad 350 South		U.S. H	ighw	ay 41				-	
	Princeton,	Indiana 4767	0							-	
D	RILLING and SA	AMPLING INFOR	RMATIC	ON						TEST D	ATA
Date Started	27/18	Well Material			PVC						
Date Completed 4/2	27/18	Well Diamete	er		2.0	_in.					
Drill Foreman Z.	Vaughan								pors		
Inspector J.	Winsett	Slot Size).010	_in.			e Va		
Boring Method G	eoprobe	Development	Metho	d	WP				izabl	Sa	mpling Notes
SOIL	CLASSIFICATIO	ON	_				ry (ft)	water	Total Photoionizable Vapors (ppm)		
SURI		ON	Stratum Depth	Depth Scale	Well Diagra		Recovery (ft)	Groundwater	Total PI (ppm)		
Dark brown, moist	, CLAYEY SILT	(ML)	1.0			1			0.0	A hand-auger was	used to advance the first five
Brown, moist, SIL		_`]			Ì			0.0	feet of this boring	to reduce the possibility of fied underground utilities.
						2			0.0		
				5 —		3	1		0.0		
							-		10.2		
						4			10.2		
- very moist, silty s	sandy clay betwe	een 8.0-12 ft				5	4.5		8.1		
				10 -		6	-		4.9		
				-		0					
- orangish brown,	wet, sandy clay	below 12 ft		-		7	4.3	_	4.2		
				-		8	-		2.5		
				15 —							collected from the 0-2 ft and
A			17.5	-		9			4.2	analysis.	e submitted for laboratory
Orangish brown, v			18.0	-		10	4.2		1.5		
Brown, very moist	, SANDY CLAY	(CL)		20 -					0.0		
Brown, wet, very f	ine to fine. CLAN		21.0			11			0.9		
(SC)						12	4.2		0.3		
1) A						10	+.2		1.1		
				25 –		13			1.1		
					目	14]		0.0		
2						15	4.3	Ā	0.0		
7			30.0	30 -				¥			
Bottom of Boring a	at 30 ft										
										Drillers License No	2581
				Depth	to Gro	undwa	ıter				HSA - Hollow Stem Augers
TPV - Total Photo-Ioni: TFV - Total Flame-Ioni PPM - Parts Per Million ND - None Detected PVC - Polyvinyl Chloric NA - Not Analyzed	zation Vapors		⊻ At C ⊈ Afte	ed on Dr completi	illing ⁻ on (op 1 ho	Tools en hol	1 e)2	<u>2.0</u> 9.4 8.1 	ft. ft.		CFA - Continuous Flight Aug HA - Hand Auger BLR - Bailer BP - Bladder Pump PP - Peristaltic Pump WP - Whale Pump

IENT		nance Author	ity								
ROJECT NAME	Former R	-									170IFA0010
ROJECT LOCATIC		oad 350 South		J.S. H	ighw	ay 41				-	
	Princeton	<u>, Indiana 4767</u>	0							-	
	DRILLING and S	SAMPLING INFOR	RMATIC	N						TEST	DATA
Date Started	4/26/18	Well Material			PVC						
Date Completed		Well Diamete									
Drill Foreman	Z. Vaughan								ors		
Inspector	J. Winsett								Vap		
Boring Method	Geoprobe	Development							able	Sa	ampling Notes
								2	oniz		
S	OIL CLASSIFICAT	ION					No. Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)		
			Stratum Depth	Depth Scale	Well	a Sample No.	Sove	pund	Total Pł (ppm)		
	SURFACE ELEVAT			Sci Del	Diagra	Sar No.	Be	ğ			
///	noist, CLAYEY SIL		0.5		× –	3 1			0.0	A hand-auger was	s used to advance the first five to reduce the possibility of
Brown, moist,	SILTY SANDY CL	AY (CL)				2	1		0.0		tified underground utilities.
				=		~	-		2.2		
				5 -		3					
				=		4			30.7		
- grayish brow	vn, silty clay below 8	8.0 ft		-		5	5.0		456		
				10 -		0	-		351		
				=		6					
- orangish bro very moist be	own with gray mottlin	ng and moist to				7	4.2	Ā	166		
very moist be	10101211			15 —		8	-		91.2		
4			16.0	13 -		-	-		188		
SAND (SC)	to very moist, very					9	10				
- orangish bro	own between 17.5-2	:1 ft		-		10	4.2		207	8-10 ft intervals w	collected from the 0-2 ft and rere submitted for laboratory
				20 -		11			202	analysis.	
- gray, very m	ioist, very fine claye	ey sand below 21	23.0				-	₽	445		
Brown, moist	to very moist, SAN	DY CLAY (CL)	23.0			12	4.3		_		
		· · · ·		25 —		13			120.3		
			27.0			14		•	38.3		
Orangish brov CLAYEY SAN	wn, very moist to we	et, very fine,	29.0			15	4.2		21.2		
	n, wet, very fine, SA	 AND (SP)	20.0	30 —							
						16			4.5		
				-	l	17	4.2		4.0		
Grayish brown			35.0			18	- - C		3.2		
Bottom of Bor	ring at 35 ft		1	35 —			1				
				Darth	to Cr					Drillers License N	
	-Ionization Vapors		Note	<u>Depth</u> d on D				7.0	ft.		HSA - Hollow Stem Augers CFA - Continuous Flight Aug
PPM - Parts Per M ND - None Detec	illion .		⊈ At C	omplet	on (op	en hol	e)_ 2	2.2	ft.		HA - Hand Auger BLR - Bailer
PVC - Polyvinyl Ch	nloride		▼ Afte a Cav		4 ho	ours	1	<u>2.5</u> 	_ ft. ft.		BP - Bladder Pump PP - Peristaltic Pump
NA - Not Analyze	bq		Ouv	- Dopa							WP - Whale Pump

LIENT		nance Author	ity							
ROJECT NAME		-								
ROJECT LOCATIO	-	oad 350 South		U.S. Hi	ighwa	y 41				_
	Princeton	<u>, Indiana 4767</u>	0							_
	DRILLING and S	Sampling Infor	RMATIC	N				,		TEST DATA
Date Started	4/26/18	Well Material			PVC	_				
Date Completed	4/26/18	Well Diamete	er		2.0	_in.				
Drill Foreman	Z. Vaughan		engthft						pors	
Inspector	J. Winsett	Slot Size		(0.010	_in.			e Va	
Boring Method	Geoprobe	Development	Metho	d	WP	-			izabl	Sampling Notes
							— (£)	lter	Total Photoionizable Vapors (ppm)	
S	OIL CLASSIFICAT	ION	<u> </u>		Woll	ele	Recovery (ft)	Groundwater	Phot	
S	URFACE ELEVAT	ION	Stratum Depth	Depth Scale	Well Diagram	Samp Vo.	Jeco	Groun	Total F (ppm)	
Dark brown. m	noist, SANDY SILT	Y CLAY (CL)				ຫ∠ 1	ш		0.0	A hand-auger was used to advance the first five
- brown, silty c	clay between 0.5-11	1 ft								feet of this boring to reduce the possibility of damaging unidentified underground utilities.
				_		2			0.0	
				5 —		3			0.0	
						4			0.0	
						-			0.0	
						5	4.8	Ā	0.0	
				10 -						
						6			0.0	
- grayish brow	n with gray mottling	g below 11 ft							0.0	
						7	4.0		0.0	The soil samples collected from the 0-2 ft and
						8			0.0	8-10 ft intervals were submitted for laboratory analysis.
- wet below 15	5 ft			15				₽ ₽		
						9		<u> </u>	0.0	
//			18.0				4.0			
Orangish brow SAND (SC)	vn, wet, very fine to	tine, CLAYEY				10	-		0.0	
				20 -		11			0.0	
						12	4.2		0.0	
	n, very fine, clayey	sand below 23					4.2			
The second secon			25.0	25 —		13			0.0	
Bottom of Bor	ing at 25 ft					$\left - \right $				
										Drillers License No. 2581
FPV - Total Photo- FFV - Total Flame- PPM - Parts Per Mi ND - None Detect PVC - Polyvinyl Ch NA - Not Analyze	Ionization Vapors Ilion ted Ioride	-	⊻ At C ⊈ Afte	Depth ed on Dr completion r 24 e Depth	on (ope 1 hou	ools n hole	<u>1</u> e) 1	<u>5.0</u> 6.0 8.0	ft. ft.	HSA - Hollow Stem Augers CFA - Continuous Flight Aug HA - Hand Auger BLR - Bailer BP - Bladder Pump PP - Peristaltic Pump

LIENT				ndiana Finance Authority Former RJ Refinery										
ROJECT NAME		-								170IFA0010				
ROJECT LOCATIO		bad 350 South		J.S. High	way 41				_					
	Princeton	, Indiana 4767	U						-					
	DRILLING and S	AMPLING INFOR	MATIC	N			,	1	TES	T DATA				
Date Started	4/26/18	Well Material		P\	<u>'C</u>									
Date Completed	4/26/18	Well Diamete	r	2	. .0 _in.									
Drill Foreman	Z. Vaughan	-			10 _ft			pors						
Inspector	J. Winsett	Slot Size			10 _in.			le Va		0				
Boring Method	Geoprobe	Development	Metho	V _ b	<u>/P</u>			dpair		Sampling Notes				
S	OIL CLASSIFICAT	ION	E		υ	Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)						
S	URFACE ELEVAT	ION	Stratum Depth	N Scale Bid	vell Sram Nov Nov Nov Nov Nov Nov Nov Nov Nov Nov	Recov	aroun	Total F (ppm)						
Dark brown. m	noist to very moist,	CLAYEY SILT	0.5					0.0	A hand-auger v	was used to advance the first five				
(<u>ML)</u>		ĺ			\searrow				feet of this bori	ng to reduce the possibility of entified underground utilities.				
Brown, moist	to very moist, SILT	Y CLAY (CL)		-	2	-		0.0						
				-										
				-	3	1		0.0						
				5 —										
				-	4	1		0.0						
					5	3.5	Ā	0.0						
				10 -	6	-		0.0	The soil sampl	es collected from the 0-2 ft and				
- gravish brow	n, very moist to we	t, silty sandv								Is were submitted for laboratory				
clay below 11					7	1		0.0						
						4.2								
					8	1		0.0						
				15 —			₽							
			17.0		9	1		0.0						
//		fine, CLAYEY	17.0											
SANĎ (SC)					10	4.5		0.0						
			20.0											
Bottom of Bor	ing at 20 ft		20.0	20	⊐`	1								
									Drillers License	e No. 2581				
TPV - Total Photo- TFV - Total Flame- PPM- Parts Per Mi ND - None Detect PVC - Polyvinyl Ch NA - Not Analyze	Ionization Vapors Ilion ied Ioride	<u>-</u>	Z At C Z Afte	Depth to (ed on Drillir ompletion r 24 e Depth	g Tools (open hol	1 e)1	<u>5.0</u> 5.2 8.3 	ft. ft.	1	HSA - Hollow Stem Augers CFA - Continuous Flight Aug HA - Hand Auger BLR - Bailer BP - Bladder Pump PP - Peristaltic Pump WP - Whale Pump				

LIENT		nance Authori	ty								
ROJECT NAME	Former R	J Refinery								_ JOB #	170IFA0010
ROJECT LOCATIO	N County Re	oad 350 South	and	U.S. H	ighwa	ay 41				-	
	Princeton	<u>, Indiana 4767</u>	0							_	
	DRILLING and S	SAMPLING INFOR	MATIC	ON						TES.	T DATA
Date Started	5/1/18	Well Material			PVC						
	5/1/18	_ Well Diameter				_					
Drill Foreman	Z. Vaughan								ors		
Inspector	J. Winsett	Slot Size			0.010				Vap		
Boring Method	Geoprobe	Development	Metho		WP				able		Sampling Notes
				-				5	Total Photoionizable Vapors (ppm)		
s	OIL CLASSIFICAT	ION	_				Recovery (ft)	Groundwater	hotoi		
			Stratum Depth	Depth Scale	Well Diagrar	mple.	cove	punc	Total PI (ppm)		
	SURFACE ELEVAT			осе N D		S Sa	Re	ğ	-		
Dark brown, n	noist to very moist,	CLAYEY SILT	0.5	=		1			0.0		vas used to advance the first five ng to reduce the possibility of
Brownish gray	with brown mottlin			-		2	5.0		0.0	damaging unid	entified underground utilities.
SILTY CLAY	(CL) noist between 2.0-4			=		3	5.0		1707		
- greenish gra	y and moist to very			5 -		3			_		
4.0-12 ft				_		4			1453		
				=		5	4.0		782		
				10 -					1106		
						6					
- brownish gra between 12-1	y with brown mottli	ing and moist		-		7	4.0		246		
- orangish bro	wn with gray mottli	ng, moist, silty		15 -		8	-		132		
	tween 13.5-16 ft			-			-		50.7		
- orangish bro	wn, moist, sandy c		18.0	_		9					
Brown, wet, fin (SC)	ne to very fine, CLA	AYEY SAND	20.0	=		10	4.2	-	19.8	4-6 ft intervals	es collected from the 0-2 ft and were submitted for laboratory
そう ー ー ー ー ー -	t, very fine, SAND	(SP)	20.0 20.5	20 -		11			11.2	analysis.	
	LAYEY SAND (SC			_			-	₩	7.8		
/			23.5	=		12	4.0		7.0		
///4	NDY CLAY (CL)		25.0	25 —		13			0.0		
Blank drilled				-		14	-				
				-			-				
				30 -		15					
				30 -		16					
				-		17	1				
			35.0	=	目		-				
Bottom of Bor	ing at 35 ft		35.0	35 —		18	1				
				<u> </u>						Drillers License	
TPV - Total Photo- TFV - Total Flame PPM - Parts Per Mi ND - None Detec: PVC - Polyvinyl Ch	-Ionization Vapors illion ted	7	Z At C ⊈ Afte	<u>Depth</u> ed on D complet r <u>2</u> e Depth	rilling T ion (op 4 ho	⊺ools en hol	1 e)2	8.0 1.8 1.6	_ ft. _ ft.		HSA - Hollow Stem Augers CFA - Continuous Flight Aug HA - Hand Auger BLR - Bailer BP - Bladder Pump PP - Peristaltic Pump

LIENT		rity								
		n and	U.S. F							
	Princeton, Indiana 4767	' 0							_	
D	RILLING and SAMPLING INFO	RMATIC	ON						TEST D	ATA
Date Started 4/2	24/18 Well Materia	I		PVC						
Date Completed 4/										
Drill Foreman Z .	Vaughan Screen Leng							oors		
Inspector J.	Winsett Slot Size			0.010				e Val		
Boring Method G	eoprobe Developmen	t Metho	d	WP	_			izable	Sar	npling Notes
SOIL	CLASSIFICATION	E			υ	Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)		
SURI	FACE ELEVATION	Stratum Depth	Depth Scale	Well Diagram	Sample No.	ecov	iroun	Total F (ppm)		
	t, CLAYEY SAND SILT (ML)	ගි ර 0.5					U U	프 프 0.0	A hand-auger was	used to advance the first five
Brown, moist, SIL		1	-					0.0	feet of this boring t	o reduce the possibility of ied underground utilities.
			-							ied underground utilities.
			-		2			62.1		
- brownish gray be	etween 2.5-9.0 ft		-			3.5				
			-		3			0401	Strong hydrocarbo	n odor at 4.0 ft
			5 -		J			2461		
			-							
			-		4		Ā	240		
			-							
			-		5	4.2				
			-		C D		۰	264		
- greenish gray, w	et, sandy clay below 9.0 ft		-							
			10 -		6			249		
			-				Ţ			
			-	1 目						
			_		7	4.2		28.2	The soil samples c	ollected from the 0-2 ft and
			-		•				4-6 ft intervals were analysis.	e submitted for laboratory
			-	1 目	8			48.2		
Bottom of Boring a	at 15 ft	15.0	15 -							
									Drillers License No	. 2581
TPV - Total Photo-Ioni TFV - Total Flame-Ioni	zation Vapors	Note		to Grou rilling T			9.0	ft.		HSA - Hollow Stem Augers CFA - Continuous Flight Au
PPM - Parts Per Million		⊈ At C	Complet	ion (ope	en hol	e) 1	1.3	ft.		HA - Hand Auger
ND - None Detected PVC - Polyvinyl Chloric		▼ Afte Cav		2 <u>4</u> ho	urs		<u>6.1</u> 	_ft. ft.		BP - Bladder Pump PP - Peristaltic Pump
NA - Not Analyzed		<u></u>	s Bopu	•						WP - Whale Pump

LIENT		nance Author	ity							
ROJECT NAME										
ROJECT LOCATIO		oad 350 South		U.S. Hi	ghway	/ 41				_
	Princeton,	, Indiana 4767	0							-
	DRILLING and S	AMPLING INFOF	RMATIC	N						TEST DATA
Date Started	4/25/18	Well Material			PVC					
Date Completed	4/25/18	Well Diamete	r		2.0	in.				
Drill Foreman	Z. Vaughan								pors	
Inspector	J. Winsett	Slot Size		0	.010	in.			e Va	
Boring Method	Geoprobe	Development	Metho	d	WP				izabl	Sampling Notes
S	OIL CLASSIFICAT	ION					ry (ft)	water	Total Photoionizable Vapors (ppm)	
s	URFACE ELEVAT	ION	Stratum Depth	Depth Scale	Well Diagram	sample Jo.	Recovery (ft)	Groundwater	Total Pł (ppm)	
Dark brown. sl	ightly moist to mois	st. CLAYEY	00			00 ∠ 1	<u> </u>		0.0	A hand-auger was used to advance the first five
SILT (ML)	5 : y · · · · · · · · · · · · · · ·	, - ·· - ·							57.4	feet of this boring to reduce the possibility of damaging unidentified underground utilities.
						2	1.0			
Brownich are:	, very moist, SILTY		5.0	5 -		3			60.3	
biownish gray	, very moist, SILTY	ULAT (UL)				4			580	
- gray and very	/ moist between 8.0	0-10 ft				5	4.0		774	
				10 -		-			2204	
- wet between	10-13.5 ft					6				
						7	4.2		4143	
- brown with gr below 13.5 ft	ray mottling, moist,	silty sandy clay				8			2107	
					目	9			716	
/			18.0				4.3		2348	The soil samples collected from the 0-2 ft and
Brown, very m SAND (SC)	oist, fine to very fin	e, CLAYEY			目	10		•		12-14 ft intervals were submitted for laboratory analysis. A blind duplicate soil sample was
			21.0			11			550	collected from the 12-14 ft interval.
Orangish brow	n, wet, very fine, S	AND (SP)			目	12	43		1780	
			25.0			13	4.5		2240	
Blank drilled				25	目					
						14			4603	
						15	4.2	Ā	623	
				30 -		16				
						17				
					目					
Bottom of Bori	ng at 35 ft		35.0	35 -		_18				
	J									
										Drillers License No. 2581
TPV - Total Photo-I TFV - Total Flame- PPM - Parts Per Mil ND - None Detect PVC - Polyvinyl Chl NA - Not Analyzed	Ionization Vapors Ilion ed oride	-	⊈ At C ⊈ Afte	<u>Depth t</u> ed on Dri completic r <u>24</u> e Depth	lling To	ols 1 hole	2 e) 2	0.0 9.4 9.1 	ft. ft.	HSA - Hollow Stem Augers CFA - Continuous Flight Aug HA - Hand Auger BLR - Bailer BP - Bladder Pump PP - Peristaltic Pump WP - Whale Pump

LIENT		nance Authori									
	Former R.	-									170IFA0010
ROJECT LOCATIO	-	bad 350 South		J.S. Hi	ghway	y 41				-	
		, Indiana 4767								-	
	DRILLING and S	AMPLING INFOR	MATIC	N						TES	T DATA
Date Started	4/24/18	Well Material			PVC						
Date Completed	4/24/18	Well Diamete	r		2.0	in.			<i>(</i>)		
Drill Foreman	Z. Vaughan	-			10	ft			apors		
Inspector _	J. Winsett	Slot Size		0	.010	in.			le Va		Osmalia a Natas
Boring Method	Geoprobe	Development	Metho	dt	WP	-			lizab		Sampling Notes
S	OIL CLASSIFICAT	ION	E			e	Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)		
S	URFACE ELEVAT	ION	Stratum Depth	Depth Scale	Well Diagram	lo.	lecov	arour	Total F (ppm)		
	noist to very moist,		ഗ ഥ 0.3			ຫ∠ 1			0.0	A hand-auger v	was used to advance the first five
(<u>ML)</u>										feet of this bori	ng to reduce the possibility of entified underground utilities.
Brown with gra	ay mottling, moist, S	SILTY CLAY				2	3.7		0.0	damaging unio	entined underground utilities.
						3			0.0		
				5 —					F 7F		
				-		4			575	Hydrocarbon o	dor at 6.0 ft.
- gray, silty sa	ndy clay between 7	.5-12.5 ft		-		5	4.5		3820		
				10 _		6			668		
				-		0					
- brown betwe	en 12.5-14.5 ft					7	4.7		3420		
						8			2634		
- greenish gra	y below 14.5 ft			15 — _					0100		es collected from the 0-2 ft and s were submitted for laboratory
//			17.5			9			3109	analysis.	s were submitted for laboratory
Greenish gray (SC)	, moist to wet, CLA	YEY SAND				10	4.5	<u>.</u>	3208		
				20 -		11			4001		
									1001		
1)						12	4.5	Ī	443		
1)						13		<u>*</u>	498		
				25							
D						14			806		
- orangish bro 27.5	wn and very moist t	to wet below				15	1.5				
12	ing at 00 th		30.0	30 -							
Bottom of Bor	ing at 30 ft										
										Drillers License	No. 2581
TPV - Total Photo- TFV - Total Flame PPM - Parts Per Mi ND - None Detect PVC - Polyvinyl Ch NA - Not Analyze	Ionization Vapors Ilion ied Ioride	<u>-</u> _	Z At C ⊈ Afte	Depth to d on Dri ompletio fe Depth	lling To n (ope	ools n hol	1	<u>9.0</u> 3.5 	ft. ft.	Dimers LICENSE	HSA - Hollow Stem Augers CFA - Continuous Flight Aug HA - Hand Auger BLR - Bailer BP - Bladder Pump PP - Peristaltic Pump WP - Whale Pump

LIENT		nance Authori								
	Former R	-								170IFA0010
ROJECT LOCATIO		oad 350 South		J.S. Hig	hway 4	1			-	
	Princeton	<u>, Indiana 47670</u>)						-	
	DRILLING and S	SAMPLING INFOR	MATIC	N					TES	T DATA
Date Started	4/25/18	Well Material		F	PVC					
Date Completed	4/25/18	_ Well Diameter	·		2.0 in.					
Drill Foreman	Z. Vaughan	Screen Length	۱		20 _ft			pors		
Inspector _	J. Winsett	Slot Size		0.	010 in.			e Va		
Boring Method _	Geoprobe	Development	Metho	dt	WP			izab		Sampling Notes
S	OIL CLASSIFICAT	ION	E			Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)		
S	SURFACE ELEVAT	ION	Stratum Depth		Well agram	Secov	groun	Total I (ppm)		
	noist, clayey gravel		ഗ ഥ 0.3					⊢ <u>ఆ</u> 12.0	A hand-auger v	vas used to advance the first five
(<u>ML)</u>	SILTY CLAY (CL)				2	-		58.2	feet of this bori	ng to reduce the possibility of entified underground utilities.
and gravel	ery moist to wet bet			-	3	4.0		707	Hydrocarbon o	dor at 4.0 ft
- grayish brow	in and moist to wet	between		5 —						
4.75-10 ft					4			1603		
				-	5	4.2		242		
- gray and ver	y moist to wet betw	veen 10-12 ft		10 -	6	-		78.2		
	-			-	7	_		108.2		
- very moist, s	silty sandy clay belo	JW 121				4.5				
			16.0	15 -	8			122		
Gray, wet, ver	y fine CLAYEY SA	ND (SC)			9		-	128		
						3.0	Ā	140		es collected from the 0-2 ft and were submitted for laboratory
- brown, fine to 19-23.5 ft	o very fine clayey s	and between		20 -		_		78.2	analysis.	were submitted for laboratory
					目上	_		40.0		
					12	2.7		42.3		
- orangish bov	wn and wet to very	wet below 23.5 ft		25 –	13			44.8		
\square					14	_		12.4		
$\langle \rangle$						3.0	Į₽	39.4		
$\langle \rangle$				30 -				21.3		
D.					17	3.5		14.0		
//			35.0	35	<u></u> 18			28.2		
Bottom of Bor	ring at 35 ft									
									Drillers License	e No. 2581
TPV - Total Photo- TFV - Total Flame PPM- Parts Per Mi ND - None Deteci PVC - Polyvinyl Ch NA - Not Analyze	-Ionization Vapors illion ted Iloride	Ţ	At C	d on Drill	Groundw ling Tools n (open ho hours	1 ole)2	8.7	ft.		HSA - Hollow Stem Augers CFA - Continuous Flight Aug HA - Hand Auger BLR - Bailer BP - Bladder Pump PP - Peristaltic Pump WP - Whale Pump

LIENT		nance Author								
	Former R	-								170IFA0010
ROJECT LOCATIO		oad 350 South		J.S. Hig	hway	41			-	
	Princeton	, Indiana 4767	0						_	
	DRILLING and S	SAMPLING INFOR	RMATIC	DN				1	TES	ST DATA
Date Started	4/23/18	Well Material		P	VC					
Date Completed	4/23/18	Well Diamete	r		2.0 in	ı.				
Drill Foreman	Z. Vaughan	Screen Lengt	h		10 _ft			oors		
Inspector	J. Winsett	Slot Size		0.0	010 in	ı.		e Val		
Boring Method	Geoprobe	Development	Metho	d	WP			zable		Sampling Notes
[– €	ter	Total Photoionizable Vapors (ppm)		
S	OIL CLASSIFICAT	ION	E			No. Recoverv (ft)	Groundwater	Phot		
03	SURFACE ELEVAT	ION	Stratum Depth	Depth Scale	Well agram		grour	Total F (ppm)		
Light brown	lry, SANDY CLAYE	Y SILT (ML)	ഗ ഥ 1.0			, ∠ (£ 1		⊢ 坐 3.4	A hand-auger	was used to advance the first five
- brown below	<u>0.5 ft</u>	/				·			feet of this bor	ring to reduce the possibility of
Brownish gray	/, moist, SILTY CLA	AY (CL)				2 3.0)	15.6	uamaging unio	dentified underground utilities.
- gray below 4	I.O ft					3		214		
gray Solow 4				5 —		_				
						4		94.1		
						4.2	2	52.8		
				10		<u> </u>				
						6		404		
						7		822		
				-		4.0)			
- sandy clay b	elow 14 ft			15 —		8		260		
				-		9		68.7	12-14 ft interva	les collected from the 0-2 ft and als were submitted for laboratory
						4.3			analysis.	
- grayish brow	n below 18.5 ft					10	, I	34.8		
				20	目上	11		661		
///			22.0				Ā			
Brown, moist CLAYEY SAN	to very moist, fine t ID (SC)	o very fine,			目!	12 4.2	2	66.4		
- orangish bro	wn with intermitten	t brown and gray		25 -	目上	13		173		
	between 24-26 ft				目上		۰	28.9		
- wet, very fine	e, clayey sand belo	w 26 ft			目!	14		20.9		
- gray below 2	28 ft				目上	15 4.5	5 ⊻	54.1		
Detter (D	ing at 00 ft		30.0	30		_				
Bottom of Bor	ing at 30 ft									
									Drillers Licens	o No. 2591
	Ionization V		I	Depth to	Ground	lwater		I		HSA - Hollow Stem Augers
TPV - Total Photo- TFV - Total Flame	-Ionization Vapors			ed on Drill	ing Tool	s	26.0			CFA - Continuous Flight Aug HA - Hand Auger
PPM - Parts Per M ND - None Detect				ompletior r 24			<u>28.5</u> 22.0			BLR - Bailer
PVC - Polyvinyl Ch NA - Not Analyze	loride			e Depth				_ ft.		BP - Bladder Pump PP - Peristaltic Pump
INA INOLAHAIYZE										WP - Whale Pump

IENT		nance Author									
	Former R										170IFA0010
ROJECT LOCATIO	-	oad 350 South		U.S. Hi	ghwa	iy 41				-	
	Princeton	, Indiana 4767	0							-	
	DRILLING and S	SAMPLING INFOF	RMATIC	N						TEST	DATA
Date Started	4/23/18	Well Material			PVC	_					
Date Completed	4/23/18	Well Diamete	r		2.0	_in.					
Drill Foreman	Z. Vaughan	Screen Lengt	h		10	_ft			pors		
Inspector	J. Winsett	Slot Size		0	.010	_in.			le Va		N N N
Boring Method	Geoprobe	Development	Metho	d	WP	_			lizab		Sampling Notes
S	OIL CLASSIFICAT	ION	_				iry (ft)	water	Total Photoionizable Vapors (ppm)		
S	URFACE ELEVAT	ION	Stratum Depth	Depth Scale	Well Diagram	Sample Vo.	Recovery (ft)	Groundwater	Total P (ppm)		
Dark brown, s	lightly moist, CLAY	EY SILT (ML)	0.3			1			0.0	A hand-auger w	as used to advance the first five
////	/ moist, SILTY CLA		-				-		0.0	feet of this borir	ing to reduce the possibility of entified underground utilities.
						2	2.7				
				5 -		3			0.0		
						4			0.0		
						5	4.0		0.0		
- gray betweer	n 9.0-11 ft			10 -			-		0.0		
- gray and ora	ngish brown and m	ioist between				6					
11-13 ft	wn with gray mottli	ng and moist				7	4.5		0.0		
below 13 ft	wir with gray motili	ng and moist		15		8			0.0		
						9	-		0.0		
							4.5		0.0		
				20 —		10					s collected from the 0-2 ft and s were submitted for laboratory
				20 -		11			0.0	analysis.	s were submitted for laboratory
//			23.0			12	4.3		132		
Orangish brow (SC)	vn, moist, very fine,	, CLAYEY SAND				13	4.5		727		
- gray betweer	n 24-26 ft			25 -			-		253		
- gray betweer	n 27-29 ft					14			200		
					I	15	4.2		203		
				30 -	:目	16	1		209		
/4			32.5		E	17	-	Ţ	650		
Blank drilled					目		4.5	Ī			
				35 -		18		Ā			
Detterre (D. 1	ing at 07 ft		37.0	‡	<u> </u>	19	{				
Bottom of Bor	ing at 37 ft										
					- 0					Drillers License	
TPV - Total Photo- TFV - Total Flame: PPM- Parts Per Mi ND - None Detect PVC - Polyvinyl Ch NA - Not Analyze:	Ionization Vapors Ilion ed Ioride	- - -	⊈ At C ⊈ Afte	<u>Depth t</u> ed on Dri completic r <u>24</u> e Depth	lling To n (ope	ools en hol	<u>3</u> e) 3	3.1	ft.		HSA - Hollow Stem Augers CFA - Continuous Flight Aug HA - Hand Auger BLR - Bailer BP - Bladder Pump PP - Peristaltic Pump

IENT	Indiana Fi	nance Authori	ty							/IW-13
ROJECT NAME										70IFA0010
ROJECT LOCATIC	N County Ro	oad 350 South	and I	J.S. Highw	ay 41				-	
	Princeton	, Indiana 47670)						-	
	DRILLING and S	AMPLING INFOR	ΜΑΤΙΟ	N					TEST DAT	4
Date Started	4/25/18	Well Material		PVC						
Date Completed		Well Diameter								
Drill Foreman	Z. Vaughan							ors		
Inspector	J. Winsett	Slot Size						Vap		
Boring Method	Geoprobe	Development						able	Samp	ling Notes
	-					-	e	Total Photoionizable Vapors (ppm)		
S	OIL CLASSIFICAT	ION	c		0	Recovery (ft)	Groundwater	hoto		
c	SURFACE ELEVAT		Stratum Depth	Well Diagra No De No DE		SCOVE	onno.	Total F (ppm)		
				ă ă	2	Ĕ	Ũ	<u>⊢</u> ଼ 5.9		
l- brown below	noist, CLAYEY SILT 0.25 ft	I (IVIL)	0.5		× 1			5.5	feet of this boring to re	ed to advance the first five
Brownish gray	/, moist, SILTY CLA	AY (CL)			2	4.0		8.9	damaging unidentified	I underground utilities.
				-	3	-		122	Hydrocarbon odor at 3	3.5 ft.
				5 —	3					
					4			576		
					5	4.2		4561		
					Ĩ					
					6			1508		
- wet below 12	2 ft		13.0		7	-	ݠ	3362		
<u> </u>	n, silty sandy clay b	<u>pelow 12.5 ft</u> _/	10.0			4.5				
Blank drilled				15 —	8			3892	The soil samples colle	ected from the 0-2 ft and submitted for laboratory
					9	-		1438		soil sample was collected
						4.8				
					10			1130		
				20 -	11	-		423		
								070		
					12	4.5	Ā	270		
				25 -	13	1				
						-				
			28.0		14					
Bottom of Bor	ing at 28 ft					1				
									Drillers License No. 2	581
	lenineti M			Depth to Gro	undwa	ater				A - Hollow Stem Augers
TPV - Total Photo- TFV - Total Flame	-Ionization Vapors		Note	d on Drilling	Tools	1	2.0	-	CF	A - Continuous Flight Aug - Hand Auger
PPM - Parts Per M ND - None Detec	ted		Z At C	ompletion (op r 24 h			 3.1	-	BL	R - Bailer
PVC - Polyvinyl Ch NA - Not Analyze	loride			e Depth	2010				PP	- Bladder Pump - Peristaltic Pump
	~								\A/E	P - Whale Pump

LIENT		nance Authori	ity														
ROJECT NAME																	
ROJECT LOCATIO	-	ad 350 South		U.S. H	lighwa	iy 41				-							
	Princeton,	Indiana 4767	0							-							
	DRILLING and SA	AMPLING INFOR	RMATIC	N						TEST DATA							
Date Started	4/30/18	Well Material				_											
Date Completed	4/30/18	Well Diamete	r			_in.											
Drill Foreman	Z. Vaughan	Screen Lengt	h			_ft			tpors								
Inspector	J. Winsett	Slot Size			in.				le Va								
Boring Method	Geoprobe	Development	Metho	d		_			lizab	Sampling Notes							
s	OIL CLASSIFICATI	ON	Ε_	e t	Well Diagram	e	Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)								
s	URFACE ELEVATI	ON	Stratum Depth	Depth Scale		Samp Jo.	Recov	arour	Total F (ppm)								
	noist, CLAYEY SILT		の口 0.3		-	ທ∠ 1			0.0	A hand-auger was used to advance the first five							
V// X	to very moist, SILTY		-	-						feet of this boring to reduce the possibility of damaging unidentified underground utilities.							
				-		2	3.7		0.1								
				5	-	3			0.7								
					-				E10								
- greenish gray with brown mottling and very		a and verv		_		4			510	Hydrocarbon odor at 7.0 ft.							
moist betweer	n 7.0-13 ft	g aa toty		-		5	4.8		88.7								
				10 -		6	-		62.1								
				=	-	0			02.1								
						7	4.2		37.4								
- orangish bro clay below 13	wn with gray mottlin ft	g, moist, sandy				8	-		32.8								
- brown betwe	ft			en 15-22 ft	n 15-22 ft						15						The soil samples collected from the 0-2 ft and
				-		9			1.7	6-8 ft intervals were submitted for laboratory analysis.							
				=	-	10	4.0		1.3								
				20 -					0.0								
			22.0			11			0.0								
Brown, wet, C	LAYEY SAND (SC)		<u> </u>	-		12	4.0	<u> </u>	0.0								
			24.0	=		10	4.0		0.0								
Gray, moist, S	SILTY SANDY CLAY	(UL)		25 -		13			0.0								
				-		14	1	Ā	3.2								
				-		15	3.8	Ţ	6.0								
			30.0	30 -													
Bottom of Bor	ing at 30 ft																
						<u> </u>	<u> </u>			Drillers License No. 2581							
TPV - Total Photo- TFV - Total Flame- PPM - Parts Per Mi ND - None Detect PVC - Polyvinyl Ch NA - Not Analyze	Ionization Vapors Ilion ed Ioride	<u>-</u> -	⊈ At C ⊈ Afte	ed on D complet	<u>to Grou</u> vrilling Tr ion (ope 2 <u>4</u> houn	ools en hol	2 e) 2	7.0	ft.	HSA - Hollow Stem Augers CFA - Continuous Flight Aug HA - Hand Auger BLR - Bailer BP - Bladder Pump PP - Peristaltic Pump WP - Whale Pump							

LIENT		nance Authori									
ROJECT NAME		-									170IFA0010
ROJECT LOCATIO	-	oad 350 South		U.S. Hig	ghway	y 41				-	
	Princeton	, Indiana 4767	U							-	
	DRILLING and S	SAMPLING INFOR	RMATIC	N				,		TEST	DATA
Date Started	5/1/18	Well Material			PVC						
Date Completed	5/1/18	Well Diamete	r		2.0	in.					
Drill Foreman	Z. Vaughan	-			10	ft			pors		
Inspector	J. Winsett	Slot Size		0	.010	in.			le Va		
Boring Method	Geoprobe	Development	Metho	d	WP	-			lizab		Sampling Notes
S	OIL CLASSIFICAT	ION	F			Ð	Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)		
S	URFACE ELEVAT	ION	Stratum Depth	Depth Scale	Well Diagram	Sampl No.	Recov	Groun	Total F (ppm)		
////	noist, CLAYEY SIL	T_(ML)/	0.3			1			0.0	A hand-auger w	vas used to advance the first five
Brown, moist,	SILTY CLAY (CL)								0.0	damaging unide	ng to reduce the possibility of entified underground utilities.
						2	5.0		0.0		
- greenish gra	y and moist to very	moist below 4.0				3			1090		
ft	,			5 —		-					
				-		4			1020		
							4.2		4450		
				-		5			1152		
				10 -		6			642		
- moist below	11 ft					Ũ					
- brownish gra clay below 12	y with brown mottli	ng, silty sandy				7	4.0		257	The soil sample	es collected from the 0-2 ft and
Clay Delow 12	11		14.0						123	8-10 ft intervals	were submitted for laboratory /MSD soil sample was collected
Greenish gray	, moist, CLAYEY S	 SAND (SC) /	14.8 15.0	15 -		8			123	from the 8-10 ft	
Orangish brow	vn, very moist, SAN	NDY CLAY (CL)				9		۰	561		
			18.0				3.7	Ā			
/////	LAYEY SAND (SC		18.5			10	5.7		88.1		
Orangish brov CLAY (CL)	vn, very moist to we	et, SANDY	20.0	20 -		4.4		Ţ			
Blank drilled						11					
						12					
-			25.0	25		13					
Bottom of Bor	ing at 25 ft										
										Drillers License	No. 2581
TPV - Total Photo- TFV - Total Plame PPM- Parts Per Mi ND - None Detect PVC - Polyvinyl Ch NA - Not Analyze	Ionization Vapors Ilion ied Ioride	<u>-</u> _	⊈ At C ⊈ Afte	<u>Depth to</u> ed on Dri completio r 24 e Depth	lling To n (ope	ools n hole	1 ∋2	6.5 0.3 7.2 	ft. ft.		HSA - Hollow Stem Augers CFA - Continuous Flight Aug HA - Hand Auger BLR - Bailer BP - Bladder Pump PP - Peristaltic Pump WP - Whale Pump

_IENT		inance Author									<u>MW-16</u>
ROJECT NAME		-									170IFA0010
OJECT LOCATIO	-	oad 350 South		U.S. H	ighw	ay 41				-	
	Princeton	, Indiana 4767	0							-	
	DRILLING and S	SAMPLING INFOR	RMATIC	ON						TES	T DATA
Date Started	4/30/18	Well Material			PVC	;					
Date Completed		_ Well Diamete									
Drill Foreman	Z. Vaughan								ors		
Inspector	J. Winsett			(Vap		
Boring Method	Geoprobe	 Development							able		Sampling Notes
			1				£	e	Total Photoionizable Vapors (ppm)		
S	OIL CLASSIFICAT	TION	_				Recovery (ft)	Groundwater	hoto		
			Stratum Depth	Depth Scale	Well Diagra	m Sample No.	COVE	onno	Total P (ppm)		
-	URFACE ELEVAT	-		പ്റ്		S S	۳ ۳	ģ	₽ <u>₽</u> 0.0		
////	NOIST, CLAYEY SIL		0.3			⊠ 1				A hand-auger v feet of this bori	was used to advance the first five ng to reduce the possibility of
brown, moist,	SILTY CLAY (CL)					2	3.7		0.0		entified underground utilities.
				5 -		3	1		0.0		
- grayish brow to wet betwee	n with gray mottling n 5.0-12 ft	g and very moist				4	-		0.0		
						5	4.2		0.0		
				10 -		-	-		0.0		
						6					
- orangish bro sandy clay bel	wn with gray mottli low 12 ft	ng, very moist,				7	4.0		0.0		
				15 -		8			0.0		
- brown below	16 ft		10.0			9	-		0.0		
Brown, very m			18.0			10	4.0		0.0		
SAND (SC) - gray betweer				20 –		11	-		3.4	The soil sample	es collected from the 0-2 ft and
- fine clayey sa	and below 20 ft		23.0				-		6.5	28-30 ft interva	Is were submitted for laboratory
Gray, very mo	ist, SANDY CLAY	(CL)	23.0			12	3.0			analysis.	
				25 –		13			3.6		
	ery fine, CLAYEY		27.0			14			4.7		
	vn, moist, SAND (S		28.5			15	3.1		82.5		
		·· /		30 -	目	16	1		198		
- gravieh brow	n, wet, fine, sand b	nelow 32 ft			目	17	-		1501		
grayish brow			35.0			: 	2.7	-	1603		
Blank drilled			0.0	35 –	目	18		≞			
				_		19		Ā			
			40.0		目	20		Į₽			
Bottom of Bori	ing at 40 ft			40 —	––		1				
										Drillers License	e No. 2581
TPV - Total Photo- TFV - Total Flame- PPM - Parts Per Mi ND - None Detect PVC - Polyvinyl Ch NA - Not Analyzer	Ionization Vapors Ilion ied Ioride	-	⊈ At C ⊈ Afte	Depth ed on D completi r 2 e Depth	rilling on (oj 1 h	Tools ben hol	3 e)3	7.8	ft.	1	HSA - Hollow Stem Augers CFA - Continuous Flight Aug HA - Hand Auger BLR - Bailer BP - Bladder Pump PP - Peristaltic Pump WP - Whale Pump

		inance Authority								<u>SB-01</u> 170IFA0010	
ROJECT NAME ROJECT LOCATIO		oad 350 South a	ndlle	Hiak							
OJECT LOCATIO	-	n, Indiana 47670	10.5	. nigi	-						
		Sampling Inform			[IT DATA	
Date Started	4/19/18	_ 0 _	-								
Date Completed					-			δ			
Drill Foreman	Z. vaugnan	_ Inspector	J. WI	isett	-			Vapo			
								able	s	ampling Notes	
				1		- F	er	ioniz			
	SOIL CLASSIFIC	ATION	F		Ð	ery (f	dwat	hoto			
	SURFACE ELEV	ATION	Stratum Depth	Depth Scale	Sample No.	Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)			
Brown, moist.	CLAYEY SILT (M	L)	<u>ں</u> 0.5		ທ∠ 1	ш.	0	0.0	A hand-auger was	used to advance the first five	
Orangish brow	vn with gray mottlir			-	1.			-	feet of this boring t	to reduce the possibility of fied underground utilities.	
CLAY (CL)				-	2	5.0		0.0			
				-		0.0		00.7			
				5 -	3			20.7			
- greenish gra	- greenish gray and very moist below 6.0 ft			-	4			29.2			
				-	-	4.0					
				-	5	4.0		37.3			
- wet from 10-	10 ft			10 -	6	-		15.8	Slight hydrocarbon	odor at 10 ft	
- wet nom to-	12 11			-				10.0	Signi Tydrocarbor		
					7	4.0		14.3			
				-	-	4.0			The soil samples of 14-16 ft intervals w	collected from the 0-2 ft and vere submitted for laboratory	
orangish bro	wn, moist, sandy c	Nav bolow 15 ft		15 -	8			91.8	analysis. A blind c	luplicate soil sample was	
- orangish bro	wii, moist, sanuy c	lay below 15 h		-	9	-		27.0	conected from the		
				-		3.8					
				-	10	3.0		11.2			
			20.0	20 -	-	-		4.8			
very moist, CL	AYEY SAND (SC)	ay mottling, moist to)		-	- 11			4.0			
			23.0	-	12	1		2.1			
Gray, very mo	ist to wet, fine, SA	.ND (SP)		-		4.3					
				25 -	13			0.4			
Bottom of Bor	ing at 26 ft		26.0	-			۹				
	J										
									Drillers License No	o. 2581	
FPV - Total Photo-I FFV - Total Flame-		-	De Noted or	<u>pth to (</u> n Drillir				6.0 ft.		HSA - Hollow Stem Augers CFA - Continuous Flight Au	
PPM - Parts Per Mil	llion	Ā	At Comp	oletion	(open	hole		 ft.		HA - Hand Auger BLR - Bailer	
ND - None Detector PVC - Polyvinyl Chl	loride	-	After Cave De		hour	ς.		<u></u> ft. ft.		BP - Bladder Pump	
NA - Not Analyzed	b	Ra	JUNC DE	'P'''		-				PP - Peristaltic Pump SP - Submersible Pump	

		ance Authority								<u>SB-02</u> 170IFA0010	
ROJECT NAME ROJECT LOCATIO	Former RJ	ad 350 South an	4116	High							
UULUT LUUATIU		Indiana 47670	u 0.3	. i ngri	way	-+1					
									 TEOT		
					Γ				TEST DATA		
Date Started	4/19/18		-								
Date Completed Drill Foreman	<u>4/19/18</u> 7 Vaughan	Sampler OD			- 1			ors			
			<u>o. wn</u>	_			Photoionizable Vapors	Sar	npling Notes		
	SOIL CLASSIFICA	TION	E_		le	Recovery (ft)	Groundwater	Photoic			
	SURFACE ELEVA	TION	Stratum Depth	Depth Scale	Sample No.	Recov	Grour	Total F (ppm)			
/////	CLAYEY SILT (ML)	, very moist, SILTY	0.5	-	1			0.0	feet of this boring to	ed to advance the first five reduce the possibility of d underground utilities.	
				2	4.5		0.0				
			- - 5	3			20.8				
- greenish gra				4			87.4				
					5	4.3		65.7			
- very wet betw	ween 10-12 ft			10	6			50.7	Slight hydrocarbon o between 10-12 ft.	dor and sheen on water	
- orangish bro	wn, sandy clay belo	w 12 ft			7	4.2		42.8	The soil samples coll intervals were submit	lected from the 0-2 ft and 6-8 tted for laboratory analysis.	
			15.0	- - 15 —	8			48.5			
(SC)	vn, very moist to we	, ULATET SAND		– – –	9			30.2			
					10	3.0		4.5			
Bottom of Bor	20.0	20 —			.						
									Drillers License No. 2	2581	
					g Too	ols hole	2	0.0 ft. ft. ft. ft.	HSA - Hollow Stem Augers CFA - Continuous Flight A HA - Hand Auger BLR - Bailer BP - Bladder Pump PP - Peristaltic Pump SP - Submersible Pump		

IENT		inance Authority J Refinery								
		oad 350 South ar	nd U.S	. Hiał	Iwav					
00201200,0		, Indiana 47670								
	DBILLING and S	SAMPLING INFORMA							TEST DATA	
Data Charled				roho	[
Date Started Date Completed	<u>4/19/18</u> 4/19/18	Boring Method Sampler OD		2.0						
Drill Foreman	Z. Vaughan		J. Wir		- "".			ors		
			•••••		-			. Vap		
								zable	Sampling Notes	
			1			(t f)	lter	Total Photoionizable Vapors (ppm)		
	SOIL CLASSIFIC	ATION	Ę	5	ole	very	ndwa	Phot		
	SURFACE ELEV	ATION	Stratum Depth	Depth Scale	Sample No.	Recovery (ft)	Groundwater	Total F (ppm)		
Slightly moist,	sandy silty gravel	FILL	0.5	-	1		-	3.7	A hand-auger was used to advance the first five	e
Orangish brov	vn, moist, SILTY C	LAY (CL)		-					feet of this boring to reduce the possibility of damaging unidentified underground utilities.	
						2.7		2.8		
								20.2		
			5 -	3						
			-	4			304			
- black-greeni	- black-greenish gray between 7.0-12 ft					4.2		242	hydrocarbon odor at 7.0 ft.	
				-	5			242		
				10 -	6			215		
				-						
					7	4.2		402	The soil samples collected from the 0-2 ft and	
				-	8			49.3	12-14 ft intervals were submitted for laboratory analysis.	
				15 -						
				-	9			17.7		
						4.2		45.0		
				-	10			15.2		
- sandy clay b	elow 20 ft			20 -	- 11			78.8		
				-	-					
Orangish brov	 vn with gray and br	 own mottling, moist	22.5	-	12	4.0		22.4		
to wet, CLAYE	EY SAND (SC)	0	25.0	-	13			13.4		
Bottom of Bor	Bottom of Boring at 25 ft			25 —	13		•			
									Drillers License No. 2581	
				oth to (dwat	er			
FV - Total Flame-						ols	2	5.0 ft.	HSA - Hollow Stem Aug CFA - Continuous Flight	ers t Au
PM - Parts Per Mi D - None Detect			At Comp After		open) hour)	<u></u> ft. ft.	HA - Hand Auger BLR - Bailer BP - Bladder Pump	
VC - Polyvinyl Ch A - Not Analyzed	loride		Cave De		noul	 -		ft.		
	- Not Analyzed								SP - Submersible Pur	۱p

LIENT	Indiana Fin	ance Authority	BORING # SB-04								
ROJECT NAME		-							JOB # 170IFA0010		
ROJECT LOCATIO		ad 350 South ar	nd U.S	. High	way	41					
	Princeton,	Indiana 47670									
	DRILLING and SA	MPLING INFORMA	TION		г				TEST DATA		
Date Started	4/18/18	Boring Method	Geop	robe	-						
Date Completed	4/18/18	Sampler OD _		2.0	_ in.			<i>(</i>)			
Drill Foreman	Z. Vaughan	Inspector									
								ble V	Sampling Notes		
								oniza			
	SOIL CLASSIFICAT	ΓΙΟΝ				Recovery (ft)	Groundwater	Photoionizable Vapors			
			Stratum Depth	Depth Scale	Sample No.	cove	punc	Total Pł (ppm)			
XXI - ·	SURFACE ELEVAT		Str	о С С С С		Re	Ğ	د ت (ppm)			
With some brick	ay, dry to slightly moi ck and gravel	ist, silty sandy FILL	1.5	-	1			9.0	A hand-auger was used to advance the first five feet of this boring to reduce the possibility of		
Grayish brown	Grayish brown, very moist, SILTY CLAY (CL)				2			456	damaging unidentified underground utilities.		
				-	3	-		230			
				5 —		-					
				-	4			460			
				-	5	4.6		945			
- light gray, moist to very moist, s		ndy clay bolow 10		10 -	6			1117			
ft	oist to very moist, sa	indy clay below 10		-	0						
					7	4.3		208			
- black to dark	gray and very moist	t between 14-15 ft		15 -	8	-		503			
- orangish bro	wn between 15-18 ft			-	9	-		372	The soil samples collected from the 0-2 ft and 10-12 ft intervals were submitted for laboratory		
				-	9	10		0/2	analysis.		
///	ioist between 18-19			-	10	4.0		210			
- orangish bro	wn and moist to very	moist below 19 it		20 -	11	-		30.3			
				-	10	-		16.3			
	vn, very moist, very f		23.0	-	12	3.5		10.0			
SANĎ (SC)				25 -	13			11.5			
1)				-	14	-	•	3.4			
I)						4.0	-	2.7			
			30.0		15			2.1			
Bottom of Bor	ing at 30 ft			30 —		1					
				oth t- 1		duret			Drillers License No. 2581		
TPV - Total Photo-I TFV - Total Flame-	Ionization Vapors		Noted or		g Too	ols	2	7.0 ft.	HSA - Hollow Stem Augers CFA - Continuous Flight Au		
PPM - Parts Per Mil	llion		At Comp After		open) hour)	ft. ft.	HA - Hand Auger BLR - Bailer		
VC - Polyvinyl Chl	oride	-	Cave De		nour	ے ت -		ft.	BP - Bladder Pump PP - Peristaltic Pump		
	~								SP - Submersible Pump Page 1 of		

_IENT		nance Authority								SB-05
		-		112-1						170IFA0010
OJECT LOCATIO	-	oad 350 South an , Indiana 47670		-	-					
		AMPLING INFORMA			Γ				TEST	DATA
Date Started	4/18/18		-							
-	<u>4/18/18</u>				in.			S		
Drill Foreman	Z. Vaughan	Inspector	J. WI	ISET				Vapo		
								able	Sa	mpling Notes
						(t)	er	ioniza		
	SOIL CLASSIFICA	TION	F		ө	ery (f	dwate	hoto		
	SURFACE ELEVA		Stratum Depth	Depth Scale	Sample No.	Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)		
Dark brown	lightly moist, CLAY		0.5	00	ທ Z 1	Œ	U	<u> </u>	A hand-auger was u	used to advance the first five
(<u>ML)</u>									feet of this boring to	reduce the possibility of ed underground utilities.
								8.5		อน แก่นอาฐางนักน นั่นในชื่อ.
					2	5.0				
				3			20.7			
- grayish brow		5								
			4			220				
- gray and mo	ist below 7.0 ft								Hydrocarbon odor a	t 7.0 ft.
					5	4.2		520		
- sandy clay b	elow 10 ft			10 -	6			810	The soil samples collected from t	llected from the 0-2 ft and
									12-14 ft intervals we analysis.	ere submitted for laboratory
					7			960		
						4.3				
					8			720		
				15						
					9			43.8		
- orangish bro	wn with gray mottlir	na between				4.0				
17.5-19.5 ft	man gray mouli	S Detween			10	4.0		4.8		
- wet below 19	9.5 ft		20.0	20 -			۰			
Bottom of Bor		/								
									Drillers License No.	2581
PV - Total Photo-		– N		<u>pth to G</u> n Drilling				0.0 ft.		HSA - Hollow Stem Augers CFA - Continuous Flight Au
FV - Total Flame- PPM- Parts Per Mi	llion	Į ₽	t Comp	oletion (open	hole		ft.		HA - Hand Auger
PVC - Polyvinyl Ch	C - None Detected ✓ C - Polyvinyl Chloride					s _		ft. ft.	BLR - Bailer BP - Bladder Pump	
NA - Not Analyze	d	jai. C	Cave De	μπ		-		(l.		PP - Peristaltic Pump SP - Submersible Pump
										Page 1 of

.IENT ROJECT NAME		nance Authority								<u>SB-06</u> 170IFA0010
ROJECT NAME		oad 350 South an	d U.S	. Hiah	Iwav					
		, Indiana 47670								
									TEST	DATA
Date Started	4/18/18			rohe	[
	4/18/18	Sampler OD		2.0						
Drill Foreman	Z. Vaughan							oors		
	-							e Vap		
								nizabl	Sar	mpling Notes
	SOIL CLASSIFICA					y (ft)	vater	Total Photoionizable Vapors (ppm)		
			Stratum Depth	oth ale	Sample No.	Recovery (Groundwater	al Ph m)		
1111	SURFACE ELEVA			Depth Scale	Sar No.	Be	<u>n</u>		A hand-auger was used to advance the first five	
/////	ry, CLAYEY SAND ay and brown mottli		0.5	-	1			0.0	feet of this boring to	reduce the possibility of
SILTY CLAY (nig, siigniliy 11015t,		-	2			0.0		d underground utilities.
	- grayish brown and very moist to wet between 5.0-8.0 ft									
					3			0.0		
					4	-		0.0		
- moist, sandy	v clay below 8.0 ft			-	5			37.5		
				10 -	6	-		79.4		
				-	0			75.4		
					7	-		138	The soil samples col	lected from the 0-2 ft and
- gray and ver	y moist between 13	3-16 ft		-		-		235	18-20 ft intervals wer	re submitted for laboratory
				15 -	8			200	analysis.	
				-	9	-		426		
				-	-			745		
				-	10			745		
		ng and slightly moist		20 -	11			896		
between 20-2			22.0	-	-	-	۰	007		
Orangish brov	vn, wet, very fine, C	CLAYEY SAND (SC)		-	12			237		
			25.0	-	13					
Bottom of Bor	ing at 25 ft			25 —						
									Drillers License No. 2	2581
TPV - Total Photo- TFV - Total Flame- PPM- Parts Per Mil ND - None Detect	Ionization Vapors Ilion ed	⊻ A ⊻ A	Noted or At Comp After	oletion 	ig Too (open	ols hole	22	2.0 ft. ft. ft.		HSA - Hollow Stem Augers CFA - Continuous Flight Au HA - Hand Auger BLR - Bailer BP - Bladder Pump
PVC - Polyvinyl Chl NA - Not Analyzed		题(Cave De	epth		-		ft.		PP - Peristaltic Pump SP - Submersible Pump Page 1 of

		nance Authority									
	Former R.	-	4116	Hiat							
OJECT LOCATIC		<u>oad 350 South ar</u> , Indiana 47670	<u>iu U.5</u>	. Higr	-						
		SAMPLING INFORMA			[TEST DATA		
Date Started	4/18/18	• • –									
Date Completed Drill Foreman	<u>4/18/18</u> Z. Vaughan	Sampler OD _			_			ors			
Dhii Foreman _	Z. Vaugnan		<u>J. WII</u>	<u>15011</u>	_			Photoionizable Vapors)	Sampling Notes		
	SOIL CLASSIFICA	ATION	Ε			Recovery (ft)	Groundwater	Photoioniz			
	SURFACE ELEVA	ATION	Stratum Depth	Depth Scale	Sample No.	Recov	Groun	Total F (ppm)			
Brown and gr	ay, moist, silty FILL	with some gravel	0.5		1			0.0	A hand-auger was used to advance the first five		
///	ayish brown mottlin	- – – – – – – – /			2	5.0		12.4	feet of this boring to reduce the possibility of damaging unidentified underground utilities.		
			5 -	3			22.1				
- gray and mo	6.0-8.0 ft			4			35.6				
- gray, moist,	.0 ft			5	4.5		51.4				
				10 -	6			46.6			
	m and maint to you	, maiat baturaan		-	7	4.0		776			
13-18 ft	vn and moist to very	moist between		15 -	8			121	The soil samples collected from the 0-2 ft and		
					9			54.1	12-14 ft intervals were submitted for laboratory analysis.		
- orangish bro below 18 ft	own with gray mottlin	ng and slightly moist			10	4.0		18.2			
				20 -	11			4.1			
Orangish brow			23.0		12	4.2		24.2			
CLAYEY SAN	ND (SC)	olot, tory into,		25 -	13			21.4			
	ne to very fine betwe				14		•	959.4			
- brown, wet,	2/ TL			15	4.2		854.2				
Bottom of Bor	ring at 30 ft		30.0	30 -							
									Drillers License No. 2581		
PV - Total Photo- FV - Total Flame- PM- Parts Per Mi D - None Detect VC - Polyvinyl Ch JA - Not Analyze	-Ionization Vapors illion ted loride	, ∑,	<u>De</u> Noted or At Comp After Cave De	oletion	ng Too	ols hole	2	6.0 ft. ft. ft. ft.	HSA - Hollow Stem Augers CFA - Continuous Flight A HA - Hand Auger BLR - Bailer BP - Bladder Pump PP - Peristaltic Pump SP - Submersible Pump		

		nance Authority	/							
	Former R	•							170IFA0010	
IUJECT LOCATIO	=	<u>oad 350 South a</u> , Indiana 47670	na U.S	. Highwa	ay 41					
		•								
	DRILLING and S	SAMPLING INFORM						TEST	DATA	
Date Started	4/19/18									
-	4/19/18						Ś			
Drill Foreman	Z. Vaughan	Inspector	J. Wir	<u>isett</u>			/apor			
							ble /	Sar	npling Notes	
						-	Photoionizable Vapors)			
	SOIL CLASSIFICA	ATION	_		ry (ft	wate	hotoi			
			Stratum Depth	Depth Scale Sample	No. Il Recovery (ft)	Groundwater	Total PI (ppm)			
×1	SURFACE ELEVA					ğ				
Brown, silty sandy	andy FILL gravel seam at 0.2	5 ft	1.0				58.1	feet of this boring to	reduce the possibility of	
	moist, CLAY (CL)			- 2			202	damaging unidentifie	d underground utilities.	
- brownish gra	- brownish gray, moist silty clay below 2.5 ft				3.0					
							261			
					_		289			
							200			
- gray betwee	n 8.0-13 ft			- 5	3.0		322			
				6	;		169			
					,		87.2			
- orangish bro	wn below 13 ft		14.0		4.7				lected from the 0-2 ft and e submitted for laboratory	
Brown, moist,	very fine, CLAYEY	' SAND (SC)	_	- 8	;		53.2	analysis. A ms/msd the 16-17 ft interval.	soil sample was collected from	
							000			
				- 9			889			
				- 1	4.2		305			
- orangish bro	wn below 19 ft			20						
				20 - 1	1		67.1			
					>		73.8			
//			23.5		4.2					
Grayish browr	n, moist to wet, SAN	ND (SP)	25.0	- 1	3		48.1			
Bottom of Bor	ing at 25 ft			25		_				
								Drillers License No. 2	2581	
PV - Total Photo-		pth to Gro			- ^		HSA - Hollow Stem Augers			
FV - Total Flame- PM- Parts Per Mi	Ionization Vapors			n Drilling T pletion (op			<u>5.0</u> ft. ft.		CFA - Continuous Flight Au HA - Hand Auger	
ND - None Detect	ed	Ŧ	After	ho		,	ft.		BLR - Bailer BP - Bladder Pump	
IA - Not Analyze		<u>a</u>	Cave De	epth			ft.	t. PP - Bladder Pump PP - Peristaltic Pump SP - Submersible Pump		
									Page 1 of	

LIENT		nance Authority	/								
ROJECT NAME		-									
ROJECT LOCATIO	-	oad 350 South a	nd U.S	. High	iway	/ 41					
		<u>, Indiana 47670</u>									
	DRILLING and S	SAMPLING INFORM	ATION		1				TEST DATA		
Date Started	4/19/18		-		_						
•	4/19/18	_ Sampler OD			_			Ś			
Drill Foreman	Z. Vaughan	Inspector	J. Wir	isett	-			/apoi			
								able \	Sampling Notes		
						t)	ъ	ioniza			
	SOIL CLASSIFICA	ATION	E		е	ery (f	idwate	Photo			
	SURFACE ELEVA	ATION	Stratum Depth	Depth Scale	Sample No.	Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)			
Brown, moist,	CLAYEY SILT (ML	_)	1.3	-	1			76.8	A hand-auger was used to advance the first five		
- black below			 L		-			<u> </u>	feet of this boring to reduce the possibility of damaging unidentified underground utilities.		
Brownish gray	Brownish gray, moist, SILTY CLAY (CL)				2	4.0		201			
					3	-		740			
				5 -	1						
					4			570			
- grav betweer				-	- 5	4.5		412			
giuy setties											
				10 -	6			830			
					-	-		676			
- brown with a	ray mottling betwee	en 13-17 ft		-	7	4.5		070	The soil samples collected from the 0-2 ft and 22-24 ft intervals were submitted for laboratory		
	,, <u>.</u>				8			548	analysis.		
- wet between	15-15.08 ft			15 -							
orongigh bro	wn, sandy clay belo	ow 17 ft			9			592			
- orangish bio	wit, saildy clay bei	0w 17 ft	19.0		10	4.5		248			
Orangish brov	vn, moist, fine, CLA	YEY SAND (SC)		20 -							
				20 -	11			642			
Grav moiet S	SANDY CLAY (CL)		22.0	· ·	12	-		849			
<u> </u>	n, moist, fine, SANE	 D (SP)	23.0	-		4.0		2.0			
	wet, SANDY CLA	Y (CL)	25.0	25 -	13		۰	616			
Bottom of Bor	Bottom of Boring at 25 ft										
									Drillers License No. 2581		
	V - Total Photo-Ionization Vapors V - Total Flame-Ionization Vapors				<u>Grour</u> 1g To	ols	_2	5.0 _ft.	HSA - Hollow Stem Augers CFA - Continuous Flight Au		
PPM - Parts Per Mi ND - None Detect	llion		At Comp After		(oper houi)	<u></u> ft. ft.	HA - Hand Auger BLR - Bailer		
PVC - Polyvinyl Chl	loride		Cave De		noul	· ·		ft.	BP - Bladder Pump		
	- Not Analyzed								SP - Submersible Pump Page 1 of 1		

OJECT NAME											
OJECT LOCATIO		ad 350 South ar	nd U.S	. High	iway	41					
		Indiana 47670									
	DRILLING and SA	AMPLING INFORMA	TION		[TEST DATA		
Date Started	4/20/18	• _	-								
Date Completed		Sampler OD _		2.0	_ in.			s			
Drill Foreman _	Z. Vaughan	Inspector	J. WI	Isett	-			Vapo			
								zable	Sampling Notes		
	SOIL CLASSIFICA	TION				ry (ft)	water	Total Photoionizable Vapors (ppm)			
	SURFACE ELEVA	TION	Stratum Depth	Depth Scale	Sample No.	Recovery (ft)	Groundwater	Total Pł (ppm)			
Brown, moist.	CLAYEY SILT (ML)		σŌ	ΟŌ	ຫ້ž 1	<u>۳</u>	G	프 프 8.7	A hand-auger was used to advance the first five		
↓↓	SILTY CLAY (CL)		1.0	-	-			5.7	feet of this boring to reduce the possibility of damaging unidentified underground utilities.		
	ULLI OLAI (OL)			-		-					
					2	5.0		3.5			
				-							
- brownish gra 4.0-7.5 ft	ay and very moist to	wet between		-	3			80.1			
				5 -							
				-	4			155			
				-	-						
- grayish brow	n and very moist be	tween 7.5-11 ft		-	5	4.5		47.8	The soil samples collected from the 0-2 ft and 6-8 intervals were submitted for laboratory analysis.		
				-				47.0			
				- 10 —		_					
				-	6			75.6			
- orangish bro 11 ft	wn, very moist to we	et, sandy clay below		-							
				_	7	4.5		20.2			
				-		4.5					
				-	8			9.2			
Bottom of Bor	ing at 15 ft		15.0	15 —		-	•				
	-										
									Drillers License No. 2581		
	ed Ioride	⊻ / ⊻ /	<u>Der</u> Noted or At Comp After Cave De	oletion 	ig Too (open	ols i hole	1	5.0 ft. ft. ft. ft.	HSA - Hollow Stem Augers CFA - Continuous Flight Au HA - Hand Auger BLR - Bailer BP - Bladder Pump PP - Peristaltic Pump		

LIENT		nance Authority									
ROJECT NAME		-								<u>/UIFA0010</u>	
ROJECT LOCATIC		ad 350 South an	d U.S	. High	way	41					
	Princeton,	Indiana 47670									
	DRILLING and S	AMPLING INFORMA	TION		ſ				TEST DATA		
Date Started	4/20/18	Boring Method	Geop	robe	-						
Date Completed	4/20/18	Sampler OD		2.0	_ in.			(0			
Drill Foreman	Z. Vaughan	Inspector	J. Wir	nsett	-			apors			
								Photoionizable Vapors)	Sampling	Notes	
	SOIL CLASSIFICA	TION	E_	_	le	Recovery (ft)	Groundwater	Photoic			
	SURFACE ELEVA	TION	Stratum Depth	Depth Scale	Sample No.	Reco	Groui	Total F (ppm)			
	SILTY CLAY (CL)		0.3	-	1			7.2	A hand-auger was used to feet of this boring to reduce		
r/// ·	CLAYEY SILT (ML , slightly moist, SIL		1.0	-	2			356	damaging unidentified under	erground utilities.	
	- grayish brown between 2.5-5.0 ft					3.5		455			
- moist betwee					3			458			
					4			250			
					5	3.7		129			
					5			120			
				10 -	6			161			
					7			58.5			
				-		4.8		27.2			
				15 -	8			21.2	The soil samples collected	from the 0-2 ft and 4-6	
- orangish bro	wn, sandy clay with	interbedded gray		-	9			15.1	intervals were submitted for		
sand seams b	between 16-22.5 ft				10	4.8		7.8			
				20 -	10			-			
				-	11			5.3			
		00 F (1			12			5.2			
4.4	t, sandy clay below		24.0	-		4.8		2.5			
Brown, very m	noist to wet, fine, CL	AYEY SAND (SC)		25 -	13			2.5			
				-	14			4.4			
					15	4.5		1308			
//			30.0	30 -			۰		Black inclusions with strong	hydrocarbon odor	
Bottom of Bor	ring at 30 ft								between 29.5-30 ft.	nyulocarbon odor	
									Drillers License No. 2581		
L I I I I I I I I I I I I I I I I I I I			<u>De</u> Joted o	pth to (HSA	- Hollow Stem Augers	
TFV - Total Flame-	FV - Total Flame-Ionization Vapors					ols hole		0.0 ft. ft.	it. HA - Hand Auger		
ND - None Detect PVC - Polyvinyl Ch	ed	Ţ A	fter		hour		,	ft.	BLR	- Bailer - Bladder Pump	
NA - Not Analyzed		題(Cave De	pth		-		ft.	PP	- Peristaltic Pump - Submersible Pump	
									01	Page 1 of	

IENT OJECT NAME		nance Authority I Refinerv	1							170IFA0010	
		ad 350 South a	nd U.S	. Hiah	wav						
	-	Indiana 47670									
		AMPLING INFORM	ATION						TEST	DATA	
Data Otaritad				roho	[
Date Started Date Completed	<u>4/19/18</u> 4/19/18	Boring Method _ Sampler OD		2.0							
Drill Foreman	Z. Vaughan				- ""			ors			
			•••••					Photoionizable Vapors	Sa	npling Notes	
	SOIL CLASSIFICA	TION	F		e	Recovery (ft)	Groundwater	Photoior			
	SURFACE ELEVA	TION	Stratum Depth	Depth Scale	Sample No.	Recov	Groun	Total F (ppm)			
	noist, SANDY CLAY	'EY SILT (ML)		-	1			11.2		sed to advance the first five	
^ッ /オーーーーーー	<u>silt below 0.5 ft</u> SILTY CLAY (CL)		1.5	-	-	-				reduce the possibility of a underground utilities.	
	ery moist to wet belo	w 2 0 ft			2	4.2		4.8			
- black and ve	W 3.0 II		-	3			42.6				
			5 -					Hydrocarbon odor at	5.0 ft.		
moist clay b			-	4			1146				
- moist clay b	- moist clay between 6.5-9.75 ft					4.8					
				-	5			657	7		
- brown with t	black mottling betwe	en 9.75-13 ft		10 -	6	-		326			
						7	4.8		420		
- orangish bro	own, moist, sandy cla	ay below 13 ft					4.0		0.40		lected from the 0-2 ft and 6-8
				15 —	8			646	intervals were submi	tted for laboratory analysis.	
//			16.0	-	9	-		340			
Brown, moist,	, fine to very fine, CL	AYEY SAND (SC)				4.7					
				-	10	4.7		960			
		heal and mark		20 —		-		580			
sand seams b	own with interbeddeo oetween 20-23 ft	Diack and gray		-	11			500			
				-	12			147			
- grayish brov	vn, very moist to wet	t, very fine clayey		-	1	4.0					
sand below 2	ว แ			25 —	13			220			
			07.0	-	14	3.0		156			
Bottom of Bo	ring at 27 ft		27.0	-	14	0.0	.				
	J										
									Drillers License No.	2581	
FV - Total Flame PM- Parts Per Mi D - None Detect VC - Polyvinyl Ch	M - Parts Per Million - None Detected					dwat ols hole s	2	7.0 ft. ft. ft. ft.		HSA - Hollow Stem Augers CFA - Continuous Flight Au HA - Hand Auger BLR - Bailer BP - Bladder Pump	
A - Not Analyze		Cave De	pui		-		<u> </u>		PP - Peristaltic Pump SP - Submersible Pump		

_IENT		inance Autho	rity								
ROJECT NAME	Former R										170IFA0010
ROJECT LOCA	TION County R	oad 350 Sout	h and	U.S. H	ighwa	y 41				_	
	Princetor	n, Indiana 4767	70							-	
	DRILLING and S	SAMPLING INFO	RMATIC	ON						TEST	DATA
Date Started	11/13/18	Well Materia	I		PVC						
Date Complete		_ Well Diamete				in					
Drill Foreman		_ Screen Leng							ors		
Inspector	M. Foye	_ Slot Size			0.010				Vap		
Boring Method		Developmen							able	S	ampling Notes
						-		5	Photoionizable Vapors		
	SOIL CLASSIFICA	TION	_				Recovery (ft)	Groundwater	notoi		
			Stratum Depth	Depth Scale	Well Diagram	nple	cove	pund	Total Pł (ppm)		
	SURFACE ELEVA	ΓΙΟΝ	Der	Sci Del	Diagram	Sar No.	Re	õ	Total (ppm)		
	roots over TOPSOIL		0.3			1			0.0		as used to advance the first five g to reduce the possibility of
Brown, mo	oist, SILTY CLAY (CL) elow 2.5 ft)							0.0		ntified underground utilities.
				5 -		2			0.0		
						4			0.0		
						_			0.0		
				10 -		_5_			0.0		
						6			0.0		
						7			0.0		
				15 -		\sim			0.0		
						8					
- gray mot fragments	tling, sandy clay with s below 18 ft	sandstone		20 -		9			0.0		
						10			0.0		
						10			0.0		collected from the 0-2 ft and
			26.0	25 –						36-38 ft intervals were submitted for laborate analysis. The duplicate soil sample was	were submitted for laboratory plicate soil sample was
	bist, fine grained, SAN	. ,]			12			0.0	collected from th	e 36-38 ft interval.
	nedium to coarse grai d brown, fine grained,					13			0.5		
below 27.5				30 –					28	Strong odor betw	veen 30 and 35 ft
						14			20		
				35 -					75		
						15 16			810		
						10		۰	68	Gray staining wit between 37 and	h a sheen on the water
- gray, wet, fine grained, sand below 38.5 ft				40 –		17					τ υ π.
						18			1.9		
			45.0		目	10			5.0		
	edium grained, sand l	below 44 ft	/ +3.0	45 –		19					
Bollom of	Boring at 45 ft										
										Drillers License	No. 637
	tected Chloride		Depth to Groundwater ● Noted on Drilling Tools 38.0 ▼ At Completion (open hole) ▼ After ■ Cave Depth								HSA - Hollow Stem Augers CFA - Continuous Flight Aug HA - Hand Auger BLR - Bailer CV - Check Valve PP - Peristaltic Pump WP - Whale Pump

LIENT		inance Autho																							
ROJECT NAME									170IFA0010																
ROJECT LOCATIC		oad 350 Sout		U.S. H	lighwa	iy 4′	1			-															
	Princeton	n, Indiana 476	70							-															
	DRILLING and S	SAMPLING INFO	RMATIC	N						TEST	DATA														
Date Started	11/12/18	_ Well Materia	I		PVC	_																			
Date Completed	11/12/18	_ Well Diamete	er		2.0	_in.																			
Drill Foreman	SCS	_ Screen Leng							pors																
Inspector _	M. Foye	Slot Size			0.010	_in.			e Va																
Boring Method _	Geoprobe	_ Developmen	t Metho	d	BLR	-			nizabl	S	ampling Notes														
s	SOIL CLASSIFICAT	ΓΙΟΝ	ε			Ð	Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)																
U,	SURFACE ELEVAT	TION	Stratum Depth	Webth Baid Scale Scale		Samp	Seco.	Groun	Total F (ppm)																
Crushed ston	e		2.0	=	Well Diagram		5.0			A hand-auger wa	as used to advance the first fiv														
Gray, moist, s	andy clay with trac		4.0	_		1			0.0		g to reduce the possibility of ntified underground utilities.														
fragments (FI	LL) SANDY CLAY (CL		4.0	5 —		2			0.0		Ŭ														
	ndstone fragments					4	3.2		0.0																
				=		_			0.0																
				10 -		_5	2.5		0.0																
						6																			
				15 -		7			0.0																
				-		8	3.0		0.0																
- orange belo	w 17.5 ft					~			0.0																
										/		CLAYEY SAND (SC)				, CLAYEY SAND (SC) /		20 -		9	4.2		0.0		
, ∠, Orange, mois	t, CLAYEY SAND	(SC)	SAND (SC)																						
Brown, moist	to wet, SANDY CL	AY (CL)		25 –				₽	0.0	38-40 ft intervals were submitted for labora analysis.															
				_		12	4.1		0.0																
						13			0.0																
				30 —			2.7		87.0																
Brown, moist,			32.5			14																			
				35 -		15			130	Odor at 33 ft.															
				_		16	2.5		387																
						17			785																
				40 -			2.7		1.9	Black staining at	39.5 ft.														
Brown, moist	t below 43 ft					18			1.5																
Bottom of Bo			45.0	45 —		19			1.0																
										Drillers License I	No. 637														
TPV - Total Photo TFV - Total Flame PPM- Parts Per M ND - None Detec PVC - Polyvinyl Ch NA - Not Analyze	lonization Vapors lillion ted loride		● Note ☑ At C ▼ Afte ፼ Cave	ed on D complet	on (ope ho	ools en hol	2	4.0 	ft. ft.		HSA - Hollow Stem Augers CFA - Continuous Flight Aug HA - Hand Auger BLR - Bailer CV - Check Valve PP - Peristaltic Pump WP - Whale Pump														

CLIENT Indiana Finance Author PROJECT NAME Former RJ Refinery														
		-												
PROJECT LOCATIO		bad 350 South		U.S. HI	gnway	/ 41				-				
	Princeton	, Indiana 4767	U							-				
	DRILLING and S	AMPLING INFOR	RMATIC	N		_				TEST	DATA			
Date Started	11/13/18	Well Material		F	PVC									
Date Completed	11/13/18	Well Diamete							(0					
Drill Foreman	SCS	Screen Lengt							apora					
Inspector _	M. Foye	Slot Size			010 i	in.			le <		Ni-t			
Boring Method _	Geoprobe	Development	Metho	dE	<u>3LR</u>				nizab	5	ampling Notes			
S	OIL CLASSIFICAT	ION	E			<u>e</u>	Recovery (ft)	Groundwater	Total Photoionizable Vapors (ppm)					
	SURFACE ELEVAT	ION	Stratum Depth	Depth Scale	Well Diagram	Sampl	Seco	Broun	Total F (ppm)					
Grass and roo	ots over TOPSOIL		0.5			5	5.0		0.0	A hand-auger wa	as used to advance the first five			
////	SILTY CLAY (CL)					1			0.0	feet of this boring	g to reduce the possibility of ntified underground utilities.			
				5 —		2			0.0		ninea anaergrouna admies.			
						$\frac{3}{4}$ 3	.7		0.0					
- wet betweer	n 7.0 and 12.5 ft					4			0.0					
				10 -		5	.1							
						6			0.5					
- orange with sandstone an	- orange with gray mottling, sandy clay trace sandstone and coal fragments between 12.5 and					7			0.2					
23 ft	Ū			15		2	.5		0.0					
						8			0.0					
				20 -		9	.7		0.0					
						10			0.0					
- light brown a	and very moist below	w 23 ft				11			0.0		s collected from the 0-2 ft and were submitted for laboratory			
				25		2	.4		0.0	analysis.				
						12								
				30 -		13			0.0					
A			32.0			14	.6		0.0					
Brown, moist, - orange, fine	fine grained, SANE to medium grained) (SP) between 33 and								Some black stail	ning and odor at 32.5 ft.			
44 ft				35 –		15 2	.4		21.5 787					
						16								
				40		17		•	901	Sheen on water	at 30 5 ft			
						3 18	5.5		12.2	Sheen on water	ai 53.5 II.			
Brown, moist, - orange, fine 44 ft			45.0						15.9					
Bottom of Bo	ring at 45 ft		45.0	45		19				Black staining at	44 ft.			
	0									Drillers License I	No. 637			
TPV - Total Photo TFV - Total Flame PPM- Parts Per M ND - None Detec PVC - Polyvinyl Ch NA - Not Analyze	l-Ionization Vapors illion ted iloride	-	⊻ At C ⊈ Afte	Depth to ed on Dril Completion re Depth	ling Too n (open	ols 1 hole)_	39	 	ft. ft.	1	HSA - Hollow Stem Augers CFA - Continuous Flight Auge HA - Hand Auger BLR - Bailer CV - Check Valve PP - Peristaltic Pump WP - Whale Pump Page 1 of 1			

IENT	rity					BORING #					
OJECT NAME	Former RJ Refinery							JOB #	170IFA0010		
OJECT LOCATION		U.S. Highwa									
	Princeton, Indiana 476	70						-			
DF	RILLING and SAMPLING INFO	RMATIC	DN					TEST	DATA		
Date Started 11	14/18 Well Materia		PVC								
Date Completed 11			2.0	-							
Drill Foreman			10				Ors				
	Foye Slot Size						Vapo				
	oprobe Developmen						able	S	ampling Notes		
	<u>oproso</u> Bevelopmen	it would		-	0	L	Photoionizable Vapors				
SOIL	CLASSIFICATION				Recovery (ft)	Groundwater	notoi				
		Stratum Depth	등 g Well	Sample No.	ove	pun	al Pr m)				
SURF	ACE ELEVATION	Stra	Well Diagram	San No.	Rec	Gro	Total F (ppm)				
Crushed stone and		1.5		1	5.0		0.0		is used to advance the first five		
Brown with black s	taining, moist, silt with gravel	2.5		2			0.0	damaging unider	to reduce the possibility of the transferred underground utilities.		
Brown, moist, SILT	 Y CLAY (CL)	1	5 –	2	2.3		0.0				
				4	2.0		0.0				
			10 -	5			0.0				
			10 -	6	0.0						
				-							
- orange with grav	mottling and trace sandstone		15 –	_7_	4.2		0.2				
	fragments below 15 ft			8							
			20 -	9			0.2				
- sandy clay below	21 5 ft			10	4.3		0.0				
- salidy clay below	21.51			_			0.0				
			25 –		4.0		0.0		collected from the 0-2 ft and		
4		28.0		12				34-36 ft intervals	were submitted for laboratory S/MSD soil sample was		
	e grained, SAND (SP) gray staining below 29.5 ft		30 -	13			0.0	collected from the 34-36 ft interval.	e 34-36 ft interval.		
	gray starning below 20.0 h		_	14	3.6		0.0				
							00.4				
			35 –	15	4.3		22.4 0.2				
문제 문제				16			0.6				
	ack shale fragments below 39		40 -	17	4.3						
π 				18	т.5	٩	4.5				
			45 -	19			4.0				
				20	4.2		0.1				
		FO 0					0.3				
Bottom of Boring a	t 50 ft	50.0	50	21							
								Drillers License	No. 637		
PV - Total Photo-Ioniz FV - Total Flame-Ioniz PM- Parts Per Million JD - None Detected VC - Polyvinyl Chloride JA - Not Analyzed	ration Vapors	⊻ At C ▼ Afte	Depth to Grou ed on Drilling T ompletion (ope r ho e Depth	ools on hole	_ 42		ft. ft.		HSA - Hollow Stem Augers CFA - Continuous Flight Aug HA - Hand Auger BLR - Bailer CV - Check Valve PP - Peristaltic Pump		

Appendix B

Summary of Estimated Costs

Appendix B Summary of Estimated Costs Former RJ Refinery County Road 350 South Princeton, Gibson County, Indiana								
RWP Remedial Technology Options	Total							
Soil Remediation (Excavation of 132,500 square feet)	\$4,000,000.00							
Groundwater Remediation	n Options							
Groundwater Remediation - Pump and Treat System (3 years)	\$1,060,000.00							
In-Situ Enhanced Soil Mixing (ISESM)	\$1,500,000.00							
In-Situ Chemical Oxidation (ISCO)	\$785,000.00							
Notes: - RWP = Remediation Work Plan -Soil excavation costs based on estimated 132,500 square feet and approximat tons per cubic yard.	ely 34,351 tons (25%) of disposal waste based on 1.4							

- All costs are estimates based on most current data.

Appendix C

Project Schedule

Appendix B Proposed Project Timline Former RJ Refinery County Road 350 South Princeton, Gibson County, Indiana																			
								Weel	ks Aft	er RW	P Subi	nittal							
Tasks/Milestones	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Project Management																			
Review and Approval of RWP																			
Site Clearing																			
Groundwater Remediation																			
Submittal of Remediation Completion Report																			
Progress Evaluation																			
Notes: The above schedule is estimated changes to the scope.	d and	does r	not ac	count	for de	lays c	aused	by Pro	ogram	revie	w/app	roval	times,	contr	actora	availat	oility, o	or for	

Appendix D

Health and Safety Plan

HEALTH AND SAFETY PLAN

Prepared By: ATC Group Services LLC 6149 Wedeking Avenue, Building D, Suite 2 Evansville, Indiana 47715

Prepared For: INDIANA FINANCE AUTHORITY

FORMER R&J REFINERY COUNTY ROAD 350 SOUTH PRINCETON, INDIANA 47670

ATC PROJECT NO. 170IFA0010

ATC HEALTH AND SAFETY PLAN (HASP) REVIEW AND APPROVAL

CLIENT Indiana Finance Authority

PROJECT NUMBER: 170IFA0010

SITE NAME: Former R&J Refinery SITE LOCATION: Princeton, IN

PROJECT DESCRIPTION: <u>Conduct asbestos abatement oversight, site clearing activities</u>,

subsurface investigation (soil and groundwater sampling), monitoring well installation,

remediation technologies

PREPARED BY: _	Brian Kleeman	Senior Project Geologist	_ DATE: _	March 19, 2018
Brian Kleeman Project Manager		Signature	<u>3/19/</u> 2 [18 Date
Reviewer's Name		Signature		Date

This Health and Safety Plan (Plan) has been written for the use of ATC Group Services LLC (ATC) and its employees. It may also be used as a guidance document by properly trained and experienced ATC subcontractors. However, ATC does not guarantee the health or safety of any person entering this Site.

Due to the potential hazardous nature of this Site and the activity occurring thereon, it is not possible to discover, evaluate, and provide protection for all possible hazards which may be encountered. Strict adherence to the health and safety guidelines set forth herein will reduce, but not eliminate, the potential for injury at this Site. The health and safety guidelines in this Plan were prepared specifically for this Site and should not be used on any other Site without prior research by trained health and safety specialists.

ATC claims no responsibility for use of this Plan by others. The Plan is written for the specific Site conditions, purposes, dates, and personnel specified and must be amended if these conditions change.

TABLE OF CONTENTS

			Page No.
1.0	INTRO	ODUCTION	
	1.1	Scope and Applicability of the Site Health and Safety Plan	1-1
	1.2	Historical Overview	1-1
	1.3	Visitors	1-2
	1.4	Subcontractor Activities	1-2
2.0	PROJ	IECT ORGANIZATION	
	2.1	Site Safety and Health Officer (SSHO)	2-1
	2.2	Site Manager	2-1
	2.3	Project Manager (PM)	2-1
	2.4	Regional Safety Coordinator (RSC)	2-2
	2.5	Project Field Team	2-2
3.0	TASK	//OPERATION HEALTH AND SAFETY RISK ANALYSIS SUMMARY	
	3.1	Job Safety Analysis	3-1
	3.2	Health Analysis and Chemical Risk Assessment	3-1
	3.3	Risks Associated with Drilling and Subsurface Activities	3-1
	3.4	Noise Hazards and Control	3-3
	3.5	Biological Hazards	3-3
4.0	AIR N	IONITORING AND PERSONAL PROTECTION EQUIPMENT	
	4.1	Site Air Monitoring Requirements	4-1
	4.2	Action Levels for Personal Protection Equipment	4-2
	4.3	Levels of Protection	4-4
	4.4	Respiratory Protection	4-5
5.0	MEDI	CAL SURVEILLANCE PROGRAM	
	5.1	Employee Medical Examinations	5-1
	5.2	Heat Stress Program	5-1
		5.2.1 Training	5-1
		5.2.2 Fluid Replacement	5-1
		5.2.3 Acclimatization	5-1
		5.2.4 Rest Breaks	5-1
		5.2.5 Heat Stress Monitoring	5-1
	5.3	Cold Stress Program	5-3
	0.0	5.3.1 Training	5-3
		5.3.2 Environmental Monitoring	5-3
		5.3.3 Protective Clothing and Rest Breaks	5-3
		5.3.4 Identification and Treatment of Cold Stress	5-3
			0-0
6.0	SITE	SECURITY AND CONTROL	
5.0	6.1	Work Zones	6-1
	6.2	Buddy System	6-2
	6.2	Site Communication	6-3
	0.2 6.3	Roadway Work Zones	6-3 6-4
	0.5	NUQUWAY WUIN ZUHES	0-4

TABLE OF CONTENTS

			Page No.	
7.0	DECC	ONTAMINATION PROCEDURES		
	7.1	Personnel Decontamination	7-1	
	7.2	Equipment Decontamination	7-1	
	7.3	Disposition of Decontamination Wastes	7-2	
8.0	STAN	DARD OPERATING PROCEDURES		
••••	8.1	Personnel Precautions	8-1	
	8.2	Operations	8-1	
• •	0011			
9.0				
	9.1	Medical Emergencies	9-1	
	9.2	Emergency Equipment	9-2	
	9.3	Flammable Conditions	9-2	
	9.4	Site Evacuation Conditions	9-2	
	9.5	Emergency Communication System	9-2	
	9.6	Emergency Response Follow-up	9-3	
10.0	EMPL	OYEE TRAINING		
	10.1	Pre-Assignment and Annual Refresher Training	10-1	
	10.2	Site Supervisor's Training	10-1	
	10.3	Site Safety Training and Briefing Topics	10-1	
	10.4	Visitors		10-1
	2.5.5			

APPENDICES

APPENDIX A - Job Safety Analysis

APPENDIX B - NIOSH Pocket Guide's Specific Chemical Information Sheets and MSDSs

- APPENDIX C List of Approved Amendments/Changes Acknowledgement/Agreement Form Visitors Log Tailgate Safety Meeting Form Air Quality Monitoring Record Equipment Calibration Log Checklist for Subsurface Clearance Monthly Heavy Equipment Safety Inspection Checklist Drill Rig Inspection Checklist
- APPENDIX D Excavating and Trenching
- APPENDIX E Lockout/Tagout Requirements and Procedures

EMERGENCY INFORMATION

Site Emergencies Call:

Ambulance 911 Fire: 911 Police: 911 Nationwide Call Before You Dig 811 Core Health Networks (24 hour First-Aid) (855) 282-6331 **Poison Control Center:** (800) 222-1222 National Response Center: (800) 424-8802 Spills: Local USEPA Office (800)-621-8431 **State Health Department** (800)-246-8909 State Environmental Agency (800) 451-6027 Hospital (812) 547-7011 Gibson General Hospital 1808 Sherman Drive, Princeton, IN 47670 (812) 385-3401 See attached map for directions Approximate travel time is 12 minutes.

EMERGENCY ASSEMBLY LOCATION: South portion of the site near gate

FIRST-AID MEASURES

In the event that personnel exhibit symptoms of exposure call COMP-CARE immediately in first-aid assessment process. The following procedures will be used:

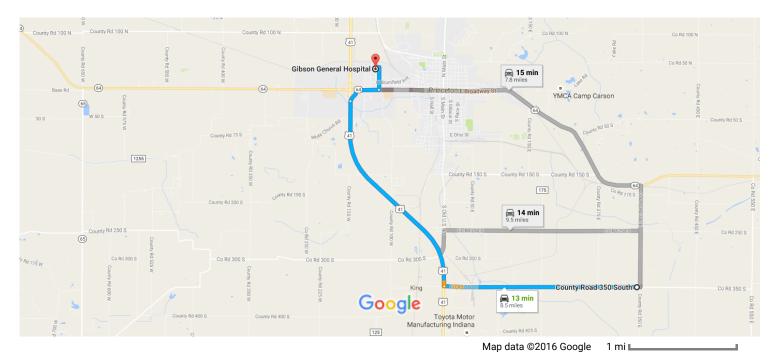
<u>Eye Contact</u>: Flush eye immediately with copious amount of water for a minimum of 15 minutes. Repeat until irritation is eliminated and seek medical attention.

<u>Skin Contact</u>: Wash exposed area with soap and water for at least 15 minutes. If dermatitis or severe reddening occurs, seek medical attention.

<u>Inhalation</u>: Move the person into fresh air. If symptoms persist, seek medical attention. Ingestion: Do not induce vomiting. Seek immediate medical attention.

Important Numbers:

Project Manager:	Brian Kleeman	812-457-0043
Site Safety and Health Officer:	Brian Kleeman	812-457-0043
Site Supervisor:	Brent Crowthers	812-697-1573
Client Contact:	Ken Coad	317-233-8409
Regional Safety Coordinator:	Maria Rysavy	480-469-8851
State Utility Locate Service:	IUPPS	811


<u>NOTE</u>: For additional emergencies/important contacts, refer to your ATC Lifelines Card.

EMERGENCY MEDICAL ROUTE TO HOSPITAL

Google Maps County Road 3 Gibson Genera

County Road 350 South, Princeton, IN 47670 to Gibson General Hospital

Drive 8.5 miles, 13 min

County Road 350 South

Princeton, IN 47670

	1.	Head west on Co Rd 350 S toward County Rd 275 E	3.5 mi
L,	2.	Turn right onto US-41 N	
r	3.	Exit onto IN-64 E/W Broadway St toward Princeton	- 3.9 mi
4	4.	Turn left onto 3rd Ave (i) Destination will be on the left	0.6 mi
			0.5 mi

Gibson General Hospital

1808 Sherman Drive, Princeton, IN 47670

These directions are for planning purposes only. You may find that construction projects, traffic, weather, or other events may cause conditions to differ from the map results, and you should plan your route accordingly. You must obey all signs or notices regarding your route.

1.0 - INTRODUCTION

1.1 Scope and Applicability of the Site Health and Safety Plan

This Health and Safety Plan (HASP) has been prepared by ATC Group Services LLC (ATC) for the activities associated with multiple activities associated with asbestos abatement, site clearing, subsurface investigation, and remediation at the Former R&J Refinery, located north of County Road 350 South and west of Highway 41 in Princeton, Indiana (Site).

The health and safety protocols established in this Plan are based on the ATC Employee Health and Safety Policy Manual, the Occupational Safety and Health Administration (OSHA) Regulations, past field experiences, specific Site conditions, and chemical hazards known or anticipated to be present from available Site data. The following Site Health and Safety Plan (HASP) is intended solely for use during the proposed activities described in the project documents and technical specifications. Specifications herein are subject to review and revision based on actual conditions encountered in the field during Site characterization activities. Such changes may be instituted by using the HASP List of Approved Amendments and/or Changes (see Appendix C).

Before Site operations begin, all employees, including subcontractors for ATC covered by this plan, involved in these operations will have read and understood this HASP and all revisions. All Site personnel have the authority to "Stop Work" if unsafe conditions are present or discovered during Site activities. Before work begins, all affected workers will sign the Health and Safety Plan Acknowledgment Form (see Appendix C). By signing this form, all individuals recognize the requirements of the HASP, known or suspected hazards, and will adhere to the protocols required for the project Site.

1.2 Historical Overview

The site is a former oil refinery that closed down in the 1970s. The site is undeveloped with mostly wooded areas. Remnants of site structures are present including debris piles and concrete slabs. Based on prior reports, asbestos containing materials (ACMs) are present at the site that need to be removed prior to any site clearing or additional activities can commence. A subcontractor will be utilized to remove ACMs and ATC will perform air monitoring and project oversight. Prior reports documented the presence of mercury in shallow soil above the IDEM excavation exposure screening level and petroleum contaminants in the groundwater above the IDEM industrial/commercial screening levels. Portion of the subsurface investigation will include assessing off-site properties for potential off-site migration of petroleum contaminants.

1.3 Visitors

All visitors to the Site must be instructed about the hazards of the activities that ATC or its subcontractors are performing. All visitors must sign the ATC Visitors Log (see Appendix C).

1.4 Subcontractor Activities

All subcontractors used at the Site have been Pre-Approved in the ATC Subcontractor Prequalification System.

2.0 - PROJECT ORGANIZATION

All personnel and visitors who may enter work areas on this Site must comply with the requirements of this HASP. All Site personnel have the authority to "Stop Work" if unsafe conditions are present. The specific responsibilities and authority of management, safety and health, and other personnel on this Site are detailed in the following sections.

2.1 Site Safety and Health Officer (SSHO)

The Site Safety and Health Officer (SSHO) has the responsibility and authority to develop and implement this HASP and to verify compliance. The SSHO reports to the Project Manager. The SSHO is on-site during all work operations and has the responsibility to halt Site work if unsafe conditions are detected. The responsibilities of the SSHO at the Site include the following:

- Managing the health and safety functions on the Site;
- Ensuring Site monitoring, worker training, and effective selection and use of PPE;
- Conducting daily Tailgate Safety Meetings for Site personnel and subcontractors and summarize the training on the Tailgate Meeting Form (see Appendix C). The following topics should be covered during safety meetings:
 - Hazard Communication (i.e., MSDS location, and container labeling, chemical hazards of non-routine tasks)
 - Determine applicability of Standard Operating Procedures (SOP) in Section 8 and communicate procedures
 - Review Site safety requirements
 - Give refresher training on heat or cold stress (Section 5.2 and 5.3) when appropriate
 - Review Site emergency procedures
 - Discuss location and use of a rig kill switch for drilling/boring operations
- Conducting daily safety inspections of the Site looking for unsafe acts or conditions and providing corrective action as appropriate.

2.2 Site Supervisor

The Site Supervisor is responsible for field operations and reports to the Project Manager. The Site Supervisor is the On-site Coordinator and overseer of operations. It is the Site Supervisor's duty to maintain Site security, supervise the personnel on the Site, coordinate the activities of the subcontractor personnel, and check that the HASP is followed and modified when necessary. The Site Supervisor's specific responsibilities include:

- Executing the work plan and schedule as detailed by the Project Manager
- Coordination with the SSHO on health and safety issues
- Ensuring Site work compliance with the requirements of the HASP
- Before Site activities, contact the hospital emergency room, local fire department, and local police department, as applicable. If outside town, contact county officials and local emergency services.

2.3 **Project Manager (PM)**

The Project Manager (PM) has the primary responsibility for the fulfillment of the terms of the contract and overseeing operations for the purpose that includes meeting legal and safety

Former R&J Refinery	Health and Safety Plan
Princeton, Gibson County, Indiana	ATC Project No. 170IFA0010

requirements. It is the PM's responsibility to keep the project on schedule, within budget, and communicate with the Client regarding the progress toward specified goals.

The PM will inform the Regional Safety Coordinator of all HASP modifications, violations, injuries, exposures, and near-miss situations. The PM responsibilities include:

- Provide personnel time to read and understand the Site Health and Safety Plan (HASP) before fieldwork.
- Conduct project start-up health and safety briefing for: Field personnel, the Site Supervisor, the project team.
- Check that each subcontractor is pre-approved and that each subcontractor's Site workers have appropriate HAZWOPER Training Certificates.
- Check that Site personnel, if required, have received Respiratory Protection Training, Fit testing, and physician's approval to wear a respirator.
- That hazards identified during any Site audits are corrected. If necessary for immediate hazards, shut down field operations if hazards cannot be corrected or the hazards present an immediate threat to life and health.

2.4 Regional Safety Coordinator (RSC)

The Regional Safety Coordinator (RSC) is responsible for providing professional health and safety advice and oversight management to the project. The RSC will review and provide support for concerns regarding the health and safety of field personnel assigned to this project, including:

- If requested by the Project Manager, approval of Routine HASP;
- Approval of all Non-Routine HASP;
- Review of incident reports, inspections, and air monitoring results;
- When required, the RSC will conduct a field audit of the Site to evaluate the adequacy of the program and implement the necessary changes through the HASP.

2.5 **Project Field Team**

The Project Team includes technicians, engineers, scientists, geologists, and possibly subcontractors who perform field activities. Each individual team member will be responsible for understanding and personally complying with the HASP and Site health and safety requirements. Project Team members will report health and safety violations to either the Site Supervisor or the SSHO. Health and safety responsibilities, as discussed in this Plan, which are shared by all Site personnel include:

- Complying with the requirements of the HASP
- Reporting unsafe acts or conditions
- Retain copies at the Site of the following health and safety records:
 - Current HAZWOPER Training Certificate.
 - Respiratory Protection Training Certificate and current fit test record for potential respirator users.
 - Physician's approval for hazardous-waste fieldwork and/or respirator use.
 - First-aid/CPR and bloodborne pathogens training certificate.

3.0 - TASK/OPERATION HEALTH AND SAFETY RISK ANALYSIS SUMMARY

This chapter of the HASP describes the safety and health hazards associated with the Site work and control measures selected to protect workers. The purpose of the Job Safety Analysis (JSA) is to identify the routine safety and health hazards associated with the routine Site tasks and operations. Using this information, appropriate control methods are selected to eliminate the identified risks or effectively control them.

3.1 Job Safety Analysis (JSA)

Each specific JSA appears on a separate copy of the spreadsheets in Appendix A. A single JSA may be used for a task/operation performed in multiple locations if the hazards, potential exposures, and controls are the same at each location.

3.2 Health Analysis and Chemical Risk Assessment

Chemicals may be purchased and transported to the Site to support Site characterization and remediation operations. The principal chemical contaminants at the Site are expected to be petroleum, organic compounds, and metals. Appendix B contains information from the National Institute for Occupational Safety and Health (NIOSH) Pocket Guide to Chemical Hazards about each of these chemicals. Additionally, the Hazard Communication Program (Policy No. 21) requires ATC to provide employees, contractors, subcontractors, and visitors with information on the health effects of these chemicals and necessary actions to protect against exposure. This information is transmitted through Material Safety Data Sheets (MSDS), the NIOSH Pocket Guide, container labels, training, and a written Hazard Communication program.

Site activities will adhere to the ATC Hazard Communication Program as described in the Policy. All Site personnel, including subcontractors, will be briefed on this Program as part of the Site orientation training before starting work. In accordance with this Program, the PM and Site Supervisor will check that each chemical brought to the Site is accompanied by its MSDS. A copy of each MSDS will be made available to each Site employee who may be potentially exposed to the chemical. In addition, the Site Supervisor will check that all subcontractors bring at least one copy of MSDS for each chemical they bring onto the Site. The Site Supervisor will also check that all chemical containers brought to the Site to determine if they are labeled as to its contents and appropriate hazard warnings.

3.3 Risks Associated With Drilling and Subsurface Activities

Drilling operations will conform to the Job Safety Analysis and Subsurface Investigation (ATC (Policy No. 33). During drilling operations, the subsurface is penetrated to obtain soil and/or groundwater samples. Contaminated soil cuttings and groundwater may be brought to the surface, creating a potential for exposure through skin contact and inhalation of vapors. The open borehole also creates a conduit for vapors to be released to the atmosphere. However, the amount of vapors released to the atmosphere is relatively small and vapors are usually quickly diluted and dispersed in air. Air monitoring is required to determine if protective equipment is necessary, as described in Section 4.0 of this HASP.

In addition to these chemical risks, the risk of drilling into a buried utility, such as a gas, water, electric line, or underground storage tank or other structures, is always present. Complete the Checklist for Subsurface Clearance prior to any subsurface work (see Appendix C) and follow the procedures in Table 3-1 for at least the first 5 feet of penetration:

TABLE 3-1 DRILLING/PROBING PROCEDURES (First 5 feet below surface)

Step 1 - Site Walk	Conduct Site walk. Verify that the Checklist for Subsurface Clearance has been fully completed.
Step 2 - Locate Markouts	Locate all utility markouts and borehole locations. Start intrusive activities at least five (5) feet away and perpendicular to all marked utility lines.
Step 3 - Break Surface Cover	Use a jackhammer or concrete saw to break through the asphalt or concrete surface cover. The drill bit on the rig may also be used on the asphalt cover. Do NOT advance bit or cutting tools beyond the asphalt or concrete cover.
Step 4 - Surface Boring	Use air knife with vacuum extractors, hand auger, or hand shovel to remove soil from the borehole to a depth of at least 4 feet below surface. The soil in the borehole should be excavated to a diameter of at least three inches greater than the diameter of the drill bit on the lead auger or drill stem that is to be used. If it is not possible to perform a surface boring which meets the diameter requirements as stated above, surface borings should be installed to the required depth of 4 feet surrounding the proposed well/boring location in such a manner that any lines/utilities passing through the proposed well/boring location will be encountered while installing the investigation
Step 5 - Soil Sampling	borings/well. If soil samples are required to be collected within the first 4 feet below surface, a hand auger should be utilized to collect native, undisturbed soil
Step 6 - Borehole Protection	samples. If no piping or other structures are encountered within the first 4 feet below surface, normal drill/probe activities may proceed with <u>caution</u> . Containerize drill cuttings as appropriate. If excavation of the borehole is conducted the day before actual drilling is conducted, the borehole should be covered with barricades or cones and with a sheet of material sufficient in strength to support a person's weight until it is ready to be drilled. If the borehole is of sufficient size to potentially cause damage to a vehicle if driven over, the borehole should be covered with a material sufficient in strength to support vehicular weight. In lieu of barricades or cones and a material cover, the boring may be temporarily backfilled to surface. If a backfill material is utilized, it is important for the material to be flush with the surrounding pavement.

Risks of injury associated with the drilling operation itself also exist. The risks of working near overhead electrical lines may also present a safety hazard. The SSHO will check for the presence of overhead lines and other obstructions. No drilling operations will be performed within 10 feet of overhead lines with voltages 0-50 kV. For other voltages refer to ATC Electrical Safety Policy (No. 12) and Equipment (Drill Rigs, Mobile Equipment) Policy (No. 15).

Former R&J Refinery	Health and Safety Plan
Princeton, Gibson County, Indiana	ATC Project No. 170IFA0010

Whenever possible, stay at least two feet from turning or rotating machinery. This includes augers, cathead, engine power takeoff, and drill rods. Learn where the rig kill switch is to shut the rig off in case of an emergency. A discussion should be held with the driller on each drill rig at the startup of the field work to discuss the location and use of the kill switch and for documentation of a Safety Inspection such as the Monthly Heavy Equipment Safety Inspection Checklist found in Appendix C.

3.4 Noise Hazards and Controls

Exposure to high levels of noise may occur when working near drill rigs or other heavy equipment. Also, depending upon where the work is being performed, local equipment (e.g., airports, factory machines, etc.) may produce high levels of noise. Employees exposed to noise levels in excess of the action level of 85 decibels (A-weighted, Slow Response) will be included into the ATC Policy on Hearing Conservation (Policy No. 34). The SSHO may evaluate employee noise exposures using a Noise Survey Meter or a Noise Dosimeter. The RSC may conduct additional noise monitoring to determine the appropriate response to be taken. Employees will be provided with ear plugs and/or earmuffs when exposed to noise levels in excess of the 8-hour Permissible Exposure Limit (PEL) of 90 decibel (A-weighted, Slow Response). This hearing protection shall have a Noise Reduction Rating (NRR) to protect hearing in accordance with Policy No. 34, including the NRR de-rating factor of [(NRR-7)/2].

3.5 Biological Hazards

Site activities on this Site may expose workers to other hazards such as poisonous plants, insects, animals, and indigenous pathogens. Protective clothing and respiratory protection equipment, and being capable of identifying poisonous plants, animals, and insects, can greatly reduce the chances of exposure. Thoroughly washing any exposed body parts, clothing, and equipment will also protect against infections. If working in wooded/grassy areas, use appropriate insect repellants (containing DEET and/or Permethrin) and apply them per the manufacturers' directions.

4.0 - AIR MONITORING AND PERSONAL PROTECTIVE EQUIPMENT

4.1 Site Air Monitoring Requirements

To prevent exposure to hazardous conditions and aid in the selection of personal protective equipment, monitoring for the presence of airborne contaminants will occur when knowledge of the Site indicates their potential presence. One or more of the following direct-reading instruments may be used to aid in this determination. Photoionization Detectors (PID) and Flame Ionization Detectors (FID) will measure non-specific organic gases and vapors. Combustible Gas Indicators (CGI) will detect explosive atmospheres. Oxygen (O₂) meters will detect fluctuations in oxygen concentrations. These instruments should be calibrated or bump tested daily and whenever the readings may be erratic. All readings should be recorded in the field log books.

Colorimetric detector tubes supplement PID and/or FID readings to measure specific gases and vapors. Other direct-reading instruments are available for use to monitor for the presence of specific airborne Site contaminants.

The breathing zone of the employee(s) anticipated to have the highest potential for exposure for each task will be monitored using an appropriate combination of some or all of these direct-reading instruments. Air monitoring will occur every 15 minutes during non-intrusive activities, or every 5 feet of penetration during intrusive activities. Site tasks and air monitoring requirements are shown in Table 4-1. Additional Site monitoring may occur at the discretion of the SSHO, Site Supervisor, or RSC.

<u>NOTE</u>: All air monitoring equipment must be calibrated as per manufacturer's instructions.

Site Activity	Instrument	Frequency	Location	Caution
Drilling	PID	Every 15 minutes or 5 feet of penetration	In breathing zone of person nearest activity	Communicate with equipment operator before sampling
	CGI	Every 15 minutes or 5 feet of penetration	In work area near activity	Communicate with equipment operator before sampling
	Detector tubes	As indicated in Table 5-2 when exceed PID limits	In breathing zone of person nearest activity	Strong odors may require further testing.
Ground water sampling	PID	Every 15 minutes	In breathing zone of person nearest activity	Strongest likely concentration when opening cover
	CGI	Every 15 minutes	In work area near activity	Strongest likely concentration when opening cover

Table 4-1Site Air Monitoring Requirements

Site Activity	Instrument	Frequency	Location	Caution
	Detector tubes	Every 15 minutes	In breathing zone of person nearest activity	Strongest likely concentration when opening cover
Asbestos Air Monitoring	Sampling pump / PCM telescope	Daily	Near asbestos removal zones	Communicate results with on-site personnel

Air monitoring results obtained from the breathing zone during field activities will be recorded in field logbooks and the Air Quality Monitoring Record (see Appendix C). All such records will also include the location, date/time, weather conditions, person monitored, background concentration, and identification of specific contaminant whenever possible. Air monitoring information will be utilized to evaluate personnel exposure and assess the appropriateness of PPE for Site conditions. The PPE for the Site are discussed in Section 4.2. Photoionization detector (PID), combustible gas indicator (CGI), and detector tube readings measured in the employees breathing zone will be used to determine the level of protection required. PID readings refer to readings above background, which are sustained for at least 5 minutes and are measured during the performance of field tasks. PID readings are used for general screening.

4.2 Action Levels for Personal Protection Equipment

The first and foremost means of protecting employees from injuries or exposures is to eliminate the exposure. The general hierarchy for controlling potential exposures is: (1) Engineering Controls; (2) Administrative Controls; and (3) the use of PPE. PPE is a means of preventing injury or exposure when exposure elimination and/or other control means are not feasible.

The initial level of protection and the Action Levels at which the PPE will be upgraded are determined based on the identification of specific chemicals expected to be present at a Site and the established OSHA Permissible Exposure Levels (PEL) or ACGIH Threshold Limit Values (TLVs), whichever is lower. In the event more than one chemical is expected or exists at a Site, the most hazardous chemical will dictate the level of personal protection required. Table 4-2 shows the action levels for levels of personal protection equipment.

Monitoring Equipment	Hazard	Action Level Above Background	Action
PID/FID	Organic	< 10 ppm	Level D.
	gas/vapor	10 to 50 ppm	Level C. Move upwind and continue air monitoring, cease operations, or use detector tube(s) and reference Table 4-3 below.
		> 50 ppm	Immediate Withdrawal. Contact the PM and RSC for further instructions to proceed.
Air Pump / 0.8 micron filter	Asbestos/ particulate	>1.0 f/cc – PEL >0.1 f/cc – TWA	Proper respiratory protection, protective clothing

Table 4-2Action Levels for Personal Protection Equipment

Former R&J Refinery	Health and Safety Plan
Princeton, Gibson County, Indiana	ATC Project No. 170IFA0010

Detector tubes to be used are indicated for given ranges based upon the PID readings (Table 4-2). As appropriate, PID readings in conjunction with detector tubes will be utilized during the field activity and location anticipated having the highest level of contamination. This location will be selected by the Site Supervisor. If these measurements indicate exposure levels appropriate for Level D work, the use of detector tubes will be limited to situations where field conditions or activities have changed. Detector tubes will be available for use at the discretion of the Site Supervisor and the SSHO.

If readings exceed the range for level of protection indicated, personnel should withdraw and not return until an appropriate level of protection has been donned. Upgrading protection shall be communicated to the SSHO, who will in turn convey this information to the RSC. Upon review of PID, CGI, and detector tube measurements, the RSC may further adjust the PPE requirements.

Any upgrading to higher levels of protection may require additional personal sampling using National Institute for Occupational Safety and Health (NIOSH) or Occupational Safety and Health Administration (OSHA) methods for the collection and analysis of airborne contaminants.

Air monitoring equipment used on the Site should be calibrated with the following:

Calibration/Response Check

<u>Types</u>	Frequency	Gas Standard
PID	Daily	100 ppm isobutylene in air
CGI	Daily	Pentane/Methane
Universal Test Pump- Sensidyne (refer to mfg. for other pumps)	Daily	Leak Test: Insert unbroken detector tube into orifice, pull and lock handle in sampling position, wait 15-30 sec. Slowly and carefully release the handle. If handle does not return to 1/8", pump leaks.

Field personnel, in conjunction with the Site Supervisor and SSHO, may choose to allow ventilation of vapors before resuming work (rather than using higher levels of PPE). If ventilation is conducted, additional air monitoring will be performed prior to the resumption of work to determine the level of PPE required.

OSHA established an asbestos standard in 1971, updated in 1994, primarily directed toward industrial applications (29 CFR 1910.1001). In response to the growing asbestos abatement industry and additional concern of asbestos exposure, a construction standard (29 CFR 1926.1101, formerly 29 CFR 1926.58) for asbestos became effective on July 21, 1986. This standard specifically outlines asbestos procedures, respirator selection and fit testing, air sampling and the analysis of asbestos air samples. It also includes an eight-hour time weighted average (TWA) permissible exposure limit (PEL) level of 0.1 fibers per cubic centimeter of air (f/cc), and an excursion limit of 1.0 f/cc for a 30-minute period. Concentrations above these levels require specific action such as respiratory protection and medical surveillance.

Former R&J Refinery	Health and Safety Plan
Princeton, Gibson County, Indiana	ATC Project No. 170IFA0010

ATC will perform air monitoring using phase contrast microscopy (PCM) via NIOSH Method 7400, which considers an action complete when the results of clearance air samples collected and analyzed by are shown to be less than 0.1 f/cc inside containment areas and less than 0.01 outside containment areas.

4.3 Levels of Protection

Levels of protection for Site activities are described on the Site Air Monitoring Summary. The protection levels may include all or some of the following, based on work scope.

Level D:

- Work uniform Long pants and shirt with sleeves (no tank tops) refer to Policy No. 25 Personal Protective Equipment (Section 5.5)
- Disposable, inner nitrile gloves
- Chemical-resistant boots with steel toe
- Safety glasses with side shields
- High Visibility Reflective Vest Class 1, Class 2, or Class 3 (select based on Traffic speed)
- Hard hat
- Disposable, chemical-resistant outer boot covers*
- Hearing protection*

LEVEL C:

- Half-face or full-face, air purifying respirator (NIOSH approved)
- Disposable, hooded, chemical-resistant clothing
- Disposable, chemical-resistant outer gloves
- Disposable, inner nitrile gloves
- Chemical-resistant boots with steel toe
- Disposable boot covers
- Hard hat
- Safety Glasses with side shields
- High Visibility Reflective Vest Class 1, Class 2, or Class 3 (select based on Traffic speed)
- Coveralls*
- Hearing protection*

(* Optional Equipment, depending on conditions/exposures)

4.4 Respiratory Protection

Respiratory protection requirements are described in detail in the ATC Respiratory Protection Program. Basic rules of respiratory usage are listed below:

- Facial hair that interferes with a satisfactory fit of the mask-to-face seal is not allowed on personnel required to wear respirators.
- Respirator cartridges should be replaced after approximately 8-hours of continuous or intermittent usage, unless otherwise noted. Cartridges should also be replaced if they become damaged, after the expiration date is exceeded, if vapor smell breakthrough occurs, or if filters become clogged causing resistance to breathing.
- Contact lenses may be worn when respiratory protection is required, in conjunction with additional eye protection to protect against particles or splashes, provided there is no interference with the respirator seal.

Former R&J Refinery	Health and Safety Plan
Princeton, Gibson County, Indiana	ATC Project No. 170IFA0010

- Respirators shall be cleaned and disinfected after each day's use or more often, if necessary.
- Prior to donning, respirators will be inspected for worn or deteriorated parts. Emergency respirators or self-contained devices will be inspected at least once a month and after each use.
- After donning, personnel should perform a positive and negative user fit-check to determine if a good seal has been achieved.
- Each employee shall make sure that they have an annual respirator fit test and respiratory protection training.

5.0 - HEALTH SURVEILLANCE PROGRAM

5.1 Employee Medical Examinations

All employees involved in work at the Site will participate in ATC's Medical Surveillance Program administered by Health Resources. Additionally, when respirators are required (as determined by the SSHO and project manager), each employee will also have current respirator clearance.

A post project, follow-up exam may be required if an exposure incident is reported or an employee shows specific symptoms associated with the known or suspected hazardous chemicals. The RSC and the Project Manager will determine when post project exams are required.

5.2 Heat Stress Program

This procedure applies to all employees when heat stress conditions exist at project sites.

5.2.1 Training

The SSHO will have received acceptable training in first-aid and Cardiopulmonary Resuscitation (CPR), including training in heat-related illnesses. The SSHO shall also be trained on the requirements of the ATC Policy for Industrial Hygiene (Policy No. 23), which contains the requirement for Heat Stress monitoring. All workers should be capable of recognizing and treating the signs and symptoms of heat stress conditions. During potential heat stress conditions, ice should be readily available to rapidly cool victims.

5.2.2 Fluid Replacement

Water will be made available at the Site for employee fluid replacement. When heat stress is determined to be a problem by the SSHO, employees will be provided with balanced, electrolyte solutions to replace fluid and electrolyte loss. Employees will be provided with replacement fluids at a minimum rate of 8 ounces every 15 to 20 minutes per person.

5.2.3 Acclimatization

Acclimatization is a gradual physiological adaptation that improves an individual's ability to tolerate heat stress. Full-heat acclimatization requires up to 3 weeks of continued physical activity under heat-stress conditions similar to those anticipated for the work. Its loss begins when the work activity in the heat stress conditions is discontinued. A noticeable loss usually occurs within 3 - 4 days.

5.2.4 Rest Breaks

When heat stress conditions are applicable, all rest breaks should be taken out of the zone of exclusion into a cooler, shaded, rest area. If these conditions are not available, more frequent rest breaks will be taken.

5.2.5 Heat Stress Monitoring

Heat Stress and heat strain are conditions resulting from environmental factors including temperature, relative humidity, radiant heat transfer, and air movement, as they are affected by clothing. The primary objective of the heat stress management program is to prevent heat

Former R&J Refinery	Health and Safety Plan
Princeton, Gibson County, Indiana	ATC Project No. 170IFA0010

stroke which is life threatening and the most serious of the heat-induced disabilities. Extra caution should be taken for workers who are not acclimated to working in the heat.

The following Heat Stress Index (refer to ATC Policy No. 23) should be used as a guide to evaluate heat stress situations. If the Heat Stress exceeds 105° F, contact the RSC prior to work for detailed guidance.

Heat Stress Index												
Temp.		Relative Humidity										
°F	10%	20%	30%	40%	50%	60%	70%	80%	90%			
105	98	104	110	120	132							
102	97	101	108	117	125							
100	95	99	105	110	120	132						
98	93	97	101	106	110	125						
96	91	95	98	104	108	120	128					
94	89	93	95	100	105	111	122					
92	87	90	92	96	100	106	114	122				
90	85	88	90	92	96	100	106	114	122			
88	82	86	87	89	93	95	100	106	115			
86	80	84	85	87	90	92	96	100	109			
84	78	81	83	85	86	89	91	95	99			
82	77	79	80	81	84	86	89	91	95			
80	75	77	78	79	81	83	85	86	89			
78	72	75	77	78	79	80	81	83	85			
76	70	72	75	76	77	77	77	78	79			
74	68	70	73	74	75	75	75	76	77			

HSI Temp	Category	Injury Threat
Above	Extreme	No work unless emergency exists. Contact ATC RSC and Corporate Risk
130° F	Danger	Management Department prior to proceeding. Heat cramps or exhaustion likely,
	_	heat stroke possible if exposure is prolonged and there is physical activity.
105° to	Danger	Contact RSC prior to proceeding. Requires strict adherence to ACGIH Heat Stress
130° F		Guidelines, including use of on-site WBGT equipment. Heat cramps or exhaustion likely, heat stroke possible if exposure is prolonged and there is physical activity.
90° to 105° F	Extreme Caution	Heat cramps or exhaustion likely, heat stroke possible if exposure is prolonged and there is physical activity.
80° to 90° F	Caution	Heat cramps or exhaustion likely, heat stroke possible if exposure is prolonged and there is physical activity.
Below 80° F	Normal Range	Typical conditions for time of year. Little or no danger under normal circumstances. As always, anticipate problems and work safely.

Former R&J Refinery	Health and Safety Plan
Princeton, Gibson County, Indiana	ATC Project No. 170IFA0010

5.3 Cold Stress Program

This procedure applies to all employees who perform field work in cold environments at risk of cold stress injury and intended to protect workers from the most severe effects of cold stress.

5.3.1 Training

ATC Site employees have been trained in cold stress as part of their HAZWOPER 40-hour initial training. Site workers will receive refresher training by the SSHO in cold stress safety and health procedures. The training program will include, as a minimum, instruction in the following areas:

- Proper first-aid treatment
- Proper clothing practices
- Proper eating and drinking habits
- Recognition of impending frostbite
- Recognition of the signs and symptoms of impending hypothermia or excessive cooling of the body when shivering does not occur
- Safe working practices

The SSHO will be trained in first-aid, CPR, and cold stress conditions.

5.3.2 Environmental Monitoring

Frostbite and hypothermia are two types of cold injury that personnel must be protected against during the performance of field duties. The objective is to prevent the deep body temperature from falling below

96.8° F and to prevent cold injury to body extremities. Two factors influence the development of a cold injury the ambient temperature, and wind velocity.

The SSHO will monitor environmental conditions by recording ambient temperature and estimated wind-speed. Information contained in Tables 5-1 and 5-2 will be used to evaluate the possibility of hypothermia among workers on-site.

5.3.3 Protective Clothing and Rest Breaks

Use appropriate cold weather clothing when temperatures are at or below 40°F as exposed skin surfaces must be protected. These protective items can include facemask, hand wear, and foot wear. Workers handling evaporative solvents during cold stress conditions will take special precautions to avoid soaking gloves and clothing because of the added danger of prolonged skin contact and evaporative cooling. Personnel will wear protective clothing appropriate for the level of cold and planned physical activity. The objective is to protect all parts of the body, with emphasis on the hands and feet. Eye protection against glare and ultraviolet light should be worn in snowy and icy conditions.

The work rate should not be so great as to cause heavy sweating that could result in wet clothing. If heavy work must be done, opportunities for rest breaks will be provided where workers have the opportunity to change into dry clothing. Conversely, plan work activities to minimize time spent sitting or standing still. Rest breaks should be taken in a warm, dry area. Windbreaks can also be used to shield the work area from the cooling effects of wind.

5.3.4 Identification and Treatment of Cold Stress

When frostbite, hypothermia, or other cold stress symptoms are suspected, treat the patient to relieve symptoms or transport them to the medical facility identified on page TC-4.

TABLE 5-1 Threshold Limit Values Work/Warm-up Schedule for Four-Hour Shift*

Air-Temperature	eSunny Sky	No Noticea	iceable Wind 5 mph Wind 10 mph Wind		d	15 mph Wi	nd	20 mph Wind			
°C (approx.)	°F (approx.)	Max. Work Period	No. of Breaks	Max. Work Period	No. of Break s	Max. Work Period	No. of Break s	Max. Work Period	No. of Break s	Max. Work Period	No. of Breaks
-26° to -28°	-15° to -19°	(Norm. Bre	aks) 1	(Norm. E	(Norm. Breaks) 1 7		2	55 min	3	40 min	4
-29° to -31°	-20° to -24°	(Norm. Bre	aks) 1	75 min 2		55 min	3	40 min	4	30 min	5
-32° to -34°	-25° to -29°	75 min	2	55 min	3	40 min	4	30 min	5	Non-emergency work should cease	
-35° to -37°	-30° to -34°	55 min	3	40 min	4	30 min 5 Non-emergency work should cease		Non-emergency work should cease			
-38° to -39°	-35° to -39°	40 min	4	30 min	5	Non-emerge work should	•	Non-emerg work should		Non-emergency work should cease	
-40° to -42°	-40° to -44°	30 min	5	Non-emergency work should cease		Non-emerge work should		Non-emergency work should cease		Non-emergency work should cease	
-43° & below	-45° & below	Non-emerg work shoul	•	Non-emergency work should cease		Non-emergency work should cease		Non-emergency work should cease		Non-emergency work should cease	

*1. Schedule applies to any 4-hour work period with moderate to heavy work activity, with warm-up periods of ten. (10) Minutes in a warm location and with an extended break (e.g., lunch) at the end of the 4-hour work period in a warm location. For Light-to-Moderate Work (limited physical movement): apply the schedule on step lower. For example, at -35°C (-30°F) with no noticeable wind (Step 4), a worker at a job with little physical movement should have a maximum work period of 40 minutes with 4 breaks in a 4-hour period (Step 5).

2. The following is suggested as a guide for estimating wind velocity if accurate information is not available: 5 mph: light flag moves; 10 mph: light flag fully extended: 15 mph: raises a newspaper sheet: 20 mph: blowing and drifting snow.

3. If only the wind chill cooling rate is available, a rough rule of thumb for applying it rather than the temperature and wind velocity factors given above would be 1) special warm-up breaks should be initiated at a wind chill cooling rate of about 1750 watts per square meter (W/m²); 2) all non-emergency work should have ceased at or before a wind chill of 2250 W/m². In general, the warm-up schedule provided above slightly under-compensates for the wind at the warmer temperatures, assuming acclimatization and clothing appropriate for winter work. On the other hand, the chart slightly overcompensates for the actual temperatures in the cooler ranges because windy conditions rarely prevail at extremely low temperatures.

4. TLVs apply only for workers in dry clothing.

* Adapted from Occupational Health & Safety Division, Saskatchewan Department of Labor.

HASP Level III Rev. 01 – (June 11, 2007)

Estimated	Actual Temperature Reading (degrees F)												
Wind	50	40	30	20	10	0	-10	-20	-30	-40	-50	-60	
Speed (mph)		Equivalent chill Temperature (deg											
calm	50	40	30	20	10	0	-10	-20	-30	-40	-50	-60	
5	48	37	27	16	6	-5	-15	-26	-36	-47	-57	-68	
10	40	28	16	4	-9	-24	-33	-46	-58	-70	-83	-95	
15	36	22	9	-5	-18	-32	-45	-58	-72	-85	-99	-112	
20	32	18	4	-10	-25	-39	-53	-67	-82	-96	-110	-121	
25	30	16	0	-15	-29	-44	-59	-74	-88	-104	-118	-133	
30	28	13	-2	-18	-33	-48	-63	-79	-94	-109	-125	-140	
35	27	11	-4	-20	-35	-51	-67	-82	-98	-113	-129	-145	
40	26	10	-6	-21	-37	-53	-69	-85	-100	-116	-132	-148	
(Wind speeds > 40 mph have little additional effect)		LITTLE D with dry s of false se	kin. Maxi		l Danger expos	CREASI DANGEF from fre sed flesh ne minut	२ ezing of within	GREAT DANGER Flesh may freeze within 30 seconds.				nds.	
			Trench foot and immersion foot may occur at any point on this chart.										

TABLE 5-2Cooling Power of Wind on Exposed Flesh Expressed asEquivalent Temperature (under calm conditions)*

* Developed by U.S. Army Research Institute of Environmental Medicine, Natick, MA

6.0 - SITE SECURITY AND CONTROL

6.1 Work Zones

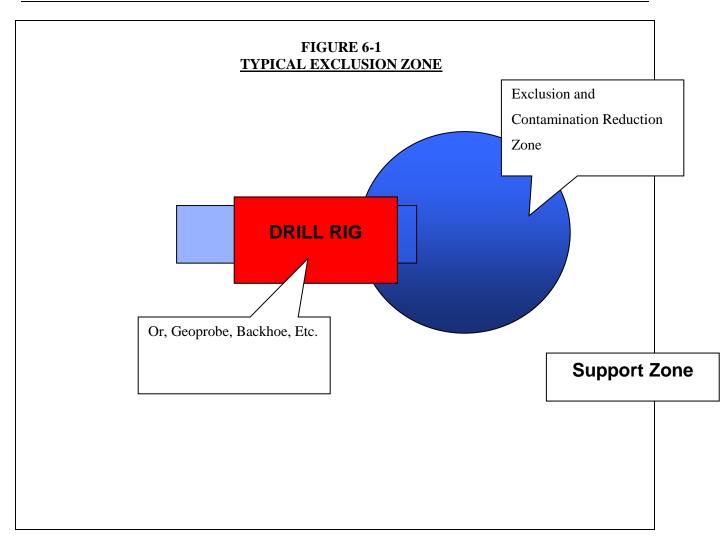
Restricted Site areas will include, but not necessarily be limited to, the following zones:

- Exclusion Zone or Hot Zone any area where contamination is either known or likely to be present in concentrations that could pose a threat to human health and safety or that potential for harm to personnel exists because of the type of work activities being conducted. Appropriate PPE and warning signs should be utilized in this area.
- **Contamination Reduction Zone** any area where workers conduct personal and equipment decontamination.
- **Support Zone** areas where access is controlled, but the chance to encounter hazardous materials or conditions are minimal.

Access to the work zones will be controlled by work zone delineators (e.g. traffic cones, flags, vehicles, DOT approved devices, temporary or permanent fencing, and/or safety barrier tape). Figure 6-1 is an example of a work zone. Additionally, ATC employees should follow the requirements of the Employee Health and Safety Policy Manual, Policy No. 36, Work Zones in Traffic Areas for additional information.

In the event on-site personnel must upgrade their personal protective equipment, the work zones may require substantial modification in order to provide for the safety of nearby personnel not associated with this work. Any upgrade level will be communicated by the Site Supervisor to the PM. The PM will then inform the RSC of this occurrence.

6.2 Buddy System


The Buddy System will be used at all times by field personnel in the Exclusion Zones. The Buddy System means that personnel work in pairs and stay in close visual contact to be able to observe one another and summon rapid assistance in case of emergency. No one is to perform fieldwork alone without the approval of the Branch Safety Officer and/or the Regional Safety Officer.

6.3 Site Communication

A loud and clear form of communication should be made available for Site personnel entering the work zones. Site communication may be in the form of hand signals, voice, or other communication devices. All forms of communication should be understood by all workers on the Site prior to starting work.

6.4 Roadway Work Zones

When ATC employee and subcontractors are required to perform Site operation in a city street or public right-of-way, a Traffic Control Plan may be required and included with this HASP. Check with the State or local government Department of Transportation for when a traffic control plan is required. Traffic Control Plans will include Transition Areas, Activity Areas, and Termination Areas. Former R&J Refinery Princeton, Gibson County, Indiana

7.0 - DECONTAMINATION PROCEDURES

7.1 Personnel Decontamination

All personnel must complete appropriate decontamination procedures in a way that is responsive to actual Site conditions before leaving the Site. The decontamination of personnel and equipment will be performed within the exclusion and contamination reduction zones. Wash tubs containing an appropriate decon solution and soft bristle brushes will be used to decontaminate personal protective clothing and boots. Deionized water will be used for the final rinse. The SSHO will visually inspect all PPE and other equipment once decontamination procedures are completed. In general, the four types of decontamination solutions to be considered for PPE include:

- Water for removal of low-molecular weight hydrocarbons, inorganic compounds, salts, some organic acids, and other polar compounds.
- Dilute acids (vinegar) for removal of basic (caustic) compounds, amines, and hydrazines.
- Dilute bases (soaps and detergents) for removal of acidic compounds, phenols, thiols, and some nitro and sulfonic compounds.
- Organic solvents for removal of nonpolar compounds (organic).

LEVEL D/LEVEL C

- Establish a segregated equipment drop
- Remove disposable, outer boot covers, if applicable
- Remove chemical resistant, outer gloves, if applicable
- Remove hard hat and goggles, safety glasses, or face shield
- Remove disposable, inner gloves
- Remove full-face air purifying respirator (Level C only)

Each individual will be responsible for inspecting and decontaminating their own respirator in accordance with the ATC Respiratory Protection Program (Policy No. 27).

At a minimum the hands and face of each employee must be thoroughly washed upon leaving the work area. Trash receptacles will be provided for all disposable clothing. Commercial laundries or cleaning establishments that decontaminate clothing or equipment will be informed of the potentially harmful effects of exposure.

7.2 Equipment Decontamination

The subcontractor will decontaminate field equipment according to the work plan. This may include manual removal of gross contamination with shovels or other tools, followed by a high-pressure, hot water sprayer. Because decontamination at the high-pressure, hot water station poses the possibility of a splash and/or mist inhalation hazard, the task should be performed using Level D personal protective equipment at a minimum.

Field tool including split-barrel soil samplers, brass liners, and sample knives and trowels will be decontaminated. The field tools may be scrubbed visually clean using a detergent solution

Former R&J Refinery	Health and Safety Plan
Princeton, Gibson County, Indiana	ATC Project No. 170IFA0010

(Alconox/Liquinox) with water and a stiff, long-bristled scrub brush. Following the solution scrubbing, the tools may be rinsed with distilled water or isopropyl alcohol.

7.3 Disposition of Decontamination Wastes

All materials and equipment used for decontamination should be disposed of in accordance with local, State, and/or Federal Regulations. Clothing, tools, buckets, brushes, and all other equipment that is contaminated must be properly packaged and stored on the Site until disposal arrangements are finalized. Clothing not completely decontaminated on-site should be secured in plastic bags before being removed from the Site.

8.0 - STANDARD OPERATING PROCEDURES

The following Standard Operating Procedures (SOPs) will be applied to each location and activity where work is performed on a hazardous chemical site. As hazards increase or decrease on the Site, the applicability of each SOP must be determined by the SSHO with the approval of any changes by the Project Manager or the RSC.

8.1 **Personnel Precautions**

- 1. Eating, drinking, chewing gum or tobacco, smoking, and any practice that increases the probability of hand-to-mouth transfer and ingestion of material is prohibited in the exclusion and contamination reduction zone or in any area known to be contaminated.
- 2. When decontamination procedures for outer garments are in effect, the entire body should be thoroughly washed as soon as possible after the protective garment is removed.
- 3. Contact with contaminated or suspected contaminated surfaces should be avoided. When possible, do not walk through puddles, leachate, or discolored surfaces; kneel on the ground; or lean, sit, or place equipment on drums, containers, or the ground.
- 4. Medicines and alcohol can increase the effects from exposure to toxic chemicals. Personnel should not take prescribed drugs at hazardous waste operations where the potential for absorption, inhalation, or ingestion of toxic substances exists unless specifically approved by a qualified physician. Alcoholic beverage intake should be minimized or avoided.
- 5. All personnel must be familiar with Standard Operating Procedures and any additional instructions and information contained in this HASP. All visitors and subcontractors will read the HASP before entering the Site.
- 6. All personnel will be aware of symptoms for heat or cold stress.
- 7. All personnel will be familiar with the chemicals used on-site and the associated hazards as described in each respective MSDS. The MSDS for the chemicals on-site will be available and located in the company vehicle.

8.2 **Operations**

- 1. All personnel going to the Site must be adequately trained and thoroughly briefed on anticipated hazards, equipment, safety practices, emergency procedures, and communications.
- 2. Personnel on the Site must use the Buddy System when engaged in Level C work as specified in ATC Policy No. 35 (Hazwoper). The purpose of the Buddy System is to provide rapid assistance to employees in the event of an emergency.
- 3. Visual contact must be maintained between pairs of Site and safety personnel. Entry team members should remain close to assist each other during emergencies.

- 4. Personnel should practice unfamiliar operations before the actual procedure.
- 5. Entrance and exit locations must be designated, and emergency escape routes delineated. Warning signals for Site evacuation must be established by the SSHO before field activities.
- 6. Communications using radios, hand signals, or other means, must be maintained between initial entry members at all times. Emergency communications should be prearranged in case of radio failure, the necessity for evacuating the Site, or other reasons.
- 7. Wind indicators visible to all personnel should be strategically located throughout the Site.
- 8. Personnel and equipment in the contaminated area should be minimized, consistent with effective Site operations.
- 9. Work areas for various operational activities will be established.
- 10. Procedures for leaving a contaminated area will be planned and implemented before going to the Site. Work areas and decontamination procedures will be established based on expected Site conditions.
- 11. Frequent and regular inspections of Site operations will be conducted by the SSHO to check compliance with this HASP. If changes in operation occur, the HASP must be modified to reflect these changes.
- 12. All electrical equipment (power tools, extension cords, instruments, radios, etc.) will conform with ATC Policy No. 12 (Electrical) The SSHO will ensure that electrical equipment is free from recognized hazards that may cause physical harm to employees.
- 13. Fire prevention and protection (appropriate signs for flammable liquids, smoking areas, storage areas of combustible or flammable materials, etc.) will be according to ATC Policy No. 18, Fire Protection.
- 14. Site Tailgate Safety Meetings will be held daily to discuss anticipated Site conditions and daily activities. This meeting will be summarized in field logbooks and the Tailgate Safety Meeting Form (see Appendix C).

9.0 - CONTINGENCY PLAN

This chapter of the HASP describes potential emergencies at this Site and the procedures for responding to those emergencies.

9.1 Medical Emergencies

- The name, address, telephone number, travel distance, and travel time to the nearest medical treatment facility are found in the Emergency Information section (see Page TC-4) of this HASP. A map and direction for locating the facility is available in the Emergency Information section (see Page TC-6) of this HASP.
- Emergency routes will be verified and driven before any Site activities. It may be quicker to transport a person with minor injuries than to wait for Emergency Medical Services (EMS) to respond. Check with the local authorities for response times. Life threatening emergency situations will only be handled by emergency medical services.
- 3. Before mobilization on-site, the Site Supervisor will contact the local hospital emergency room personnel, local fire department, and local police department to brief them regarding the scope and hazards associated with the scheduled fieldwork. If the Site is outside an established town, contact will be made with county officials and local emergency services.
- 4. An emergency first-aid kit with contents per ATC Policy No. 20 (First-Aid) will be readily available on the Site, and personnel will have first-aid training. The first-aid kit also contains equipment necessary to protect first-aid providers against exposure to bloodborne pathogens. All first-aid providers will have received Bloodborne Pathogens training and can receive Hepatitis B vaccinations according to the ATC Policy No. 09 (Bloodborne Pathogens) if exposed to bodily fluids.
- 5. Any person who becomes ill or injured in the exclusion zone must be decontaminated as well as possible with consideration to which risk will be greater, the spread of contamination or the health of the individual. If the injury or illness is minor, full decontamination (remove contaminated clothing and wash hands and face with soap and water, See Section 7.0) should be completed and first-aid administered before transport. If the patient's condition is serious, at least partial decontamination should be completed (i.e., complete disrobing of the victim and redressing in clean coveralls or wrapping in a blanket). First-aid should be administered while awaiting an ambulance or paramedics.
- 6. The following steps should be followed if an injury or illness case occurs:
 - Check the Scene.
 - If safe to do so, check the condition of the injured.
 - Call 911 if the victim is unconscious or your training dictates to do so.
 - Care for the injured. Always use "Universal Precautions".
 - Call COMP-CARE (800) 756-1130, if the injury is non-life threatening. COMP-CARE will assist you with the location of the nearest clinic, if referral is needed.

Former R&J Refinery	
Princeton, Gibson County, Indiana	

7. Provisions must be made to identify the substance to which the worker has been exposed. This information must be given to medical personnel.

9.2 Emergency Equipment

- 1. A personal eyewash unit that meets ANSI Z358.1-1998, Section 6 will be available in each ATC field vehicle at the Site if corrosive chemicals (chemicals with a pH of <3 or >11) will be on-site.
- 2. An emergency first-aid kit with contents as per ATC Policy No. 20 (First-Aid). The Site Supervisor shall be trained and certified in first-aid and CPR.
- 3. An emergency spill cleanup kit will be available at the Site at all times. Unplanned releases will be reported to the SSHO and/or Site Supervisor as soon as possible.
- 4. Sufficient water and/or multipurpose dry chemical (Class A, B, and C) fire extinguishers, rated not less than 2A:10B:C, will be maintained on the Site to cope with any situation until emergency services arrive.

9.3 Flammable Conditions

In the event that combustible vapors exceed 10 percent of the LEL or strong odors are detected in the borehole, the following actions should be taken:

- Continue investigation using extreme caution. Personal protective equipment may need to be upgraded.
- Allow vapors to dissipate or use intrinsically-safe mechanical ventilation.
- If atmospheric conditions do not change, call in the listed sequence:
 - -Project Manager
 - -Regional Safety Coordinator
 - -Fire Department
- Provide answering personnel with the call back numbers, locations, directions, and situation assessment.

9.4 Site Evacuation Conditions

The following conditions will necessitate the cessation of field work in the area of concern, withdrawal from the work area, and revisions to this HASP:

- Fires and/or explosions
- Unexploded ordnance is detected
- A major incident or injury occurs
- Flammable atmosphere readings above 10 percent LEL
- Oxygen readings above 23.5 percent oxygen concentration
- Oxygen readings at or below 19.5 percent oxygen concentration
- PID readings over 50 ppm sustained for more than 5 minutes
- Detector tube readings over the maximum Action Level for the contaminant specified

9.5 Emergency Communication System

Emergency contacts and telephone numbers are provided at the beginning of this HASP. Field crews will have some communication device at each active work location. These may include radios, mobile telephones, or walkie-talkies. Such communication devices will have sufficient range to contact the field office and/or emergency services. If an emergency occurs on-site, the Site Supervisor is responsible for checking that appropriate emergency contact has been notified. At the time of the emergency response, the Site Supervisor or designee will brief the emergency personnel on the status of the emergency, including Site conditions.

Field personnel will use hand signals if there are noisy working conditions on the Site. The hand signals that will be used are shown below and will be reviewed by the SSHO during the on-site safety briefing.

Signal	Meaning
Hands on top of head	Need assistance
Grip partner's wrist or place both hands around partner's arm	Leave area immediately
Thumbs up	OK; I am all right
Thumbs down	No; Negative
Hand gripping throat	Cannot breathe; Out of air

9.6 Emergency Response Follow-Up

If there is an incident, near-miss, or emergency response, the SSHO will notify the Project Manager and Regional Safety Coordinator. The Project Manager or the Branch Safety Officer will complete a Supervisor's Investigation Report (SIR) (Policy No. 51; Appendix 51-1) and submit to the appropriate Regional distribution list. Prior to resuming work, a Site safety meeting should be held to discuss the circumstances surrounding the incident and what should be done to prevent a re-occurrence.

10.0 - EMPLOYEE TRAINING

10.1 Pre-Assignment and Annual Refresher Training

All ATC Employees and Subcontractors will participate in routine health and safety education and training programs. These programs are designed to provide employees with a thorough knowledge of hazardous materials, health and safety hazard potential, and Federal Occupational Safety and Health Administration (OSHA) requirements published in 29 Code of Federal Regulations (CFR) Part 1910. According to 29 CFR 1910.120(e), Site employees will have received 40 hours of initial Hazardous Waste Operations & Emergency Response (HAZWOPER) instruction and 24 hours of supervised field experience. Attending an annual 8hour HAZWOPER refresher training session maintains this initial training. It is the responsibility of the Project Manager and each subcontractor's supervising manager to determine if the subcontractor staff meets these training requirements.

10.2 Site Supervisor's Training

On-site Managers and Supervisors on hazardous waste sites who are directly responsible for or who supervise workers engaged in hazardous wastes operations receive, in addition to the initial 40 HAZWOPER training, 8 additional hours of specialized supervisory training in compliance with the OSHA regulations. This training includes training on the employer's safety and health program and the associated employee training program, personal protective equipment program, spill containment program, and health hazards monitoring procedure and techniques.

10.3 Site Safety Training and Briefing Topics

The SSHO will conduct Site-specific health and safety briefing for field personnel before the start of all field work. Briefing attendees will include the Site Supervisor, the Project Team, and Subcontractor personnel. At the conclusion of the meeting, personnel are to sign the HASP Agreement and Acknowledgement Form in the Appendices. As additional people are assigned to the Site, it is the responsibility of the SHSO to ensure that new personnel are briefed on health and safety protocols and ensure that they have reviewed and signed the HASP Agreement and Acknowledgement Form. Items to be covered include:

- Site-specific health and safety rules
- Client-specific health and safety rules
- Health effects of various chemicals used on the Site
- Emergency response actions pertaining to operations on-Site

Additionally, daily Site Tailgate Safety Meetings will be conducted to review past activities, plan ahead for new or changed operations, to understand any near-miss and "lessons learned, establish safe working procedures for anticipated hazards, and provide pertinent safety and health training and motivation. The SSHO will complete the Tailgate Safety Meeting Form located in the Appendices.

10.4 Visitors

All visitors entering the designated work zones will be subject to all applicable health and safety requirements during field operations at the Site. All visitors to a work Site will be given the opportunity to review the HASP, will be escorted at all times, and will be required to stay a safe

distance from Site activities. The Site Supervisor and/or the SSHO will be responsible for briefing all visitors on the Site hazards, Site safety precautions, and the Site emergency response plan.

APPENDIX A Job Safety Analysis (JSA)

ASSOCIATES INC.	J	SA	JOB SAFE ANALYSIS	ТҮ	For RM Department Use Primary Category: EM - Environmental Management Secondary Category: JSA NO. EM-002d			
DESCRIPTION OF JOB:			CLASSIFICATION:	DATE:	REVISION:			
Well installation		Field Technician		4/22/08				
PREPARED BY: Dan Mickelsen		3Y: <mark>Dan Mickelsen</mark> Mum required personal	APPROVED BY: Da		PAGE: of			
 ☑ REFLECTIVE VEST ☑ HARD HAT ☑ SAFETY TOED BOOTS ☑ SAFETY GLASSES ☑ FACE SHIELD 	LONG PANTS COTTON, LEA CRAFTSMAN	S ATHER, OR I GLOVES RESISTANT GLOVE:	☐ AIR PURIFYING RE ☐ SUPPLIED AIR RES ☐ CHEMICAL RESIST. CLOTHING: ☐ GOGGLES	SPIRATOR PIRATOR	☐ OTHER: ☐ OTHER: ☐ OTHER: ☐ OTHER: ☐ OTHER: ☐ OTHER:			
☐ DRINKING WATER ☐ BUG REPELLENT ⊠ TRAFFIC CONTROL DEVICES ☐ LADDER	U WELL MAGN	ITH EXTENSION ET PRING <mark>SELECT FROM LIST</mark> AGOUT EQUIPMENT	OTHER: OTHER: OTHER: OTHER: OTHER: OTHER: OTHER: OTHER:		☐ OTHER: ☐ OTHER: ☐ OTHER: ☐ OTHER: ☐ OTHER:			
1 JOB STEPS	P	2 OTENTIAL HAZARDOUS UNSAFE PRAC			3 ROCEDURES and PREVENTATIVE MEASURES			
	Back	injuries		 Use proper lifting procedures – avoid lifting with the back and twisting. If over 50 pounds or awkward ask for assistance. Use cart or wheelbarrow to move the bags of sand close to the well opening. 				
Develop Sand Pack	Hand	l pinch/cuts/crushed		 Always watch hand placement – do not place your hand in direct path of a tool. Use craftsman, cotton or leather work gloves. 				
	Dust			 Pour contents of bag near the well opening. Stand upwind and allow the wind to take any dust generated away from your breathing zone. Pour contents slowly. Do not use a chopping motion to open the bag this cause dust to contact eyes. 				
	Back	injuries		back and t	er lifting procedures – avoid lifting with the twisting. pounds or awkward ask for assistance.			
	Fallir	ng pipe		• Use prope	er attachment to lift casing.			
Place PVC pipe	Hand	l injuries		 Be alert for hand injuries. Do not use your hand as the tool. Use a hammer to move objects that are stuck. Use the right tool for the job. Be aware of hand placement – do not place hands in th path of hammers, knifes or between objects. 				

ASSOCIATES INC.		JSA		JOB SAFE ANALYSIS			EM - E Second	y Categor C nvironn ary Categ J	nental Ma	nagement
DESCRIPTION OF JOB: Well installation		OPERAT Field Te		CLASSIFICATION:		DATE: 4/22/08	RE	VISION:		
PREPARED BY: Dan Mickelsen	REVIEV	VED BY: Dan Mickelse		APPROVED BY: Da	n Mio		PA	GE:	of	
		MINIMUM REQUIRED P								
 ☑ REFLECTIVE VEST ☑ HARD HAT ☑ SAFETY TOED BOOTS ☑ SAFETY GLASSES ☑ FACE SHIELD 	☐ LONG ☐ COTTO CRAFT ☐ CHEM	PANTS DN, LEATHER, OR SMAN GLOVES ICAL RESISTANT GLOVE: ING PROTECTION		AIR PURIFYING RE SUPPLIED AIR RES CHEMICAL RESIST. CLOTHING: GOGGLES IPMENT/SUPPLIES	SPIRA PIRAT	ATOR		OTHER: OTHER: OTHER: OTHER: OTHER: OTHER:		
 □ DRINKING WATER □ BUG REPELLENT ⊠ TRAFFIC CONTROL DEVICES □ LADDER 	□ WELL □ AIR M	IET WITH EXTENSION	M LIST	OTHER: OTHER: OTHER: OTHER: OTHER: OTHER:				OTHER: OTHER: OTHER: OTHER:		
1			2					3		
JOB STEPS		POTENTIAL HAZA UNSAF	ARDOUS			SAFE PF		URES an MEASUR	d PREVEN ES	TATIVE
				 Wear cotton, leather or craftsman gloves. Communicate your intentions to others involved. If sure they understand where and what you will be d before you do it. 						
		Back injuries				back and t If over 50 Use a wind	wisting. pounds c ch cable a	or awkward as a mecha	- avoid lifti d ask for assi anical lift for and roll the a	istance. auger pieces.
		Hot auger			•	Do not tou Allow aug Use water	er to coo	l down bet	fore handling	5
Remove auger as well is advanced		Hand pinch/cuts/crushed	1		•	Be alert fo Do not use move obje Use the rig Be aware o path of han Wear cotto Communic	or hand in e your has ects that a ght tool fo of hand p mmers, k on, leathe cate your inderstan	juries. nd as the to re stuck. or the job. lacement - nifes or be er or crafts intentions	ool. Use a ha – do not plac etween object man gloves. s to others inv	e hands in the

ASSOCIATES INC.	L	JSA	JOB SAFE ANALYSIS			Primary	Categoi ivironi ry Categ	nental Management
DESCRIPTION OF JOB:			CLASSIFICATION:		DATE:	REV	'ISION:	
Well installation		Field Technician			4/22/08			<u></u>
PREPARED BY: Dan Mickelsen		D BY: Dan Mickelsen	APPROVED BY: Da		elsen	PAC	E:	of
 ☑ REFLECTIVE VEST ☑ HARD HAT ☑ SAFETY TOED BOOTS ☑ SAFETY GLASSES ☑ FACE SHIELD ☑ DRINKING WATER □ BUG REPELLENT ☑ TRAFFIC CONTROL DEVICES □ LADDER 	 □ LONG PAN □ COTTON, I □ CRAFTSM □ CHEMICA □ CHEMICA □ HEARING □ RATCHET □ WELL MAG □ AIR MONI 	LEATHER, OR IAN GLOVES AL RESISTANT GLOVE: PROTECTION REQUIRED TOOLS/EQUI	☐ AIR PURIFYING RE ☐ SUPPLIED AIR RES ☐ CHEMICAL RESIST CLOTHING: ☐ GOGGLES	SPIRATO PIRATO			THER: THER: THER: THER: THER: THER: THER: THER: THER:	
1 JOB STEPS		2 POTENTIAL HAZARDOUS UNSAFE PRACT		2	SAFE PR		3 RES an EASUR	IN PREVENTATIVE
	Sli	ips, Trips and Falls		 S ea fa If ra W K b D C aa P w W W W M dd If fa o aa 	quipment or walking f on paven ock before Vear slip r Zeep foot v oot cleani Dry up wat Continue to rea. Pickup tool vay. Valk your Aaintain th own. Alw f breaking pot wear a ne foot on rea that w	k zone wi and supp g and wor nent or co e lifting of resistant s wear clear ng area if er as quic o clean an ls that are pathway nree point vays face a bolt on and work a n the wren ill not mo	th enoug ies such king. mcrete swe moving teel toed n of mud n eeded. kly as po d remove not need before ca s of cont the climb an augen area, face ch while ve.	and other debris. Setup a ossible. e cuttings from drilling ded and place out of the arrying an item. act when climbing up and bing surface. r make sure you have clean e the wrench and only use holding onto a secure
Mixing water and grout	Ba	ack injuries		b	ack and tw	visting.		s – avoid lifting with the d ask for assistance.

		JSA	JOB SAFE ANALYSIS	ТҮ	Primary Categ	nmental Management
ASSOCIATES INC. DESCRIPTION OF JOB:		OPERATOR JOB	CLASSIFICATION:	DATE:	REVISIO	
Well installation		Field Technician		4/22/08		
PREPARED BY: Dan Mickelsen		WED BY: Dan Mickelsen	APPROVED BY: Da		PAGE:	of
 ☑ REFLECTIVE VEST ☑ HARD HAT ☑ SAFETY TOED BOOTS ☑ SAFETY GLASSES ☑ FACE SHIELD 	⊠ LONG ⊠ COTT CRAF □ CHEM	ON, LEATHER, OR TSMAN GLOVES IICAL RESISTANT GLOVE: ING PROTECTION	☐ AIR PURIFYING RESPIRATOR ☐ SUPPLIED AIR RESPIRATOR ☐ CHEMICAL RESISTANT CLOTHING: ☐ GOGGLES		OTHER: OTHER: OTHER: OTHER: OTHER:	
 □ DRINKING WATER □ BUG REPELLENT ⊠ TRAFFIC CONTROL DEVICES □ LADDER 	U WELL	REQUIRED TOOLS/EQUIPMENT/SUPPLIES CHET WITH EXTENSION L MAGNET OTHER: MONITORING SELECT FROM LIST OTHER: COUT/TAGOUT EQUIPMENT OTHER:			☐ OTHER: ☐ OTHER: ☐ OTHER: ☐ OTHER: ☐ OTHER:	
1 JOB STEPS		2 POTENTIAL HAZARDOUS UNSAFE PRAC	SAFE P	3 ROCEDURES MEASI	and PREVENTATIVE	
			 Take turns mixing the grout or if possible use an automated mixer. Do not lean over the drum while mixing. Take br when needed and change position. Wear hearing protection when pump and drill rig 			while mixing. Take breaks position.
Noise Splash with water grout mix			 operating Wear face Slowly in handle sh 	e shield with safe troduce water int ovel to mix.	ty glasses o the mix and use a long	
Hand pinch/cuts/crushed			 working. Watch ha hands are Do not pl 	nd placement – a at.	n, leather or craftsman while lways know where your direct path of a tool or	
	Dust			 opening. Stand upv generated Pour cont Do not us 	vind and allow th away from your ents slowly. e a chopping more t to contact eyes.	tion to open the bag this will

ASSOCIATES INC.	J	JSA JOB SAFE ANALYSIS			EN See	For RM Department Use imary Category: M - Environmental Management condary Category: JSA NO. EM-002d
DESCRIPTION OF JOB:			CLASSIFICATION:	DATE:		REVISION:
Well installation		Field Technician		4/22/0	8	PAGE: of
PREPARED BY: Dan Mickelsen		Y: Dan Mickelsen	APPROVED BY: Da			PAGE: of
 ☑ REFLECTIVE VEST ☑ HARD HAT ☑ SAFETY TOED BOOTS ☑ SAFETY GLASSES ☑ FACE SHIELD 	 □ LONG PANTS □ COTTON, LEA □ CRAFTSMAN □ CHEMICAL RI 	TTON, LEATHER, OR SU AFTSMAN GLOVES CH EMICAL RESISTANT GLOVE: CI ARING PROTECTION GO		R PURIFYING RESPIRATOR PPLIED AIR RESPIRATOR IEMICAL RESISTANT OTHING: OGGLES		□ OTHER: □ OTHER: □ OTHER: □ OTHER: □ OTHER:
 □ DRINKING WATER □ BUG REPELLENT ⊠ TRAFFIC CONTROL DEVICES □ LADDER 	WELL MAGNE	REQUIRED TOOLS/EQUI TH EXTENSION ET RING <mark>SELECT FROM LIST</mark> GOUT EQUIPMENT	 OTHER: OTHER: OTHER: OTHER: OTHER: OTHER: 			☐ OTHER: ☐ OTHER: ☐ OTHER: ☐ OTHER: ☐ OTHER:
1 JOB STEPS	2 POTENTIAL HAZARDOUS CONDITIONS or UNSAFE PRACTICES			3 SAFE PROCEDURES and PREVENTATIVE MEASURES		
		Slips, trips and falls		 Maintain housekeeping. Set up work zone with enough room for staging of equipment and supplies such that there are aisle ways for walking and working. If on pavement or concrete sweep up loose sand, dirt or rock. Wear slip resistant steel toed boots. Keep foot wear clean of mud and other debris. Dry up water as quickly as possible. Place pallet of material close to work area to minimize walking and carrying items. 		
Chemical contact – skin			Nitrile gWash of	loves f with	t wet grout without nitrile gloves on. can be worn under other gloves. a clean water. nds to mix.	
	Back	injuries		back andIf over 5	l twist 0 pou	inds or awkward ask for assistance.
Place well vault Hand pinch/cuts/crushed		pinch/cuts/crushed		 Do not u Use the r Be award between 	se you right t e of ha objec	and injuries. ur hand as the tool. tool for the job. and placement – do not place your hands et. leather or craftsman work gloves.

ASSOCIATES INC.	JS		JOB SAFE ANALYSIS		For RM Department Primary Category: EM - Environmental Man Secondary Category: JSA NO. EM	nagement
DESCRIPTION OF JOB:			CLASSIFICATION:	DATE:	REVISION:	
Well installation		Field Technician		4/22/08		
PREPARED BY: Dan Mickelsen	REVIEWED BY: Dan		APPROVED BY: Da		PAGE: of	
 ☑ REFLECTIVE VEST ☑ HARD HAT ☑ SAFETY TOED BOOTS ☑ SAFETY GLASSES ☑ FACE SHIELD 	 ☑ LONG PANTS ☑ COTTON, LEATHER, OF CRAFTSMAN GLOVES ☑ CHEMICAL RESISTANT ☑ HEARING PROTECTION] COTTON, LEATHER, OR CRAFTSMAN GLOVES] CHEMICAL RESISTANT GLOVE:		SPIRATOR PIRATOR ANT	☐ OTHER: ☐ OTHER: ☐ OTHER: ☐ OTHER: ☐ OTHER: ☐ OTHER:	
☐ DRINKING WATER ☐ BUG REPELLENT ⊠ TRAFFIC CONTROL DEVICES ☐ LADDER	RATCHET WITH EXTEN WELL MAGNET AIR MONITORING SEL LOCKOUT/TAGOUT EQ	LECT FROM LIST QUIPMENT	OTHER: OTHER: OTHER: OTHER: OTHER:		☐ OTHER: ☐ OTHER: ☐ OTHER: ☐ OTHER: ☐ OTHER:	
1 JOB STEPS	2 POTENTIAL HAZARDOUS CONDITIONS or UNSAFE PRACTICES			3 SAFE PROCEDURES and PREVENTATIVE MEASURES		
Slips, trips and falls				 Set up work zone with enough room for staging of equipment and supplies such that there are aisle ways for walking and working. If on pavement or concrete sweep up loose sand, dirt or rock. Wear slip resistant steel toed boots. Keep foot wear clean of mud and other debris. 		
	Pressurized lin	es		 Open blee Slowly dis escape. Wear face 	ump to remove excess pressure. d off valve. sconnect pipes allowing excess p shield when disconnecting and p nd well vault.	
Pumping grout around well casing	Back injuries	Back injuries		 Use proper lifting procedures – avoid lifting with the back and twisting. If over 50 pounds or awkward ask for assistance. 		
	Slips, Trips and	Slips, Trips and Falls		 Maintain housekeeping. Set up work zone with enough room for staging of equipment and supplies such that there are aisle ways for walking and working. If on pavement or concrete sweep up loose sand, dirt rock. Wear slip resistant steel toed boots. Keep foot wear clean of mud and other debris. 		

ASSOCIATES INC.	JJA	JOB SAFET ANALYSIS		For RM Department Use Primary Category: EM - Environmental Management Secondary Category: JSA NO. EM-002d
DESCRIPTION OF JOB: Well installation	OPERATOR JOB C Field Technician	CLASSIFICATION:	DATE: 4/22/08	REVISION:
	EWED BY: Dan Mickelsen	APPROVED BY: Dar	n Mickelsen	PAGE: of
\boxtimes HARD HAT \boxtimes COT \boxtimes SAFETY TOED BOOTSCRA \boxtimes SAFETY GLASSES \square CHI	MINIMUM REQUIRED PERSONAL IG PANTS TON, LEATHER, OR FTSMAN GLOVES EMICAL RESISTANT GLOVE: ARING PROTECTION REQUIRED TOOLS/EQUIP	AIR PURIFYING RES SUPPLIED AIR RESF CHEMICAL RESISTA CLOTHING: GOGGLES	SPIRATOR PIRATOR	☐ OTHER: ☐ OTHER: ☐ OTHER: ☐ OTHER: ☐ OTHER: ☐ OTHER:
$\Box BUG REPELLENT \qquad \Box WE \boxtimes TRAFFIC CONTROL DEVICES \qquad \Box AIR$	CHET WITH EXTENSION LL MAGNET MONITORING <mark>SELECT FROM LIST</mark> KOUT/TAGOUT EQUIPMENT	OTHER: OTHER: OTHER: OTHER: OTHER: OTHER: OTHER:		☐ OTHER: ☐ OTHER: ☐ OTHER: ☐ OTHER: ☐ OTHER:
1 JOB STEPS	2 POTENTIAL HAZARDOUS CONDITIONS or UNSAFE PRACTICES		SAFE PI	3 ROCEDURES and PREVENTATIVE MEASURES
	Hand cuts and pinches		 Be alert fo Do not use Use the rig Be aware or path of has 	tter as quickly as possible. or hand injuries. e your hand as the tool. ght tool for the job. of hand placement – do not place hands in the mmers, knifes or between objects. on, leather or craftsman work gloves.
	Noise		• Wear hear	ring protection
	Valve failing		 Verify val work. If the system is of to be repla Do not for 	ves and pipe after every use. ves are operational before the start of the he valve is difficult to move, make sure off and remove valve to determine if it needs aced or cleaned. rce a valve open. The use of only one hand is open a functional valve.

JOB SAFETY ANALYSIS

COMPANY/PROJECT NAME or ID/LOG	CATION (City State)		Rev. No.:	NEW			
				X REVISED as of	PAGES 2		
			11	7/11/2013	TAOLO Z		
WORK ACTIVITY: Soil Sampling				1/11/2010			
The JSA covers the hazards encountered	ed when collecting soil samples du	uring: hand aug	ger, slide hamme	r soil sampler, split	spoon sampler, and acetate		
sleeve.							
Equipment: Auger, Auger Extension, H Wrenches, Slide Hammer, Chain Pipe		uipment, Brush	(to clean auger)	, Pipe Tape, Pipe Vi	ise, Pipe Wrench, Box		
DEVELOPMENT TEAM	POSITION/TITLE	REVIEWED	3Y	POSITION/TIT	ίμε		
Eric Clark	Staff Geologist	Robert Hays		Sr. Project Ma	8		
lan Desjarlais	Staff Geologist	Majd Neameh	1	Assistant Proje			
		Peter Petro			Ith & Safety Manager		
	INAL PROTECTIVE EQUIPMENT GOGGLES	AIR PURIFYI		· · · · · · · · · · · · · · · · · · ·			
					e & Level 3 Cut Resistant)		
		RESPIRATO		OTHER			
LIFELINE/HARNESS X	HEARING PROTECTION SAFETY SHOES X			protection required			
SAFETY GLASSES X				· · · · · · · · · · · · · · · · · · ·			
1. Hand Auger Soil Sampling - Turning	² POTENTIAL HAZARDS						
Auger (SUBSURFACE WORK PERMIT	Damage to underground utility: shock, explosion, chemical	(CSE2)					
REQUIRE)	 Over exertion, strain, muscle pull, struck-by 	 Use good body mechanics, wide stance, do not overly twist back while turning auger, use chest and arm strength. 					
		Do not use of	cheater bar to pro	ovide extra force on	T-handle.		
2. Hand Auger Soil Sampling - Sample	 Pinch, cut, scrape or puncture 	• Tap auger using hammer to loosen soil out of sleeve into sample container.					
Collection	hazard from removing soil	 Do not put any body component in line-of-fire (within 1 foot) if using decontaminated screwdriver or chisel to pry soil from sleeve. 					
		• Block auger tips so they will not slip and come in contact with any body part while removing soil.					
		• If sample container has preservative review MSDS, ensure use of correct protective gloves: HCL - Nitrile, Sodium Bisulfate - Nitrile, Methanol - Nitrile (Splash) Neoprene or PVC (immersion)					
		• Inspect glassware for cracks before using to hold soil sample. Open slowly, place on level surface to prevent spilling any preservative.					
3. Hand Auger Soil Sampling - Decontamination	 Exposure to impacted water/soil, cut or pinch/impact 	 Make sure g in decon wate 	-	d condition and not r	ipped before placing hands		
	hazard	• Use brush (not hand) to clean auger. Inspect formetal burrs on auger or auger extension before cleaning, file down if present.					
	• Pinch or impact hazard from disconnecting auger extensions. If screw type connection ,ensure threats coated with pipe tape to prevent locking. Use pipe vise if available to secure auger extensions. Use box wrenches (not adjustable wrenches or channel locks). If pin type keep hands 6 inches from connection points to prevent pinch hazard when reassembling.						
4. Slide Hammer Soil Sampler - Sample Collection (SUBSURFACE WORK PERMIT	 Damage to underground utility: shock, explosion, chemical exposure 	y: • Confirm subsurface protocol was completed and auger location cleared. (CSE2)					
REQUIRED)	Cut hazard loading sleeve into barrel	• Inspect barrel to slide hammer to ensure no metal burrs are present. Inspec metal sleeve insert as well. Remove or replace if burrs are present.					
	 Impact, pinch, muscle pull hazards 			ce for soil sample to m or back when stri	o check depth to avoid being king sampler.		

¹ JOB STEPS	² POTENTIAL HAZARDS	³ CRITICAL ACTIONS TO MITIGATE HAZARDS			
5. Slide Hammer Soil Sampler - Sample Collection	 Impact, pinch, muscle pull hazards 	 Check striking motion before applying heaving force to ensure arm and wrist movement are in straight lines and not at awkward angles. 			
		• Lift with legs and not back to extract sampler head when sampler is full. May need to use upward strikes to free equipment.			
6. Slide Hammer Soil Sampler - Sample Removal	 Exposure to impacted Soil, Cut or Impact Hazard 	• If sampler head is stuck, use pipe wrenches to free inner sleeve. Use chain pipe vise to secure head of sampler. Clear hands motion to prevent contact with other objects if wrench slips			
		Wear cut resistant and chemical protective gloves. (CSE5)			
		Inspect edges of sleeves from brass sample before capping to prevent cuts.			
		If sample container has preservative, review MSDS. Ensure use of correct protective gloves: HCL - Nitrile, Sodium Bisulfate - Nitrile, Methanol - Nitrile (Splash) Neoprene or PVC (immersion). (CSE5)			
7. Slide Hammer Soil Sampler - Decontamination	 Exposure to impacted water/soil, cut or pinch/impact 	Make sure gloves are in good condition and not ripped before placing hands in decon water. (CSE5)			
	hazard	 Use brush (not hand) to clean sampler head. Be aware of metal burrs extensions or sampler head. Pinch or impact hazard from disconnecting extensions. If screw type 			
		connection ensure threats coated with pipe tape to prevent locking. Use pipe vise if available to secure auger extensions and box wrenches not adjustable wrenches or channel locks. If pin type keep hands six inches away from connection points to prevent pinch hazard when reassembling.			
8. Split Spoon Sampler - Sample	Line of Fire	 Review drilling company's JSA for sample handling. 			
Collection & Decontamination		• Do not assist driller with handling of split spoon. Not trained on hazard recognition or protocol.			
	• Burn or Cut or Scrape, or exposure to chemicals (rash or	 Geologic conditions during sample collection can make sample very hot. Test before grabbing and burning self. 			
	acute reaction)	Wear chemical and cut resistant gloves and goggles when handling soil. (CSE5)			
		 Inspect edges of sleeves from brass sample before capping to prevent cuts. 			
		• If sample container has preservative, review MSDS. Ensure use of correct protective gloves: HCL - Nitrile, Sodium Bisulfate - Nitrile, Methanol - Nitrile (Splash) Neoprene or PVC (immersion). (CSE5)			
		 Inspect glassware for cracks before using to hold soil sample. Open slowly place on level surface to prevent spilling any preservative. 			
9. Acetate Sleeve - Sample Collection	Line of Fire	 Review drilling company's JSA for sample handling. 			
& Decontamination		• Do not assist driller with handling of acetate sleeve. Not trained on hazard recognition or protocol.			
	Cut or Scrape	 Ensure driller is using vise to hold sleeve down when cutting sleeve with hand saw or opening sleeve for inspection with geoprobe. Review cutting process identifying line-of-fire hazards. 			
		Wear chemical and cut resistant gloves and goggles when handling acetate sleeve. Edges of sleeve are very sharp cutting hazard. (CSE5)			
		• If sample container has preservative, review MSDS. Ensure use of correct protective gloves: HCL - Nitrile, Sodium Bisulfate - Nitrile, Methanol - Nitrile (Splash) Neoprene or PVC (immersion). (CSE5)			
		 Inspect glassware for cracks before using to hold soil sample. Open slowly, place on level surface to prevent spilling any preservative. 			
	CORE SAFET	Y EXPECTATIONS			
CSE1: Always follow Fall Protect					
		confined space, hot work, subsurface work & gas testing			
CSE3: Always follow Lock Out/		3			
CSE4: Always follow Defeat of CSE5: Always follow Defeat	•	the internet of the second			
CSE5: Always follow written PPE requirements for the work being performed					

1 Each Job or Operation consists of a set of steps. Be sure to list all the steps in the sequence that they are performed. Specify the equipment or other details to set the basis for the associated hazards in Column 2

2 A hazard is a potential danger. What can go wrong? How can someone get hurt? Consider, but do not limit, the analysis to: Contact - struck against, struck by, harmful contact with (cut, abrasion); Caught - in, under, between, by objects; Fall - slip/trip, fall on same level, fall from height; Strain/Overexertion - lifting, pushing/pulling, bending, twisting; Energy Source - electricity, pressure, compression/tension;

Exposure - Temperature extreme, radiation, noise, chemical burn, hazardous atmosphere.

3 Aligning with the first two columns, describe what actions or procedures are necessary to eliminate or minimize the hazards. Be clear, concise and specific.

¹ JOB STEPS ² POTENTIAL HAZARDS ³CRITICAL ACTIONS TO MITIGATE HAZARDS

Use objective observable and quantified terms. Avoid subjective general statements such as "be careful" or "use as appropriate".

JOB SAFETY ANALYSIS

COMPANY/PROJECT NAME or ID/LOC	ATION (City, State)			Rev. No.:	NEW			
				9	X REVISED as of	2 PAGES		
				9	2/20/2013			
WORK ACTIVITY: MONITORING AN	D GAUGING							
Routine gauging and monitoring groundwater wells both on site and off site. Working in a remote area around livestock.								
	Equipment: Wrench, Screwdriver, Pry Bar							
	POSITION/TITLE		REVI	EWED BY	PO	SITION/TITLE		
Aaron Ulishney	Project Geologist		Jennifer Lacy		LPS Manager			
Chris Bumgarner	Senior Technician		Peter Petro		Corpora H&S I	Manager		
Jonathan Love	Staff Geologist		Jake Prowse		QM Manager			
	PERSONAL PROTECTIVE EQUIPMENT	(SEE		S FOR TASK-SPEC				
X REFLECTIVE VEST	GOGGLES		AIR PURIFYING		X GLOVES (Nitrile &	Cut Resistant Level 3)		
X HARD HAT	FACE SHIELD		RESPIRATOR		OTHER:			
		N	SUPPLIED RESPIR					
X SAFETY GLASSES X	SAFETY SHOES	X	PPE CLOTHING:lon					
1 JOB STEPS 1. Movement of equipment and vehicles	 POTENTIAL HAZARDS Items falling from truck or inside 	do			IGATE HAZARDS	e. If the tailgate must		
on/off site	trailer	ue	remain open, s	trap down any	loose items.	-		
			 Stow equipme sample contain 		and close cabinets	inside trailer. Keep		
2. Establishing Work Zones	 Vehicle or pedestrian traffic 		Review Traffic Control JSA for detail hazard mitigation					
	entering the work zone; danger	of	• Use traffic watch in high risk traffic areas and when a second person					
	being struck by a vehicle		is on site. For work in high pedestrian areas use traffic cage.					
			• For work in hi	gh pedestrian	areas use cones wi	th flags.		
3. Handling Equipment / Opening /	 Over Exertion- Lifting Heavy 		•Do not lift anything over 40 lbs. without assistance. Bend knees and					
Removing Well Lids	Equipment		lift using legs/arms, not your back, keep the load close to your body, tighten stomach.					
	 Coming into contact with sharp and/or heavy objects)	•Wear cut resistant gloves and steel toes boots. (CSE5)					
	 Crush/pinch/chop hazard from heavy well lids - loss of finger ti broken finger 		 When removing/opening well lids use wrench handle or screwdriver to r place block between lid and ring incase lid slips it will not close in place. 					
			 Use hand too 	ls (i.e., pry bar)	(i.e., pry bar) to initially lift and hold heavy covers			
			 Keep fingers and toes away from edge of well vault. Do not have fingers cross into well vault while opening lid. 					
	Biological hazards - bit or stung Watch for spiders a vaults. Use tool (scre vault before reaching			l (screw driver)	and visual inspecti			
	•Coming into Contact with object Slips/Trips/Falls	cts		oid tripping ha	lose as possible, bu zards. Consider pla	ut clear of potential acing lid underneath		
4. Locking and Unlocking Well Caps	 Exposure to Contaminants - 		Wear Nitrile g	loves and cut	resistant gloves. (C	SE5)		
	splash or pressurized release o vapors	t	 Loosen cap s out of the line-or 		control if pressure i	s release, keep face		
			• Ensure well cap is effectively sealing well and properly locked					
5. Gauging Wells	 Fire/explosion hazards 		• Do not smoke	e on site.				
	 Exposure to Biological: bitting and stinging Insects 				isual inspection to e I hand. <mark>(CSE5)</mark>	explore well vault		

1 JOB STEPS	² POTENTIAL HAZARDS	³ CRITICAL ACTIONS TO MITIGATE HAZARDS:		
5. Gauging Wells	 Splash hazard when gauging wells 	 Safety glasses with side shields must be worn at all times. (CSE5) 		
		 Nitrile and cut resistant gloves must be worn while handling the DTW/DTP probe and during deconning. 		
	• Exposure to Vapors and Airborne particulates	• Stop work if excessive odors are present in well and call Supervisor prior to continuing with task.		
		•Wear safety glasses with side shields (CSE2)		
		Keep lids closed on poly tanks and drums as much as possible.		
	Contact with contaminated materials or exposure to standing water in well vault	 Hand bail or pump out free liquid before opening well cap. 		
6. Cleaning Up and Departing the Site	Slips, trips and falls	 Check that well covers are secure upon departure, and that all tools and purging equipment are removed from the site. 		
		 Walk around site and conduct 360° vehicle visual inspection befor demobilization 		
	 Leaving the site - vehicle accident 	Review Driving JSA		
	CORE SAFETY EX	KPECTATIONS		
CSE1: Always follow Fall Protection	n standards when working at elev	vated heights		
CSE2: Always follow Written Permi	t Procedures regarding: confined	I space, hot work, subsurface work & gas testing		
CSE3: Always follow Lock Out/Tag	Out (LOTO) procedures			
CSE4: Always follow Defeat of Criti	cal Device procedures			
CSE5: Always follow written PPE re	equirements for the work being p	erformed		
Field Change Section: document step, h	nazard and field change to capture/co	ontrol hazards as seen during operations.		
1 Each Job or Operation consists of a set of step to set the basis for the associated bazards in		that they are performed. Specify the equipment or other details		

to set the basis for the associated hazards in Column 2

2 A hazard is a potential danger. What can go wrong? How can someone get hurt? Consider, but do not limit, the analysis to: Contact - struck against, struck by, harmful contact with (cut, abrasion); Caught - in, under, between, by objects; Fall - slip/trip, fall on same level, fall from height; Strain/Overexertion - lifting, pushing/pulling, bending, twisting; Energy Source - electricity, pressure, compression/tension; Exposure - Temperature extreme, radiation, noise, chemical burn, hazardous atmosphere.

3 Aligning with the first two columns, describe what actions or procedures are necessary to eliminate or minimize the hazards. Be clear, concise and specific. Use objective observable and quantified terms. Avoid subjective general statements such as "be careful" or "use as appropriate".

JOB SAFETY ANALYSIS

COMPANY/PROJECT NAME or ID/LOCATION (City, State)			Rev. No.:	NEW		
			0	X REVISED as of	2 PAGES	
			9	1/24/2013		
WORK ACTIVITY: Hand Auger Exca	vation					
Covers the hazards with completing exca						
	5 5					
Equipment: Hand Auger, Extension Ro	ds. Sand Trap. Shovel. Hammer. 5	-Gallon Bucket	s. Bristle Bru	sh. DOT Drum. Dr	um Dollv	
DEVELOPMENT TEAM	PQSITIQN/TITLE		EWED BY			
Aaron Ulishney	Project Geologist	Steve Marie		Project Manag		
Jonathan Love	Staff Geologist	Peter Petro		Health & Safet		
					,	
MINIMUM REQUIRED	PERSONAL PROTECTIVE EQUIPMENT (SEE	GRITICAL ACTIONS	FOR TASK-SPEC	IFIC REQUIREMENTS)		
X REFLECTIVE VEST	GOGGLES on hard hat	AIR PURIFYING		X GLOVES (Nitrile ov	er Cut Resistant Level 3)	
X HARD HAT	FACE SHIELD	RESPIRATOR (Kee	p in Vehicle)	OTHER:		
LIFELINE/HARNESS	HEARING PROTECTION	SUPPLIED RESPIR	ATOR			
X SAFETY GLASSES (ANSI 787.1) X	SAFETY SHOES X	PPE CLOTHING: FF	RC Clothing			
1 JOB STEPS	² POTENTIAL HAZARDS			IGATE HAZARDS		
1. Hand Auger Excavation Set Up	 Injury from / Damage to 			e (USA Alert) at lea		
Thand y lagor Executation out op	Underground Utilities and/or	onset of fieldwo				
	Structures - resulting in fire,	Follow Exxon	Mobil Subsurfa	ce Clearance and	Excavation Permit	
	explosion, release of water,			before augering (C		
	electrocution			refusal, call PM to o		
		subsurface obs	structions.			
2. Hang Auger	 Injury to hands 	Wear cut resi	stant gloves at	all times when har	ndling	
		tools/equipmer	nt. (CSE5)			
	Muscle strain / overexertion from	 Inspect for br 	oken welds, m	etal spurs on conne	ections, do not use if	
	hand auger operation	damaged.				
		• Do not use ex	cessive force	or cheater bar that	can cause iniury	
				n soil or step out w		
				stress appendix in		
		drinking fluids t				
		Rotate persor	nel performino	hand augering on	ce per hour.	
					ers, keep feet square	
		and lift with leg			,, ,	
	 Injury from tripping/slipping - 	 Walking is work 	orkina. focus or	n path avoid unever	n ground and slopes	
	resulting in broken bones, torn	• Walking is working, focus on path avoid uneven ground and slopes when walking. Plan path which provides least number of obstacles.				
	ligaments and tendons	 Use shovel to level ground to create flat working surface. 				
		Keep tools/equipment in designated area away from work				
		 Reep tools/equipment in designated area away from work area/borehole. 				
	Hitting people or stationary		azards when h	nand auger is at full	extension and	
	objects with T handle / extension			n with co-workers.		
	rods			ove auger from hol	e when <10 ft in	
		length		ove auger nom nor		
		Look up and v	watch the T ha	ndle while lowering	auger into the hole, to	
		avoid hitting yo		•		
3. Emptying Soil from Hand Auger	Pinch points / strike hazards / cut				p grip hand clear of	
Bucket	hazards			ng tool such as scre		
		higher plasticity	/ soils.			
Use of digging bar to remove rocks /	 Injury from losing control of bar 	Always keep	two hands on b	bar		
debris (must have PM approval to use -		Keep head / f				
Per XOM SAN "The digging bar (or any				when using bar		
other tool) may not be advanced into		-		0		

JOB STEPS	² POTENTIAL HAZARDS	SCRITICAL ACTIONS TO MITIGATE HAZARDS
soil that has not been probed or otherwise cleared; No tool should be utilized with inappropriate force that could cause damage;)	• Back injury	 Do not turn at waist, turn with arms and shoulders, keep feet square to hole.
 Shoveling / transferring soil into drum 	Muscle strain / overexertion from shoveling	 When shoveling, move in straight lines, do not twist back to empty shovel or move dirt, step in direction. Switch arms (every ten to fifteen shovels) when shoveling to balance strain on back and arms.
		 Empty hand auger bucket directly into drum whenever possible. If transporting soil in 5-gallon buckets, fill each 1/2 way and balance load in two buckets.
	Pinch points from drum lid	 Maintain required hand protection (listed above) when opening closing drum lids.
5. Decontaminating hand auger equipment	• Cut hazard	 Use bristle brush to clean auger blades. Keep hands clear of auger blades.
6. Backfilling hand auger boring	 Back strain from lifting 	 Do not lift greater than 50 lbs. without assistance. Empty bags into 5- gallon buckets if > 50 Lbs.
	 Injury to hands 	Wear cut resistant level 3 gloves at all times when handling tools/equipment. (CSE5)
		 Thoroughly inspect shovel, do not use if damaged.
7. Cleaning Up and Departing the Site	• Trip hazards	 Ensure that surface completion matches existing grade. Do not leave open holes unattended, contact PM to discuss if work is not completed.
	Back strain from moving drum	 Do not move drum without drum dolly, review JSA drum management 2012
	CORE SAFETY EX	PECTATIONS
CSE1: Always follow Fall Protection	n standards when working at elev	ated heights
-	• • •	space, hot work, subsurface work & gas testing
CSE3: Always follow Lock Out/Tag		
CSE4: Always follow Defeat of Criti		
CSE5: Always follow written PPE re		
Field Change Section: document step, h	azard and field change to capture/co	ntrol hazards as seen during operations.
1 Each Job or Operation consists of a set of ster	bs. Be sure to list all the steps in the sequence	e that they are performed. Specify the equipment or other details

1 Each Job or Operation consists of a set of steps. Be sure to list all the steps in the sequence that they are performed. Specify the equipment or other details to set the basis for the associated hazards in Column 2

2 A hazard is a potential danger. What can go wrong? How can someone get hurt? Consider, but do not limit, the analysis to: Contact - struck against,

struck by, harmful contact with (cut, abrasion); Caught - in, under, between, by objects; Fall - slip/trip, fall on same level, fall from height;

Strain/Overexertion - lifting, pushing/pulling, bending, twisting; Energy Source - electricity, pressure, compression/tension; Exposure - Temperature extreme, radiation, noise, chemical burn, hazardous atmosphere.

3 Aligning with the first two columns, describe what actions or procedures are necessary to eliminate or minimize the hazards. Be clear, concise and specific. Use objective observable and quantified terms. Avoid subjective general statements such as "be careful" or "use as appropriate".

JOB SAFETY ANALYSIS

COMPANY/PROJECT NAME or ID/LO	CATION (City, State)		Rev. #	NEW		
			3	X REVISED as of	2 PAGES	
			3	1/31/14		
	RSIGHT - DIRECT PUSH, SAM		,			
Drilling hazard activities covered are: g	-		•			
Equipment: Traffic Control Devices, Te Drill Rig, Borehole Plates, Multi-Gas Me				Caution Tape, Defin	ed Work Area Signs,	
DEVELOPMENT TEAM	POSITION/TITLE	REVI	EWED BY		ITION/TITLE	
Jennifer Lacy	LPS Manager	Peter Petro		Corporate H&S	Manager	
Ryan Pozzuto	Staff Scientist	Jennifer Lacy		LPS Manager		
Phil Cordell	Staff Geologist					
MINIMUM REQUIRED PERSONAL	PROTECTIVE EQUIPMENT (SEE CRITICAL	ACTIONS FO			
X REFLECTIVE VEST X	GOGGLES	AIR PURIFYI	NG	X GLOVES (Nitrile	& Level 3 Cut Resistant)	
X HARD HAT	FACE SHIELD	RESPIRATO	R			
LIFELINE/HARNESS X	HEARING PROTECTION	SUPPLIED R	ESPIRATOR			
SAFETY GLASSES X	SAFETY SHOES X	PPE CLOTHI	NG: Long slee	ve protection require	d	
JOB STEPS	² POTENTIAL HAZARDS	³ C	RITICAL ACT	IONS TO MITIGATE	HAZARDS	
1. Setup for Direct Push	 Multiple Task Hazards 				ght -Direct Push Setup	
2. Ground Disturbance: Auger Boring	 Faulty or Inappropriate 	 Qualified dri 	ller must inspe	ect drill rig prior to use	e: if found faulty and/or	
Advancement/Direct Push Drill Rods	Equipment	 Qualified driller must inspect drill rig prior to use; if found faulty and/or inappropriate, do not proceed until repaired or replaced 				
(REQUIRES HOT WORK PERMIT		 Inspect all h 	nand tools prio	r to use; if found faul	ty or inappropriate, do	
and OIMS SUBSURFACE PROTOCOL)			intil repaired o			
PROTOCOL)	 Operating Equipment 		ear area of obstructions and communicate with all workers involved			
		that drilling is beginning. • Stay clear of moving drilling rods				
		Secure loose clothing, long hair and remove jewelry which can				
		become entar	ngled in operat	ing equipment	-	
		 Wear PPE i ANSI Z41. (C 		les, cut resistant glo	ves and safety shoes	
				ee" program is in use	<u>)</u> .	
	 Suspended Loads 		under suspen			
				verhead hazards pro	1 /	
		 Wear PPE including goggles, cut resistant gloves and safety shoes ANSI Z41. (CSE5) 				
	 High Noise Levels 			en equipment is ope		
		 Request dB levels of operating equipment to establish single or double hearing protection. (CSE5) 				
	 Vapors and Airborne Particulates: Breathing and 	 Monitor air concentrations using direct-reading, real-time instruments such as a LEL and/or PID meter(s) 				
	Explosion/Fire Hazards	HOT WORK permit is required. (CSE2)				
		10% LEL in breathing zones require engineering controls to be				
		implemented				
					tified in the SSP, until	
			, ,	the following action ontrols, implementing		
			ade PPE. (CS			
				les, dust masks (for irators. (CSE5)	particulates only, does	
			d whenever po			
			lsock on mast to determine v	or alternative means vind direction	on nearby	

JOB STEPS	² POTENTIAL HAZARDS	³ CRITICAL ACTIONS TO MITIGATE HAZARDS				
	Impact to Subsurface Lines/Tanks	 Only drill in areas where underground features have been identified and cleared per SCP. If hole has to be moved, clear new location with air/water knife equipment first and ensure SCP specifications are met. 				
	Impact to Subsurface Lines/Tanks	Wear PPE including cut resistant gloes and hard hat. (CSE5)				
	 Rod Removal Stuck Rod breaking striking Personnel 	 Driller to understand limitations of rig and not force repeated blows trying to drive through restrictive formation 				
		 Use normal removal means for rod extraction. Do not use leveling jacks to apply upward force. 				
3. Air Monitoring	• Exposure to vapor and airborne contaminants	 While monitoring the air near a boring, keep yourself as far away as possible from the potential contaminants 				
		 Set up the PID to retain the highest value to eliminate having to read the display screen 				
		 Consider the use of an extension for the PID/LEL to increase the distance between the bore hole and the monitoring personnel 				
		Make sure alarms are turned on audible and visible.				
		Wear respirator if the concentration reaches 100 PPM in your breathing air. (CSE5)				
		 Notify all workers if the concentrations exceed 100 PPM in their breathing air. 				
		 If the concentrations exceed 100 PPM, increase the monitoring frequency to 7 minutes or between each rod change. 				
4. Ground Intrusion:		 Open blades knives are not to be used for cutting acetate sleeve. 				
Soil Samples Acetate Liners (REQUIRES HOT WORK PERMIT	Soil Samples	Acetate sleeve is to be secured when opened for logging or other soil investigation.				
and OIMS Subsurface Protocol)		Level 3 cut resistant and nitril gloves to be worn when handling acetate sleeves. (CSE5)				
		Sleeves are to be cut away from operator.				
5. Ensure bins/drums are properly secured and labeled	• Bins/drums could be removed from the sites and	 Ensure correct signage and labeling is present on each side of bin and/or drum. 				
	disposed of improperly or tampered	Ensure a chain and lock is present on the bin "picking eye" to discourage inadvertent bin removal.				
6. Perform site cleanup/drum	Back or muscle injury from	 Ensure bin top is secured and/or temporary fencing is secured. Conduct SPSA and keep alert for potential risk. 				
relocation	moving heavy objects	Review Drum Management JSA				
		Wear appropriate PPE including: cut resistant gloves and goggles				
	 Slips/Trips and falls hazards 	 Perform final site inspection to ensure well boxes are properly secured and all equipment is removed from site. 				
7. Weather	 Lightning strike 	 Count the seconds between the flash and bang. 				
		• Every 5 seconds equals one mile. Greater than 30 seconds you are clear, 30 seconds or less means boom down and get to shelter.				
		 All clear is 30 minutes from the last flash and bang that was 30 seconds or greater. 				
	 High wind 	 Check with operator for maximum wind speeds at end of boom. 				
		 If wind approaches the maximum safe wind speed, boom down until wind speed decreases. 				
		 Wait 30 minutes after wind speed decreases. 				
		EXPECTATIONS				
CSE1: Always follow Fall Protectio	-					
		fined space, hot work, subsurface work & gas testing				
CSE3: Always follow Lock Out/Tag	ן Out (LOTO) procedures					

CSE4: Always follow Defeat of Critical Device procedures

CSE5: Always follow written PPE requirements for the work being performed

JOB SAFETY ANALYSIS

COMPANY/PROJECT NAME or ID/LOC/	ATION (City, State)		Rev. No.:	NEW		
			10	X REVISED as of	2 PAGES	
			10	1/31/14		
WORK ACTIVITY: CONSTRUCTION	- TRENCHING & EXCAVATING					
Includes tasks and hazards for trenching	excavation of concrete/asphalt, engi	neered fill and r	native materials.			
Equipment: Heavy Equipment with Outri						
for Earth Mover, "No Smoking" Signs, Ma Chain-Link Fencing	Irking Paint, Traffic-Rated Trench Pla	ates, Lighted Ba	rricades, Orange	Construction Fen	ce or/and Temporary	
DEVELOPMENT TEAM	DOCITION	DITVU	EWED BY			
Henry Leone	POSITION/TITLE	Peter Petro		Corporate H&S	SITION/TITLE	
Ryan Rooks	Construction Worker / Foreman	Charlie Weber		Construction M	ů	
Ryan Rooks	Construction Worker / Foreman	David Klemme		Senior Engine	•	
	AL PROTECTIVE EQUIPMENT (S			0		
	GOGGLES				d Level 3 Cut Resistant)	
X HARD HAT	FACE SHIELD	RESPIRATOR	- F	OTHER (as specifi		
LIFELINE/HARNESS X	HEARING PROTECTION	SUPPLIED RESPIR	RATOR			
SAFETY GLASSES X	SAFETY SHOES X		ong sleeve protection	required		
¹ JOB STEPS	² POTENTIAL HAZARDS	~		SATE HAZARDS		
1. Removing Asphalt or Concrete Using	 Slips, trips and falls - resulting in 		st be worn at all t			
Heavy Equipment and Removing Soil	broken bones, torn				, and tools are slip and	
Using Heavy Equipment or Hand	ligament/tendons	U U			away as soon as finished	
		using.				
NOTE: THIS ACTIVITY REQUIRES A HOT WORK PERMIT			-		within 5 ft. of an un-	
		shored wall) to	avoid slips or ca	ve-ins. <mark>(CSE1)</mark>		
	 On-site workers may be injured or 				cumented for proper	
killed by heavy equipment operation and equipped with a back up alarm.						
					radius of equipment	
			e:ft.,		Enter kill distance for	
					of kill radius use Hands	
					operator, operator	
		powers down e	equipment [place	d in safe state whe	ere unintentional operation	
			shows you both	of his/her hands b	eing the signal it is safe to	
		approach).				
	 Heavy equipment may be unbalanced on unstable ground 				sessed by a qualified	
	unbalanced on unstable ground	design control	•	sale site condition	is, stop work. Implement	
		Stabilize equipment with outriggers if equipped				
	Back / muscle strains due to				a lifts: lift with leas back	
	shoveling or lifting	 Ensure proper lifting techniques when conducting lifts; lift with legs, back straight, tighten core muscles (stomach), head looking forward. 				
		• Get help with objects that are too heavy (greater than 40 lbs.) or awkward				
		for one person to lift. • When shoveling or sweeping, move in straight lines, do not twist back to				
					nes, do not twist back to h arms (every ten to	
					on back and arms.	
		Use the prop	er tools (correct s	shovels, breaker b	ars) for each specific task.	
					ch as possible to transport	
		-	ncrete or heavy	,		
	 Injuries to hands 		-	•	rile for chemical exposure	
				stant for all site wo	, , ,	
	Hearing damage from working in			orn when working		
	areas of high noise				ur voice to be heard from or muff NRR > 28).	
		(CSE5)		alon (plugo, capo,	(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	
	1	· /				

¹ JOB STEPS	² POTENTIAL HAZARDS	³ CRITICAL ACTIONS TO MITIGATE HAZARDS
	Unaware of Approaching Hazard due to Hearing Protection	 Use of hearing protection can limit one's ability to hear instructions, warnings or approaching traffic, etc. Rely on using your eyes to be aware of your surroundings, visually check on work environment every 10 minutes.
1. Removing Asphalt or Concrete Using Heavy Equipment and Removing Soil Using Heavy Equipment or Hand Digging NOTE: THIS ACTIVITY REQUIRES A HOT WORK PERMIT	 Hazardous dust and/or particulate matter or organic vapors - resulting in lung damage or other organ acute or chronic health effects 	 Visually monitor for dust and use the photo-ionization detector (PID) or other equipment to monitor hydrocarbon vapor concentrations. If air concentrations exceed action levels of 20 ppmv consistantly in breathing zone, take corrective action or stop work until the condition subsides. (CSE2)
		 Vapor suppressant or water spray may be used to control dust or to keep vapors from leaving the work zone.
		Mandatory use respirators if gasoline vapor reaches 100 ppmv. (CSE5)
		Use goggles to prevent dust and particulates from entering eye. (CSE5)
	Highly impacted hydrocarbon soil	 Attach a non-sparking bucket or blade to earth-moving equipment.
	may ignite if sparks occur during removal by equipment contact with rocks or other buried objects.	 If necessary, periodically wet the work area with water. Note: avoid creating slip hazard, do not create run-off when wetting soils.
		Conduct fire watch utilizing ERI's Hot Work Permit protocol with 20 lb. ABC fire extinguisher. (CSE2)
		 Monitor the work area with a PID or lower explosion limit (LEL)/oxygen meter. Ensure vapor concentrations of < 10% LEL and below action levels. (CSE2)
		 Post "No Smoking" signs; smoking on site is prohibited.
	-	 The location of underground utilities, piping, and other services must be marked out prior to excavation activities.
	are damaged during excavation activities	Follow ExxonMobil subsurface clearance protocol and subsurface permit. (CSE2)
		 Ensure that Underground Service Alert is notified and that the work area is cleared prior to activity. Missing USA marks is immediate STOP WORK, call PM. (CSE2)
		 Obtain the latest As-built drawing for the site and conduct a utility inspection.
2. Entering the Trench/Excavation	Possible suffocation or death due to soil cave-in	 Do not enter an excavation that is greater than 4 feet deep unless it is professionally shored or sloped in accordance with ExxonMobil trenching protocol and OSHA requirements. (CSE2)
		• Ensure soil is stockpiled greater than 2 feet from the edge of excavation.
	Toxic or flammable atmosphere	 Test the atmosphere prior to entry for oxygen content (23>O₂>19.5), LEL percentage (<10%) and toxic vapor concentrations (< PEL). (CSE2)
		 Do not enter an excavation that is greater than 4 feet deep without completed air monitoring compliance and documentation.
	 Slips, trips and falls 	Do not jump across an open trench; instead, walk around it. (CSE1)
		 Use a trench plate to cover the area of the open trench that is not currently being worked upon.
3. Securing, Cleaning-Up	 Possibility of personnel or 	•OIMS requires lighted barricades if the excavation is to be left overnight
	pedestrians falling into the open excavated area and sustaining injury or death	 Install an orange construction fence or and temporary chain-link fencing around the excavated area. (CSE1)
		 Cover the open excavation with traffic rated trench plates if the dimensions of the trench or excavation allow. (CSE1)
	Eye damage dust, dirt entering	 Wear goggles to prevent dust from entering eyes when working around soil. (CSE5)
	CORE SAFETY I	
CSE1: Always follow Fall Protect		
CSE2: Always follow Written Pe CSE3: Always follow Lock Out/1		onfined space, hot work, subsurface work & gas testing
USES. Always IUIUW LUCK UUT I	ay out (LOTO) procedures	

CSE4: Always follow Defeat of Critical Device procedures

CSE5: Always follow written PPE requirements for the work being performed

JOB SAFETY ANALYSIS

COMPANY/PROJECT NAME or ID/LOCATION (City, State)				Rev. No.:	NE	EW	
				40	XRE	EVISED as of	2 PAGES
				13		3/14/14	
WORK ACTIVITY: GROUNDWATER	SAMPLING						
Routine sampling of groundwater wells o JSA	on property. Working in remote a	rea	around livestoc	k. Requires th	ne use o	of the Monito	ring and Gauging
Equipment: Screwdriver, Ratchet, Pry B	ar, Groundwater Sampling Equip	mer	nt and Sample (Containers			
DEVELOPMENT TEAM	POSITION/TITLE		REVI	EWED BY		POS	BITION/TITLE
Azat Magdanov QM Technician			Jennifer Lacy		LF	PS Manager	
Steve Church	QM Technician		Peter Petro		С	orporate H&S	S Manager
			David Daniels		Pi	roject Manag	er
MINIMUM REQUIRE	PERSONAL PROTECTIVE EQUIPMENT	(SEE	CRITICAL ACTION	S FOR TASK-SPE	CIFIC RE	QUIREMENTS)	
X REFLECTIVE VEST	GOGGLES		AIR PURIFYING		X GL	LOVES (Cut resist	tant & nitrile)
X HARD HAT	FACE SHIELD		RESPIRATOR		OT	THER:	
LIFELINE/HARNESS	HEARING PROTECTION		SUPPLIED RESPIR	ATOR			
X SAFETY GLASSES X	SAFETY SHOES	Χ	PPE CLOTHING: Lo	ong sleeve protectio	on require	ed	
1 JOB STEPS	² POTENTIAL HAZARDS		³ CRITICAL AC				
1. Maneuvering Vehicle/Trailer On Site	Collision with				site per	rsonnel where	e work is taking place
	person/vehicle/property - damaged to property, person being hit and		and how long it				
	run over	4			fore rel	ocating vehic	le to ensure safe
			route before moving.				
			Clear communication between spotter and driver, including agreed				
			position for spo	otter and hand	signals	s for left, right	, move and stop.
			 Wear traffic v 				
			 Driver must stop vehicle if spotter is not visible. Drive with the tailgate closed whenever possible. If the tailgate must 				
	 Items falling from truck 						e. If the tailgate must
			remain open, s				ving to another
			location. Secur				
2. Handling Equipment/Removing Well	Over Exertion- Lifting Heavy		 Do not lift any 	rthina >40 lbs.	without	t assistance.	
Lids	Equipment		-	-			appiques. Dand at
			 Keep aware of body positioning and use lifting techniques: Bend at knees, lift with legs, keep a straight back, tighten core muscles, keep 				
			load within 6 in		5	, 5	····, ···
	 Coming into contact with sharp)	Wear cut resi	stant level 3 gl	loves a	nd safety sho	es as defined by
	and/or heavy objects		ANSI Z41. <mark>(CS</mark>				
	Coming into Contact with obje						Clear of potential
	Slips/Trips/Falls - cuts, broken bones, damage ligaments/tendo		tailgate of truck		izards.	Consider pla	cing lid underneath
	sonoo, aamago iigamonto, tonat	,	langulo or truor				
	Exposure to Contaminants,		• Watch for spi	ders and other	r insecto	s hefore putti	ng hands into well
	biological hazards					•	on to explore well
			vault before rea				
	Heavy Well Lids/Covers -		 Wear cut resi 	stant under an	d Nitrile	e over gloves	. (CSE5)
	crushed or amputated fingers/to	es	 Keep hands/f 	ingers away fro	om rais	ed covers.	
			Use hand too	ls to initially lift	t and ho	old heavy cov	ers; do not place
			fingers under li			,	
			 Block opening 	g to well with to	ool (rato	chet, pry bar,	etc.) to prevent lid
			-		nd/well	skirt. Tool wi	ill take impact, not
			fingers or toes.				

JOB STEPS	² POTENTIAL HAZARDS	CRITICAL ACTIONS TO MITIGATE HAZARDS
3. Purging Wells	 Splash hazard when gauging 	Safety glasses with side shields must be worn at all times. (CSE5)
	wells	 Nitrile/cut resistant gloves must be worn while handling the bailer. (CSE5)
		Check for the presence of NAPL. Call PM if NAPL is encountered for
	particulates	instructions on how to proceed.
		If NAPL is confirmed and the PM decides to proceed with work on the
		well, consult the NAPL bailing JSA.
		 Keep lids closed on poly tanks and drums as much as possible.
4. Collecting Groundwater Samples	Contact with sharp objects	• Use clear glass VOAs.
	(broken Sampling Bottles) - cuts	 Visually inspect each glass bottle for defects prior to use.
		 Place VOA in holding device and then tighten on lid
		Wear cut-resistant gloves under Nitrile gloves while handling glass sample bottles. (CSE5)
	Sample bottle falling and	• Large sample containers must be secured in event it tips. Place large
	breaking - exposure to impacted water, cuts	sample container in plastic tote or box to secure while opening, filling and closing container.
	water, euts	Review Sample Packing SOP before packing and shipping samples.
		• Review Sample Facking SOF before packing and shipping samples.
5. Locking Well Caps	• Exposure to Contaminants, biological hazards, cuts to hands	Wear cut resistant level 3 under and Nitrile over gloves. (CSE5)
		• The well cap must be effectively sealing well and be locked.
		Watch for spiders and other insects before putting hands into well
		vaults. Use tool (screw driver) and visual inspection to explore well vault before reaching in with gloved hand. (CSE5)
6. Cleaning Up and Departing the Site	 Slips, trips and falls - results in broken bones and torn 	 Check that well covers are secure upon departure, and that all tools and bailing equipment are removed from the site.
	ligaments/tendons	 Walk around site and vehicle to perform a visual inspection before demobilization.
	Demobilization	Review Driving JSA
Field Change Section: document step, h	nazard and field change to capture/co	ontrol hazards as seen during operations.

CORE SAFETY EXPECTATIONS

CSE1: Always follow Fall Protection standards when working at elevated heights CSE2: Always follow Written Permit Procedures regarding: confined space, hot work, subsurface work & gas testing CSE3: Always follow Lock Out/Tag Out (LOTO) procedures CSE4: Always follow Defeat of Critical Device procedures CSE5: Always follow written PPE requirements for the work being performed

1 Each Job or Operation consists of a set of steps. Be sure to list all the steps in the sequence that they are performed. Specify the equipment or other details

to set the basis for the associated hazards in Column 2

A hazard is a potential danger. What can go wrong? How can someone get hurt? Consider, but do not limit, the analysis to: Contact - struck against, struck by, harmful contact with (cut, abrasion); Caught - in, under, between, by objects; Fall - slip/trip, fall on same level, fall from height;
 Strain/Overexertion - lifting, pushing/pulling, bending, twisting; Energy Source - electricity, pressure, compression/tension;
 Exposure - Temperature extreme, radiation, noise, chemical burn, hazardous atmosphere.

3 Aligning with the first two columns, describe what actions or procedures are necessary to eliminate or minimize the hazards. Be clear, concise and specific. Use objective observable and quantified terms. Avoid subjective general statements such as "be careful" or "use as appropriate".

APPENDIX B Chemical Hazard Information

Material Safety Data Sheet Arsenic 100 ppm

ACC# 88076

Section 1 - Chemical Product and Company Identification

MSDS Name: Arsenic 100 ppm Catalog Numbers: MCC-031368 Synonyms: None Company Identification: Fisher Scientific 1 Reagent Lane Fair Lawn, NJ 07410 For information, call: 201-796-7100 Emergency Number: 201-796-7100 For CHEMTREC assistance, call: 800-424-9300 For International CHEMTREC assistance, call: 703-527-3887

Section 2 - Composition, Information on Ingredients

CAS#	Chemical Name	Percent	EINECS/ELINCS
7732-18-5	Water	7732-18-	231-791-2
7664-93-9	Sulfuric Acid	<2.0%	231-639-5
1310-73-2	Sodium Hydroxide	<1.0%	215-185-5
1327-53-3	Arsenic trioxide	<1.0%	215-481-4

Hazard Symbols: None listed. Risk Phrases: None listed.

Section 3 - Hazards Identification

EMERGENCY OVERVIEW

Appearance: Not available. May cause skin irritation. May cause respiratory and digestive tract irritation. May cause severe eye irritation and possible injury. May cause fetal effects. **Danger!** Contains inorganic arsenic. Cancer hazard. Harmful if inhaled or swallowed. Use only with adequate ventilation or respiratory protection.

Target Organs: None.

Potential Health Effects

Eye: May cause severe eye irritation. May result in corneal injury. **Skin:** May cause skin irritation. **Ingestion:** May cause irritation of the digestive tract. **Inhalation:** May cause respiratory tract irritation. **Chronic:** May cause fetal effects.

Eyes: Flush eyes with plenty of water for at least 15 minutes, occasionally lifting the upper and lower eyelids. Get medical aid immediately.

Skin: Get medical aid if irritation develops or persists. Flush skin with plenty of soap and water. **Ingestion:** If victim is conscious and alert, give 2-4 cupfuls of milk or water. Get medical aid immediately.

Inhalation: Get medical aid immediately. Remove from exposure and move to fresh air immediately. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. **Notes to Physician:** Treat symptomatically and supportively.

Section 5 - Fire Fighting Measures

General Information: As in any fire, wear a self-contained breathing apparatus in pressuredemand, MSHA/NIOSH (approved or equivalent), and full protective gear.

Extinguishing Media: Use water fog, dry chemical, carbon dioxide, or regular foam.

Flash Point: Not available.

Autoignition Temperature: Not available.

Explosion Limits, Lower: Not available.

Upper: Not available.

NFPA Rating: Not published.

Section 6 - Accidental Release Measures

General Information: Use proper personal protective equipment as indicated in Section 8. **Spills/Leaks:** Absorb spill with inert material (e.g. vermiculite, sand or earth), then place in suitable container.

Section 7 - Handling and Storage

Handling: Wash thoroughly after handling. Remove contaminated clothing and wash before reuse. Use only in a well-ventilated area. Do not get on skin or in eyes. Avoid ingestion and inhalation. **Storage:** Store in a cool, dry place.

Section 8 - Exposure Controls, Personal Protection

Engineering Controls: Use adequate general or local exhaust ventilation to keep airborne concentrations below the permissible exposure limits.

Exposure Limits

Chemical Name	ACGIH	NIOSH	OSHA - Final PELs
Water	none listed	none listed	none listed
	0.2 mg/m3 TWA (thoracic	1 mg/m3 TWA 15 mg/m3	

Sulfuric Acid	particulate mass); 3 mg/m3 STEL	IDLH	1 mg/m3 TWA
Sodium Hydroxide	2 mg/m3 Ceiling	10 mg/m3 IDLH	2 mg/m3 TWA
Arsenic trioxide 🕠	none listed	none listed	none listed

OSHA Vacated PELs: Water: No OSHA Vacated PELs are listed for this chemical. Sulfuric Acid: 1 mg/m3 TWA Sodium Hydroxide: No OSHA Vacated PELs are listed for this chemical. Arsenic trioxide: No OSHA Vacated PELs are listed for this chemical.

Personal Protective Equipment

Eyes: Wear appropriate protective eyeglasses or chemical safety goggles as described by OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard EN166. **Skin:** Wear appropriate protective gloves to prevent skin exposure.

Clothing: Wear appropriate protective clothing to minimize contact with skin.

Respirators: Follow the OSHA respirator regulations found in 29 CFR 1910.134 or European Standard EN 149. Always use a NIOSH or European Standard EN 149 approved respirator when necessary.

Section 9 - Physical and Chemical Properties

Physical State: Liquid Appearance: Not available. Odor: none reported pH: Not available. Vapor Pressure: Not available. Vapor Density: Not available. Evaporation Rate:Not available. Viscosity: Not available. Boiling Point: Not available. Freezing/Melting Point:Not available. Decomposition Temperature:Not available. Solubility: Not available. Specific Gravity/Density:Not available. Molecular Formula:Mixture Molecular Weight:Not available

Section 10 - Stability and Reactivity

Chemical Stability: Stable under normal temperatures and pressures. **Conditions to Avoid:** None reported.

Incompatibilities with Other Materials: None reported.

Hazardous Decomposition Products: Oxides of arsenic, arsine.

Hazardous Polymerization: Has not been reported.

Section 11 - Toxicological Information

RTECS#: CAS# 7732-18-5: ZC0110000

CAS# 7664-93-9: WS5600000 CAS# 1310-73-2: WB4900000 CAS# 1327-53-3: CG3325000 LD50/LC50: CAS# 7732-18-5: Oral, rat: LD50 = >90 mL/kg: CAS# 7664-93-9: Draize test, rabbit, eye: 250 ug Severe; Inhalation, mouse: LC50 = 320 mg/m3/2H; Inhalation, mouse: LC50 = 320 mg/m3; Inhalation, rat: LC50 = 510 mg/m3/2H: Inhalation, rat: LC50 = 510 mg/m3; Oral, rat: LD50 = 2140 mg/kg; CAS# 1310-73-2: Draize test, rabbit, eye: 400 ug Mild; Draize test, rabbit, eye: 1% Severe; Draize test, rabbit, eve: 50 ug/24H Severe: Draize test, rabbit, eye: 1 mg/24H Severe; Draize test, rabbit, skin: 500 mg/24H Severe; CAS# 1327-53-3: Oral, mouse: LD50 = 20 mg/kg: Oral, rabbit: LD50 = 20190 ug/kg;Oral, rat: LD50 = 10 mg/kg; **Carcinogenicity:** CAS# 7732-18-5: Not listed by ACGIH, IARC, NIOSH, NTP, or OSHA. CAS# 7664-93-9: ACGIH: A2 - Suspected Human Carcinogen (contained in strong inorganic acid mists) **OSHA:** Select carcinogen IARC: Group 1 carcinogen CAS# 1310-73-2: Not listed by ACGIH, IARC, NIOSH, NTP, or OSHA. CAS# 1327-53-3: ACGIH: A1 - Confirmed Human Carcinogen (listed as 'Arsenic'). California: carcinogen, initial date 2/27/87 (listed as Arsenic, inorganic compounds). **NIOSH:** potential occupational carcinogen (listed as Arsenic) NTP: Known carcinogen (listed as Arsenic, inorganic compounds). OSHA: Select carcinogen (listed as Arsenic). IARC: Group 1 carcinogen (listed as Arsenic). Epidemiology: In a large number of studies, exposure to inorganic arsenic compounds in drugs, food, and water as well as in an occupat ional setting have been casually associated with the devel opment of cancer, primarily of the skin and lungs. Teratogenicity: Teratogenic effects, including exencephaly, skeletal defects, and genitourinary system defects have occured when arsenic compounds were administered intravenously or intraperitoneally at high doses in hamsters, rats and mice.

Section 12 - Ecological Information

No information available.

Section 13 - Disposal Considerations

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. US EPA guidelines for the classification determination are listed in 40 CFR Parts 261.3. Additionally, waste generators must consult state and local hazardous waste regulations to ensure complete and accurate classification.

RCRA P-Series: CAS# 1327-53-3: waste number P012. **RCRA U-Series:** None listed.

Section 14 - Transport Information

	US DOT	IATA	RID/ADR	ІМО	Canada TDG
Shipping Name:	No information available.				No Information available.
Hazard Class:	· ·				······································
UN Number:]				
Packing Group:					

Section 15 - Regulatory Information

US FEDERAL

TSCA

CAS# 7732-18-5 is listed on the TSCA inventory.

CAS# 7664-93-9 is listed on the TSCA inventory.

CAS# 1310-73-2 is listed on the TSCA inventory.

CAS# 1327-53-3 is listed on the TSCA inventory.

Health & Safety Reporting List

None of the chemicals are on the Health & Safety Reporting List.

Chemical Test Rules

None of the chemicals in this product are under a Chemical Test Rule.

Section 12b

None of the chemicals are listed under TSCA Section 12b.

TSCA Significant New Use Rule

None of the chemicals in this material have a SNUR under TSCA.

SARA

CERCLA Hazardous Substances and corresponding RQs

CAS# 7664-93-9: 1000 lb final RQ; 454 kg final RQ CAS# 1310-73-2: 1000 lb final RQ; 454 kg final RQ CAS# 1327-53-3: 1 lb final RQ; 0.454 kg final RQ

SARA Section 302 Extremely Hazardous Substances

CAS# 7664-93-9: 1000 lb TPQ CAS# 1327-53-3: 100 lb TPQ (lower threshold); 10000 lb TPQ (upper thre shold)

SARA Codes

CAS # 7664-93-9: acute, chronic, reactive. CAS # 1310-73-2: acute, reactive. CAS # 1327-53-3: acute, chronic.

Section 313

This material contains Sulfuric Acid (CAS# 7664-93-9, 2 0%), which is subject to the reporting requirements of Section 313 of SARA Title III and 40 CFR Part 373. This material contains Arsenic trioxide (listed as Arsenic), 1 0%, (CAS# 1327-53-3) which is subject to the reporting requirements of Section 313 of SARA Title III and 40 CFR Part 373.

Clean Air Act:

This material does not contain any hazardous air pollutants. This material does not contain any Class 1 Ozone depletors. This material does not contain any Class 2 Ozone depletors.

Clean Water Act:

CAS# 7664-93-9 is listed as a Hazardous Substance under the CWA. CAS# 1310-73-2 is listed as a

Hazardous Substance under the CWA. CAS# 1327-53-3 is listed as a Hazardous Substance under the CWA. None of the chemicals in this product are listed as Priority Pollutants under the CWA. None of the chemicals in this product are listed as Toxic Pollutants under the CWA. **OSHA:**

None of the chemicals in this product are considered highly hazardous by OSHA. **STATE**

CAS# 7732-18-5 is not present on state lists from CA, PA, MN, MA, FL, or NJ.

CAS# 7664-93-9 can be found on the following state right to know lists: California, New Jersey, Pennsylvania, Minnesota, Massachusetts.

CAS# 1310-73-2 can be found on the following state right to know lists: California, New Jersey, Pennsylvania, Minnesota, Massachusetts.

CAS# 1327-53-3 can be found on the following state right to know lists: California, New Jersey, Pennsylvania, Massachusetts.

WARNING: This product contains Arsenic trioxide, listed as `Arsenic (inorganic oxides)', a chemical known to the state of California to cause birth defects or other reproductive harm. California No Significant Risk Level: None of the chemicals in this product are listed.

European/International Regulations

European Labeling in Accordance with EC Directives Hazard Symbols: Not available. Risk Phrases:

Safety Phrases:

WGK (Water Danger/Protection)

CAS# 7732-18-5: No information available. CAS# 7664-93-9: 2 CAS# 1310-73-2: 1 CAS# 1327-53-3: 3

Canada - DSL/NDSL

CAS# 7732-18-5 is listed on Canada's DSL List. CAS# 7664-93-9 is listed on Canada's DSL List. CAS# 1310-73-2 is listed on Canada's DSL List. CAS# 1327-53-3 is listed on Canada's DSL List.

Canada - WHMIS

WHMIS: Not available.

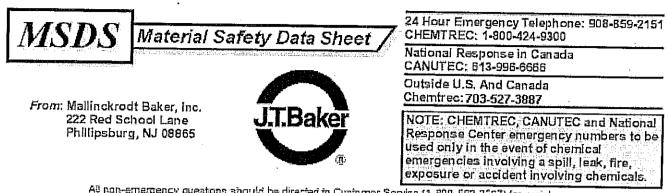
Canadian Ingredient Disclosure List

CAS# 7664-93-9 is listed on the Canadian Ingredient Disclosure List. CAS# 1310-73-2 is listed on the Canadian Ingredient Disclosure List. CAS# 1327-53-3 is listed on the Canadian Ingredient Disclosure List.

Exposure Limits

CAS# 7664-93-9: OEL-ARAB Republic of Egypt:TWA 1 mg/m3 OEL-AUSTRALI A:TWA 1 mg/m3 OEL-BELGIUM:TWA 1 mg/m3;STEL 3 mg/m3 OEL-CZECHOSLOVAKI A:TWA 1 mg/m3;STEL 2 mg/m3 OEL-DENMARK:TWA 1 mg/m3 OEL-FINLAND:TWA 1 mg/m3;STEL 3 mg/m3;Skin OEL-FRANCE:TWA 1 mg/m3;STEL 3 mg/m3 OEL-GER MANY:TWA 1 mg/m3 OEL-HUNGARY:STEL 1 mg/m3 OEL-JAPAN:TWA 1 mg/m3 OEL -THE NETHERLANDS:TWA 1 mg/m3 OEL-THE PHILIPPINES:TWA 1 mg/m3 OEL-POL AND:TWA 1 mg/m3 OEL-RUSSIA:STEL 1 mg/m3;Skin OEL-SWEDEN:TWA 1 mg/m3; STEL 3 mg/m3 OEL-RUSSIA:STEL 1 mg/m3;StEL 2 mg/m3 OEL-THAILAND:T WA 1 mg/m3 OEL-SWITZERLAND:TWA 1 mg/m3;STEL 2 mg/m3 OEL-THAILAND:T WA 1 mg/m3 OEL-TURKEY:TWA 1 mg/m3 OEL-UNITED KINGDOM:TWA 1 mg/m3 OE L IN BULGARIA, COLOMBIA, JORDAN, KOREA check ACGIH TLV OEL IN NEW ZEA LAND, SINGAPORE, VIETNAM check ACGI TLV

CAS# 1310-73-2: OEL-AUSTRALIA:TWA 2 mg/m3 OEL-BELGIUM:STEL 2 mg/m3 OEL-DENMARK:TWA 2 mg/m3 OEL-FINLAND:TWA 2 mg/m3 OEL-FRANCE:TWA 2 mg


/m3 OEL-GERMANY:TWA 2 mg/m3 OEL-JAPAN:STEL 2 mg/m3 OEL-THE NETHERLA NDS:TWA 2 mg/m3 OEL-THE PHILIPPINES:TWA 2 mg/m3 OEL-SWEDEN:TWA 2 mg/ m3 OEL-SWITZERLAND:TWA 2 mg/m3;STEL 4 mg/m3 OEL-THAILAND:TWA 2 mg/m3 OEL-TURKEY:TWA 2 mg/m3 OEL-UNITED KINGDOM:TWA 2 mg/m3;STEL 2 mg/m3 OEL IN BULGARIA, COLOMBIA, JORDAN, KOREA check ACGIH TLV OEL IN NEW ZEALAND, SINGAPORE, VIETNAM check ACGI TLV

CAS# 1327-53-3: OEL-AUSTRALIA; Carcinogen OEL-BELGIUM; Carcinogen OE L-FINLAND; Carcinogen OEL-FRANCE: STEL 0.2 ppm; Carcinogen OEL-GERMANY; Carcinogen OEL-JAPAN:STEL 0.5 ppm;Carcinogen OEL-THE PHILIPPINES:TWA 0.1 mg/m3;Carcinogen JAN9 OEL-SWITZERLAND:TWA 0.15 mg/m3 OEL-UNITED KINGDOM:TWA 0.1 mg/m3 OEL IN BULGARIA, COLOMBIA, JORDAN, KOREA check ACGIH TLV OEL IN NEW ZEALAND, SINGAPORE, VIETNAM check ACGI TLV OEL -ARAB Republic of Egypt: TWA 0.2 mg(As)/m3 OEL-ARAB Republic of Egypt: TWA 0.2 mg(Se)/m3 JAN9 OEL-AUSTRALIA:TWA 0.05 mg(As)/m3;Carcinogen O EL-AUSTRALIA:TWA 0.2 mg(Se)/m3 OEL-BELGIUM:TWA 0.2 mg(As)/m3 OEL-BEL GIUM:TWA 0.2 mg(Se)/m3 OEL-CZECHOSLOVAKIA:TWA 0.2 mg(As)/m3;STEL 0.6 mg(As)/m3 OEL-DENMARK:TWA 0.05 mg(As)/m3 OEL-DENMARK:TWA 0.1 mg(Se)/ m3 OEL-FINLAND:TWA 0.1 mg(Se)/m3;STEL 0.3 mg(Se)/m3 OEL-FINLAND;Carc inogen OEL-FRANCE:TWA 0.2 mg(As)/m3 OEL-GERMANY:TWA 0.1 mg(Se)/m3 O EL-HUNGARY:STEL 0.1 mg(Se)/m3 OEL-HUNGARY:STEL 0.5 mg(As)/m3;Carcinog en OEL-INDIA:TWA 0.2 mg(As)/m3 OEL-THE NETHERLANDS:TWA 0.2 mg(Se)/m3 OEL-THE PHILIPPINES:TWA 0.2 mg(Se)/m3 OEL-THE PHILIPPINES:TWA 0.5 m g(As)/m3 OEL-POLAND:TWA 0.1 mg(Se)/m3 OEL-POLAND:TWA 0.3 mg(As)/m3 OEL-SWEDEN:TWA 0.03 mg(As)/m

Section 16 - Additional Information

MSDS Creation Date: 8/24/1997 **Revision #2 Date:** 3/18/2003

The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular purposes. In no event shall Fisher be liable for any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, howsoever arising, even if Fisher has been advised of the possibility of such damages. MSÐS Number: B0335 * * * * * Effective Date: 06/26/00 * * * * * Supercedes: 05/20/97

All non-emergency queations aboutd be directed to Customer Service (1-800-562-2637) for assistance

Barium, 1000 ug/mL (0.10% w/v)

1. Product Identification

Synonyms: None CAS No.: Not applicable to mixtures. Molecular Weight: 137.33 Chemical Formula: BaCO3 and HNO3 in H2O Product Codes: 6920

2. Composition/Information on Ingredients

Ingredient	CAS No	Percent	Hazardous
Barium Carbonate	513-77-9	< 1%	No
Nitric Acid	7697-37-2	1 - 2%	Yes
Water	7732-18-5	97 - 98%	No

3. Hazards Identification

Emergency Overview

DANGER! CORROSIVE. LIQUID AND MIST CAUSE SEVERE BURNS TO ALL BODY TISSUE. MAY BE FATAL IF SWALLOWED OR INHALED. VAPOR IRRITATING TO EYES AND RESPIRATORY TRACT. INHALATION MAY CAUSE LUNG AND TOOTH DAMAGE.

J.T. Baker SAF-T-DATA^(tm) Ratings (Provided here for your convenience)

Health Rating: 3 - Severe (Life) Flammability Rating: 0 - None Reactivity Rating: 1 - Slight Contact Rating: 3 - Severe (Corrosive) Lab Protective Equip: GOGGLES & SHIELD; LAB COAT & APRON; VENT HOOD; PROPER GLOVES Storage Color Code: White (Corrosive)

Potential Health Effects

Nitric acid is extremely hazardous; it is corrosive, reactive, an oxidizer, and a poison. The following hazards are for concentrated solutions. Hazards of less concentrated solutions may be reduced. Degree of hazard for reduced concentrations is not currently addressed in the available literature.

Inhalation:

Corrosive! Inhalation of vapors can cause coughing, choking, inflammation of the nose, throat, and upper respiratory tract, and in severe cases, pulmonary edema, circulatory failure, and death.

Ingestion:

Corrosive! Swallowing can cause immediate pain and burns of the mouth, throat, esophagus and gastrointestinal tract. May cause nausea, vomiting, and diarrhea, and in severe cases, death.

Skin Contact:

Corrosive! Can cause redness, pain, and severe skin burns. Concentrated solutions cause deep ulcers and stain skin a yellow or yellow-brown color.

Eye Contact:

Corrosive! Vapors are irritating and may cause damage to the eyes. Contact may cause severe burns and permanent eye damage.

Chronic Exposure:

Long-term exposure to concentrated vapors may cause erosion of teeth and lung damage. Long-term exposures seldom occur due to the corrosive properties of the acid.

Aggravation of Pre-existing Conditions:

Persons with pre-existing skin disorders, eye disease, or cardiopulmonary diseases may be more susceptible to the effects of this substance.

4. First Aid Measures

Immediate first aid treatment reduces the health effects of this substance.

Inhalation:

Remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical attention immediately.

Ingestion:

If swallowed, DO NOT INDUCE VOMITING. Give large quantities of water. Never give anything by mouth to an unconscious person. Get medical attention immediately. Skin Contact:

Skin Contact:

Immediately flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Get medical attention immediately. Wash clothing before reuse. Thoroughly clean shoes before reuse.

Eye Contact:

Immediately flush eyes with plenty of water for at least 15 minutes, lifting lower and upper eyelids occasionally. Get medical attention immediately.

5. Fire Fighting Measures

Fire:

Not combustible, but concentrated material is a strong oxidizer and its heat of reaction with reducing agents or combustibles may cause ignition.

Explosion:

Concentrated material reacts explosively with combustible organic or readily oxidizable materials such as: alcohols, turpentine, charcoal, organic refuse, metal powder, hydrogen sulfide, etc. Reacts with most metals to release hydrogen gas which can form explosive mixtures with air.

Fire Extinguishing Media:

Use any means suitable for extinguishing surrounding fire.

Special Information:

In the event of a fire, wear full protective clothing and NIOSH-approved self-contained breathing apparatus with full facepiece operated in the pressure demand or other positive pressure mode.

6. Accidental Release Measures

Ventilate area of leak or spill. Wear appropriate personal protective equipment as specified in Section 8. Isolate hazard area. Keep unnecessary and unprotected personnel from entering. Contain and recover liquid when possible. Neutralize with alkaline material (soda ash, lime), then absorb with an inert material (e. g., vermiculite, dry sand, earth), and place in a chemical waste container. Do not use combustible materials, such as saw dust. Do not flush to sewer! US Regulations (CERCLA) require reporting spills and releases to soil, water and air in excess of reportable quantities. The toll free number for the US Coast Guard National Response Center is (800) 424-8802.

7. Handling and Storage

Store in a cool, dry, ventilated storage area with acid resistant floors and good drainage. Protect from physical damage. Keep out of direct sunlight and away from heat, water, and incompatible materials. Do not wash out container and use it for other purposes. When diluting, the acid should always be added slowly to water and in small amounts. Never use hot water and never add water to the acid. Water added to acid can cause uncontrolled boiling and splashing. When opening metal containers, use non-sparking tools because of the possibility of hydrogen gas being present. Containers of this material may be hazardous when empty since they retain product residues (vapors, liquid); observe all warnings and precautions listed for the product.

8. Exposure Controls/Personal Protection

Airborne Exposure Limits:

For Nitric Acid: OSHA Permissible Exposure Limit (PEL): 2 ppm (TWA) ACGIH Threshold Limit Value (TLV):

2 ppm (TWA); 4 ppm (STEL)

Ventilation System:

A system of local and/or general exhaust is recommended to keep employee exposures below the Airborne Exposure Limits. Local exhaust ventilation is generally preferred because it can control the emissions of the contaminant at its source, preventing dispersion of it into the general work area. Please refer to the ACGIH document, *Industrial Ventilation, A Manual of Recommended Practices*, most recent edition, for details.

Personal Respirators (NIOSH Approved):

If the exposure limit is exceeded, wear a supplied air, full-facepiece respirator, airlined hood, or full-facepiece self-contained breathing apparatus. Canister-type respirators using sorbents are ineffective.

Skin Protection:

Rubber or neoprene gloves and additional protection including impervious boots, apron, or coveralls, as needed in areas of unusual exposure to prevent skin contact.

Eye Protection:

Use chemical safety goggles and/or a full face shield where splashing is possible. Maintain eye wash fountain and quick-drench facilities in work area.

9. Physical and Chemical Properties

Appearance: Clear, colorless liquid. Odor: Odorless. Solubility: Complete (100%)

Specific Gravity: No information found. pH: No information found. % Volatiles by volume @ 21C (70F): ca. 99 **Boiling Point:** No information found. Melting Point: No information found. Vapor Density (Air=1): No information found. Vapor Pressure (mm Hg): No information found. **Evaporation Rate (BuAc=1):** No information found.

10. Stability and Reactivity

Stability:

Stable under ordinary conditions of use and storage.

Hazardous Decomposition Products:

When heated to decomposition, emits toxic nitrogen oxides fumes and hydrogen nitrate. Hazardous Polymerization:

Will not occur.

Incompatibilities:

A dangerously powerful oxidizing agent, concentrated nitric acid is incompatible with most substances, especially strong bases, metallic powders, carbides, hydrogen sulfide, turpentine, and combustible organics.

Conditions to Avoid:

Heat and incompatibles.

11. Toxicological Information

For Nitric Acid: Investigated as a mutagen and reproductive effector.

	NTP	Carcinogen	
Ingredient	Known	Anticipated	IARC Category
Barium Carbonate (513-77-9) Nitric Acid (7697-37-2) Water (7732-18-5)	No No No	No No No	None None None

http://www.jtbaker.com/msds/englishhtml/b0335.htm

12. Ecological Information

Environmental Fate: No information found. Environmental Toxicity: No information found.

13. Disposal Considerations

Whatever cannot be saved for recovery or recycling should be handled as hazardous waste and sent to a RCRA approved incinerator or disposed in a RCRA approved waste facility. Processing, use or contamination of this product may change the waste management options. State and local disposal regulations may differ from federal disposal regulations. Dispose of container and unused contents in accordance with federal, state and local requirements.

14. Transport Information

Domestic (Land, D.O.T.)

Proper Shipping Name: CORROSIVE LIQUID, ACIDIC, INORGANIC, N.O.S. (NITRIC ACID) Hazard Class: 8 UN/NA: UN3264 Packing Group: III Information reported for product/size: 500ML

International (Water, I.M.O.)

Proper Shipping Name: CORROSIVE LIQUID, ACIDIC, INORGANIC, N.O.S. (NITRIC ACID) **Hazard Class:** 8 **UN/NA:** UN3264 Packing Group: III **Information reported for product/size:** 500ML

International (Air, I.C.A.O.)

Proper Shipping Name: CORROSIVE LIQUID, ACIDIC, INORGANIC, N.O.S. (NITRIC ACID) Hazard Class: 8 UN/NA: UN3264 Packing Group: III Information reported for product/size: 500ML

15. Regulatory Information

Ingredient		TSCA	A EC	-	Australi
Barium Carbonate (513-77-9)		Yes	Yes	Yes	Yes
Nitric Acid (7697-37-2) Water (7732-18-5)			s Yes	Yes	Yes
Macer (//JZ-10-5)		Yes	Yes	Yes	Yes
\Chemical Inventory Status - Part	2\				
				anada	
Ingredient			a DSL	NDSL	Phil.
Barium Carbonate (513-77-9)				 No	
Nitric Acid (7697-37-2)		Yes	Yes		Yes
Water (7732-18-5)				No	Yes
\Federal, State & International R	egulati	ions -	Part 1	L\ -	
Ingredient	-SARA	A 302-		SARA	A 313
	RQ	TPQ	Lis	st Chem	nical Cato
Barium Carbonate (513-77-9)					.um compo
Nitric Acid (7697-37-2)	1000	1000	Yes	 1	No
Vater (7732-18-5)	No	No	No	-	No
\Federal, State & International Re	egulati	ons -	Part 2	\	
			-RCRA-	-TS	CA-
ngredient	CERCL			8(
Barium Carbonate (513-77-9)	 No		 No	-	
litric Acid (7697-37-2)	1000		No		
later (7732-18-5)	No		No		
later (7732-18-5)				No No	

.

Australian Hazchem Code: None allocated. Poison Schedule: S6 WHMIS: This MSDS has been prepared according to the hazard criteria of the Controlled Products Regulations (CPR) and the MSDS contains all of the information required by the CPR.

16. Other Information

NFPA Ratings: Health: 3 Flammability: 0 Reactivity: 0 Label Hazard Warning: DANGER! CORROSIVE. LIQUID AND MIST CAUSE SEVERE BURNS TO ALL

BODY TISSUE. MAY BE FATAL IF SWALLOWED OR INHALED. VAPOR IRRITATING TO EYES AND RESPIRATORY TRACT. INHALATION MAY CAUSE LUNG AND TOOTH DAMAGE.

Label Precautions:

Do not get in eyes, on skin, or on clothing.

Do not breathe vapor or mist.

Use only with adequate ventilation.

Wash thoroughly after handling.

Keep container closed.

Label First Aid:

In case of contact, immediately flush eyes or skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Wash clothing before reuse. If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. If swallowed, DO NOT INDUCE VOMITING. Give large quantities of water. Never give anything by mouth to an unconscious person. In all cases get medical attention immediately.

Product Use:

Laboratory Reagent.

Revision Information:

MSDS Section(s) changed since last revision of document include: 3, 14, 16.

Disclaimer:

Prepared by: Environmental Health & Safety Phone Number: (314) 654-1600 (U.S.A.)

Material Safety Data Sheet Cadmium metal, granular

ACC# 03720

Section 1 - Chemical Product and Company Identification

MSDS Name: Cadmium metal, granular Catalog Numbers: AC612135000, S79935, C3-500 Synonyms: None. Company Identification: Fisher Scientific 1 Reagent Lane Fair Lawn, NJ 07410 For information, call: 201-796-7100 Emergency Number: 201-796-7100 For CHEMTREC assistance, call: 800-424-9300 For International CHEMTREC assistance, call: 703-527-3887

Section 2 - Composition, Information on Ingredients

CAS#	Chemical Name	Percent	EINECS/ELINCS
7440-43-9	Cadmium	100	231-152-8

Hazard Symbols: T+ F Risk Phrases: 11 25 26 45

Section 3 - Hazards Identification

EMERGENCY OVERVIEW

Appearance: silver white granules. Inhalation of fumes may cause metal-fume fever. Flammable solid. Air sensitive. May cause reproductive and fetal effects. Harmful if swallowed. May be fatal if inhaled. **Danger!** Causes eye, skin, and respiratory tract irritation. Contains cadmium. Avoid creating dust. Can cause lung and kidney disease. Cancer hazard.

Target Organs: Blood, kidneys, liver, lungs, skeletal structures, prostate.

Potential Health Effects

Eye: Causes eye irritation.

Skin: Causes skin irritation.

Ingestion: Harmful if swallowed. May cause gastrointestinal irritation with nausea, vomiting and diarrhea. Ingestion may produce fluid loss, acute renal failure, and cardiopulmonary depression. **Inhalation:** May be fatal if inhaled. Inhalation of fumes may cause metal fume fever, which is characterized by flu-like symptoms with metallic taste, fever, chills, cough, weakness, chest pain, muscle pain and increased white blood cell count. Damage may be delayed. May cause nausea, vomiting, abdominal pain, diarrhea, chest tightness, weakness, and delayed pulmonary edema. In humans inhalation causes proteinuria, an excess of protein in the urine.

Chronic: May cause respiratory tract cancer. Repeated inhalation may cause chronic bronchitis. Chronic inhalation may cause nasal septum ulceration and perforation. Cadmium and compounds

may cause lung, liver and kidney damage and lung and prostate cancer in humans. May cause loss of smell, emphysema, anemia, bone demineralization, and lung fibrosis. The primary target organ for chronic cadmium disease is clearly the kidney.

Section 4 - First Aid Measures

Eyes: Immediately flush eyes with plenty of water for at least 15 minutes, occasionally lifting the upper and lower eyelids. Get medical aid.

Skin: Get medical aid. Flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Wash clothing before reuse.

Ingestion: Do not induce vomiting. If victim is conscious and alert, give 2-4 cupfuls of milk or water. Never give anything by mouth to an unconscious person. Get medical aid immediately. **Inhalation:** POISON material. If inhaled, get medical aid immediately. Remove victim to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Attempt rescue only after notifying at least one other person of the emergency and putting into effect established emergency procedures. Do not become a casualty yourself.

Notes to Physician: Administration of calcium disodium EDTA may be useful in acute poisoning with its use at the discretion of qualified medical personnel. Persons with kidney disease, chronic respiratory disease, liver disease, or skin disease may be at increased risk from exposure to this substance.

Section 5 - Fire Fighting Measures

General Information: As in any fire, wear a self-contained breathing apparatus in pressuredemand, MSHA/NIOSH (approved or equivalent), and full protective gear. Material can spontaneously ignite (pyrophoric) when exposed to air at normal or slightly elevated temperatures. Dust can be an explosion hazard when exposed to heat or flame. Flammable solid. May burn rapidly with flare burning effect. May re-ignite after fire is extinguished. Dangerous fire hazard in the form of dust when exposed to heat or flame.

Extinguishing Media: Use dry sand, graphite powder, dry sodium chloride-based extinguishers. **Flash Point:** Not available.

Autoignition Temperature: Not available.

Explosion Limits, Lower: Not available.

Upper: Not available.

NFPA Rating: (estimated) Health: 4; Flammability: 2; Instability: 1

Section 6 - Accidental Release Measures

General Information: Use proper personal protective equipment as indicated in Section 8. **Spills/Leaks:** Vacuum or sweep up material and place into a suitable disposal container. Avoid generating dusty conditions. Remove all sources of ignition. Use a spark-proof tool. Provide ventilation. Place under an inert atmosphere.

Section 7 - Handling and Storage

Handling: Wash thoroughly after handling. Wash hands before eating. Remove contaminated clothing and wash before reuse. Minimize dust generation and-accumulation. Use spark-proof tools and explosion proof equipment. Avoid contact with skin and eyes. Do not breathe dust, vapor, mist, or gas. Empty containers retain product residue, (liquid and/or vapor), and can be dangerous. Keep away from heat, sparks and flame. Do not ingest or inhale. Handle under an inert atmosphere. Store protected from air. Use only in a chemical fume hood. Do not pressurize, cut, weld, braze, solder, drill, grind, or expose empty containers to heat, sparks or open flames. **Storage:** Keep away from heat and flame. Keep away from sources of ignition. Store in a tightly closed container. Store in a cool, dry, well-ventilated area away from incompatible substances. Do not expose to air. Store under an inert atmosphere.

Section 8 - Exposure Controls, Personal Protection

Engineering Controls: Use explosion-proof ventilation equipment. Facilities storing or utilizing this material should be equipped with an eyewash facility and a safety shower. Use only under a chemical fume hood. See 29CFR 1910.1027 for regulations applying to all occupational exposures to cadmium and cadmium compounds, in all forms.

Chemical Name	ACGIH	NIOSH	OSHA - Final PELs
Cadmium	0.01 mg/m3 TWA	9 mg/m3 IDLH (dust and fume)	0.2 mg/m3 TWA (dust); 0.1 mg/m3 TWA (fume); 0.6 mg/m3 Ceiling (dust); 0.3 mg/m3 Ceiling (fume); 2.5 æg/m3 Action Level; 5 æ

OSHA Vacated PELs: Cadmium: No OSHA Vacated PELs are listed for this chemical. **Personal Protective Equipment**

Eyes: Wear appropriate protective eyeglasses or chemical safety goggles as described by OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard EN166.

Skin: Wear appropriate protective gloves to prevent skin exposure.

Clothing: Wear appropriate protective clothing to prevent skin exposure.

Respirators: A respiratory protection program that meets OSHA's 29 CFR 1910.134 and ANSI Z88.2 requirements or European Standard EN 149 must be followed whenever workplace conditions warrant a respirator's use.

Section 9 - Physical and Chemical Properties

Physical State: Granules Appearance: silver white Odor: odorless pH: Not available. Vapor Pressure: Not applicable. Vapor Density: Not available. Evaporation Rate:Not applicable. Viscosity: Not applicable. Viscosity: Not applicable. Boiling Point: 765 deg C @ 760 mm Hg Freezing/Melting Point:321 deg C Decomposition Temperature:Not available. Solubility: Insoluble.

Specific Gravity/Density:8.64 @ 25°C Molecular Formula:Cd Molecular Weight:112.40

Section 10 - Stability and Reactivity

Chemical Stability: Oxidizes when exposed to air. Easily tarnishes in moist air. Powder or liquid is pyrophoric. Contact with acid liberates gas.

Conditions to Avoid: Ignition sources, dust generation, excess heat, prolonged exposure to air. **Incompatibilities with Other Materials:** Strong oxidizing agents, acids, sulfur, zinc, selenium, tellurium.

Hazardous Decomposition Products: Toxic cadmium oxide fumes. Hazardous Polymerization: Has not been reported.

Section 11 - Toxicological Information

RTECS#:

CAS# 7440-43-9: EU9800000 LD50/LC50:

CAS# 7440-43-9:

Inhalation, rat: LC50 = 25 mg/m3/30M;

Oral, mouse: LD50 = 890 mg/kg;

Oral, rat: LD50 = 2330 mg/kg;

Carcinogenicity:

CAS# 7440-43-9:

ACGIH: A2 - Suspected Human Carcinogen California: carcinogen, initial date 10/1/87 NIOSH: potential occupational carcinogen (dust) NTP: Known carcinogen OSHA: Select carcinogen

IARC: Group 1 carcinogen

Epidemiology: Occupational exposure to cadmium has been implicated in a si gnificant increase in prostate and respiratory tract cancer. There is evidence of a significant excess of respiratory cancer deaths among a cohort of cadmium production workers , and concluded that cadmium and its compounds are poten tial carcinogens.

Teratogenicity: Oral, rat: TDLo = 155 mg/kg (male 13 week(s) pre-mating and female 13 week (s) pre-mating - 3 week(s) after conception) Effects on Newborn - growth statistics (e.g.%, reduced weight gain) and Effects on Newborn - behavioral.; Oral, rat: TDLo = 23 mg/kg (female 1-22 day(s) after conception) Specific Developmental Abnormalities - blood and lymphatic systems (including spleen and marrow).; Oral, mouse: TDLo = 1700 mg/kg (female 8-12 day(s) after conception) Effects on Newborn - viability index (e.g., # alive at day 4 per # born alive) and Effects on Newborn - growth statis

Reproductive Effects: Oral, rat: TDLo = 21500 ug/kg (multigenerations) Fertility - preimplantation mortality (e.g. reduction in number of implants per female; total number of implants per corpora lutea).; Intraperitoneal, rat: TDLo = 1124 ug/kg (male 1 day(s) pre-mating) Paternal Effects - spermatogenesis (incl. genetic material, sperm morphology, motility, and count). **Neurotoxicity:** No information available.

Mutagenicity: Micronucleus Test: Mouse, Embryo = 6 umol/L.; Cytogenetic Analysis: Hamster, Ovary = 1 umol/L.

Other Studies: The long-term ingestion of water, beans and rice contaminate d with cadmium has

been proposed as the probable cause of crippling condition (itai-itai disease) among Japa nese women who have had multiple pregnancies. Characte ristics of the disorder are: pain in the back and joints , a waddly gait, osteomalacia, bone fractures, and occas ional fatal renal failure.

Section 12 - Ecological Information

Ecotoxicity: Fish: Rainbow trout: TLm = 30 ppm; 24 Hr; Hard waterFish: Striped bass: LC50 = 0.001 ppm; 24-48 Hr; Static bioassayFish: Fathead Minnow: TL50 = 7.2 ppm; 96 Hr; UnspecifiedFish: Bluegill/Sunfish: LCO = 0.08 ppm; 96 Hr; Static bioassay (Hard water) No data available.

Environmental: Cadmium can enter the air from natural sources.

Physical: No information available.

Other: No information available.

Section 13 - Disposal Considerations

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. US EPA guidelines for the classification determination are listed in 40 CFR Parts 261.3. Additionally, waste generators must consult state and local hazardous waste regulations to ensure complete and accurate classification.

RCRA P-Series: None listed.

RCRA U-Series: None listed.

Section 14 - Transport Information

	US DOT	IATA	RID/ADR	IMO	Canada TDG
Shipping Name:	TOXIC SOLIDS, FLAMMABLE, ORGANIC, N.O.S.				Toxic Solid, Flammable, Organic, N.O.S. (CADMIUM
Hazard Class:	6.1				METAL)
UN Number:	UN2930				6.1
Packing Group:	I				UN2930

Section 15 - Regulatory Information

US FEDERAL

TSCA

CAS# 7440-43-9 is listed on the TSCA inventory.

Health & Safety Reporting List

None of the chemicals are on the Health & Safety Reporting List.

Chemical Test Rules

None of the chemicals in this product are under a Chemical Test Rule.

Section 12b

None of the chemicals are listed under TSCA Section 12b.

TSCA Significant New Use Rule

None of the chemicals in this material have a SNUR under TSCA.

SARA

CERCLA Hazardous Substances and corresponding RQs

CAS# 7440-43-9: 10 lb final RQ (no reporting of releases of this hazardous substance is req **SARA Section 302 Extremely Hazardous Substances**

None of the chemicals in this product have a TPQ.

SARA Codes

CAS # 7440-43-9: acute, chronic, flammable.

Section 313

This material contains Cadmium (CAS# 7440-43-9, 100%), which is subject to the reporting requirements of Section 313 of SARA Title III and 40 CFR Part 373.

Clean Air Act:

This material does not contain any hazardous air pollutants. This material does not contain any Class 1 Ozone depletors. This material does not contain any Class 2 Ozone depletors.

Clean Water Act:

None of the chemicals in this product are listed as Hazardous Substances under the CWA. CAS# 7440-43-9 is listed as a Priority Pollutant under the Clean Water Act. CAS# 7440-43-9 is listed as a Toxic Pollutant under the Clean Water Act.

OSHA:

None of the chemicals in this product are considered highly hazardous by OSHA.

STATE

CAS# 7440-43-9 can be found on the following state right to know lists: California, New Jersey, Pennsylvania, Minnesota, Massachusetts.

The following statement(s) is(are) made in order to comply with the California Safe Drinking Water Act: WARNING: This product contains Cadmium, a chemical known to the state of California to cause cancer. WARNING: This product contains Cadmium, a chemical known to the state of California to cause birth defects or other reproductive harm. California No Significant Risk Level: CAS# 7440-43-9: 0.05 æg/day NSRL (inhalation)

European/International Regulations

European Labeling in Accordance with EC Directives Hazard Symbols:

T+ F.

Risk Phrases:

R 11 Highly flammable.

R 25 Toxic if swallowed.

R 26 Very toxic by inhalation.

R 45 May cause cancer.

Safety Phrases:

S 36/37/39 Wear suitable protective clothing, gloves and eye/face protection.

S 45 In case of accident or if you feel unwell, seek medical advice immediately (show the label where possible).

S 53 Avoid exposure - obtain special instructions before use.

WGK (Water Danger/Protection)

CAS# 7440-43-9: No information available. Canada - DSL/NDSL CAS# 7440-43-9 is listed on Canada's DSL List.

Canada - WHMIS

This product has a WHMIS classification of D1A, B2.

Canadian Ingredient Disclosure List

CAS# 7440-43-9 is listed on the Canadian Ingredient Disclosure List.

Exposure Limits

CAS# 7440-43-9: OEL-ARAB Republic of Egypt:TWA 0.05 mg/m3 OEL-AUSTR ALIA:TWA 0.05 mg/m3 OEL-BELGIUM:TWA 0.05 mg/m3 OEL-CZECHOSLOVAKIA:TW A 0.05 mg/m3;STEL 0.1 mg/m3 OEL-DENMARK:TWA 0.01 mg/m3 OEL-FINLAND:T WA 0.02 mg/m3;Carcinogen OEL-GERMANY;Carcinogen OEL-INDIA:TWA 0.05 m g/m3 OEL-JAPAN:TWA 0.05 mg/m3 OEL-THE NETHERLANDS:TWA 0.02 mg/m3;STE L 0.1 mg/m3 OEL-THE PHILIPPINES:TWA 0.2 mg/m3 OEL-RUSSIA:TWA 0.01 mg /m3;STEL 0.05 mg/m3 OEL-SWEDEN:TWA 0.02 mg/m3;Carcinogen OEL-SWITZER LAND:TWA 0.05 mg/m3 OEL-THAILAND:TWA 0.2 mg/m3;STEL 0.5 mg/m3 OEL-TU RKEY:TWA 0.2 mg/m3 OEL-UNITED KINGDOM:TWA 0.01 mg/m3 OEL IN BULGARIA , COLOMBIA, JORDAN, KOREA check ACGIH TLV OEL IN NEW ZEALAND, SINGAPO RE, VIETNAM check ACGI TLV

Section 16 - Additional Information

MSDS Creation Date: 6/28/1999 Revision #4 Date: 5/15/2002

The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular purposes. In no event shall Fisher be liable for any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, howsoever arising, even if Fisher has been advised of the possibility of such damages.

Material Safety Data Sheet Chromium

ACC# 05000

Section 1 - Chemical Product and Company Identification

MSDS Name: Chromium Catalog Numbers: S79965, S79965-1, S799651, S79965-2, S799652 Synonyms: Chrome Company Identification: Fisher Scientific 1 Reagent Lane Fair Lawn, NJ 07410 For information, call: 201-796-7100 Emergency Number: 201-796-7100 For CHEMTREC assistance, call: 800-424-9300 For International CHEMTREC assistance, call: 703-527-3887

Section 2 - Composition, Information on Ingredients

CAS#	Chemical Name	Percent	EINECS/ELINCS
7440-47-3	CHROMIUM	>=99%	231-157-5

Hazard Symbols: XN Risk Phrases: 40

Section 3 - Hazards Identification

EMERGENCY OVERVIEW

Appearance: silver-gray solid. Causes eye and skin irritation. Causes severe respiratory tract irritation. May cause kidney damage. May cause lung damage. Causes digestive tract irritation. May cause liver damage. May cause allergic skin reaction. **Warning!** Target Organs: Liver.

Potential Health Effects

Eye: Causes eye irritation. May cause conjunctivitis.

Skin: Causes skin irritation. Prolonged and/or repeated contact may cause irritation and/or dermatitis. May cause skin sensitization, an allergic reaction, which becomes evident upon re-exposure to this material.

Ingestion: May cause irritation of the digestive tract. May cause liver damage.

Inhalation: Causes respiratory tract irritation. Inhalation of fumes may cause metal fume fever, which is characterized by flu-like symptoms with metallic taste, fever, chills, cough, weakness, chest pain, muscle pain and increased white blood cell count. May cause asthma and shortness of breath. May cause headache, coughing, fever, weight loss, and pneumoconiosis. **Chronic:** Prolonged inhalation may cause respiratory tract inflammation and lung damage.

Eyes: Flush eyes with plenty of water for at least 15 minutes, occasionally lifting the upper and lower eyelids. Get medical aid immediately.

Skin: Flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Get medical aid if irritation develops or persists. Wash clothing before reuse. **Ingestion:** Do not induce vomiting. If victim is conscious and alert, give 2-4 cupfuls of milk or water. Never give anything by mouth to an unconscious person. Get medical aid immediately. **Inhalation:** Remove from exposure and move to fresh air immediately. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical aid. Do NOT use mouth-to-mouth resuscitation.

Notes to Physician: Treat symptomatically and supportively.

Section 5 - Fire Fighting Measures

General Information: Evacuate area and fight fire from a safe distance. As in any fire, wear a self-contained breathing apparatus in pressure-demand, MSHA/NIOSH (approved or equivalent), and full protective gear. May burn with invisible flame. During a fire, irritating and highly toxic gases may be generated by thermal decomposition or combustion. Dust can be an explosion hazard when exposed to heat or flame. Finely divided dusts may exhibit pyrophoric tendancies. **Extinguishing Media:** Use dry sand or earth to smother fire. Use dry chemical to fight fire. Contact professional fire-fighters immediately.

Flash Point: Not applicable.

Autoignition Temperature: 752 deg F (400.00 deg C)

Explosion Limits, Lower: .0230oz/ft3

Upper: Not available.

NFPA Rating: (estimated) Health: 2; Flammability: 1; Instability: 1

Section 6 - Accidental Release Measures

General Information: Use proper personal protective equipment as indicated in Section 8. **Spills/Leaks:** Clean up spills immediately, observing precautions in the Protective Equipment section. Sweep up or absorb material, then place into a suitable clean, dry, closed container for disposal. Avoid generating dusty conditions. Remove all sources of ignition. Isolate area and deny entry. Place under an inert atmosphere. Do not use combustible materials such as paper towels to clean up spill.

Section 7 - Handling and Storage

Handling: Wash thoroughly after handling. Remove contaminated clothing and wash before reuse. Use with adequate ventilation. Minimize dust generation and accumulation. Use spark-proof tools and explosion proof equipment. Avoid contact with skin and eyes. Keep container tightly closed. Keep away from heat, sparks and flame. Avoid ingestion and inhalation. Handle under an inert atmosphere.

Storage: Keep away from heat, sparks, and flame. Store in a tightly closed container. Keep from

contact with oxidizing materials. Store in a cool, dry, well-ventilated area away from incompatible substances. Keep away from acids. Keep containers tightly closed. Do not expose to air. Store under an inert atmosphere.

Section 8 - Exposure Controls, Personal Protection

Engineering Controls: Facilities storing or utilizing this material should be equipped with an eyewash facility and a safety shower. Use adequate general or local exhaust ventilation to keep airborne concentrations below the permissible exposure limits.

Exposure Limits

Chemical Name	ACGIH	NIOSH	OSHA - Final PELs
CHROMIUM	0.5 mg/m3 TWA	0.5 mg/m3 TWA 250 mg/m3 IDLH	1 mg/m3 TWA

OSHA Vacated PELs: CHROMIUM: 1 mg/m3 TWA

Personal Protective Equipment

Eyes: Wear appropriate protective eyeglasses or chemical safety goggles as described by OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard EN166. **Skin:** Wear appropriate gloves to prevent skin exposure.

Clothing: Wear appropriate protective clothing to prevent skin exposure.

Respirators: Follow the OSHA respirator regulations found in 29 CFR 1910.134 or European Standard EN 149. Always use a NIOSH or European Standard EN 149 approved respirator when necessary.

Section 9 - Physical and Chemical Properties

Physical State: Solid Appearance: silver-gray Odor: odorless pH: Not available. Vapor Pressure: Not applicable. Vapor Density: Not available. Evaporation Rate:Not applicable. Viscosity: Not applicable. Boiling Point: 4784 deg F Freezing/Melting Point:3375 deg F Decomposition Temperature:Not available. Solubility: Insoluble in water. Specific Gravity/Density:7.2 @28C Molecular Formula:Cr Molecular Weight:51.996

Section 10 - Stability and Reactivity

Chemical Stability: Stable under normal temperatures and pressures. **Conditions to Avoid:** Incompatible materials, ignition sources, dust generation, exposure to air, acids, strong oxidants. **Incompatibilities with Other Materials:** Ammonium nitrate, hydrogen peroxide, lithium, nitric oxiode, potassium chlorate, sulfuri dioxide, strong oxidizers, hydrochloric acid, sulfuric acid, nitrogen oxide,

Hazardous Decomposition Products: Toxic chromium oxide fumes. Hazardous Polymerization: Has not been reported.

Section 11 - Toxicological Information

RTECS#: CAS# 7440-47-3: GB4200000 LD50/LC50: Not available.

Carcinogenicity:

CAS# 7440-47-3:

IARC: IARC Group 3 - not classifiable

Epidemiology: Certain hexavalent chromium compounds have been demonstrate d to be carcinogenic on the basis of epidemiologic investi gations on workers and experimental studies in animals. In creased incidences of respiratory cancer has been fo und in chromium (VI) workers. There is an increased incide nce of lung cancer in industrial workers exposed to chromi um (VI) compounds. Please refer to IARC volume 23 for a more detailed discussion.

Teratogenicity: No information found.

Reproductive Effects: No information found.

Neurotoxicity: No information found.

Mutagenicity: No information found.

Other Studies: See actual entry in RTECS for complete information.

Section 12 - Ecological Information

No information available.

Section 13 - Disposal Considerations

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. US EPA guidelines for the classification determination are listed in 40 CFR Parts 261.3. Additionally, waste generators must consult state and local hazardous waste regulations to ensure complete and accurate classification.

RCRA P-Series: None listed.

RCRA U-Series: None listed,

	Section	14 - Tra	nsport Informat	tion	
	US DOT	ΙΑΤΑ	RID/ADR	IMO	Canada TDG
Shipping Name:	No information available.	•			No information available.
Hazard Class:	<u> </u>				uvunubic.

UN Number: Packing Group:

Section 15 - Regulatory Information

US FEDERAL

TSCA

CAS# 7440-47-3 is listed on the TSCA inventory.

Health & Safety Reporting List

None of the chemicals are on the Health & Safety Reporting List.

Chemical Test Rules

None of the chemicals in this product are under a Chemical Test Rule.

Section 12b

None of the chemicals are listed under TSCA Section 12b.

TSCA Significant New Use Rule

None of the chemicals in this material have a SNUR under TSCA.

SARA

CERCLA Hazardous Substances and corresponding RQs

CAS# 7440-47-3: 5000 lb final RQ (no reporting of releases of this hazardous substance is r SARA Section 302 Extremely Hazardous Substances

None of the chemicals in this product have a TPQ.

SARA Codes

CAS # 7440-47-3: acute, chronic, flammable.

Section 313

This material contains CHROMIUM (CAS# 7440-47-3, 99%), which is subject to the reporting requirements of Section 313 of SARA Title III and 40 CFR Part 373.

Clean Air Act:

This material does not contain any hazardous air pollutants. This material does not contain any Class 1 Ozone depletors. This material does not contain any Class 2 Ozone depletors.

Clean Water Act:

None of the chemicals in this product are listed as Hazardous Substances under the CWA. CAS# 7440-47-3 is listed as a Priority Pollutant under the Clean Water Act. CAS# 7440-47-3 is listed as a Toxic Pollutant under the Clean Water Act.

OSHA:

None of the chemicals in this product are considered highly hazardous by OSHA. **STATE**

CAS# 7440-47-3 can be found on the following state right to know lists: California, New Jersey, Pennsylvania, Minnesota, Massachusetts.

California No Significant Risk Level: None of the chemicals in this product are listed.

European/International Regulations

European Labeling in Accordance with EC Directives Hazard Symbols:

XN

Risk Phrases:

R 40 Limited evidence of a carcinogenic effect.

Safety Phrases:

WGK (Water Danger/Protection)

CAS# 7440-47-3: No information available.

Canada - DSL/NDSL

CAS# 7440-47-3 is listed on Canada's DSL List.

Canada - WHMIS

This product has a WHMIS classification of D2A, D2B.

Canadian Ingredient Disclosure List

CAS# 7440-47-3 is listed on the Canadian Ingredient Disclosure List.

Exposure Limits

CAS# 7440-47-3: OEL-ARAB Republic of Egypt:TWA 0.05 mg/m3 OEL-AUSTR ALIA:TWA 0.05 mg/m3 OEL-BELGIUM:TWA 0.5 mg/m3 OEL-DENMARK:TWA 0.5 mg /m3 OEL-FINLAND:TWA 0.01 mg/m3 OEL-FRANCE:TWA 0.5 mg/m3 OEL-JAPAN:T WA 0.5 mg/m3 OEL-THE NETHERLANDS:TWA 0.5 mg/m3 OEL-THE PHILIPPINES:T WA 1 mg/m3 OEL-SWEDEN:TWA 0.5 mg/m3 OEL-UNITED KINGDOM:TWA 0.5 mg/m3 OEL IN BULGARIA, COLOMBIA, JORDAN, KOREA check ACGIH TLV OEL IN NEW ZEALAND, SINGAPORE, VIETNAM check ACGI TLV

Section 16 - Additional Information

MSDS Creation Date: 3/01/1999 Revision #5 Date: 3/18/2003

The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular purposes. In no event shall Fisher be liable for any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, howsoever arising, even if Fisher has been advised of the possibility of such damages.

Material Safety Data Sheet Mercury

ACC# 14020

Section 1 - Chemical Product and Company Identification

MSDS Name: Mercury

Catalog Numbers: S71967, S71968, M139-1LB, M139-5LB, M140-14LB, M140-1LB, M140-5LB, M141-1LB, M141-6LB, NC9534278, S40672B, S41542, S41599, S41599B, S41599E, S41599G, S41599J, S41599K, S41599M, S41600P, S41600S, S41600W, S41630A, S41630B, S41630C, S41631, S41631A, S41631B, S41631C, S41645, S45245, S46981, S50443, S71966, S78777 **Synonyms:** Colloidal mercury; Hydrargyrum; Metallic mercury; Quick silver; Liquid silver **Company Identification:**

Fisher Scientific

1 Reagent Lane

Fair Lawn, NJ 07410 For information, call: 201-796-7100 Emergency Number: 201-796-7100 For CHEMTREC assistance, call: 800-424-9300 For International CHEMTREC assistance, call: 703-527-3887

Section 2 - Composition, Information on Ingredients

CAS#	Chemical Name	Percent	EINECS/ELINCS
7439-97-6	Mercury	ca.100	231-106-7

Hazard Symbols: T N Risk Phrases: 23 33

Section 3 - Hazards Identification

EMERGENCY OVERVIEW

Appearance: silver liquid. May cause central nervous system effects. May be absorbed through intact skin. This substance has caused adverse reproductive and fetal effects in animals. Inhalation of fumes may cause metal-fume fever. Harmful if inhaled. Possible sensitizer. May cause liver and kidney damage. **Danger!** Corrosive. May cause severe respiratory tract irritation with possible burns. May cause severe digestive tract irritation with possible burns. Causes eye and skin irritation and possible burns.

Target Organs: Blood, kidneys, central nervous system, liver, brain.

Potential Health Effects

Eye: Exposure to mercury or mercury compounds can cause discoloration on the front surface of the lens, which does not interfere with vision. Causes eye irritation and possible burns. Contact with mercury or mercury compounds can cause ulceration of the conjunctiva and cornea. **Skin:** May be absorbed through the skin in harmful amounts. May cause skin sensitization, an allergic reaction, which becomes evident upon re-exposure to this material. Causes skin irritation and possible burns. May cause skin rash (in milder cases), and cold and clammy skin with cyanosis

or pale color.

Ingestion: May cause severe and permanent damage to the digestive tract. May cause perforation of the digestive tract. May cause effects similar to those for inhalation exposure. May cause systemic effects.

Inhalation: Causes chemical burns to the respiratory tract. Inhalation of fumes may cause metal fume fever, which is characterized by flu-like symptoms with metallic taste, fever, chills, cough, weakness, chest pain, muscle pain and increased white blood cell count. May cause central nervous system effects including vertigo, anxiety, depression, muscle incoordination, and emotional instability. Aspiration may lead to pulmonary edema. May cause systemic effects. May cause respiratory sensitization.

Chronic: May cause liver and kidney damage. May cause reproductive and fetal effects. Effects may be delayed. Chronic exposure to mercury may cause permanent central nervous system damage, fatigue, weight loss, tremors, personality changes. Chronic ingestion may cause accumulation of mercury in body tissues. Prolonged or repeated exposure may cause inflammation of the mouth and gums, excessive salivation, and loosening of the teeth.

Section 4 - First Aid Measures

Eyes: Get medical aid immediately. Do NOT allow victim to rub eyes or keep eyes closed. Extensive irrigation with water is required (at least 30 minutes).

Skin: Get medical aid immediately. Immediately flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Wash clothing before reuse. Destroy contaminated shoes.

Ingestion: Do not induce vomiting. If victim is conscious and alert, give 2-4 cupfuls of milk or water. Never give anything by mouth to an unconscious person. Get medical aid immediately. Wash mouth out with water.

Inhalation: Get medical aid immediately. Remove from exposure and move to fresh air immediately. If breathing is difficult, give oxygen. Do NOT use mouth-to-mouth resuscitation. If breathing has ceased apply artificial respiration using oxygen and a suitable mechanical device such as a bag and a mask.

Notes to Physician: The concentration of mercury in whole blood is a reasonable measure of the body-burden of mercury and thus is used for monitoring purposes. Treat symptomatically and supportively. Persons with kidney disease, chronic respiratory disease, liver disease, or skin disease may be at increased risk from exposure to this substance.

Antidote: The use of d-Penicillamine as a chelating agent should be determined by qualified medical personnel. The use of Dimercaprol or BAL (British Anti-Lewisite) as a chelating agent should be determined by qualified medical personnel.

Section 5 - Fire Fighting Measures

General Information: As in any fire, wear a self-contained breathing apparatus in pressuredemand, MSHA/NIOSH (approved or equivalent), and full protective gear. Water runoff can cause environmental damage. Dike and collect water used to fight fire. During a fire, irritating and highly toxic gases may be generated by thermal decomposition or combustion.

Extinguishing Media: Substance is nonflammable; use agent most appropriate to extinguish surrounding fire. Use water spray, dry chemical, carbon dioxide, or appropriate foam. **Flash Point:** Not applicable.

Autoignition Temperature: Not applicable.

Explosion Limits, Lower:Not available.

Upper: Not available.

NFPA Rating: (estimated) Health: 3; Flammability: 0; Instability: 0

Section 6 - Accidental Release Measures

General Information: Use proper personal protective equipment as indicated in Section 8. **Spills/Leaks:** Absorb spill with inert material (e.g. vermiculite, sand or earth), then place in suitable container. Avoid runoff into storm sewers and ditches which lead to waterways. Clean up spills immediately, observing precautions in the Protective Equipment section. Provide ventilation.

Section 7 - Handling and Storage

Handling: Wash thoroughly after handling. Remove contaminated clothing and wash before reuse. Minimize dust generation and accumulation. Keep container tightly closed. Do not get on skin or in eyes. Do not ingest or inhale. Use only in a chemical fume hood. Discard contaminated shoes. Do not breathe vapor.

Storage: Keep container closed when not in use. Store in a tightly closed container. Store in a cool, dry, well-ventilated area away from incompatible substances. Keep away from metals. Store protected from azides.

Section 8 - Exposure Controls, Personal Protection

Engineering Controls: Facilities storing or utilizing this material should be equipped with an eyewash facility and a safety shower. Use only under a chemical fume hood. **Exposure Limits**

Chemical Name	ACGIH	NIOSH	OSHA - Final PELs
Mercury	0.025 mg/m3 TWA; skin - potential for cutaneous absorption	0.05 mg/m3 TWA (vapor) 10 mg/m3 IDLH	1 mg/10m3 Ceiling (vapor)

OSHA Vacated PELs: Mercury: 0.05 mg/m3 TWA (vapor)

Personal Protective Equipment

Eyes: Wear appropriate protective eyeglasses or chemical safety goggles as described by OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard EN166.

Skin: Wear appropriate protective gloves to prevent skin exposure.

Clothing: Wear appropriate protective clothing to prevent skin exposure.

Respirators: A respiratory protection program that meets OSHA's 29 CFR 1910.134 and ANSI Z88.2 requirements or European Standard EN 149 must be followed whenever workplace conditions warrant a respirator's use.

Section 9 - Physical and Chemical Properties

Physical State: Liquid Appearance: silver Odor: odorless pH: Not available. Vapor Pressure: 0.002 mm Hg @ 25C Vapor Density: 7.0 Evaporation Rate:Not available. Viscosity: 15.5 mP @ 25 deg C Boiling Point: 356.72 deg C Freezing/Melting Point:-38.87 deg C Decomposition Temperature:Not available. Solubility: Insoluble. Specific Gravity/Density:13.59 (water=1) Molecular Formula:Hg Molecular Weight:200.59

Section 10 - Stability and Reactivity

Chemical Stability: Stable under normal temperatures and pressures.

Conditions to Avoid: High temperatures, incompatible materials.

Incompatibilities with Other Materials: Metals, aluminum, ammonia, chlorates, copper, copper alloys, ethylene oxide, halogens, iron, nitrates, sulfur, sulfuric acid, oxygen, acetylene, lithium, rubidium, sodium carbide, lead, nitromethane, peroxyformic acid, calcium, chlorine dioxide, metal oxides, azides, 3-bromopropyne, alkynes + silver perchlorate, methylsilane + oxygen, tetracarbonylnickel + oxygen, boron diiodophosphide.

Hazardous Decomposition Products: Mercury/mercury oxides.

Hazardous Polymerization: Will not occur.

Section 11 - Toxicological Information

RTECS#: CAS# 7439-97-6: OV4550000 LD50/LC50: Not available.

Carcinogenicity:

CAS# 7439-97-6: **IARC:** IARC Group 3 - not classifiable **Epidemiology:** Intraperitoneal, rat: TDLo = 400 mg/kg/14D-I (Tumorigenic - equivocal tumorigenic agent by RTECS criteria - tumors at si te of application). **Teratogenicity:** Inhalation, rat: TCLo = 1 mg/m3/24H (female 1-20 day(s) after conception) Effects on Embryo or Fetus - fetotoxicity (except death, e.g., stunted fetus). **Reproductive Effects:** Inhalation, rat: TCLo = 890 ng/m3/24H (male 16 week(s) pre-mating) Paternal Effects - spermatogenesis (incl. genetic material, sperm morphology, motility, and count).; Inhalation, rat: TCLo = 7440 ng/m3/24H (male 16 week(s) pre-mating) Fertility - postimplantation mortality (e.g. dead and/or resorbed implants per total number of implants). **Neurotoxicity:** The brain is the critical organ in humans for chronic vapor exposure; in severe cases, spontaneous degeneration of the b rain cortex can occur as a late sequela to past exposure .

Mutagenicity: Cytogenetic Analysis: Unreported, man = 150 ug/m3. **Other Studies:** No information available.

Section 12 - Ecological Information

Ecotoxicity: Fish: Rainbow trout: LC50 = 0.16-0.90 mg/L; 96 Hr; UnspecifiedFish:

Bluegill/Sunfish: LC50 = 0.16-0.90 mg/L; 96 Hr; UnspecifiedFish: Channel catfish: LC50 = 0.35 mg/L; 96 Hr; UnspecifiedWater flea Daphnia: EC50 = 0.01 mg/L; 48 Hr; Unspecified In aquatic systems, mercury appears to bind to dissolved matter or fine particulates, while the transport of mercury bound to dust particles in the atmosphere or bed sediment particles in rivers and lakes is generally less substantial. The conversion, in aquatic environments, of inorganic mercury cmpd to methyl mercury implies that recycling of mercury from sediment to water to air and back could be a rapid process.

Environmental: Mercury bioaccumulates and concentrates in food chain (concentration may be as much as 10,000 times that of water). Bioconcentration factors of 63,000 for freshwater fish and 10,000 for salt water fish have been found. Much of the mercury deposited on land, appears to revaporize within a day or two, at least in areas substantially heated by sunlight.

Physical: All forms of mercury (Hg) (metal, vapor, inorganic, or organic) are converted to methyl mercury. Inorganic forms are converted by microbial action in the atmosphere to methyl mercury. **Other:** No information available.

Section 13 - Disposal Considerations

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. US EPA guidelines for the classification determination are listed in 40 CFR Parts 261.3. Additionally, waste generators must consult state and local hazardous waste regulations to ensure complete and accurate classification.

RCRA P-Series: None listed.

RCRA U-Series: CAS# 7439-97-6: waste number U151.

	US DOT	ΙΑΤΑ	RID/ADR	IMO	Canada TDG
Shipping Name:	MERCURY				MERCURY
Hazard Class:	8				8
UN Number:	UN2809				UN2809
Packing Group:	III				III

Section 15 - Regulatory Information

US FEDERAL

TSCA

CAS# 7439-97-6 is listed on the TSCA inventory.

Health & Safety Reporting List

None of the chemicals are on the Health & Safety Reporting List.

Chemical Test Rules

None of the chemicals in this product are under a Chemical Test Rule.

Section 12b

None of the chemicals are listed under TSCA Section 12b.

TSCA Significant New Use Rule

None of the chemicals in this material have a SNUR under TSCA. **SARA**

CERCLA Hazardous Substances and corresponding RQs

CAS# 7439-97-6: 1 lb final RQ; 0.454 kg final-RQ

SARA Section 302 Extremely Hazardous Substances

None of the chemicals in this product have a TPQ.

SARA Codes

CAS # 7439-97-6: acute, chronic.

Section 313

This chemical is not at a high enough concentration to be reportable under Section 313. No chemicals are reportable under Section 313.

Clean Air Act:

This material does not contain any hazardous air pollutants. This material does not contain any Class 1 Ozone depletors. This material does not contain any Class 2 Ozone depletors.

Clean Water Act:

None of the chemicals in this product are listed as Hazardous Substances under the CWA. CAS# 7439-97-6 is listed as a Priority Pollutant under the Clean Water Act. CAS# 7439-97-6 is listed as a Toxic Pollutant under the Clean Water Act.

OSHA:

None of the chemicals in this product are considered highly hazardous by OSHA. **STATE**

CAS# 7439-97-6 can be found on the following state right to know lists: California, New Jersey, Pennsylvania, Minnesota, Massachusetts.

WARNING: This product contains Mercury, a chemical known to the state of California to cause birth defects or other reproductive harm. California No Significant Risk Level: None of the chemicals in this product are listed.

European/International Regulations

European Labeling in Accordance with EC Directives Hazard Symbols:

ТΝ

Risk Phrases:

R 23 Toxic by inhalation.

R 33 Danger of cumulative effects.

R 50/53 Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Safety Phrases:

S 1/2 Keep locked up and out of reach of children. S 45 In case of accident or if you feel unwell, seek medical advice immediately (show the label where possible).

S 7 Keep container tightly closed.

S 60 This material and its container must be

disposed of as hazardous waste.

S 61 Avoid release to the environment. Refer to special instructions/safety data sheets.

WGK (Water Danger/Protection)

CAS# 7439-97-6: 3

Canada - DSL/NDSL

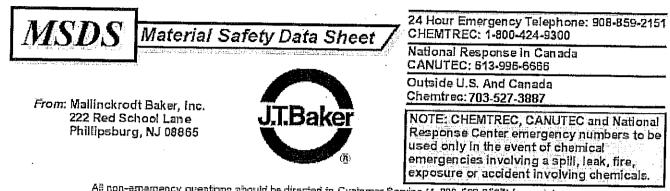
CAS# 7439-97-6 is listed on Canada's DSL List.

Canada - WHMIS

This product has a WHMIS classification of D2A, E.

Canadian Ingredient Disclosure List

CAS# 7439-97-6 is listed on the Canadian Ingredient Disclosure List.


Exposure Limits

CAS# 7439-97-6: OEL-ARAB Republic of Egypt:TWA 0.05 mg/m3 OEL-AUSTR ALIA:TWA 0.1 mg/m3;Skin OEL-BELGIUM:TWA 0.1 mg/m3;Skin OEL-FINLAND:T WA 0.05 mg/m3 OEL-FRANCE:TWA 0.05 mg/m3;Skin (vapor) OEL-FRANCE:TWA 0.1 mg/m3;Skin OEL-HUNGARY:TWA 0.02 mg/m3;STEL 0.04 mg/m3 OEL-POLAND :TWA 0.05 mg/m3 OEL-SWEDEN:TWA 0.05 mg/m3 (vapor) OEL-SWITZERLAND:TW A 0.005 ppm (0.05 mg/m3);Skin (vapor) OEL-SWITZERLAND:TWA 0.01 mg/m3; Skin OEL-TURKEY:TWA 0.1 mg/m3;Skin OEL IN BULGARIA, COLOMBIA, JORDAN , KOREA check ACGIH TLV OEL IN NEW ZEALAND, SINGAPORE, VIETNAM check ACGI TLV OEL-AUSTRALIA: TWA 0.05 mg(Hg)/m3; Skin JANUARY 1993 OEL-BEL GIUM:TWA 0.05 mg(Hg)/m3;Skin JANUARY 1993 OEL-CZECHOSLOVAKIA:TWA 0.0 5 mg(Hg)/m3;STEL 0.15 mg(Hg)/m3 OEL-DENMARK:TWA 0.05 mg(Hg)/m3 JANUA RY 1993 OEL-FINLAND: TWA 0.05 mg(Hg)/m3 JANUARY 1993 OEL-FRANCE: TWA 0.05 mg(Hg)/m3 JANUARY 1993 OEL-GERMANY:TWA 0.01 ppm (0.1 mg(Hg)/m3) JANUARY 1993 OEL-HUNGARY:TWA 0.02 mg(Hg)/m3;STEL 0.04 mg(Hg)/m JANU ARY 1993 OEL-JAPAN: TWA 0.05 mg(Hg)/m3 JANUARY 1993 OEL-THE NETHERLA NDS:TWA 0.05 mg(Hg)/m3;STEL 0.15 mg(Hg)/m3 OEL-THE PHILIPPINES:TWA 0. 05 mg(Hg)/m3 JANUARY 1993 OEL-POLAND:TWA 0.01 mg(Hg)/m3 JANUARY 199 3 OEL-RUSSIA:TWA 0.05 mg(Hg

Section 16 - Additional Information

MSDS Creation Date: 6/15/1999 Revision #6 Date: 2/05/2004

The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular purposes. In no event shall Fisher be liable for any claims, losses, or damages of any third party or for lost profits or any possibility of such damages. MSDS Number: L2350 * * * * * Effective Date: 08/10/04 * * * * * Supercedes: 11/02/01

All non-amergency queations aboutd be directed to Customer Service (1-800-682-2637) for assistance.

LEAD ATOMIC ABSORPTION STANDARD

1. Product Identification

Synonyms: Lead AA Standard; Lead Atomic Absorption StandARd (1000 ppm); Lead, DILUT-IT® Analytical Conc., Std, 1g Pb2+ CAS No.: Not applicable to mixtures. Molecular Weight: Not applicable to mixtures. Chemical Formula: Not applicable. (ca. 99% water) Product Codes: 4779

2. Composition/Information on Ingredients

Ingredient	CAS No	Percent	Hazardous
Nitric Acid	7697-37-2	1 - 3%	Yes
Lead Nitrate	10099-74-8	1 - 4%	Yes
Water	7732-18-5	93 - 99%	No

3. Hazards Identification

Emergency Overview

Page 2 of 8

DANGER! CORROSIVE! LIQUID AND MIST CAUSE SEVERE BURNS TO EVERY AREA OF CONTACT. VAPOR IRRITATING TO EYES AND **RESPIRATORY TRACT. HARMFUL IF SWALLOWED OR INHALED. MAY** AFFECT THE GUM TISSUE, CENTRAL NERVOUS SYSTEM, KIDNEYS, BLOOD, REPRODUCTIVE SYSTEM, AND RESPIRATORY TRACT (Lead component). INHALATION MAY CAUSE LUNG AND TOOTH DAMAGE.

J.T. Baker SAF-T-DATA^(tm) Ratings (Provided here for your convenience)

Health Rating: 3 - Severe (Life) Flammability Rating: 0 - None Reactivity Rating: 1 - Slight Contact Rating: 3 - Severe (Corrosive) Lab Protective Equip: GOGGLES & SHIELD; LAB COAT & APRON; VENT HOOD; PROPER GLOVES Storage Color Code: White (Corrosive)

Potential Health Effects

Nitric acid is extremely hazardous; it is corrosive, reactive, an oxidizer, and a poison. The following hazards are for concentrated solutions. Hazards of less concentrated solutions may be reduced. Degree of hazard for reduced concentrations is not currently addressed in the available literature.

Inhalation:

Corrosive. Effects should be less severe than from exposure to higher concentrations where symptoms may include irritation of the nose and throat, labored breathing, as well as lung edema, damage to the mucous membranes and upper respiratory tract.

Ingestion:

Corrosive. Effects should be less severe than from exposure to higher concentrations where symptoms may include severe burns of the mouth, throat, and stomach. May cause sore throat, vomiting, diarrhea. Symptoms from nitric acid exposure may include burning sensation, vomiting and diarrhea. The symptoms of lead poisoning include abdominal pain and spasms, nausea, vomiting, headache. Acute poisoning can lead to muscle weakness, "lead line" on the gums, metallic taste, definite loss of appetite, insomnia, dizziness, high lead levels in blood and urine with shock, coma and death in extreme cases.

Skin Contact:

Corrosive. Effects should be less severe than from exposure to higher concentrations where symptoms may include redness, pain, and burns to the skin.

Eye Contact:

Corrosive. Effects should be less severe than from exposure to higher concentrations where symptoms may include blurred vision, redness, pain, and burns to eye tissue and possible permanent eye damage.

Chronic Exposure:

Lead is a cumulative poison and exposure even to small amounts can raise the body's content to toxic levels. The symptoms of chronic exposure are like those of ingestion poisoning; restlessness, irritability, visual disturbances, hypertension and gray facial color may also be noted. Long-term exposure to concentrated vapors may cause erosion of teeth and lung damage. Long-term exposures seldom occur due to the corrosive properties of the acid.

Aggravation of Pre-existing Conditions:

Persons with pre-existing skin disorders, eye disease, or cardiopulmonary diseases may be more susceptible to the effects of this substance.

4. First Aid Measures

Immediate first aid treatment reduces the health effects of this substance.

Inhalation:

Remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical attention immediately.

Ingestion:

If swallowed, DO NOT INDUCE VOMITING. Give large quantities of water. Never give anything by mouth to an unconscious person. Get medical attention immediately. **Skin Contact:**

Immediately flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Get medical attention immediately. Wash clothing before reuse. Thoroughly clean shoes before reuse.

Eve Contact:

Immediately flush eyes with plenty of water for at least 15 minutes, lifting lower and upper eyelids occasionally. Get medical attention immediately.

5. Fire Fighting Measures

Fire:

Not combustible, but concentrated material is a strong oxidizer and its heat of reaction with reducing agents or combustibles may cause ignition.

Explosion:

Concentrated material reacts explosively with combustible organic or readily oxidizable materials such as: alcohols, turpentine, charcoal, organic refuse, metal powder, hydrogen sulfide, etc. Reacts with most metals to release hydrogen gas which can form explosive mixtures with air.

Fire Extinguishing Media:

Use any means suitable for extinguishing surrounding fire.

Special Information:

In the event of a fire, wear full protective clothing and NIOSH-approved self-contained breathing apparatus with full facepiece operated in the pressure demand or other positive pressure mode.

6. Accidental Release Measures

Neutralize spill with sodium bicarbonate or soda ash. Do not over neutralize. Ventilate area

of leak or spill. Wear appropriate personal protective equipment as specified in Section 8. Contain and recover liquid when possible. Collect liquid in an appropriate container or absorb with an inert material (e. g., vermiculite, dry sand, earth), and place in a chemical waste container. Do not use combustible materials, such as saw dust. Do not flush to sewer!

J. T. Baker NEUTRASORB® or TEAM® 'Low Na+' acid neutralizers are recommended for spills of this product.

7. Handling and Storage

Store in a cool, dry, ventilated storage area with acid resistant floors and good drainage. Protect from physical damage. Keep out of direct sunlight and away from heat, water, and incompatible materials. Do not wash out container and use it for other purposes. When diluting, the acid should always be added slowly to water and in small amounts. Never use hot water and never add water to the acid. Water added to acid can cause uncontrolled boiling and splashing. Protect from freezing. Containers of this material may be hazardous when empty since they retain product residues (vapors, liquid); observe all warnings and precautions listed for the product.

8. Exposure Controls/Personal Protection

Airborne Exposure Limits:

- OSHA Permissible Exposure Limit (PEL) -Nitric Acid: 2 ppm (TWA), Lead: 0.05 mg/m3 (TWA), 0.03 mg/m3 (Action Level).

- ACGIH Threshold Limit Value (TLV) -Nitric Acid: 2 ppm (TWA), 4 ppm (STEL), Lead: 0.05 mg/m3 (TWA), A3 - Animal carcinogen.

Ventilation System:

A system of local and/or general exhaust is recommended to keep employee exposures below the Airborne Exposure Limits. Local exhaust ventilation is generally preferred because it can control the emissions of the contaminant at its source, preventing dispersion of it into the general work area. Please refer to the ACGIH document, Industrial Ventilation, A Manual of Recommended Practices, most recent edition, for details.

Personal Respirators (NIOSH Approved):

Not expected to require personal respirator usage. If the exposure limit is exceeded and engineering controls are not feasible, wear a supplied air, full-facepiece respirator, airlined hood, or full-facepiece self-contained breathing apparatus. Breathing air quality must meet the requirements of the OSHA respiratory protection standard (29CFR1910.134).

Skin Protection:

Wear impervious protective clothing, including boots, gloves, lab coat, apron or coveralls, as appropriate, to prevent skin contact.

Eye Protection:

Use chemical safety goggles and/or a full face shield where splashing is possible. Maintain

eye wash fountain and quick-drench facilities in work area.

Other Control Measures:

Eating, drinking, and smoking should not be permitted in areas where solids or liquids containing lead compounds are handled, processed, or stored. See OSHA substance-specific standard for more information on personal protective equipment, engineering and work practice controls, medical surveillance, record keeping, and reporting requirements. (29 CFR 1910.1025).

9. Physical and Chemical Properties

Appearance: Clear, colorless solution. Odor: Odorless. Solubility: Infinitely soluble. **Specific Gravity:** ca. 1.0 pH: No information found. % Volatiles by volume @ 21C (70F): ca. 95 **Boiling Point:** ca. 100C (ca. 212F) Melting Point: ca. 0C (ca. 32F) Vapor Density (Air=1): Essentially the same as water. Vapor Pressure (mm Hg): Essentially the same as water. Evaporation Rate (BuAc=1): Essentially the same as water.

10. Stability and Reactivity

Stability:

Stable under ordinary conditions of use and storage.
Hazardous Decomposition Products:
Toxic metal fumes may form when heated to decomposition.
Hazardous Polymerization:
Will not occur.
Incompatibilities:
A dangerously powerful oxidizing agent, concentrated nitric acid is incompatible with most substances, especially strong bases, metallic powders, carbides, hydrogen sulfide, turpentine, and combustible organics.

Conditions to Avoid:

Incompatibles.

11. Toxicological Information

Toxicological Data:

Nitric Acid: investigated as a mutagen, reproductive effector.

Lead Nitrate: investigated as a tumorigen, mutagen and reproductive effector.

Reproductive Toxicity:

Lead and other smelter emissions are human reproductive hazards. (Chemical Council on Environmental Quality; Chemical Hazards to Human Reproduction, 1981).

Carcinogenicity:

For lead and inorganic lead compounds:

EPA / IRIS classification: Group B2 - Probable human carcinogen, sufficient animal evidence.

\Cancer Lists\	NTP Carcinogen			
Ingredient	Known	Anticipated	IARC Category	
	m			
Nitric Acid (7697-37-2)	No	No	None	
Lead Nitrate (10099-74-8)	No	No	2B	
Water (7732-18-5)	No	No	None	

12. Ecological Information

Environmental Fate: No information found. **Environmental Toxicity:** No information found.

13. Disposal Considerations

Whatever cannot be saved for recovery or recycling should be handled as hazardous waste and sent to a RCRA approved incinerator or disposed in a RCRA approved waste facility. Processing, use or contamination of this product may change the waste management options. State and local disposal regulations may differ from federal disposal regulations. Dispose of container and unused contents in accordance with federal, state and local requirements.

14. Transport Information

Not regulated.

15. Regulatory Information

TSCA EC Japan Australia Ingredient ~~~~~ ---- --- -----Yes Yes Yes Yes Nitric Acid (7697-37-2) Lead Nitrate (10099-74-8) Yes Yes Yes Yes Water (7732-18-5) Yes Yes Yes Yes -----\Chemical Inventory Status - Part 2\-------Canada--Korea DSL NDSL Phil. Ingredient ------____ ___ ____ ____ Yes Yes No Yes Nitric Acid (7697-37-2) Lead Nitrate (10099-74-8) Yes Yes No No Yes Yes No Yes Water (7732-18-5) -----\Federal, State & International Regulations - Part 1\-------SARA 302- ----SARA 313-----RQ TPQ List Chemical Catg. Ingredient _____ -----1000 1000 Yes No No No No Lead cmpd/ni No No No No Nitric Acid (7697-37-2) Lead Nitrate (10099-74-8) Water (7732-18-5) -----\Federal, State & International Regulations - Part 2\------RCRA- -TSCA-CERCLA 261.33 8 (d) Ingredient _____ 1000 No 10 No No No Nitric Acid (7697-37-2) No No Lead Nitrate (10099-74-8) Water (7732-18-5) No Chemical Weapons Convention: No TSCA 12(b): No CDTA: No SARA 311/312: Acute: Yes Chronic: Yes Fire: No Pressure: No Reactivity: No (Mixture / Liquid) WARNING: THIS PRODUCT CONTAINS CHEMICALS KNOWN TO THE STATE OF CALIFORNIA TO CAUSE CANCER AND BIRTH DEFECTS OR OTHER

REPRODUCTIVE HARM.

Australian Hazchem Code: 2R

Poison Schedule: None allocated.

WHMIS:

This MSDS has been prepared according to the hazard criteria of the Controlled Products Regulations (CPR) and the MSDS contains all of the information required by the CPR.

16. Other Information

NFPA Ratings: Health: 2 Flammability: 0 Reactivity: 0

Label Hazard Warning:

DANGER! CORROSIVE! LIQUID AND MIST CAUSE SEVERE BURNS TO EVERY AREA OF CONTACT. VAPOR IRRITATING TO EYES AND RESPIRATORY TRACT. HARMFUL IF SWALLOWED OR INHALED. MAY AFFECT THE GUM TISSUE, CENTRAL NERVOUS SYSTEM, KIDNEYS, BLOOD, REPRODUCTIVE SYSTEM, AND RESPIRATORY TRACT (Lead component). INHALATION MAY CAUSE LUNG AND TOOTH DAMAGE.

Label Precautions:

Do not get in eyes, on skin, or on clothing.

Do not breathe vapor or mist.

Keep container closed.

Use only with adequate ventilation.

Wash thoroughly after handling.

Label First Aid:

In case of contact, immediately flush eyes or skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Wash clothing before reuse. If swallowed, DO NOT INDUCE VOMITING. Give large quantities of water. Never give anything by mouth to an unconscious person. If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. In all cases get medical attention immediately.

Product Use:

Laboratory Reagent.

Revision Information:

No Changes.

Disclaimer:

Mallinckrodt Baker, Inc. provides the information contained herein in good faith but makes no representation as to its comprehensiveness or accuracy. This document is intended only as a guide to the appropriate precautionary handling of the material by a properly trained person using this product. Individuals receiving the information must exercise their independent judgment in determining its appropriateness for a particular purpose. MALLINCKRODT BAKER, INC. MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE INFORMATION SET FORTH HEREIN OR THE PRODUCT TO WHICH THE INFORMATION REFERS. ACCORDINGLY, MALLINCKRODT BAKER, INC. WILL NOT BE RESPONSIBLE FOR DAMAGES RESULTING FROM USE OF OR RELIANCE UPON THIS INFORMATION.

Prepared by: Environmental Health & Safety Phone Number: (314) 654-1600 (U.S.A.)

Material Safety Data Sheet Silver

ACC# 20770

Section 1 - Chemical Product and Company Identification

MSDS Name: Silver Catalog Numbers: S80162, S163 10, S163-10, S16310, ZZS166C17 Synonyms: Argentum. Company Identification: Fisher Scientific 1 Reagent Lane Fair Lawn, NJ 07410 For information, call: 201-796-7100 Emergency Number: 201-796-7100 For CHEMTREC assistance, call: 800-424-9300 For International CHEMTREC assistance, call: 703-527-3887

Section 2 - Composition, Information on Ingredients

CAS#	Chemical Name	Percent	EINECS/ELINCS
7440-22-4	Silver	100	231-131 - 3

Hazard Symbols: None listed. Risk Phrases: 33

Section 3 - Hazards Identification

EMERGENCY OVERVIEW

Appearance: white solid. **Caution!** May cause respiratory and digestive tract irritation. May cause eye and skin irritation. Danger of cumulative effects. **Target Organs:** Kidneys.

Potential Health Effects

Eye: May cause eye irritation.

Skin: May cause skin irritation. May cause skin discoloration.

Ingestion: May cause irritation of the digestive tract. Effects may be cumulative. Ingestion of silver compounds may cause abdominal pain, rigidity, convulsions and shock.

Inhalation: May cause respiratory tract irritation. Inhalation of fumes may cause metal fume fever, which is characterized by flu-like symptoms with metallic taste, fever, chills, cough, weakness, chest pain, muscle pain and increased white blood cell count.

Chronic: Chronic inhalation or ingestion of silver salts may cause argyria characterized by a permanent blue-gray discoloration of the eyes, skin, mucous membranes, and internal organs. This malady results from the accumulation of silver in the body.

Eyes: Flush eyes with plenty of water for at least 15 minutes, occasionally lifting the upper and lower eyelids. If irritation develops, get medical aid.

Skin: Flush skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Get medical aid if irritation develops or persists. Wash clothing before reuse.

Ingestion: Do NOT induce vomiting. If conscious and alert, rinse mouth and drink 2-4 cupfuls of milk or water. Wash mouth out with water. Get medical aid if irritation or symptoms occur. **Inhalation:** Remove from exposure and move to fresh air immediately. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical aid if cough or other symptoms appear.

Notes to Physician: Treat symptomatically and supportively.

Section 5 - Fire Fighting Measures

General Information: As in any fire, wear a self-contained breathing apparatus in pressuredemand, MSHA/NIOSH (approved or equivalent), and full protective gear. During a fire, irritating and highly toxic gases may be generated by thermal decomposition or combustion. Noncombustible, substance itself does not burn but may decompose upon heating to produce corrosive and/or toxic fumes.

Extinguishing Media: Substance is noncombustible; use agent most appropriate to extinguish surrounding fire. Use water spray, dry chemical, carbon dioxide, or appropriate foam. **Flash Point:** Not applicable.

Autoignition Temperature: Not applicable.

Explosion Limits, Lower: Not available.

Upper: Not available.

NFPA Rating: (estimated) Health: 1; Flammability: 0; Instability: 0

Section 6 - Accidental Release Measures

General Information: Use proper personal protective equipment as indicated in Section 8. **Spills/Leaks:** Vacuum or sweep up material and place into a suitable disposal container. Clean up spills immediately, observing precautions in the Protective Equipment section. Avoid generating dusty conditions. Provide ventilation.

Section 7 - Handling and Storage

Handling: Wash thoroughly after handling. Wash hands before eating. Avoid contact with eyes, skin, and clothing. Keep container tightly closed. Avoid ingestion and inhalation. Use with adequate ventilation.

Storage: Store in a tightly closed container. Store in a cool, dry, well-ventilated area away from incompatible substances. No special precautions indicated.

Section 8 - Exposure Controls, Personal Protection

https://fscimage.fishersci.com/msds/20770.htm

Engineering Controls: Facilities storing or utilizing this material should be equipped with an eyewash facility and a safety shower. Use adequate ventilation to keep airborne concentrations low.

Exposure Limits

Chemical Name	ACGIH	NIOSH	OSHA - Final PELs
Silver	0.1 mg/m3 TWA	0.01 mg/m3 TWA (dust) 10 mg/m3 IDLH (dust)	0.01 mg/m3 TWA

OSHA Vacated PELs: Silver: 0.01 mg/m3 TWA

Personal Protective Equipment

Eyes: Wear appropriate protective eyeglasses or chemical safety goggles as described by OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard EN166. **Skin:** Wear appropriate protective gloves to prevent skin exposure.

Clothing: Wear appropriate protective clothing to minimize contact with skin.

Respirators: A respiratory protection program that meets OSHA's 29 CFR 1910.134 and ANSI Z88.2 requirements or European Standard EN 149 must be followed whenever workplace conditions warrant a respirator's use.

Section 9 - Physical and Chemical Properties

Physical State: Solid Appearance: white Odor: none reported pH: Not available. Vapor Pressure: 100 mm Hg @ 1865 C Vapor Density: Not available. Evaporation Rate:Not applicable. Viscosity: Not available. Boiling Point: 2212 deg C Freezing/Melting Point:961 deg C Decomposition Temperature:Not available. Solubility: Insoluble in water. Specific Gravity/Density:10.5 Molecular Formula:Ag Molecular Weight: 107.8682

Section 10 - Stability and Reactivity

Chemical Stability: Stable under normal temperatures and pressures. **Conditions to Avoid:** Incompatible materials, exposure to air. **Incompatibilities with Other Materials:** Strong acids, strong bases, ethyleneimine. **Hazardous Decomposition Products:** Irritating and toxic fumes and gases, silver fumes. **Hazardous Polymerization:** Has not been reported.

Section 11 - Toxicological Information

RTECS#: CAS# 7440-22-4: VW3500000 LD50/LC50: Not available.

Carcinogenicity: CAS# 7440-22-4: Not listed by ACGIH, IARC, NIOSH, NTP, or OSHA. Epidemiology: No data available. Teratogenicity: No data available. Reproductive Effects: No data available. Neurotoxicity: No data available. Mutagenicity: No data available. Other Studies: See actual entry in RTECS for complete information.

Section 12 - Ecological Information

Ecotoxicity: No data available. No information available.

Environmental: Aquatic Fate: Sorption and precipitation processes are effective in reducing the concn of dissolved silver and result in higher concn in the bed sediments than in the overlying waters. Sorption by manganese dioxide and precipitation with halides are probably the dominant controls on the mobility of silver in the aquatic environment.

Physical: Algae, daphnia, fresh water mussels, and fathead minnows were all found capable of accumulating silver; but the food chain was not an important route of silver accumulation for animals at higher tropic levels, suggesting no food chain magnification.

Other: For more information, see "HANDBOOK OF ENVIRONMENTAL FATE AND EXPOSURE DATA."

Section 13 - Disposal Considerations

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. US EPA guidelines for the classification determination are listed in 40 CFR Parts 261.3. Additionally, waste generators must consult state and local hazardous waste regulations to ensure complete and accurate classification.

RCRA P-Series: None listed.

RCRA U-Series: None listed.

Section 14 - Transport Information

	US DOT	ΙΑΤΑ	RID/ADR	IMO	Canada TDG
Shipping Name:	No information available.				No Informatior available.
Hazard Class:					
UN Number:	1				
Packing Group:					-

US FEDERAL

TSCA

CAS# 7440-22-4 is listed on the TSCA inventory.

Health & Safety Reporting List

None of the chemicals are on the Health & Safety Reporting List.

Chemical Test Rules

None of the chemicals in this product are under a Chemical Test Rule.

Section 12b

None of the chemicals are listed under TSCA Section 12b.

TSCA Significant New Use Rule

None of the chemicals in this material have a SNUR under TSCA.

SARA

CERCLA Hazardous Substances and corresponding RQs

CAS# 7440-22-4: 1000 lb final RQ (no reporting of releases of this hazardous substance is r SARA Section 302 Extremely Hazardous Substances

None of the chemicals in this product have a TPQ.

SARA Codes

CAS # 7440-22-4: chronic, flammable.

Section 313

This material contains Silver (CAS# 7440-22-4, 100%), which is subject to the reporting requirements of Section 313 of SARA Title III and 40 CFR Part 373.

Clean Air Act:

This material does not contain any hazardous air pollutants. This material does not contain any Class 1 Ozone depletors. This material does not contain any Class 2 Ozone depletors.

Clean Water Act:

None of the chemicals in this product are listed as Hazardous Substances under the CWA. CAS# 7440-22-4 is listed as a Priority Pollutant under the Clean Water Act. CAS# 7440-22-4 is listed as a Toxic Pollutant under the Clean Water Act.

OSHA:

None of the chemicals in this product are considered highly hazardous by OSHA.

STATE

CAS# 7440-22-4 can be found on the following state right to know lists: California, New Jersey, Pennsylvania, Minnesota, Massachusetts.

California No Significant Risk Level: None of the chemicals in this product are listed.

European/International Regulations

European Labeling in Accordance with EC Directives

Hazard Symbols:

Not available.

Risk Phrases:

R 33 Danger of cumulative effects.

Safety Phrases:

S 37 Wear suitable gloves.

S 45 In case of accident or if you feel unwell, seek medical advice immediately (show the label where possible).

S 28A After contact with skin, wash immediately with plenty of water.

WGK (Water Danger/Protection)

CAS# 7440-22-4: 0

Canada - DSL/NDSL

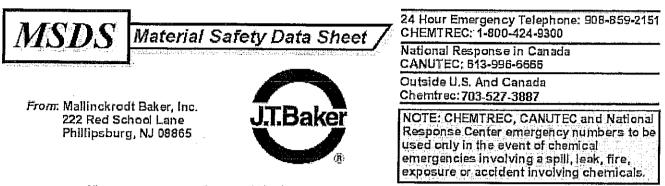
CAS# 7440-22-4 is listed on Canada's DSL List.

Canada - WHMIS

This product has a WHMIS classification of D2A.

Canadian Ingredient Disclosure List

CAS# 7440-22-4 is listed on the Canadian Ingredient Disclosure List.


Exposure Limits

CAS# 7440-22-4: OEL-AUSTRALIA:TWA 0.1 mg/m3 OEL-BELGIUM:TWA 0.1 mg/ m3 OEL-DENMARK:TWA 0.01 mg/m3 OEL-FINLAND:TWA 0.1 mg/m3 OEL-FRANCE: TWA 0.1 mg/m3 OEL-GERMANY:TWA 0.01 mg/m3 OEL-RUSSIA:STEL 1 mg/m3 OE L-SWITZERLAND:TWA 0.01 mg/m3 OEL-UNITED KINGDOM:TWA 0.1 mg/m3 OEL IN BULGARIA, COLOMBIA, JORDAN, KOREA check ACGIH TLV OEL IN NEW ZEALAND , SINGAPORE, VIETNAM check ACGI TLV

Section 16 - Additional Information

MSDS Creation Date: 12/12/1997 Revision #6 Date: 3/18/2003

The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular purposes. In no event shall Fisher be liable for any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, howsoever arising, even if Fisher has been advised of the possibility of such damages. MSDS Number: S1106 * * * * * Effective Date: 05/08/03 * * * * * Supercedes: 08/02/00

All non-emergency questions should be directed to Customer Service (1-800-682-2637) for assistance.

Selenium

1. Product Identification

Synonyms: Elemental Selenium; Selen; C.I. 77805 CAS No.: 7782-49-2 Molecular Weight: 78.96 Chemical Formula: Se Product Codes: 3395

2. Composition/Information on Ingredients

Ingredient	CAS No 	Percent	Hazardous
Selenium	7782-49-2	90 - 100%	Yes

3. Hazards Identification

Emergency Overview

WARNING! CAUSES SEVERE IRRITATION TO EYES, SKIN AND RESPIRATORY TRACT. HARMFUL IF SWALLOWED OR INHALED. AFFECTS

LIVER, KIDNEYS, BLOOD, SPLEEN.

J.T. Baker SAF-T-DATA^(tm) Ratings (Provided here for your convenience)

Health Rating: 3 - Severe (Life) Flammability Rating: 0 - None Reactivity Rating: 1 - Slight Contact Rating: 2 - Moderate Lab Protective Equip: GOGGLES; LAB COAT; PROPER GLOVES Storage Color Code: Blue (Health)

Potential Health Effects

Inhalation:

Severe irritant to the respiratory system. Soreness, coughing, labored breathing are symptoms which may subside and return. Lung edema may occur in acute cases. Cases with flu-like symptoms resembling metal fume fever within 24 hours of exposure have been reported.

Ingestion:

May cause severe irritation to the mouth and throat. Gastrointestinal disturbances may be expected with nausea, abdominal pain, and vomiting.

Skin Contact:

Causes severe irritation. Symptoms include redness, itching and pain.

Eye Contact:

May cause severe irritation, redness, pain.

Chronic Exposure:

Chronic exposure may cause odor of garlic on breath, fatigue, irritability, repsiratory tract irritation, gastrointestinal irritation, metallic taste, and allergic eye reaction. Based on animal studies, may cause blood, liver, kidney and spleen effects.

Aggravation of Pre-existing Conditions:

Person with a history of asthma, allergies, or known sensitization to selenium, or with a history of other chronic respiratory disease, gastrointestinal disturbances, disorders of the liver or kidneys, or recurrent dermatitis would be expected to be at increased risk from exposure.

4. First Aid Measures

Inhalation:

Remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical attention.

Ingestion:

Do NOT induce vomiting. Give large amounts of water. Never give anything by mouth to an unconscious person. Get medical attention.

Skin Contact:

Immediately flush skin with plenty of water for at least 15 minutes. Remove contaminated clothing and shoes. Get medical attention. Wash clothing before reuse. Thoroughly clean

shoes before reuse.

Eye Contact:

Immediately flush eyes with plenty of water for at least 15 minutes, lifting lower and upper eyelids occasionally. Get medical attention immediately.

5. Fire Fighting Measures

Fire:

Not considered to be a fire hazard.

Explosion:

Not considered to be an explosion hazard.

Fire Extinguishing Media:

Use any means suitable for extinguishing surrounding fire.

Special Information:

In the event of a fire, wear full protective clothing and NIOSH-approved self-contained breathing apparatus with full facepiece operated in the pressure demand or other positive pressure mode.

6. Accidental Release Measures

Ventilate area of leak or spill. Keep unnecessary and unprotected people away from area of spill. Wear appropriate personal protective equipment as specified in Section 8. Spills: Pick up and place in a suitable container for reclamation or disposal, using a method that does not generate dust. US Regulations (CERCLA) require reporting spills and releases to soil, water and air in excess of reportable quantities. The toll free number for the US Coast Guard National Response Center is (800) 424-8802.

7. Handling and Storage

Keep in a tightly closed container, stored in a cool, dry, ventilated area. Protect against physical damage. Isolate from incompatible substances. Containers of this material may be hazardous when empty since they retain product residues (dust, solids); observe all warnings and precautions listed for the product.

8. Exposure Controls/Personal Protection

Airborne Exposure Limits:

-OSHA Permissible Exposure Limit (PEL): 0.2 mg/m3, Selenium Compounds, as Se

-ACGIH Threshold Limit Value (TLV):

0.2 mg/m3, Selenium & Compounds, as Se

Ventilation System:

A system of local and/or general exhaust is recommended to keep employee exposures below the Airborne Exposure Limits. Local exhaust ventilation is generally preferred because it can control the emissions of the contaminant at its source, preventing dispersion of it into the general work area. Please refer to the ACGIH document, *Industrial Ventilation, A Manual of Recommended Practices*, most recent edition, for details.

Personal Respirators (NIOSH Approved):

If the exposure limit is exceeded, a half-face dust/mist respirator may be worn for up to ten times the exposure limit or the maximum use concentration specified by the appropriate regulatory agency or respirator supplier, whichever is lowest. A full-face piece dust/mist respirator may be worn up to 50 times the exposure limit, or the maximum use concentration specified by the appropriate regulatory agency, or respirator supplier, whichever is lowest. For emergencies or instances where the exposure levels are not known, use a full-facepiece positive-pressure, air-supplied respirator. WARNING: Air-purifying respirators do not protect workers in oxygen-deficient atmospheres.

Skin Protection:

Wear impervious protective clothing, including boots, gloves, lab coat, apron or coveralls, as appropriate, to prevent skin contact.

Eye Protection:

Use chemical safety goggles and/or full face shield where dusting or splashing of solutions is possible. Maintain eye wash fountain and quick-drench facilities in work area.

9. Physical and Chemical Properties

Appearance: Small blue-black metallic shot. Odor: Odorless. Solubility: Insoluble in water. **Specific Gravity:** 4.26-4.81 pH: No information found. % Volatiles by volume @ 21C (70F): **Boiling Point:** 690C (1274F) Melting Point: 170 - 217C (338 - 423F) Vapor Density (Air=1): Not applicable. Vapor Pressure (mm Hg): Not applicable. Evaporation Rate (BuAc=1):

Not applicable.

10. Stability and Reactivity

Stability:
Stable under ordinary conditions of use and storage.
Hazardous Decomposition Products:
Toxic oxides of selenium form when heated to decomposition.
Hazardous Polymerization:
Will not occur.
Incompatibilities:
Strong oxidizers, strong acids, and a wide range of other materials.
Conditions to Avoid:
Moisture and incompatibles.

11. Toxicological Information

Toxicological Data: Oral Rat LD50: 6700 mg/kg. Investigated as a tumorigen and a reproductive effector. **Carcinogenicity:** EPA / IRIS classification: Group D1 - Not classifiable as a human carcinogen.

\Cancer Lists\			
	- NTP	Carcinogen	•
Ingredient	Known	Anticipated	IARC Category
Selenium (7782-49-2)	No	No	3

12. Ecological Information

Environmental Fate: No information found. **Environmental Toxicity:** No information found.

13. Disposal Considerations

Whatever cannot be saved for recovery or recycling should be handled as hazardous waste and sent to a RCRA approved waste facility. Processing, use or contamination of this product may change the waste management options. State and local disposal regulations may differ from federal disposal regulations. Dispose of container and unused contents in accordance with federal, state and local requirements.

14. Transport Information

Not regulated.

15. Regulatory Information

Ingredient		TSCA	EC	Japan	Australia
Selenium (7782-49-2)					Yes
\Chemical Inventory Status - Part	2\			_ 	
Ingredient			a DSL		Phil.
Selenium (7782-49-2)		-		No	
\Federal, State & International Re Ingredient	-SARA RO	302- TPO	 Li	SAR st Che	A 313 mical Cato
Selenium (7782-49-2)					enium cmp
	CERCLA	4	-RCRA	T. 3 8	SCA- (d)
Selenium (7782-49-2)	100			N	- - >
emical Weapons Convention: No TSCA 12 RA 311/312: Acute: Yes Chronic: Yes	(b): 1	No. No P	CDTA	No	

Australian Hazchem Code: 2Z Poison Schedule: None allocated. WHMIS: This MSDS has been prepared according to the hazard criteria of the Controlled Products

Regulations (CPR) and the MSDS contains all of the information required by the CPR.

16. Other Information

NFPA Ratings: Health: 2 Flammability: 0 Reactivity: 0

Label Hazard Warning:

WARNING! CAUSES SEVERE IRRITATION TO EYES, SKIN AND RESPIRATORY TRACT. HARMFUL IF SWALLOWED OR INHALED. AFFECTS LIVER, KIDNEYS, BLOOD, SPLEEN.

Label Precautions:

Avoid contact with eyes, skin and clothing.

Wash thoroughly after handling.

Avoid breathing dust.

Do not breathe mist.

Use only with adequate ventilation.

Label First Aid:

If swallowed, DO NOT INDUCE VOMITING. Give large quantities of water. Never give anything by mouth to an unconscious person. If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. In case of contact, immediately flush eyes or skin with plenty of water for at least 15 minutes. Remove contaminated clothing and shoes. Wash clothing before reuse. In all cases, get medical attention.

Product Use:

Laboratory Reagent.

Revision Information:

No Changes.

Disclaimer:

Mallinckrodt Baker, Inc. provides the information contained herein in good faith but makes no representation as to its comprehensiveness or accuracy. This document is intended only as a guide to the appropriate precautionary handling of the material by a properly trained person using this product. Individuals receiving the information must exercise their independent judgment in determining its appropriateness for a particular purpose. MALLINCKRODT BAKER, INC. MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE INFORMATION SET FORTH HEREIN OR THE PRODUCT TO WHICH THE INFORMATION REFERS. ACCORDINGLY, MALLINCKRODT BAKER, INC. WILL NOT BE RESPONSIBLE FOR DAMAGES RESULTING FROM USE OF OR RELIANCE UPON THIS INFORMATION.

Prepared by: Environmental Health & Safety Phone Number: (314) 654-1600 (U.S.A.)

POLYCHLORINATED BIPHENYL (AROCLOR ICSC: 0939 1254)

POLYCHLORINATED BIPHENYL (AROCLOR 1254) Chlorobiphenyl (54% chlorine) Chlorodiphenyl (54% chlorine) PCB					
		Molecular	mass: 327 (average)		
CAS # 11097-69 RTECS # TQ130 ICSC # 0939 UN # 2315 EC # 602-039-00	50000				
TYPES OF HAZARD/ EXPOSURE	ACUTE HA		PREVENTION	[FIRST AID/ FIRE FIGHTING
FIRE	Not combustible. In toxic gases may be a fire.				Powder, carbon dioxide.
EXPLOSION					
EXPOSURE			PREVENT GENERATIO MISTS! STRICT HYGIE		
• INHALATION			Ventilation.		Fresh air, rest. Refer for medical attention.
• SKIN	MAY BE ABSOR skin. Redness. Chlo (further see Inhalat	oracne	Protective gloves. Protective clothing.		Remove contaminated clothes. Rinse and then wash skin with water and soap. Refer for medical attention.
• EYES	Redness. Pain.			First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor.	
• INGESTION	Headache. Numbro	ess. Fever.	Do not eat, drink, or smok during work.	te	Rest. Refer for medical attention.
SPILLAGE	DISPOSAL	5	STORAGE		PACKAGING & LABELLING
Consult an expert! Collect leaking liquid in sealable containers. Absorb remaining liquid in sand or inert absorbent and remove to safe place. Do NOT let this chemical enter the environment (extra personal protection: complete protective clothing including self-contained breathing apparatus).			om food and feedstuffs. eep in a well-ventilated	packa contai and fe Xn sy R: 33 S: 35 Note:	

UN Packing Group: II

SEE IMPORTANT INFORMATION ON BACK

ICSC: 0939

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities O IPCS CEC 1993

International Chemical Safety Cards

POLYCHLORINATED BIPHENYL (AROCLOR 1254)

I M P O R T A N T D A T A	 PHYSICAL STATE; APPEARANCE: LIGHT YELLOW VISCOUS LIQUID. PHYSICAL DANGERS: CHEMICAL DANGERS: The substance decomposes in a fire producing irritating and toxic gases. OCCUPATIONAL EXPOSURE LIMITS (OELs): TLV: ppm; 0.5 mg/m³ (skin) (ACGIH 1991- 1992). 	substance at 20°C. EFFECTS OF SHORT-TERM EXPOSURE: The substance irritates the eyes (see Notes). EFFECTS OF LONG-TERM OR REPEATED EXPOSURE: Repeated or prolonged contact with skin may cause dermatitis chloracne. The substance		
		may have effects on the liver. Animal tests show that this substance possibly causes toxic effects upon human reproduction.		
PHYSICAL PROPERTIES	Relative density (water = 1): 1.5 Solubility in water: none	Vapour pressure, Pa at 25°C: 0.01 Octanol/water partition coefficient as log Pow: 6.30 (estimated)		
ENVIRONMENTAI DATA	In the food chain important to humans, bioaccu organisms. It is strongly advised not to let the c			
	NOTES			
	us state (pour point) at 10°C. Distillation range: 3 han the chloracne and liver effects may be in part			
	ADDITIONAL INFORMA	TION		
ICSC: 0939 POLYCHLORINATED BIPHENYL (AROCLOR 1254) © IPCS, CEC, 1993				
IMPORTANT LEGAL NOTICE:Neither the CEC or the IPCS nor any person acting on behalf of the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use.				

BENZENE

National Institute for Occupational Safety and Health						
	Cyclohexatriene Benzol					
		Mol	C ₆ H ₆ ecular mass: 78.1			
RTECS # <u>CY14</u> UN # 1114 EC # 601-0	ICSC # 0015 CAS # 71-43-2 RTECS # <u>CY1400000</u> UN # 1114					
TYPES OF HAZARD/ EXPOSURE	ACUTE HAZ SYMPTO		PREVENTION		FIRST AID/ FIRE FIGHTING	
FIRE	Highly flammable.		NO open flames, NO spark NO smoking.	s, and	Powder, AFFF, foam, carbon dioxide.	
EXPLOSION Vapour/air mixtures are explosive. Risk of fire and explosion: see Chemical Dangers.		Closed system, ventilation, explosion-proof electrical equipment and lighting. Do use compressed air for fillir discharging, or handling. U non-sparking handtools. Pre build-up of electrostatic cha (e.g., by grounding).	ng, se event	In case of fire: keep drums, etc., cool by spraying with water.		
EXPOSURE			AVOID ALL CONTACT!			
		Ventilation, local exhaust, observations protection.	or	Fresh air, rest. Refer for medical attention.		
•SKIN	SKIN MAY BE ABSORBED! Dry skin. Redness. Pain. (Further see Inhalation).		re	Remove contaminated clothes. Rinse skin with plenty of water or shower. Refer for medical attention.		
•EYES combination with breathing for protection. for		First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor.				
•INGESTION	•INGESTION Abdominal pain. Sore throat. Vomiting. (Further see Inhalation). Do not eat, drink, or smoke during work. Rinse mouth. Do NOT induce vomiting. Refer for medical attention.				vomiting. Refer for medical	
SPILLAGE	DISPOSAL		STORAGE		PACKAGING & LABELLING	

	Separated from food and oxidants and halogens . Do not transport with food and feedstuffs. Note: E F symbol T symbol R: 45-46-11-36/38-48/23/24/25-65 S: 53-45 UN Hazard Class: 3 UN Packing Group: II
--	--

SEE IMPORTANT INFORMATION ON BACK

ICSC: 0015

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

International Chemical Safety Cards

BENZENE

I	PHYSICAL STATE; APPEARANCE: COLOURLESS LIQUID , WITH CHARACTERISTIC ODOUR.	ROUTES OF EXPOSURE: The substance can be absorbed into the body by inhalation , through the skin and by ingestion .
M P O R T A	 PHYSICAL DANGERS: The vapour is heavier than air and may travel along the ground; distant ignition possible. As a result of flow, agitation, etc., electrostatic charges can be generated. CHEMICAL DANGERS: Reacts violently with oxidants, nitric acid, sulfuric acid and halogens causing fire and explosion hazard. Attacks plastic and rubber. 	substance at 20°C. EFFECTS OF SHORT-TERM EXPOSURE: The substance is irritating to the eyes, the skin and the respiratory tract. Swallowing the liquid may cause aspiration into the lungs with the risk of chemical pneumonitis. The substance may cause effects on the central nervous
N T D A T A	OCCUPATIONAL EXPOSURE LIMITS: TLV: 0.5 ppm as TWA; 2.5 ppm as STEL; (skin); A1; BEI issued; (ACGIH 2004). MAK: H; Carcinogen category: 1; Germ cell mutagen group: 3A; (DFG 2004). OSHA PEL: 1910.1028 TWA 1 ppm ST 5 ppm <u>See Appendix F</u> NIOSH REL: Ca TWA 0.1 ppm ST 1 ppm <u>See Appendix A</u> NIOSH IDLH: Ca 500 ppm See: <u>71432</u>	 system , resulting in lowering of consciousness . Exposure far above the occupational exposure limit value may result in unconsciousness and death . EFFECTS OF LONG-TERM OR REPEATED EXPOSURE: The liquid defats the skin. The substance may have effects on the bone marrow and immune
PHYSICAL PROPERTIES	Boiling point: 80°C Melting point: 6°C Relative density (water = 1): 0.88 Solubility in water, g/100 ml at 25°C: 0.18 Vapour pressure, kPa at 20°C: 10 Relative vapour density (air = 1): 2.7	Relative density of the vapour/air-mixture at 20°C (air = 1): 1.2 Flash point: -11°C c.c. Auto-ignition temperature: 498°C Explosive limits, vol% in air: 1.2-8.0 Octanol/water partition coefficient as log Pow: 2.13

ENVIRONMENT DATA	AL The substance is very toxic to aquatic organisms.			
	N O T E S			
Use of alcoholic beverages enhances the harmful effect. Depending on the degree of exposure, periodic medical examination is indicated. The odour warning when the exposure limit value is exceeded is insufficient. Card has been partly updated in October 2004. See sections Occupational Exposure Limits, EU classification, Emergency Response.				
	Transport Emergency Card: TEC (R)-30S1114 / 30GF1-II			
	NFPA Code: H2; F3; R0			
	ADDITIONAL INFORMATION			
ICSC: 0015	BENZENE			
	(C) IPCS, CEC, 1994			
IMPORTANT LEGAL NOTICE: Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the iPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use. The only modifications made to produce the U.S. version is inclusion of the OSHA PELs, NIOSH RELs and NIOSH IDLH values.				

TOLUENE

National Institute for Occupational Safety and Health				
Methylbenzene Toluol Phenylmethane C ₆ H ₅ CH ₃ / C ₇ H ₈				
0 3 3 7 8 Molecular mass: 92.1 ICSC # 0078 CAS # 108-88-3 RTECS # XS5250000 UN # 1294 EC # 601-021-00-3 October 10, 2002 Validated				
TYPES OF HAZARD/ EXPOSURE	ACUTE HAZARDS/ SYMPTOMS	PREVENTION	FIRST AID/ FIRE FIGHTING	
FIRE	Highly flammable.	NO open flames, NO sparks, and NO smoking.	Powder, AFFF, foam, carbon dioxide.	
EXPLOSION	Vapour/air mixtures are explosive.	Closed system, ventilation, explosion-proof electrical equipment and lighting. Prevent build-up of electrostatic charges (e.g., by grounding). Do NOT use compressed air for filling, discharging, or handling. Use non-sparking handtools.	In case of fire: keep drums, etc., cool by spraying with water.	
EXPOSURE		STRICT HYGIENE! AVOID EXPOSURE OF (PREGNANT) WOMEN!		
•INHALATION	Cough. Sore throat. Dizziness. Drowsiness. Headache. Nausea. Unconsciousness.	Ventilation, local exhaust, or breathing protection.	Fresh air, rest. Refer for medical attention.	
•SKIN Dry skin. Redness. Protective gloves. Remove contaminated clothes. Rinse and then wash skin with water and soap. Refer for medical attention.				
•EYES	Redness. Pain.	Safety goggles.	First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor.	
•INGESTION	Burning sensation. Abdominal pain. (Further see Inhalation).	Do not eat, drink, or smoke during work.	Rinse mouth. Do NOT induce vomiting. Refer for medical attention.	

SPILLAGE DISPOSAL	STORAGE	PACKAGING & LABELLING		
Evacuate danger area in large spill! Consult an expert in large spill! Remove all ignition sources. Ventilation. Collect leaking liquid in sealable containers. Absorb remaining liquid in sand or inert absorbent and remove to safe place. Do NOT wash away into sewer. Do NOT let this chemical enter the environment. Personal protection: self-contained breathing apparatus in large spill.	Fireproof. Separated from strong oxidants.	F symbol Xn symbol R: 11-38-48/20-63-65-67 S: 2-36/37-46-62 UN Hazard Class: 3 UN Packing Group: II		
SEE IMPORTANT INFORMATION ON BACK				
Prepared in the context of cooperation between the International Programme on Chemical Safety & the				

ICSC: 0078

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

International Chemical Safety Cards

TOLUENE

	9. Jan	
I	PHYSICAL STATE; APPEARANCE: COLOURLESS LIQUID , WITH CHARACTERISTIC ODOUR.	ROUTES OF EXPOSURE: The substance can be absorbed into the body by inhalation, through the skin and by ingestion.
Μ	PHYSICAL DANGERS:	INHALATION RISK:
Р	The vapour mixes well with air, explosive mixtures are formed easily. As a result of flow, agitation, etc., electrostatic charges can be	A harmful contamination of the air can be reached rather quickly on evaporation of this substance at 20°C.
0	generated.	
R	CHEMICAL DANGERS:	EFFECTS OF SHORT-TERM EXPOSURE: The substance is irritating to the eyes and the
Т	Reacts violently with strong oxidants causing fire and explosion hazard.	respiratory tract . The substance may cause effects on the central nervous system . If this liquid is swallowed, aspiration into the lungs
Α	OCCUPATIONAL EXPOSURE LIMITS: TLV: 50 ppm as TWA; (skin); A4; BEI issued;	may result in chemical pneumonitis. Exposure at high levels may result in cardiac dysrhythmia
Ν	(ACGIH 2004). MAK:	and unconsciousness.
Т	Pregnancy risk group: C; (DFG 2004).	EFFECTS OF LONG-TERM OR REPEATED EXPOSURE:
D	EU OEL: 192 mg/m ³ 50 ppm as TWA 384 mg/m ³ 100 ppm as STEL (skin) (EU 2006).	The liquid defats the skin. The substance may have effects on the central nervous system .
Α	OSHA PEL [±] : TWA 200 ppm C 300 ppm 500 ppm (10-minute maximum peak)	Exposure to the substance may enhance hearing damage caused by exposure to noise. Animal
Т	NIOSH REL: TWA 100 ppm (375 mg/m ³) ST 150 ppm (560 mg/m ³)	tests show that this substance possibly causes toxicity to human reproduction or development.
Α	NIOSH IDLH: 500 ppm See: <u>108883</u>	
	Boiling point: 111°C Melting point: -95°C	Relative density of the vapour/air-mixture at 20°C (air = 1): 1.01
PHYSICAL	Relative density (water = 1): 0.87	Flash point: 4°C c.c.

PROPERTIES	Solubility in water: none Vapour pressure, kPa at 25°C: 3.8 Relative vapour density (air = 1): 3.1	Auto-ignition temperature: 480°C Explosive limits, vol% in air: 1.1-7.1 Octanol/water partition coefficient as log Pow: 2.69			
ENVIRONMENTA DATA	The substance is toxic to aquatic organisms.				
	N O T E	S			
	Depending on the degree of exposure, periodic medical examination is suggested. Use of alcoholic beverages enhances the harmful effect. Card has been partly updated in October 2006: see section Occupational Exposure Limits. Transport Emergency Card: TEC (R)-30S1294				
		NFPA Code: H 2; F 3; R 0;			
	ADDITIONAL INF	ORMATION			
ICSC: 0078 TOLUENE (C) IPCS, CEC, 1994					
IMPORTANT LEGAL NOTICE:Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use. The only modifications made to produce the U.S. version is inclusion of the OSHA PELs, NIOSH RELs and NIOSH IDLH values.					

ETHYLBENZENE

ICSC: 0268

7

Weight With the second						
	Ethylbenzol Phenylethane EB $C_8H_{10}/C_6H_5C_2H_5$					
RTECS # <u>DA07</u> UN # 1175 EC # 601-0	Molecular mass: 106.2 ICSC # 0268 CAS # 100-41-4 RTECS # DA0700000 UN # 1175					
TYPES OF HAZARD/ EXPOSURE	ACUTE HAZ SYMPTO		PREVENTION		FIRST AID/ FIRE FIGHTING	
FIRE	Highly flammable.		NO open flames, NO sparks NO smoking.		Dry powder. Foam. Carbon dioxide.	
EXPLOSION	N Vapour/air mixtures are explosive.		Closed system, ventilation, explosion-proof electrical equipment and lighting. Do use compressed air for fillin discharging or handling.	NOT	In case of fire: keep drums, etc., cool by spraying with water.	
EXPOSURE			PREVENT GENERATION MISTS!	OF		
•INHALATION	Cough. Sore throat. I Drowsiness. Headach		Ventilation, local exhaust, or breathing protection.		Fresh air, rest. Refer for medical attention.	
•SKIN	Redness.		Protective gloves.		Remove contaminated clothes. Rinse and then wash skin with water and soap.	
•EYES	Redness. Pain. crimation; deleted Safety goggles First rinse with plenty of water				for several minutes (remove contact lenses if easily possible),	
•INGESTION	•INGESTION Burning sensation in the throat and chest. (Further see Inhalation). Do not eat, drink, or smoke during work. Rinse mouth. Do NOT induce vomiting. Refer for medical attention.					
SPILLAGE	DISPOSAL		STORAGE		PACKAGING & LABELLING	
organic gases and v	Personal protection: filter respirator for organic gases and vapours adapted to the airborne concentration of theFireproof. Separated from strong oxidants. Provision to contain effluent from fire extinguishing. Store in anF symbol Xn symbol					

substance. Ventilation. Collect leaking liquid in covered containers. Absorb remaining liquid in sand or inert absorbent and remove to safe place. Do NOT wash away into sewer Do NOT let this chemical enter the environment.		R: 11-20 S: 2-16-24/25-29 UN Hazard Class: 3 UN Packing Group: II Signal: Danger Flame-Excl mark-Health haz Highly flammable liquid and vapour May be harmful if swallowed Harmful if inhaled vapour Causes mild skin irritation Causes eye irritation Suspected of causing cancer May cause respiratory irritation May cause drowsiness or dizziness May be harmful if swallowed and enters airways Toxic to aquatic life	
SEE IMPORTANT INFORMATION ON BACK			

ICSC: 0268

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

International Chemical Safety Cards

ETHYLBENZENE

I M	PHYSICAL STATE; APPEARANCE: COLOURLESS LIQUID , WITH AROMATIC ODOUR.	ROUTES OF EXPOSURE: The substance can be absorbed into the body by inhalation of its vapour, and by ingestion.
Р	PHYSICAL DANGERS: The vapour mixes well with air, explosive	INHALATION RISK: A harmful contamination of the air will be
0	mixtures are easily formed.	reached rather slowly on evaporation of this substance at 20°C.
R	CHEMICAL DANGERS:	
Т	Reacts with strong oxidants. Attacks plastic and rubber.	EFFECTS OF SHORT-TERM EXPOSURE: The substance is irritating to the eyes, the skin and the respiratory tract Swallowing the liquid
Α	OCCUPATIONAL EXPOSURE LIMITS:	may cause aspiration into the lungs with the
Ν	TLV: 100 ppm as TWA, 125 ppm as STEL; A3 (confirmed animal carcinogen with unknown relevance to humans); BEI issued, (ACGIH	risk of chemical pneumonitis. The substance may cause effects on the central nervous system. Exposure above the OEL could cause
Т	2007). EU OEL: 442 mg/m ³ 100 ppm as TWA 884	lowering of consciousness.
D	mg/m ³ 200 ppm as STEL (skin) (EU 2006). OSHA PEL <u>†</u> : TWA 100 ppm (435 mg/m ³)	EFFECTS OF LONG-TERM OR REPEATED EXPOSURE:
Α	NIOSH REL: TWA 100 ppm (435 mg/m ³) ST 125 ppm (545 mg/m ³)	This substance is possibly carcinogenic to humans. The substance may have effects on the hiddenes and lines, anything in immediate
Т	NIOSH IDLH: 800 ppm 10%LEL See: <u>100414</u>	kidneys and liver, resulting in impaired functions Repeated contact with skin may cause
Α		dryness and cracking.
PHYSICAL	Boiling point: 136°C Melting point: -95°C Relative density (water = 1): 0.9 Solubility in water, g/100 ml at 20°C: 0.015	Relative density of the vapour/air-mixture at 20°C (air = 1): 1.02 Flash point: 18°C c.c. Auto-ignition temperature: 432°C

PROPERTIES	Vapour pressure, kPa at 20°C: 0.9 Relative vapour density (air = 1): 3.7	Explosive limits, vol% in air: 1.0-6.7 Octanol/water partition coefficient as log Pow: 3.1 Viscosity, mm ² /s at 25 °C: 0.6			
ENVIRONMENTA DATA	Ildoes not enter the environment				
	N O T	ES			
The odour warning when the exposure limit value is exceeded is insufficient.					
	Transport Emergency Card: TEC (R)-305 1135 or 30GF1- I+II				
		NFPA Code: H2; F3; R0			
	ADDITIONAL INFORMATION				
ICSC: 0268 ETHYLBENZENE					
	(C) IPCS, CEC, 1994				
IMPORTANT LEGAL NOTICE: Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of th cards with the relevant legislation in the country of use. The only modifications made to produce the U.S. version is inclusion of the OSHA PELs, NIOSH RELs and NIOSH IDLH values.					

m-XYLENE

$\underbrace{\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
TYPES OF HAZARD/ EXPOSURE	ACUTE HAZ SYMPTO		PREVENTION		FIRST AID/ FIRE FIGHTING
FIRE	Flammable.		NO open flames, NO sparks NO smoking.	s, and	Powder, water spray, foam, carbon dioxide.
EXPLOSION	mixtures may be formed.		Above 27°C use a closed system, ventilation, and explosion-proof electrical equipment. Prevent build-up of electrostatic charges (e.g., by grounding).		In case of fire: keep drums, etc., cool by spraying with water.
EXPOSURE	EXPOSURE		STRICT HYGIENE!		
•INHALATION	Dizziness. Drowsiness. Headache. Nausea.		Ventilation, local exhaust, or breathing protection.		Fresh air, rest. Refer for medical attention.
•SKIN	Dry skin. Redness.		Protective gloves.		Remove contaminated clothes. Rinse and then wash skin with water and soap.
•EYES	Redness. Pain.				First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor.
•INGESTION				Rinse mouth. Do NOT induce vomiting. Refer for medical attention.	
SPILLAGE	SPILLAGE DISPOSAL STORAGE PACKAGING & LABELLING				
		eparated from strong l strong acids .	Note: Xn sy R: 10-		

sand or inert absorbent and remove to safe place. Do NOT let this chemical enter the environment. (Extra personal protection: filter respirator for organic gases and vapours.)

S: 2-25 UN Hazard Class: 3 UN Packing Group: III

SEE IMPORTANT INFORMATION ON BACK

ICSC: 0085

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

International Chemical Safety Cards

m-XYLENE

I	PHYSICAL STATE; APPEARANCE:	ROUTES OF EXPOSURE:			
М	COLOURLESS LIQUID , WITH CHARACTERISTIC ODOUR.	The substance can be absorbed into the body by inhalation, through the skin and by ingestion.			
Р	PHYSICAL DANGERS:	INHALATION RISK: A harmful contamination of the air will be			
0	As a result of flow, agitation, etc., electrostatic charges can be generated.	reached rather slowly on evaporation of this			
R	CHEMICAL DANGERS:	substance at 20°C.			
Т	Reacts with strong acids and strong oxidants .	EFFECTS OF SHORT-TERM EXPOSURE: The substance is irritating to the eyes and the			
Α	OCCUPATIONAL EXPOSURE LIMITS: TLV: 100 ppm as TWA; 150 ppm as STEL A4 (ACGIH 2001). BEI specified by (ACGIH	skin . The substance may cause effects on the central nervous system . If this liquid is			
Ν	2001).	swallowed, aspiration into the lungs may result in chemical pneumonitis.			
Т	EU OEL: 50 ppm as TWA; 100 ppm as STEL (skin) (EU 2000).	EFFECTS OF LONG-TERM OR REPEATED EXPOSURE:			
D	OSHA PEL [±] : TWA 100 ppm (435 mg/m ³) NIOSH REL: TWA 100 ppm (435 mg/m ³) ST 150 ppm (655 mg/m ³)	The liquid defats the skin. The substance may have effects on the central nervous system .Exposure to the substance may enhance			
A T	NIOSH IDLH: 900 ppm See: <u>95476</u>	hearing damage caused by exposure to noise. Animal tests show that this substance possibly causes toxicity to human reproduction or development.			
Α					
PHYSICAL PROPERTIES	Boiling point: 139°C Melting point: -48°C Relative density (water = 1): 0.86 Solubility in water: none Vapour pressure, kPa at 20°C: 0.8	Relative vapour density (air = 1): 3.7 Relative density of the vapour/air-mixture at 20°C (air = 1): 1.02 Flash point: 27°C c.c. Auto-ignition temperature: 527°C Explosive limits, vol% in air: 1.1-7.0 Octanol/water partition coefficient as log Pow: 3.20			
ENVIRONMENTAL DATA	The substance is toxic to aquatic organisms.				
	N O T E S				
Depending on the degree of exposure, periodic medical examination is indicated. The recommendations on this Card also apply to technical xylene. See ICSC 0084 o-Xylene and 0086 p-Xylene.					

	NFPA Code: H 2; F 3; R 0;			
Transport Emergency Card: TEC (R)-30S1307-III Card has been partially updated in January 2008: see Occupational Exposure Limits.				
ADDITIONAL INFORMATION				
ICSC: 0085	ICSC: 0085 m-XYLENE			
(C) IPCS, CEC, 1994				
IMPORTANT LEGAL NOTICE:Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the 				

o-XYLENE

$\underbrace{\underbrace{\text{Work}}_{\text{UNEP}} \underbrace{\underbrace{\text{Work}}_{\text{UNEP}} \underbrace{\text{Work}}_{\text{UNEP}} \underbrace{\underbrace{\text{Work}}_{\text{UNEP}} \underbrace{\text{Work}}_{\text{UNEP}} \underbrace{\underbrace{\text{Work}}_{\text{UNEP}} \underbrace{\text{Work}}_{\text{UNEP}} \underbrace{\text{Work}}_{\text{UNEP}}$					
August 03, 2002 Validated TYPES OF HAZARD/ EXPOSURE PREVENTION FIRST AID/ FIRE FIGHTING					
FIRE	Flammable.		NO open flames, NO sparks NO smoking.	s, and	Powder, water spray, foam, carbon dioxide.
EXPLOSION	Above 32°C explosive vapour/air mixtures may be formed.			oroof nt	In case of fire: keep drums, etc., cool by spraying with water.
EXPOSURE		STRICT HYGIENE! AVOI EXPOSURE OF (PREGNA WOMEN!			
•INHALATION	Dizziness. Drowsine Headache. Nausea.	ss.	Ventilation, local exhaust, c breathing protection.	or	Fresh air, rest. Refer for medical attention.
•SKIN	Dry skin. Redness.		Protective gloves.		Remove contaminated clothes. Rinse and then wash skin with water and soap.
•EYES	Redness. Pain.		Safety spectacles.		First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor.
•INGESTION	ESTION Burning sensation. Abdominal pain. (Further see Inhalation).		Do not eat, drink, or smoke during work.		Rinse mouth. Do NOT induce vomiting. Refer for medical attention.
SPILLAGE	E DISPOSAL		STORAGE		PACKAGING & LABELLING
Ventilation. Removision sources. Collect lea			eparated from strong I strong acids .	Note:	C

liquid in sealable containers as far as possible. Absorb remaining liquid in sand or inert absorbent and remove to safe place. Do NOT let this chemical enter the environment. (Extra personal protection: filter respirator for organic gases and vapours.)	Xn symbol R: 10-20/21-38 S: 2-25 UN Hazard Class: 3 UN Packing Group: III
--	---

SEE IMPORTANT INFORMATION ON BACK

ICSC: 0084

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

International Chemical Safety Cards

o-XYLENE

ICSC: 0084

Ι	PHYSICAL STATE; APPEARANCE:	ROUTES OF EXPOSURE:			
М	COLOURLESS LIQUID , WITH CHARACTERISTIC ODOUR.	The substance can be absorbed into the body by inhalation, through the skin and by ingestion.			
Р	PHYSICAL DANGERS:	INHALATION RISK:			
0	As a result of flow, agitation, etc., electrostatic charges can be generated.	A harmful contamination of the air will be reached rather slowly on evaporation of this substance at 20°C.			
R	CHEMICAL DANGERS:				
Т	Reacts with strong acids and strong oxidants . OCCUPATIONAL EXPOSURE LIMITS:	EFFECTS OF SHORT-TERM EXPOSURE: The substance is irritating to the eyes and the skin . The substance may cause effects on the			
Α	TLV: 100 ppm as TWA; 150 ppm as STEL A4 (ACGIH 2001). BEI specified by (ACGIH				
Ν	2001).	in chemical pneumonitis.			
Т	EU OEL: 50 ppm as TWA; 100 ppm as STEL (skin) (EU 2000).	EFFECTS OF LONG-TERM OR REPEATED EXPOSURE:			
D	OSHA PEL [±] : TWA 100 ppm (435 mg/m ³) NIOSH REL: TWA 100 ppm (435 mg/m ³) ST	The liquid defats the skin. The substance may have effects on the central nervous system. Exposure to the substance may enhance hearing			
Α	150 ppm (655 mg/m ³) NIOSH IDLH: 900 ppm See: <u>95476</u>	damage caused by exposure to noise. Animal tests show that this substance possibly causes			
Т		toxicity to human reproduction or development.			
Α					
PHYSICAL PROPERTIES	Boiling point: 144°C Melting point: -25°C Relative density (water = 1): 0.88 Solubility in water: none Vapour pressure, kPa at 20°C: 0.7	Relative vapour density (air = 1): 3.7 Relative density of the vapour/air-mixture at 20°C (air = 1): 1.02 Flash point: 32° C c.c. Auto-ignition temperature: 463° C Explosive limits, vol% in air: 0.9-6.7 Octanol/water partition coefficient as log Pow: 3.12			
ENVIRONMENTAL DATA	The substance is toxic to aquatic organisms.				
	N O T E S				
Denergling on the dennes of supremum manifolding and including in indicated. The assessment detings on this Could also					

Depending on the degree of exposure, periodic medical examination is indicated. The recommendations on this Card also

apply to technical xylene. See ICSC 0086 p-Xylene and 0085 m-Xylene. Transport Emergency Card: TEC (R)-30S1307-III				
NFPA Code: H 2; F 3; R 0; Card has been partially updated in January 2008: see Occupational Exposure Limits.				
ADDITIONAL INFORMATION				
ICSC: 0084 o-XYLENE				
(C) IPCS, CEC, 1994				
IMPORTANT LEGAL NOTICE:Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use. The only modifications made to produce the 				

p-XYLENE ICSC: 00				ICSC: 0086	
				V	National Institute for Occupational Safety and Health
ICSC # 0086 CAS # 106-4 RTECS # <u>ZE26</u> UN # 1307		1,4-1 C ₆ H	para-Xylene Dimethylbenzene p-Xylol 4(CH ₃) ₂ / C ₈ H ₁₀ cular mass: 106.2		
	022-00-9 2 Validated				
TYPES OF HAZARD/ EXPOSURE	ACUTE HAZ SYMPTO		PREVENTION		FIRST AID/ FIRE FIGHTING
FIRE	Flammable.		NO open flames, NO sparks NO smoking.	s, and	Powder, water spray, foam, carbon dioxide.
EXPLOSION	Above 27°C explosive vapour/air mixtures may be formed.		Above 27°C use a closed system, ventilation, and explosion-proof electrical equipment. Prevent build-up of electrostatic charges (e.g., by grounding).		In case of fire: keep drums, etc., cool by spraying with water.
EXPOSURE			STRICT HYGIENE! AVOID EXPOSURE OF (PREGNANT) WOMEN!		
•INHALATION	Dizziness. Drowsine Headache. Nausea.	ss.	Ventilation, local exhaust, or breathing protection.		Fresh air, rest. Refer for medical attention.
•SKIN	Dry skin. Redness.		Protective gloves.		Remove contaminated clothes. Rinse and then wash skin with water and soap.
•EYES	Redness. Pain.		Safety spectacles.		First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor.
•INGESTION			Do not eat, drink, or smoke during work.		Rinse mouth. Do NOT induce vomiting. Refer for medical attention.
SPILLAGE	DISPOSAL		STORAGE		PACKAGING & LABELLING
Ventilation. Removes sources. Collect lea			eparated from strong l strong acids .	Note:	С

liquid in sealable containers as far as possible. Absorb remaining liquid in sand or inert absorbent and remove to safe place. Do NOT let this chemical enter the environment. (Extra personal protection: filter respirator for organic gases and vapours.)	Xn symbol R: 10-20/21-38 S: 2-25 UN Hazard Class: 3 UN Packing Group: III
--	---

SEE IMPORTANT INFORMATION ON BACK

ICSC: 0086

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

International Chemical Safety Cards

p-XYLENE

ICSC: 0086

Ι	PHYSICAL STATE; APPEARANCE:	ROUTES OF EXPOSURE:		
М	COLOURLESS LIQUID , WITH CHARACTERISTIC ODOUR.	The substance can be absorbed into the body by inhalation, through the skin and by ingestion.		
Р	PHYSICAL DANGERS:	INHALATION RISK:		
0	As a result of flow, agitation, etc., electrostatic charges can be generated.	A harmful contamination of the air will be reached rather slowly on evaporation of this substance at 20°C.		
R	CHEMICAL DANGERS:			
Т	Reacts with strong acids and strong oxidants . OCCUPATIONAL EXPOSURE LIMITS:	EFFECTS OF SHORT-TERM EXPOSURE: The substance is irritating to the eyes and the skin . The substance may cause effects on the		
Α	TLV: 100 ppm as TWA; 150 ppm as STEL A4 (ACGIH 2001). BEI specified by (ACGIH			
Ν	2001).	in chemical pneumonitis.		
Т	EU OEL: 50 ppm as TWA; 100 ppm as STEL (skin) (EU 2000). OSHA PEL <u>±</u> : TWA 100 ppm (435 mg/m ³)	EFFECTS OF LONG-TERM OR REPEATED EXPOSURE:		
D	NIOSH REL: TWA 100 ppm (435 mg/m ³) ST 150 ppm (655 mg/m ³)	The liquid defats the skin. The substance may have effects on the central nervous system.		
Α	NIOSH IDLH: 900 ppm See: <u>95476</u>	Exposure to the substance may enhance hearing damage caused by exposure to noise. Animal		
Т		tests show that this substance possibly causes toxicity to human reproduction or development.		
Α				
PHYSICAL PROPERTIES	Boiling point: 138°C Melting point: 13°C Relative density (water = 1): 0.86 Solubility in water: none Vapour pressure, kPa at 20°C: 0.9	Relative vapour density (air = 1): 3.7 Relative density of the vapour/air-mixture at 20°C (air = 1): 1.02 Flash point: 27°C c.c. Auto-ignition temperature: 528°C Explosive limits, vol% in air: 1.1-7.0 Octanol/water partition coefficient as log Pow: 3.15		
ENVIRONMENTAL DATA	The substance is toxic to aquatic organisms.			
N O T E S				

Depending on the degree of exposure, periodic medical examination is indicated. The recommendations on this Card also

apply to technical xylene. See ICSC 0084 o-Xylene and 0085 m-Xylene. Transport Emergency Card: TEC (R)-30S1307-III		
NFPA Code: H 2; F 3; R 0; Card has been partially updated in January 2008: see Occupational Exposure Limits.		
ADDITIONAL INFORMATION		
ICSC: 0086	p-XYLENE	
(C) IPCS, CEC, 1994		
IMPORTANT LEGAL NOTICE:Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use. The only modifications made to produce the 		

METHYL TERT-BUTYL ETHER

ICSC: 1164

_

tert-Butyl methyl ether				
	N	MTBE Iethyl-1,1-dimethy	-	
		2-Methoxy-2-meth	nyl propane	
		$(CH_3)_3COCH_3 / Molecular mas$	0 12	
ICSC # 1164		Molecular mas	58: 88.2	
CAS # 1634- RTECS # <u>KN52</u>				
$\frac{\text{RTECS # } \text{RNS2}}{\text{UN # } 2398}$	<u>.50000</u>			3
	181-00-X			
November 04, 2				
TYPES OF HAZARD/ EXPOSURE	ACUTE HAZAI SYMPTOMS		EVENTION	FIRST AID/ FIRE FIGHTING
FIRE	Highly flammable.		ames, NO sparks, and ng. NO contact with	Powder, AFFF, foam, carbon dioxide.
EXPLOSION	Vapour/air mixtures are explosive.	explosion-p equipment use compre	tem, ventilation, proof electrical and lighting. Do NOT essed air for filling, g, or handling.	In case of fire: keep drums, etc., cool by spraying with water.
EXPOSURE				
•INHALATION	Drowsiness. Dizziness. Headache. Weakness. Unconsciousness.	Ventilation breathing p	, local exhaust, or rotection.	Fresh air, rest. Artificial respiration may be needed. Refer for medical attention.
•SKIN	Dry skin. Redness.	Protective	gloves.	Remove contaminated clothes. Rinse and then wash skin with water and soap.
•EYES	Redness.	Safety gog	gles or face shield.	First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor.
•INGESTION	Abdominal pain. Nausea Vomiting. (Further see Inhalation).	Do not eat, during wor	drink, or smoke k.	Rinse mouth. Give a slurry of activated charcoal in water to drink. Do NOT induce vomiting. Refer for medical attention.
SPILLAGE DISPOSAL STORAGE PACKAGING & LABELLING				

Remove all ignition sources. Collect leaking and spilled liquid in sealable containers as far as possible. Absorb remaining liquid in sand or inert absorbent and remove to safe place. Do NOT wash away into sewer. Personal protection: filter respirator for organic gases and vapours.	m strong F symbol Xi symbol R: 11-38 S: 2-9-16-24 UN Hazard Class: 3 UN Packing Group: II
---	---

SEE IMPORTANT INFORMATION ON BACK

ICSC: 1164

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

International Chemical Safety Cards

METHYL TERT-BUTYL ETHER

I M	PHYSICAL STATE; APPEARANCE: COLOURLESS LIQUID , WITH CHARACTERISTIC ODOUR.	ROUTES OF EXPOSURE: The substance can be absorbed into the body by inhalation and by ingestion.			
Р	PHYSICAL DANGERS: The vapour is heavier than air and may travel	INHALATION RISK: A harmful contamination of the air can be			
0	along the ground; distant ignition possible.	reached rather quickly on evaporation of this substance at 20°C.			
R	CHEMICAL DANGERS: Reacts violently with strong oxidants causing	EFFECTS OF SHORT-TERM EXPOSURE:			
Т	fire hazard. The substance decomposes on contact with acids.	The substance is irritating to the skin. If this liquid is swallowed, aspiration into the lungs			
Α	OCCUPATIONAL EXPOSURE LIMITS:	may result in chemical pneumonitis. Exposure far above the OEL could cause lowering of			
Ν	TLV: 50 ppm as TWA; A3; (ACGIH 2004). MAK: 50 ppm, 180 mg/m ³ ;	consciousness.			
Т	Peak limitation category: I(1.5); Carcinogen category: 3B; Pregnancy risk group: C; (DFG 2004).	EFFECTS OF LONG-TERM OR REPEATED EXPOSURE:			
D	(DFG 2004).				
Α					
Т					
Α					
PHYSICAL PROPERTIES	Boiling point: 55°C Melting point: -109°C Relative density (water = 1): 0.7 Solubility in water, g/100 ml at 20°C: 4.2 Vapour pressure, kPa at 20°C: 27 Relative vapour density (air = 1): 3.0	Relative density of the vapour/air-mixture at 20°C (air = 1): 1.5 Flash point: -28°C c.c. Auto-ignition temperature: 375°C Explosive limits, vol% in air: 1.6-15.1 Octanol/water partition coefficient as log Pow: 1.06			
ENVIRONMENTAL DATA	It is strongly advised not to let the chemical enterpersists in the environment.	er into the environment because it			
	NOTES				

Much less likely to form peroxides than other ethers. Card has been partly updated in October 2004. See sections Occupational Exposure Limits, EU classification, Emergency Response.

Transport Emergency Card: TEC (R)-30GF1-I+II

ADDITIONAL INFORMATION		
ICSC: 1164	METHYL TERT-BUTYL ETHER	
	(C) IPCS, CEC, 1994	
IMPORTANT LEGAL NOTICE:	Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use. The only modifications made to produce the U.S. version is inclusion of the OSHA PELs, NIOSH RELs and NIOSH IDLH values.	

NAPHTH	ALENE				ICSC: 0667
				V	National Institute for Occupational Safety and Health
			Naphthene		
		Mole	$C_{10}H_8$		
Molecular mass: 128.18 ICSC # 0667 CAS # 91-20-3 RTECS # QJ0525000 UN # 1334 (solid); 2304 (molten) EC # 601-052-00-2 April 21, 2005 Validated					
TYPES OF HAZARD/ EXPOSURE	ZARD/ ACUTE HAZARDS/ SVMPTOMS		PREVENTION		FIRST AID/ FIRE FIGHTING
FIRE	Combustible.		NO open flames.		Powder, water spray, foam, carbon dioxide.
EXPLOSION	Above 80°C explosive vapour/air mixtures may be formed. Finely dispersed particles form explosive mixtures in air.		Prevent deposition of dust; closed system, dust explosion- proof electrical equipment and lighting.		
EXPOSURE			PREVENT DISPERSION OF DUST!		
•INHALATION	Headache. Weakness. Nausea. Vomiting. Sweating. Confusion. Jaundice. Dark urine.		Ventilation (not if powder), local exhaust, or breathing protection.		Fresh air, rest. Refer for medical attention.
•SKIN	MAY BE ABSORBED! (Further see Inhalation).		Protective gloves.		Rinse skin with plenty of water or shower.
•EYES			Safety spectacles.		First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor.
•INGESTION	Convulsions. Unconsciousness.		Do not eat, drink, or smoke during work. Wash hands b eating.		Rest. Refer for medical attention.
SPILLAGE DISPOSAL		STORAGE		PACKAGING & LABELLING	
			feeds Marin Xn sy N syr R: 22	ne pollutant. 7mbol	

		UN Hazard Class: 4.1 UN Packing Group: III	
SEE IMPORTANT INFORMATION ON BACK			
ICSC: 0667 Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.			

NAPHTHALENE

Ι	PHYSICAL STATE; APPEARANCE: WHITE SOLID IN VARIOUS FORMS,	ROUTES OF EXPOSURE: The substance can be absorbed into the body by		
М	WITH CHARACTERISTIC ODOUR.	inhalation, through the skin and by ingestion.		
Р	PHYSICAL DANGERS: Dust explosion possible if in powder or	INHALATION RISK: A harmful contamination of the air will be		
0	granular form, mixed with air.	reached rather slowly on evaporation of this substance at 20°C. See Notes.		
R	CHEMICAL DANGERS: On combustion, forms irritating and toxic	EFFECTS OF SHORT-TERM EXPOSURE:		
Т	gases. Reacts with strong oxidants .	The substance may cause effects on the blood, resulting in lesions of blood cells (haemolysis).		
Α	OCCUPATIONAL EXPOSURE LIMITS: TLV: 10 ppm as TWA; 15 ppm as STEL;	See Notes. The effects may be delayed. Exposure by ingestion may result in death.		
Ν	(skin); A4 (not classifiable as a human carcinogen); (ACGIH 2005).	Medical observation is indicated.		
Т	MAK: skin absorption (H); Carcinogen category: 2; Germ cell mutagen group: 3B;	EFFECTS OF LONG-TERM OR REPEATED EXPOSURE: The substance may have effects on the blood ,		
D	(DFG 2004). OSHA PEL <u>†</u> : TWA 10 ppm (50 mg/m ³)	resulting in chronic haemolytic anaemia. The substance may have effects on the eyes,		
Α	NIOSH REL: TWA 10 ppm (50 mg/m ³) ST 15 ppm (75 mg/m ³)	resulting in the development of cataract. This substance is possibly carcinogenic to humans.		
Т	NIOSH IDLH: 250 ppm See: <u>91203</u>			
Α				
	Boiling point: 218°C	Vapour pressure, Pa at 25°C: 11 Relative vapour density (air = 1): 4.42		
PHYSICAL	Sublimation slowly at room temperature Melting point: 80°C	Flash point: 80°C c.c.		
PROPERTIES	Density: 1.16	Auto-ignition temperature: 540°C		
	g/cm ³	Explosive limits, vol% in air: 0.9-5.9		
	Solubility in water, g/100 ml at 25°C: none	Octanol/water partition coefficient as log Pow: 3.3		
ENVIRONMENTAL DATA	The substance is very toxic to aquatic organisms term effects in the aquatic environment.	. The substance may cause long-		
NOTES				
Some individuals may be more sensitive to the effect of naphthalene on blood cells.				
Transport Emergency Card: TEC (R)-41S1334 (solid); 41GF1-II+III (solid); 41S2304 (molten)				
NFPA Code: H2; F2; R0;				

ADDITIONAL INFORMATION		
ICSC: 0667	NAPHTHALENE	
	(C) IPCS, CEC, 1994	
LEGAL	Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use. The only modifications made to produce the U.S. version is inclusion of the OSHA PELs, NIOSH RELs and NIOSH IDLH values.	

National Institute for Occupational Safety and Health						
Hexyl hydride						
	C_6H_{14}					
Molecular mass: 86.2 ICSC # 0279 CAS # 110-54-3 RTECS # MN9275000 UN # 1208 EC # 601-037-00-0 April 13, 2000 Validated						
TYPES OF HAZARD/ EXPOSURE	RD/ ACUTE HAZARDS/		PREVENTION		FIRST AID/ FIRE FIGHTING	
FIRE	Highly flammable.		NO open flames, NO spark NO smoking.		Powder, AFFF, foam, carbon dioxide.	
EXPLOSION	Vapour/air mixtures are explosive.		Closed system, ventilation, explosion-proof electrical equipment and lighting. Do NOT use compressed air for filling, discharging, or handling. Use non-sparking handtools.		In case of fire: keep drums, etc., cool by spraying with water.	
EXPOSURE	EXPOSURE					
•INHALATION	Dizziness. Drowsiness. Dullness. Headache. Nausea. Weakness. Unconsciousness.		Ventilation, local exhaust, or breathing protection.		Fresh air, rest. Refer for medical attention.	
•SKIN	Dry skin. Redness. Pain.		Protective gloves.		Remove contaminated clothes. Rinse and then wash skin with water and soap. Refer for medical attention.	
•EYES	Redness. Pain.		Safety goggles , face shield or eye protection in combination with breathing protection.		First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor.	
•INGESTION			Do not eat, drink, or smoke during work.		Rinse mouth. Do NOT induce vomiting. Rest. Refer for medical attention.	
SPILLAGE DISPOSAL		STORAGE	AGE PACKAGING & LABELLING			
Consult an expert! Remove all ignition sources. Collect leaking and spilled liquid in sealable containers as far as possible. Absorb remaining liquid in			g F symbol Xn symbol N symbol			

sand or inert absorbent and remove to safe place. Do NOT wash away into sewer. Do NOT let this chemical enter the environment. Personal protection: filter respirator for organic gases and vapours.	R: 11-38-48/20-62-65-67-51/53 S: 2-9-16-29-33-36/37-61-62 UN Hazard Class: 3 UN Packing Group: II
---	--

SEE IMPORTANT INFORMATION ON BACK

ICSC: 0279

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

International Chemical Safety Cards

n-HEXANE

ICSC: 0279

T	PHYSICAL STATE; APPEARANCE:	ROUTES OF EXPOSURE:			
I	VOLATILE COLOURLESS LIQUID, WITH	The substance can be absorbed into the body by			
	CHARACTERISTIC ODOUR.	inhalation of its vapour and by ingestion.			
Μ					
	PHYSICAL DANGERS:	INHALATION RISK:			
Р	The vapour is heavier than air and may travel	A harmful contamination of the air can be			
	along the ground; distant ignition possible.	reached rather quickly on evaporation of this			
0		substance at 20°C.			
	CHEMICAL DANGERS:				
R	Reacts with strong oxidants causing fire and	EFFECTS OF SHORT-TERM EXPOSURE:			
	explosion hazard. Attacks some plastics, rubber				
Т	and coatings.	liquid may cause aspiration into the lungs with			
		the risk of chemical pneumonitis. Exposure at			
Α	OCCUPATIONAL EXPOSURE LIMITS:	high levels could cause lowering of			
		consciousness.			
Ν	OSHA PEL <u>†</u> : TWA 500 ppm (1800 mg/m ³)	consciousness.			
	NIOSH REL: TWA 50 ppm (180 mg/m ³)	EFFECTS OF LONG-TERM OR			
Т	NIOSH IDLH: 1100 ppm 10%LEL See:	REPEATED EXPOSURE:			
	<u>110543</u>				
	TLV: 50 ppm, 176 mg/m ³ as TWA; (skin); BEI	Repeated or prolonged contact with skin may			
D	issued; (ACGIH 2004).	cause dermatitis. The substance may have			
2	EU OEL: 72 mg/m ³ 20 ppm as TWA (EU	effects on the central nervous system and			
Α	2006).	especially peripheral nervous system, resulting			
Л	MAK:	in polyneuropathy. Animal tests show that this			
Т	Pregnancy risk group: C;	substance possibly causes toxic effects upon			
1	(DFG 2004).	human reproduction.			
Α					
А					
	Boiling point: 69°C	Relative density of the vapour/air-mixture at			
	Melting point: -95°C	$20^{\circ}C$ (air = 1): 1.3			
	Relative density (water = 1): 0.7	Flash point: -22°C c.c.			
PHYSICAL	Solubility in water, g/100 ml at 20°C: 0.0013	Auto-ignition temperature: 225°C			
PROPERTIES	Vapour pressure, kPa at 20°C: 17	Explosive limits, vol% in air: 1.1-7.5			
	Relative vapour density (air = 1): 3.0	Octanol/water partition coefficient as log Pow:			
	Relative vapour density (dir = 1). 5.0	3.9			
		512			
ENVIRONMENTAL	The substance is toxic to aquatic organisms.				
DATA					
DAIA					
NOTES					
Depending on the degree of exposure, periodic medical examination is suggested. Card has been partly updated in					

Depending on the degree of exposure, periodic medical examination is suggested. Card has been partly updated in

October 2004. See sections Occupational Exposure Limits, EU classification, Emergency Response. Card has been partly updated in October 2006. See sections Occupational Exposure Limits. Transport Emergency Card: TEC (R)-30S1208 NFPA Code: H 1; F 3; R 0; ADDITIONAL INFORMATION **ICSC: 0279** n-HEXANE (C) IPCS, CEC, 1994 Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the **IMPORTANT** collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed LEGAL requirements included in national legislation on the subject. The user should verify compliance of the **NOTICE:** cards with the relevant legislation in the country of use. The only modifications made to produce the U.S. version is inclusion of the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

GASOLIN	NE			ICSC: 1400		
National Institute for Occupational Safety and Health						
			Benzin			
RTECS # <u>DE35</u> UN # 1203	378-00-4					
TYPES OF HAZARD/ EXPOSUREACUTE HAZARDS/ SYMPTOMS			PREVENTION		FIRST AID/ FIRE FIGHTING	
FIRE	Highly flammable.		NO open flames, NO sparks, and NO smoking.		Powder, AFFF, foam, carbon dioxide.	
EXPLOSION	Vapour/air mixtures are explosive.		Closed system, ventilation, explosion-proof electrical equipment and lighting. Prevent build-up of electrostatic charges (e.g., by grounding).		In case of fire: keep drums, etc., cool by spraying with water.	
EXPOSURE						
•INHALATION	Confusion. Cough. Dizziness. Drowsiness. Dullness. Headache.		Ventilation, local exhaust, or breathing protection.		Fresh air, rest. Refer for medical attention.	
•SKIN	MAY BE ABSORBED! Dry skin. Redness.		Protective gloves. Protective clothing.		Remove contaminated clothes. Rinse and then wash skin with water and soap.	
•EYES	Redness. Pain.		Safety spectacles or eye protection in combination with breathing protection.		First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor.	
•INGESTION	Nausea. Vomiting. (See Inhalation).		Do not eat, drink, or smoke during work.		Rinse mouth. Do NOT induce vomiting. Give plenty of water to drink. Refer for medical attention.	
SPILLAGE DISPOSAL		STORAGE		PACKAGING & LABELLING		
Evacuate danger area! Consult an expert! Remove all ignition sources. Cover the spilled material with dry earth, sand or non-combustible material. Do NOT wash away into sewer. Do NOT let this chemical enter the environment. Personal protection:		Fireproof.		Note: T syn R: 45 S: 53-	ıbol -65	

self-contained breathing apparatus.

UN Packing Group: I

SEE IMPORTANT INFORMATION ON BACK

ICSC: 1400

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

International Chemical Safety Cards

GASOLINE

		1			
Ι	PHYSICAL STATE; APPEARANCE:	ROUTES OF EXPOSURE:			
Μ	MOBILE LIQUID PHYSICAL DANGERS:	The substance can be absorbed into the body by inhalation of its vapour, through the skin and by			
Р	The vapour is heavier than air and may travel	ingestion.			
0	along the ground; distant ignition possible. The vapour mixes well with air, explosive mixtures are easily formed. As a result of flow, agitation,	A harmful contamination of the air can be			
R	etc., electrostatic charges can be generated.	substance at 20°C.			
Т	CHEMICAL DANGERS:	EFFECTS OF SHORT-TERM EXPOSURE:			
Α	OCCUPATIONAL EXPOSURE LIMITS:	The substance is irritating to the eyes, the skin and the respiratory tract. If this liquid is swallowed, aspiration into the lungs may result			
N	TLV: 300 ppm as TWA, 500 ppm as STEL; A3 (confirmed animal carcinogen with unknown				
Т	relevance to humans); (ACGIH 2004).	EFFECTS OF LONG-TERM OR REPEATED EXPOSURE:			
D		The liquid defats the skin. The substance may			
Α		have effects on the central nervous system and liver . This substance is possibly carcinogenic to humans.			
Т		to numans.			
Α					
PHYSICAL PROPERTIES	Boiling point: 20-200°C Relative density (water = 1): 0.70 - 0.80 Solubility in water, g/100 ml: none Relative vapour density (air = 1): 3 - 4	Flash point: <-21°C Auto-ignition temperature: about 250°C Explosive limits, vol% in air: 1.3-7.1 Octanol/water partition coefficient as log Pow: 2-7			
ENVIRONMENTAL DATA	The substance is harmful to aquatic organisms.				
NOTES					
Depending on the degree of exposure, periodic medical examination is suggested. The product may contain additives which may alter the health and environmental effects.Card has been partly updated in April 2005. See section Physical properties.					
NFPA Code: H1; F3; R0; Transport Emergency Card: TEC (R)-30S1203					
ADDITIONAL INFORMATION					
		I			

ICSC: 1400	(C) IPCS, CEC, 1994
	Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use. The only modifications made to produce the U.S. version is inclusion of the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

DIESEL FUEL No. 2

ICSC # 1561 CAS # 68476-34-6 RTECS # LS9142500 UN # 1202 EC # 649-227-00-2 October 26, 2004 Validated TYPES OF ACUTE HAZARDS/ SYMPTOMS PREVENTION FIRST AID/ FIRE FIGHTING FIRE Flammable. Gives off irritating or toxic fumes (or gases) in a fire. NO open flames. Water spray, alcohol-resistant foam, dry powder, carbon dioxide. EXPLOSION Above 52°C explosive vapour/air fire. Above 52°C use a closed system, wentilation, and explosion-proof In case of fire: keep drums, etc., cool by spraying with water. EXPOSURE In case of fire: keep drums, etc., ventilation, local exhaust, or breathing protection. Fresh air, rest. Refer for medical attention. •SKIN Dry skin. Redness. Protective gloves. Rinse and then wash skin with water and soap. •LYES Redness. Pain. Safety goggles, or eye protection in combination with breathing protection. First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor. •LNGESTION (See Inhalation). Do not eat, drink, or smoke during work. Rinse mouth. Do NOT induce vomiting. Refer for medical attention. Collect leaking and spilled liquid in sealable containers as far as possible. Aborb remaining liquid in sand or inert absorbent and remove to safe place. Personal protection. filter respirator for organic gases and Well closed	Image: Second					
HAZARD/ EXPOSURE ACUTE HAZARDS/ SYMPTOMS PREVENTION FIRST AD/ FIRE FIGHTING FIRE Flammable. Gives off irritating or toxic fumes (or gases) in a fire. NO open flames. Water spray, alcohol-resistant foam, dry powder, carbon dioxide. EXPLOSION Above 52°C explosive vapour/air mixtures may be formed. Above 52°C use a closed system, wentilation, and explosion-proof In case of fire: keep drums, etc., cool by spraying with water. EXPLOSION Dizziness. Headache. Nausea. Ventilation, local exhaust, or breathing protection. Fresh air, rest. Refer for medical attention. •INHALATION Dizziness. Headache. Nausea. Ventilation, local exhaust, or breathing protection. Rinse and then wash skin with water and soap. •SKIN Dry skin. Redness. Protective gloves. Rinse and then wash skin with water and soap. •EYES Redness. Pain. Safety goggles, or eye protection in combination with breathing protection. First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor. •INGESTION (See Inhalation). Do not eat, drink, or smoke during work. Rinse mouth. Do NOT induce vomiting. Refer for medical attention. Collect leaking and spilled liquid in sealable containers as far as possible. Absorb remaining liquid in sand or inert absorbent and remove to safe place. Personal protection: filter respirator for organic gases and Well	ICSC # 1561 CAS # 68476-34-6 RTECS # LS9142500 UN # 1202 EC # 649-227-00-2					
FIRE or toxic fumes (or gases) in a fire. foam, dry powder, carbon dioxide. EXPLOSION Above 52°C explosive vapour/air mixtures may be formed. Above 52°C use a closed system, ventilation, and explosion-proof electrical equipment. In case of fire: keep drums, etc., cool by spraying with water. EXPOSURE Image: cool by spraying with water. Fresh air, rest. Refer for medical attention. •INHALATION Dizziness. Headache. Nausea. Ventilation, local exhaust, or breathing protection. Fresh air, rest. Refer for medical attention. •SKIN Dry skin. Redness. Protective gloves. Rinse and then wash skin with water and soap. •EYES Redness. Pain. Safety goggles, or eye protection in combination with breathing protection. First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor. •INGESTION (See Inhalation). Do not eat, drink, or smoke during work. Rinse mouth. Do NOT induce vomiting. Refer for medical attention. SPILLAGE DISPOSAL STORAGE PACKAGING & LABELLING Collect leaking and spilled liquid in sealable containers as far as possible. Absorb remaining liquid in sand or inert absorbent and remove to safe place. Personal protection: filter respirator for organic gases and Well closed. Note: H Xn symbol R: 40 S: 2-36/37 UN Hazard Class: 3	HAZARD/			PREVENTION		
EXPLOSION mixtures may be formed. ventilation, and explosion-proof electrical equipment. cool by spraying with water. EXPOSURE	FIRE	or toxic fumes (or gases) in a		NO open flames.		foam, dry powder, carbon
•INHALATION Dizziness. Headache. Nausea. Ventilation, local exhaust, or breathing protection. Fresh air, rest. Refer for medical attention. •SKIN Dry skin. Redness. Protective gloves. Rinse and then wash skin with water and soap. •EYES Redness. Pain. Safety goggles, or eye protection in combination with breathing protection. First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor. •INGESTION (See Inhalation). Do not eat, drink, or smoke during work. Rinse mouth. Do NOT induce vomiting. Refer for medical attention. Collect leaking and spilled liquid in sealable containers as far as possible. Absorb remaining liquid in sand or inert absorbent and remove to safe place. Personal protection: filter respirator for organic gases and Well closed. Note: H Xn symbol R: 40 S: 2-36/37 UN Hazard Class: 3	EXPLOSION			ventilation, and explosion-proof		
•INHALATION Dizziness. Headache. Nausea. Ventilation, local exhaust, or breathing protection. Fresh air, rest. Refer for medical attention. •SKIN Dry skin. Redness. Protective gloves. Rinse and then wash skin with water and soap. •EYES Redness. Pain. Safety goggles, or eye protection in combination with breathing protection. First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor. •INGESTION (See Inhalation). Do not eat, drink, or smoke during work. Rinse mouth. Do NOT induce vomiting. Refer for medical attention. Collect leaking and spilled liquid in sealable containers as far as possible. Absorb remaining liquid in sand or inert absorbent and remove to safe place. Personal protection: filter respirator for organic gases and Well closed. Note: H Xn symbol R: 40 S: 2-36/37 UN Hazard Class: 3	EXPOSURE					
•EYES Redness. Pain. Safety goggles, or eye protection in combination with breathing protection. First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then take to a doctor. •INGESTION (See Inhalation). Do not eat, drink, or smoke during work. Rinse mouth. Do NOT induce vomiting. Refer for medical attention. •INGESTION (See Inhalation). Do not eat, drink, or smoke during work. Rinse mouth. Do NOT induce vomiting. Refer for medical attention. Collect leaking and spilled liquid in sealable containers as far as possible. Absorb remaining liquid in sand or inert absorbent and remove to safe place. Personal protection: filter respirator for organic gases and Well closed. Note: H Xn symbol R: 40 S: 2-36/37 UN Hazard Class: 3	•INHALATION	Dizziness. Headache. Nausea.				· · · · · · · · · · · · · · · · · · ·
•EYES in combination with breathing protection. for several minutes (remove contact lenses if easily possible), then take to a doctor. •INGESTION (See Inhalation). Do not eat, drink, or smoke during work. Rinse mouth. Do NOT induce vomiting. Refer for medical attention. •INGESTION (See Inhalation). Do not eat, drink, or smoke during work. Rinse mouth. Do NOT induce vomiting. Refer for medical attention. Collect leaking and spilled liquid in sealable containers as far as possible. Absorb remaining liquid in sand or inert absorbent and remove to safe place. Personal protection: filter respirator for organic gases and Well closed. Note: H Xn symbol R: 40 S: 2-36/37 UN Hazard Class: 3	•SKIN	Dry skin. Redness.		Protective gloves.		
•INGESTION during work. vomiting. Refer for medical attention. SPILLAGE DISPOSAL STORAGE PACKAGING & LABELLING Collect leaking and spilled liquid in sealable containers as far as possible. Absorb remaining liquid in sand or inert absorbent and remove to safe place. Personal protection: filter respirator for organic gases and Well closed.	•EYES	Redness. Pain.		in combination with breathing		for several minutes (remove contact lenses if easily possible),
SPILLAGE DISPOSALSTORAGELABELLINGCollect leaking and spilled liquid in sealable containers as far as possible. Absorb remaining liquid in sand or inert absorbent and remove to safe place. Personal protection: filter respirator for organic gases andWell closed.Note: H Xn symbol R: 40 S: 2-36/37 UN Hazard Class: 3		(See Inhalation).			vomiting. Refer for medical	
sealable containers as far as possible.Note: HAbsorb remaining liquid in sand or inert absorbent and remove to safe place. Personal protection: filter respirator for organic gases andNote: HXn symbol R: 40 S: 2-36/37 UN Hazard Class: 3	SPILLAGE DISPOSAL		STORAGE			
	sealable containers as far as possible. Absorb remaining liquid in sand or inert absorbent and remove to safe place. Personal protection: filter		Note: H Xn symbol R: 40 S: 2-36/37		ymbol 36/37 Iazard Class: 3	
SEE IMPORTANT INFORMATION ON BACK		SEE		T INFORMATION ON	BACK	

ICSC: 1561

Prepared in the context of cooperation between the International Programme on Chemical Safety & the Commission of the European Communities (C) IPCS CEC 1994. No modifications to the International version have been made except to add the OSHA PELs, NIOSH RELs and NIOSH IDLH values.

International Chemical Safety Cards

DIESEL FUEL No. 2

ICSC: 1561

	[
I M	PHYSICAL STATE; APPEARANCE: BROWN SLIGHTLY VISCOUS LIQUID, WITH CHARACTERISTIC ODOUR.	ROUTES OF EXPOSURE: The substance can be absorbed into the body by inhalation of its aerosol.	
Р			
р С	PHYSICAL DANGERS:	INHALATION RISK: A harmful contamination of the air will not or will only very slowly be reached on	
R	CHEMICAL DANGERS:	evaporation of this substance at 20°C.	
Т	OCCUPATIONAL EXPOSURE LIMITS:		
Α	TLV: 100 ppm as TWA; (skin); A3; (ACGIH 2004).	cause effects on the central nervous system. If	
Ν		this liquid is swallowed, aspiration into the lungs may result in chemical pneumonitis.	
Т		EFFECTS OF LONG-TERM OR REPEATED EXPOSURE:	
D		The liquid defats the skin.	
Α			
Т			
Α			
PHYSICAL PROPERTIES	Boiling point: 282-338°C Melting point: -3018°C Density: 0.87 - 0.95 g/cm ³ Solubility in water, g/100 ml at 20°C: 0.0005 Flash point: 52°C c.c.	Auto-ignition temperature: 254-285°C Explosive limits, vol% in air: 0.6 - 6.5 Octanol/water partition coefficient as log Pow: > 3.3	
ENVIRONMENTAL DATA	The substance is harmful to aquatic organisms	s.	
		cal properties of the substance. This card does not	
address Diesel exhaust.		Transport Emergency Card: TEC (R)-30S1202	
		NFPA Code: H0; F2; R0;	
	ADDITIONAL INFORM	IATION	
ICSC: 1561	(C) IPCS, CEC, 1994	DIESEL FUEL No. 2	

IMPORTANT LEGAL NOTICE:	Neither NIOSH, the CEC or the IPCS nor any person acting on behalf of NIOSH, the CEC or the IPCS is responsible for the use which might be made of this information. This card contains the collective views of the IPCS Peer Review Committee and may not reflect in all cases all the detailed requirements included in national legislation on the subject. The user should verify compliance of the cards with the relevant legislation in the country of use. The only modifications made to produce the U.S. version is inclusion of the OSHA PELs, NIOSH RELs and NIOSH IDLH values.
-------------------------------	---

APPENDIX C List of Approved Amendments/changes HASP Acknowledgement/Agreement Form Visitors Log Tailgate Safety Meeting Form Air Quality Monitoring Record Equipment Calibration Log Checklist for Subsurface Investigation Monthly Heavy Equipment Safety Inspection Checklist

HEALTH AND SAFETY PLAN (HASP) List of Approved Amendments/Changes

Date	Name	Signature	Changes/Comments	Section Added

HEALTH AND SAFETY PLAN (HASP) Acknowledgement/Agreement Form

(All ATC, Subcontractor & Client Personnel Must Sign)

Client Site Name: <u>Former RJ Refinery</u> Project Site No. <u>170IFA0010</u>

I acknowledge I have reviewed a copy of the Health and Safety Plan for this project, understand it, and agree to comply with all of its provisions. I also understand I could be prohibited by the Site Health and Safety Coordinator or other ATC personnel from working on this project for not complying with any aspect of this Health and Safety Plan:

PRINT NAME	SIGNATURE	COMPANY	DATE

HEALTH AND SAFETY PLAN (HASP) Acknowledgement/Agreement Form

(All ATC, Subcontractor & Client Personnel Must Sign)

Client Site Name: <u>Former RJ Refinery</u> Project Site No. <u>170IFA0010</u>

I acknowledge I have reviewed a copy of the Health and Safety Plan for this project, understand it, and agree to comply with all of its provisions. I also understand I could be prohibited by the Site Health and Safety Coordinator or other ATC personnel from working on this project for not complying with any aspect of this Health and Safety Plan:

PRINT NAME	SIGNATURE	COMPANY	DATE

HEALTH AND SAFETY PLAN (HASP) Acknowledgement/Agreement Form

(All ATC, Subcontractor & Client Personnel Must Sign)

Client Site Name: <u>Former RJ Refinery</u> Project Site No. <u>170IFA0010</u>

I acknowledge I have reviewed a copy of the Health and Safety Plan for this project, understand it, and agree to comply with all of its provisions. I also understand I could be prohibited by the Site Health and Safety Coordinator or other ATC personnel from working on this project for not complying with any aspect of this Health and Safety Plan:

PRINT NAME	SIGNATURE	COMPANY	DATE

HEALTH AND SAFETY PLAN (HASP) Visitors Log

Client Site Name: <u>Former RJ Refinery</u> Project Site No. <u>170IFA0010</u>

PRINT NAME	SIGNATURE	COMPANY	DATE

Site Name & Number:	Former RJ Refinery
ATC Project No:	170IFA0010
Work Being Performed:	
Date & Time of Meeting:	
Name of Presenter:	

<u>NOTE</u>: On the initial day of the project, the Project Manager or designee should conduct a visual inspection of the project site (using the Site Safety Checklist) prior to the Tailgate Safety Meeting. This inspection should include a review of project site equipment, hazards, and specific job tasks, activities or operations to be performed for that day. These specific items must be covered during the Tailgate Safety Meeting. For subsequent days, any changes to the site or operations must be covered in the Tailgate Safety Meeting. In addition, "Task-Specific" Job Safety Analysis (JSA) for the tasks/activities at the project site must be integrated into the HASP and Tailgate discussions.

Itemize the Specific Topics Discussed (if more space is needed use the back of this page):

□ Are all employees okay?	□ Are all employees physically able to perform their job duties? □ "Shared Learning" items?
□ Has PPE been checked?	Emergency evacuation area identified? Asked for Sub interactions or questions?
Client Requirements - By	r checking the box to the left, the Presenter of the Tailgate Meeting acknowledges that all Client-

Client Requirements - By checking the box to the left, the Presenter of the Tailgate Meeting acknowledges that all Clien specific requirements have been completed for both ATC and Subcontractor employees.

Participants (if needed, list additional participants on back of this page):

Print Name	Signature	Company	Date

A Tailgate Safety Meeting must be conducted and documented at the beginning of each workday when two or more ATC employees and/or Subcontractor representatives are present on site. Employees, client representatives and subcontractors who arrive at the site after the Tailgate Safety Meeting has been conducted must be briefed on the topics and acknowledge by signing this form. The JSA must be completed at the beginning of each day when one or more ATC employees and/or subcontractor representatives are present on a site.

Site Name & Number:	Former RJ Refinery
ATC Project No:	170IFA0010
Work Being Performed:	
Date & Time of Meeting:	
Name of Presenter:	

<u>NOTE</u>: On the initial day of the project, the Project Manager or designee should conduct a visual inspection of the project site (using the Site Safety Checklist) prior to the Tailgate Safety Meeting. This inspection should include a review of project site equipment, hazards, and specific job tasks, activities or operations to be performed for that day. These specific items must be covered during the Tailgate Safety Meeting. For subsequent days, any changes to the site or operations must be covered in the Tailgate Safety Meeting. In addition, "Task-Specific" Job Safety Analysis (JSA) for the tasks/activities at the project site must be integrated into the HASP and Tailgate discussions.

Itemize the Specific Topics Discussed (if more space is needed use the back of this page):

□ Are all employees okay?	□ Are all employees physically able to perform their job duties? □ "Shared Learning" items?
□ Has PPE been checked?	Emergency evacuation area identified? Asked for Sub interactions or questions?
Client Requirements - By	r checking the box to the left, the Presenter of the Tailgate Meeting acknowledges that all Client-

Client Requirements - By checking the box to the left, the Presenter of the Tailgate Meeting acknowledges that all Clien specific requirements have been completed for both ATC and Subcontractor employees.

Participants (if needed, list additional participants on back of this page):

Print Name	Signature	Company	Date

A Tailgate Safety Meeting must be conducted and documented at the beginning of each workday when two or more ATC employees and/or Subcontractor representatives are present on site. Employees, client representatives and subcontractors who arrive at the site after the Tailgate Safety Meeting has been conducted must be briefed on the topics and acknowledge by signing this form. The JSA must be completed at the beginning of each day when one or more ATC employees and/or subcontractor representatives are present on a site.

Site Name & Number:	Former RJ Refinery
ATC Project No:	170IFA0010
Work Being Performed:	
Date & Time of Meeting:	
Name of Presenter:	

<u>NOTE</u>: On the initial day of the project, the Project Manager or designee should conduct a visual inspection of the project site (using the Site Safety Checklist) prior to the Tailgate Safety Meeting. This inspection should include a review of project site equipment, hazards, and specific job tasks, activities or operations to be performed for that day. These specific items must be covered during the Tailgate Safety Meeting. For subsequent days, any changes to the site or operations must be covered in the Tailgate Safety Meeting. In addition, "Task-Specific" Job Safety Analysis (JSA) for the tasks/activities at the project site must be integrated into the HASP and Tailgate discussions.

Itemize the Specific Topics Discussed (if more space is needed use the back of this page):

□ Are all employees okay?	□ Are all employees physically able to perform their job duties? □ "Shared Learning" items?
□ Has PPE been checked?	Emergency evacuation area identified? Asked for Sub interactions or questions?
Client Requirements - By	r checking the box to the left, the Presenter of the Tailgate Meeting acknowledges that all Client-

Client Requirements - By checking the box to the left, the Presenter of the Tailgate Meeting acknowledges that all Clien specific requirements have been completed for both ATC and Subcontractor employees.

Participants (if needed, list additional participants on back of this page):

Print Name	Signature	Company	Date

A Tailgate Safety Meeting must be conducted and documented at the beginning of each workday when two or more ATC employees and/or Subcontractor representatives are present on site. Employees, client representatives and subcontractors who arrive at the site after the Tailgate Safety Meeting has been conducted must be briefed on the topics and acknowledge by signing this form. The JSA must be completed at the beginning of each day when one or more ATC employees and/or subcontractor representatives are present on a site.

Site Name & Number:	Former RJ Refinery
ATC Project No:	170IFA0010
Work Being Performed:	
Date & Time of Meeting:	
Name of Presenter:	

<u>NOTE</u>: On the initial day of the project, the Project Manager or designee should conduct a visual inspection of the project site (using the Site Safety Checklist) prior to the Tailgate Safety Meeting. This inspection should include a review of project site equipment, hazards, and specific job tasks, activities or operations to be performed for that day. These specific items must be covered during the Tailgate Safety Meeting. For subsequent days, any changes to the site or operations must be covered in the Tailgate Safety Meeting. In addition, "Task-Specific" Job Safety Analysis (JSA) for the tasks/activities at the project site must be integrated into the HASP and Tailgate discussions.

Itemize the Specific Topics Discussed (if more space is needed use the back of this page):

□ Are all employees okay?	□ Are all employees physically able to perform their job duties? □ "Shared Learning" items?
□ Has PPE been checked?	Emergency evacuation area identified? Asked for Sub interactions or questions?
Client Requirements - By	r checking the box to the left, the Presenter of the Tailgate Meeting acknowledges that all Client-

Client Requirements - By checking the box to the left, the Presenter of the Tailgate Meeting acknowledges that all Clien specific requirements have been completed for both ATC and Subcontractor employees.

Participants (if needed, list additional participants on back of this page):

Print Name	Signature	Company	Date

A Tailgate Safety Meeting must be conducted and documented at the beginning of each workday when two or more ATC employees and/or Subcontractor representatives are present on site. Employees, client representatives and subcontractors who arrive at the site after the Tailgate Safety Meeting has been conducted must be briefed on the topics and acknowledge by signing this form. The JSA must be completed at the beginning of each day when one or more ATC employees and/or subcontractor representatives are present on a site.

Site Name & Number:	Former RJ Refinery
ATC Project No:	170IFA0010
Work Being Performed:	
Date & Time of Meeting:	
Name of Presenter:	

<u>NOTE</u>: On the initial day of the project, the Project Manager or designee should conduct a visual inspection of the project site (using the Site Safety Checklist) prior to the Tailgate Safety Meeting. This inspection should include a review of project site equipment, hazards, and specific job tasks, activities or operations to be performed for that day. These specific items must be covered during the Tailgate Safety Meeting. For subsequent days, any changes to the site or operations must be covered in the Tailgate Safety Meeting. In addition, "Task-Specific" Job Safety Analysis (JSA) for the tasks/activities at the project site must be integrated into the HASP and Tailgate discussions.

Itemize the Specific Topics Discussed (if more space is needed use the back of this page):

□ Are all employees okay?	□ Are all employees physically able to perform their job duties? □ "Shared Learning" items?
□ Has PPE been checked?	Emergency evacuation area identified? Asked for Sub interactions or questions?
Client Requirements - By	r checking the box to the left, the Presenter of the Tailgate Meeting acknowledges that all Client-

Client Requirements - By checking the box to the left, the Presenter of the Tailgate Meeting acknowledges that all Clien specific requirements have been completed for both ATC and Subcontractor employees.

Participants (if needed, list additional participants on back of this page):

Print Name	Signature	Company	Date

A Tailgate Safety Meeting must be conducted and documented at the beginning of each workday when two or more ATC employees and/or Subcontractor representatives are present on site. Employees, client representatives and subcontractors who arrive at the site after the Tailgate Safety Meeting has been conducted must be briefed on the topics and acknowledge by signing this form. The JSA must be completed at the beginning of each day when one or more ATC employees and/or subcontractor representatives are present on a site.

Air Quality Monitoring Record

DATE	TIME	LOCATION	INSTRUMENT	CONCENTRATION (UNITS)	SAMPLED BY

HEALTH AND SAFETY PLAN (HASP) Equipment Calibration Log

DATE	INSTRUMENT/ MODEL NO.	ZERO ADJUST OK?	CALIBRATION GAS (PPM)	READING (PPM)	LEAK CHECK	PERFORMED BY	COMMENTS

CHECKLIST FOR SUBSURFACE CLEARANCE

MUST be filled out PRIOR to the Start of Field Activities

NO subsurface work in road Right of Ways or Off-Site (property boundary) without Written Authorization

Site Name	Former RJ Refinery	Person Verifying Each Item to Place Initials On Lines Below and Sign Bottom of Page	Comments				
Site Address:	Princeton, IN	-					
Project No.:	170IFA0010						
	e this checklist correctly you must refer to and follow restigation Procedures.						
PRE-DRILLING PRE	PARATION						
	ical" and "Non-Critical" areas. gs, and/or approval to use private utility locator service and/or air bsurface utilities.						
Obtain Site access agree	ement.						
Pre-plan boring locations	5.						
Establish surface boring	method.		If not using Air Knife-type technology, why?				
Obtain permits and clear	rances.						
Do borehole and utility m	narkouts.						
Establish Site-specific H	ealth and Safety Plan						
Notify Client, owner, ope	rator prior to mobilization.						
ON-SITE PROCEDUI	RES						
Conduct tailgate safety r	neeting with topics as indicated in procedure.						
Read and follow Drilling/	Probing procedures						
2. Locate all markouts	rify that utility location checklist is complete. and planned borehole locations. Start intrusive procedures at nd perpendicular to utility markouts.						
3. Break surface cover							
4. Do surface boring to "air knife".	required depth using hand auger, post-hole digger, shovel or						
5. If necessary, use alt	ernate procedure for surface boring.						
6. Collect soil samples	by hand augering to required depth.						
7. Protect the borehole	from pedestrian and vehicular traffic.						

*Buried utilities can be found at any depth, but are most often found within the first 5 feet below the ground surface. Proceed slowly and with extra caution when working within 5 feet of the ground surface. NOTES:

SIGNATURE

DATE

NO subsurface work is read Dight of Move or Off Cite (gran arty boundary) without Mytitten Authorization										
NO subsurface work in road Right of Ways or Off-Site (property boundary) without Written Authorization										
Site Address: Princeton, IN If Present	If Present									
Site Safety Documents (on-site during activities) "Yes or No" Fill Out, as applicable	 "Yes or No" Fill Out, as applicable									
Utility Staking Request Form (properly completed for current scope of work)? Yes No Ticket # and Expir. Date: #	/ /									
Site Health and Safety Plan?YesNoHospital Location Map AvailableYes	No									
Identify on a Site Map the Location of ALL	i									
Utility Identification "color"Lines & Meters (or actual utility) andAbove Ground (AG) / Buried (B)SE, SW, or NW)	۱E,									
NW NE SE										
Natural Gas (Yellow) / Staked? AG / B Yes No SW NW NE SE										
Electrical (Red) / Staked? AG / B Yes No SW										
NW NE SE										
Telephone/Fiber Optic (Orange) / Staked? AG / B Yes No SW										
Cable TV (Orange) / Staked? AG / B Yes No SW										
NW NE SE										
Water (Blue) / Staked? AG / B Yes No SW										
Sewer (Green) / Staked? AG / B Yes No SW										
Sewer (Green) / Staked? AG / B Yes No SW Note: If any of the above listed utilities are not marked, contact the Project Manager immediately to discuss.										
Site Feature Located in Closest Prope Quadrant	erty									
(NE, SE, SW, or NW). Also Identify or Significant Site Features Site Map.	ı									
UST system (UST cavity, dispenser islands, piping runs, vent pipes etc.)? Yes No										
Above Ground Storage Tanks – ASTs (dispenser islands, piping runs)? Yes No										
Electrical Transformers? Yes No										
Area Lighting (Pole mounted lighting, etc.)? Yes No										
Signage with electrical power (Business/Company signs, etc.)? Yes No										
Underground lawn/landscaping sprinkler system? Yes No										
Storm drain catch basins / man-ways and potential connecting										
conduits/lines? Yes No "Other" Concerns Located in Closest	:									
Property Quadrant (NE SE SW, or NW) Ident	: f \.									
Other Quadrant (NE, SE, SW, or NW). Identi Other	пy									
Pavement distress (Cracked pavement, "buckled" asphalt, etc.)? Yes No										

*Buried utilities can be found at any depth, but are most often found within the first 5 feet below the ground surface. Proceed slowly and with extra caution when working within 5 feet of the ground surface.

Monthly Mobile/Heavy Equipment Safety Inspection Checklist This form is to be completed by the qualified operator of the equipment

Date:			ject		Sit	te/Location						
		No.	:		1:							
Equipment Type:				Model N	0.:				domete			
0 1 1							r:					
Operator/Ins	spector Na	me:						ach	-			
								lour				
	Warning: Do not operate a malfunctioning machine until corrective measures have been taken and all discrepancies have been cleared											
by a qualified operator/mechanic. In addition to elements on this checklist, the owner's manual for the specific piece of equipment being operated may contain other daily inspection checks and/or preventative maintenance procedures.												
operated may			or Qualification		PPE Supplies			Fire Extinguis	sher (ready-to-			
Genera	al Safety	 							use)			
		[Owner's Manual (present)			DriverCheck	(decal in		First-Aid Kit (present &			
		Ļ				place)			stocked)			
						Access Ladder (secure and ok)			Housekeeping (clean)			
				ency Kit (signs, flares)					Markers (cones, barricade			
									etc.)			
Vehicle, E	ngine, an	d r	Engine Oil (fluid level, Fuel Level				Other Fluid	id				
	c Systems		conditio	on)								
	(note any added fluid)		Transmission (fluid level, fluid condition, unit			Brake Fluid				ower steering		
			operati						fluid level, no steering)	iid level, no play in pering)		
			Radiator (coolant level, hose			- Fan Belts			Brakes (vehicle, parking)			
		L	condition	condition)		(tension/condition)						
		1		Hydraulic System (fluid level, fluid condition, hose condition, cylinders,		Chassis (proper lubrication)			Tires (condition, inflation)			
			leakag									
		ſ		Outriggers (operational, if equipped)								
			equipp			<u>ا</u>			<u> </u>			
Tracked Vehicles		i	Track Tension (proper tension)			Plates and/or	Shoes		Grouser Plate	es		
		Ľ										
			Rollers			Drive Sprocke	ets					
Lights a	nd alarm	e [[Headlig	hts (hi, low, run		Parking Light	s		Revolving Ela	ashing Lights (if		
			beams				0		required)			
(clean and functional)		י ר		e Lights (backup)		Equipment W			Horn			
		[Brake/	Brake/Tail Lights] Turn Signals/Hazard			Reverse Alar	ms (backup)		
						Flashers						
	le cab			Its (if required)	닏	Windshield W		IЦ	Body Damag			
(clean and functional)		al) 🕂	House	keeping	┟┝┥	2 Way Comm Horn (operati		┢	Speed/Hour I Windshield (c	glass ok, clean)		
				s Operational	Η	Mirrors (rear			Windshield (g			
Maintenance/ Equipment Request					Corrected By:			Date:				
						Conected	эу.		Dale.			
Inspectors S	ignature:											

Date

APPENDIX D Excavating & Trenching

All ATC employees and subcontractors shall be trained and be familiar with the OSHA Excavation Standard and the ATC Employee Health and Safety Policy Manual, Policy No. 16 (Excavation and Trenching) and Policy No. 33 (Subsurface Investigation).

1.0 UNDERGROUND UTILITIES

Prior to any work beginning, the estimated location of utility installations (such as sewer, telephone, fuel, electric, water lines, or any other underground installation) that reasonably may be expected to be encountered during excavation work must be determined prior to opening an excavation. Utility companies or owners shall be contacted and advised of the proposed work and asked to establish the location of the utility underground installations. When utility companies or owners cannot respond to a request to locate underground utilities within 24-48 hours (unless a longer period is required by State or local law), or cannot establish the exact location of these installations, the work may proceed, provided that the work is conducted with caution, and provided detection equipment or other acceptable means to located utilities are used.

When excavation operations approach the estimated location of underground installations (approximately 18 inches from the installation), the exact location of the installations shall be determined by a safe and acceptable means. While the excavation is open, underground installations shall be protected, supported, or removed to safeguard employees.

2.0 ENTERING EXCAVATIONS OR TRENCHES

Daily inspections of excavations, the adjacent areas, and protective systems shall be made by a "Competent Person" for evidence of a situation that could result in a possible cave-in, indications of failure of protective systems, hazardous atmospheres, or other hazardous conditions. An inspection shall be conducted by the Competent Person prior to the start of work and as needed throughout the shift. Inspections shall also be made after every rainstorm or other hazard-increasing occurrence. All inspections made by the Competent Person should be recorded in the field log book.

No person(s) shall perform work in a trench or excavation that contains accumulated water.

2.1.1 Access/Egress

A stairway, ladder, ramp, or other safe means of egress shall be located in trench excavations that are 4 feet or more in depth so as to require no more than 25 feet of lateral travel distance in any direction.

2.1.2 Exposure to Falling Loads

No employee or subcontractor is permitted underneath loads handled by lifting or digging equipment. All personnel shall be required to stand away from any vehicle being loaded or unloaded to avoid being struck by spilling or falling materials. Operators may remain in the cabs of vehicles being loaded or unloaded when the equipment is provided with a cab shield and/or canopy adequate to protect the operator from falling materials.

2.1.3 Warning Systems

When mobile equipment is operated adjacent to an excavation and the operators/drivers do not have a clear and direct view of the edge of the excavation, a warning system such as barricades, hand or mechanical signals, or stop logs are required.

2.1.4 Protection from Loose Rock or Soil

Adequate protection shall be provided to protect employees from loose rock or soil that could pose a hazard to personnel in the excavation. All temporary spoil piles shall be kept at least 2 feet away from the edge of the excavation. Spoil piles should be placed to channel rainwater or other run-off water away from the excavation.

2.1.5 Hazardous Atmospheres

All excavations deeper than 4 feet deep and which have the potential to have a hazardous atmosphere or oxygen deficient atmospheres (Less than 19.5% oxygen) must be tested to ensure safe working conditions, prior to entry. Air monitoring shall be conducted in accordance with Section 4.0 of the HASP.

2.1.6 Protective Systems

Each employee in an excavation shall be protected from cave-ins by an adequate protective system except when excavations are made entirely in stable rock or the excavation is less than 5 feet in depth and examination by the Competent Person provides no indication of a potential cave-in. Protective systems consist of sloping or benching, use of trench boxes or other shielding mechanisms, or the use of a shoring system in accordance with the regulations.

APPENDIX E Lockout/Tagout Requirements & Procedures

1.0 **DEFINITIONS**

- 1. <u>Lockout</u> Involves using a device such as a padlock, blank pipe flange, chain key block, etc. to isolate energy from employee exposure.
- 2. <u>Tagout</u> Involves applying a tag to the energy isolating device with written information concerning the date and name of person who applied the lock and tag.

2.0 LOCKOUT/TAGOUT POLICY

This procedure establishes the minimum requirements for lockout/tagout of electrical energy sources, mechanical, hydraulic, pneumatic, thermal or chemical process energy. It is to be used to ensure that conductors and circuit parts are disconnected from sources of electrical energy, locked (tagged), and tested before work begins where employees or subcontractor could be exposed to dangerous conditions. Sources of stored energy, such as capacitors or springs, shall be relieved of their energy, and a mechanism shall be engaged to prevent the re-accumulation of energy.

Lockout/tagout procedures shall be used prior to performing tie-in operations, maintenance, repair or adjustment of any device where exposure to hazardous energy sources may occur.

3.0 **RESPONSIBILITY**

All effected employees and subcontractors shall be instructed in the safety significance of the lockout/tagout procedure. All new or transferred employees and all other persons whose work operations are or might be in the area shall be instructed in the purpose and use of this procedure. The ATC Project Manager shall ensure that appropriate personnel receive instructions on their roles and responsibilities. All persons installing a lockout/tagout device shall sign their names and the date on the tag and on the Lockout/Tagout Isolation Record (see Appendix E.1).

4.0 PREPARATION FOR LOCKOUT/TAGOUT

- 1. Review current diagrammatic drawings (or other equally effective means), tags, labels, and signs to identify and locate all disconnecting means to determine that the source of energy is interrupted by a physical break and not deenergized by a circuit interlock. Make a list of disconnecting means to be locked/tagged.
- 2. Review other work activities to identify where and how other personnel might be exposed to sources of energy. Establish energy control methods for control of other hazardous energy sources in the area.
- 3. Provide an adequately rated voltage detector to test each electrical phase conductor or circuit part to verify that they are deenergized. Test the voltage detector to make sure that it is working properly.

5.0 LOCKOUT PROCEDURE

- 1. Complete the Lockout/Tagout Isolation Record (see Appendix E.1).
- 2. All affected employees in the area shall be notified that a lockout is being performed.
- 3. The equipment being locked out shall be shut down using normal shutdown procedures. (i.e. operator's control station, stop button, etc.).
- 4. Any residual energy shall be identified and dissipated at this time.

5. All equipment energy sources shall be neutralized. (i.e. electrical disconnects shall be opened, valves closed, blanks inserted in piping, springs returned to neutral position, other energy sources as required)

APPENDIX E

Lockout/Tagout Requirements & Procedures

- 6. The qualified employee performing the lockout shall place his/her personal lock and tag on EACH energy isolation point isolated in Step 4. If more than two (2) isolation points are required to lockout the device, a group lockbox may be used. A tag indicating all persons who applied a lock, date, time, equipment type, and number and duration of lockout shall also be applied at this time. A subcontractor representative and an ATC employee shall also apply a lock at this time.
- 7. Test the lockout by clearing the area and attempting to operate the machine or attempting to operate disconnecting means to determine that the operation is prohibited. A voltage-detecting instrument should be used for electrical components. Inspect the instrument prior to use for physical damage and operation.

6.0 REMOVAL OF LOCKOUT/TAGOUT

- 1. Upon completion of the lockout an authorized employee must check the area for completeness of work. If the employee who initiated the lockout is available, he/she should conduct this inspection.
- 2. Remove all tools and nonessential items from the area.
- 3. Replace all guards.
- 4. Ensure all employees are clear of the equipment/process.
- 5. Notify all affected employees in the area that the lockout device(s) are being removed.
- 6. Remove lockout device(s).
- 7. Restart the machine to insure proper operation.

7.0 GROUP LOCKOUT

- 1. When multiple isolation points, three (3) or more, must be controlled during a lockout, or when multiple persons (craft) are involved, a group lockout shall be used.
- 2. Follow the steps for a normal lockout as documented in steps 1-6 above.
- 3. Each key for the locks used shall be placed in a group lockout box. The group lockbox shall be kept in view of the work being performed when practical.
- 4. A Job Control Lock shall be installed on the group lockbox by an ATC Employee. This lock shall remain in place until the lockout has been completed.
- 5. Each employee shall remove their own lock when their portion of the work is completed or at the end of each shift.
- 6. Upon completion of the work, the ATC employee shall inspect the work area for completeness.
- 7. When all of the conditions of the lockout termination procedures have been satisfied, the Job Control Lock shall be removed from the group lockbox.

8.0 EMERGENCY REMOVAL LOCKOUT/TAGOUT DEVICE

- If an employee leaves the facility without removing his/her lock and tag, an effort shall be made to notify the employee that the supervisor in charge will authorize the removal of their lock. It must be deemed necessary that removal of the lock is required by at least two supervisory personnel, but only after confirming beyond any doubt it is safe to do so.
- 2. Verify the employee has left the Site.
- 3. Check with co-workers.

- 4. Check the employee's time card.
- 5. Attempt to reach him/her at home.

APPENDIX E Lockout/Tagout Requirements & Procedures

- 6. Verify the employee is not in the equipment.
- 7. Visually confirm the completeness of work.
- 8. Contact the Regional Safety Coordinator and the Project Manager.
- 9. An authorized employee, under the direct supervision of an ATC Supervisor shall remove the lock.
- 10. Upon return to the Site by the employee involved, he/she shall be informed of the removal.
- 11. A review of the incident may be conducted by the ATC RSC Coordinator to determine any disciplinary actions necessary.

APPENDIX E-1 Lockout/Tagout Isolation Record

System:			Isolat		Stat	us	Tagging Authority				
Equipment Tag:			Equipment Descri		_ Constru	ction					
					Start						
]] Dperatio	ons				
LOTO No.	DNO Tag No.	Equipment Tag No.	Equipment Descriptior	Pos.	LOTO Placed B	By:	Date LOTC		Removed BY	: Date	
Tagging		1							1		
Authority Approval:		Signature				Date					
			H	Older Lis	st:						
PTW No.		Signed Onto LOTO Name				Signe	d Off LOT Name	0	Date / Time		