

PHASE II ENVIRONMENTAL SITE ASSESSMENT REPORT

The Butler Company 325 South Broadway Street Butler, DeKalb County, Indiana 128(a) Response Program Grant Indiana Brownfields Site ID: 4170705

Prepared For:

Ms. Tracey Michael, Project Manager Indiana Brownfields Program 100 N. Senate Ave., Rm. 1275 Indianapolis, IN 46204

Prepared by:

IWM Consulting Group, LLC 1015 Production Road Fort Wayne, Indiana 46808 (260) 497-9620

Project: 19-716-10

Date: July 31, 2019

TABLE OF CONTENTS

<u>Page</u>

TABLE OF CONTENTS i
TABLESiii
FIGURESiii
APPENDICESiii
1.0 EXECUTIVE SUMMARY 1
1.1 Phase II ESA Activities
1.2 Phase II ESA Results
1.2.1Geophysical Survey21.2.2Asbestos Survey Results21.2.3Lead Paint Survey Results21.2.4Chemical Inventory Results31.2.5Subsurface Soil Analytical Results31.2.6Groundwater Analytical Results31.2.7Soil Gas Analytical Results41.2.8Hydrogeology4
1.3 Conclusions and Recommendations
2.0 SITE BACKGROUND/HISTORY
3.0 POTENTIAL AND KNOWN CONTAMINANTS OF CONCERN (COCs)
4.0 PROPOSED REUSE OF SITE AND REGULATORY GUIDANCE
5.0 SCOPE OF WORK & METHODOLOGIES
5.1 Proposed Scope of Work7
5.2 Geophysical Survey Methodology
5.3 Asbestos Survey Methodology
5.4 Lead Paint Survey Methodology
5.5 Chemical Inventory Methodology
5.6 Subsurface Sampling & Decontamination Methodology

		8
6.0	GEOPHYSICAL SURVEY RESULTS	11
7.0	ASBESTOS SURVEY RESULTS	11
8.0	LEAD PAINT SURVEY RESULTS	
9.0	CHEMICAL INVENTORY RESULTS	12
10.0	SOIL BORING INSTALLATION & SAMPLING ACTIVITIES	
10.	0.1 Soil Sampling Activities	
10.	0.2 Groundwater Sampling Activities	14
10.	0.3 Groundwater Gauging Activities	14
10.	0.4 Soil Vapor Sampling Activities	15
11.0	SOIL INVESTIGATION RESULTS	15
11.	.1 Lithological Description	15
11.	.2 Laboratory Analytical Results Summary – Soil	15
12.0	GROUNDWATER INVESTIGATION RESULTS	16
12.	2.1 Hydrogeology	17
13.0	SOIL VAPOR INVESTIGATION RESULTS	17
14.0	WELLHEAD PROTECTION	17
15.0	QAPP FIELD AUDIT & DATA ASSESSMENT REPORT	
16.0	CONCLUSIONS AND RECOMMENDATIONS	

TABLES

- Table 1Summary of Bulk Asbestos Sample Laboratory Results
- Table 2Summary of Lead Paint Screening Results
- Table 3Summary of Chemical Inventory
- Table 4Summary of Groundwater and Well Measurements
- Table 5Summary of Soil Metals Analytical Results (mg/kg)
- Table 6Summary of Soil PAH Analytical Results (mg/kg)
- Table 7Summary of Soil VOC and PCB Analytical Results (mg/kg)
- Table 8Summary of XRF and Lead Analytical Results
- Table 9Summary of Soil PFAS Analytical Results (µg/kg)
- Table 10Summary of Groundwater Metals Analytical Results (µg/L)
- Table 11 Summary of Groundwater PAH, VOC, and PCB Analytical Results (µg/L)
- Table 12Summary of Groundwater PFAS Analytical Results (ng/L)
- Table 13Summary of Soil Gas Analytical Results ($\mu g/m^3$)

FIGURES

- Figure 1 Site Location Map
- Figure 2 Site Plan and Sample Location Map
- Figure 3 Bulk Asbestos and Lead Paint Sample Location Map
- Figure 4 Soil Analytical Results Map
- Figure 5 Groundwater Potentiometric Map

APPENDICES

- Appendix A DeKalb County Assessor Property Card and Tax Deed
- Appendix B Waste Disposal Documentation
- Appendix C GPRS Job Summary
- Appendix D Laboratory Analytical Report Bulk Asbestos
- Appendix E Laboratory Analytical Report Lead Paint
- Appendix F Chemical Inventory Photographs
- Appendix G Soil Boring Logs, Temporary Well Diagrams, and Soil Vapor Probe Logs
- Appendix H Water Parameter Monitoring Forms
- Appendix I Maxwell Surveying & Engineering Survey Data, May 24, 2019
- Appendix J Soil Gas Sampling Data Sheet
- Appendix K Laboratory Analytical Reports Soil
- Appendix L Laboratory Analytical Reports Groundwater
- Appendix M Laboratory Analytical Report Soil Gas
- Appendix N Wellhead Protection Area and IDNR Water Well Documentation
- Appendix O Field Audit Report and Data Assessment Report

1.0 EXECUTIVE SUMMARY

In accordance with the Indiana Brownfields Program (IBP) and United States Environmental Protection Agency (US EPA) approved Sampling and Analysis Plan (SAP) dated April 16, 2019, Industrial Waste Management Consulting Group, LLC (IWM Consulting) conducted a Phase II Environmental Site Assessment (Phase II ESA) of The Butler Company property located at 325 South Broadway Street in Butler, DeKalb County, Indiana (Site). The objective of the investigation was to determine the presence/absence, nature and potential extent of contamination at the Site due to historical activities/operations. The environmental investigation was completed between May 15, 2019 and June 18, 2019.

The following is a brief summary of the report. Please refer to the full text of this report in its entirety for a comprehensive understanding of the information presented in this Executive Summary, as specifics are not fully discussed in this section.

<u>1.1</u> Phase II ESA Activities

IWM Consulting conducted Phase II ESA field activities between May 15, 2019 and June 18, 2019. During the course of this assessment the following investigative activities were completed:

- A geophysical survey of the Site was completed by Ground Penetrating Radar Systems Inc. (GPRS), to identify potential buried underground storage tanks (USTs) and/or other buried objects that may pose an environmental risk to the Site.
- An asbestos survey of the building materials contained in debris piles (previously razed building structures) and the buildings still standing on the Site.
- A lead paint survey of the building materials contained in debris piles and the buildings still standing on the Site was performed with a hand-held X-ray fluorescence (XRF) analyzer.
- A chemical inventory of potential containerized petroleum and/or hazardous substances remaining on the Site was completed.
- Installation of nine (9) subsurface soil borings (BC-GP1 through BC-GP9) to depths of one (1) to two (2) feet beneath previously identified fill material at depths ranging from two (2) to seven (7) feet below surface grade (bsg). The collection and analysis of eighteen (18) soil samples from the fill and underlying clay material.
- Installation of six (6) subsurface soil borings (BC-GP10 through BC-GP15) at depths up to 20 feet bsg to collect soil and groundwater samples for analysis.
- Installation of fifteen (15) shallow soil borings to a depth of two (2) feet bsg to delineate lead impacts in near surface soils in the vicinity of BC-GP3 and SES Environmental (SES) boring location "BC".
- Groundwater was collected and analyzed from six (6) temporary groundwater monitoring wells installed in borings BC-GP10 through BC-GP15.

- Collection and analysis of five (5) soil and five (5) groundwater samples from BC-GP10, BC-GP11, BC-GP12, BC-GP13, and BC-GP14 for analysis of polyfluoroalkyl substances (PFOAs) and perfluoroalkyl substances (PFOS), collectively identified as PFAS, from areas of the Site possibly impacted from fire-fighting chemicals during previous fires at the Site.
- Installation of three (3) soil vapor probes adjacent to soil borings that displayed elevated vapor readings during field screening and the subsequent attempted collection of soil gas samples for laboratory analysis.
- A professional survey by Maxwell Surveying & Engineering to locate the horizontal position of subsurface boring locations and the horizontal and vertical location of the temporary monitoring wells.

<u>1.2</u> Phase II ESA Results

1.2.1 Geophysical Survey

A geophysical survey was performed/attempted on the Site by GPRS on May 15, 2019 to determine the presence/absence of the USTs and/or product piping on the Site. Not all areas of the Site could be scanned due to interference from debris. No buried metallic objects were detected/identified; however, two (2) areas with relic utilities were identified.

<u>1.2.2 Asbestos Survey Results</u>

For asbestos-sampling purposes, due to the conditions of the buildings at the Site, building materials were divided into five (5) primary areas (West Central Building debris, East Central Building debris, Central Shed/Kiosk, North Building, and East Building). A total of thirty (30) bulk samples of suspect asbestos-containing materials (ACMs) from each homogeneous area were collected in accordance with the requirements of 40 CFR 763.86. The suspect ACM samples included roofing materials, brick façade mortar, electrical wire insulation, transite-like panels, fire brick mortar, fire brick, window sealant, and electrical board paper backing.

Roofing material samples from several locations contained between <1 and 5% chrysotile.

Two (2) transite panel samples (BC-AB13 and BC-AB14) collected from the East Central Building exhaust stack debris contained 15-20% chrysotile. One (1) friable sample of paper backing (BC-AB21) collected from an electrical panel located near the East Central Building stack debris contained 40% chrysotile.

1.2.3 Lead Paint Survey Results

IWM Consulting collected one (1) representative paint chip sample from the building near the east Site boundary, where the XRF instrument indicated a positive reading (>1.0%). The paint chip sample (red paint) was collected from the doorframe on the east side of the building and had a lead concentration of 18,000 parts per million (ppm), or 1.8 percent by weight.

1.2.4 Chemical Inventory Results

Several containerized chemicals including paints, dyes, and water treatment chemicals were identified within Site buildings and on exterior portions of the Site.

1.2.5 Subsurface Soil Analytical Results

IWM Consulting obtained a total of twenty-four (24) soil samples, comprised of both surface and subsurface soil samples, for the analysis Resource Conservation and Recovery Act (RCRA) 8 metals including copper and zinc and percent moisture. Additional soil samples were also submitted from each soil boring location for laboratory analysis of the toxicity characteristic leaching procedure (TCLP) RCRA 8 metals and hexavalent chromium (Cr (VI)), if necessary. Based on analytical results, Cr (VI) analysis was performed on BC-GP6-SB1 (3-4'), BC-GP8-SS1 (2-3'), and BC-GP9-SS1 (1-2') and TCLP lead analysis was performed on BC-GP3-SS1 (1-2'). Two (2) subsurface soil samples were collected from BC-GP7-SB1 (3-4') and BC-GP8-SB1 (3-4') for the analysis of volatile organic compounds (VOCs), polynuclear aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) analysis. Eight (8) additional shallow soil samples collected from the vicinity of BC-GP3 and SES boring "BC" were analyzed for lead and percent moisture.

No VOCs, PAHs, or PCBs were detected at concentrations exceeding their respective Indiana Department of Environmental Management (IDEM) *Remediation Closure Guide* (RCG) Residential Migration to Groundwater Screening Levels (Res MTGSLs) in any soil sample.

Each of the RCRA 8 metals including copper and zinc, except silver, were detected above their respective laboratory reporting limits (LRLs) in soil samples analyzed from the Site. Arsenic and lead were each detected in excess of their respective RCG Res MTGSLs, Residential Direct Contact Screening Levels (RDCSLs), and/or Commercial/Industrial Direct Contact Screening Levels (IDCSLs) in several soil samples. Due to the elevated concentration of lead detected in BC-GP3-SS1 (1-2'), TCLP lead analysis was performed on the sample. The three (3) soil samples exhibiting the highest concentrations of total chromium were also submitted for analysis of Cr (VI). The results indicate that Cr VI is not present in soil at concentrations exceeding RCG RDCSLs.

Due to the concentrations of lead detected in BC-GP3-SS1 (1-2') at 3,160 milligram per kilogram (mg/kg) and SES boring "BC" (7,160 mg/kg and 28,700 mg/kg in the duplicate), shallow soil samples from depths of 1 to 2 feet bsg were collected from 5- to 10-feet in each cardinal direction of the aforementioned borings. Analytical results for the shallow soil samples identified lead at concentrations exceeding RCG Excavation Worker Direct Contact Screening Levels (EX DCSLs) in soil near these borings.

Five (5) soil samples and a duplicate were collected and analyzed for PFAS from borings BC-GP10, BC-GP11, BC-GP12, BC-GP13, and BC-GP14. The PFAS Perfluorooctanoic Acid (PFOA) and Perfluorooctanesulfonic Acid (PFOS) were detected in some of the samples ranging between 0.46 and 0.61 μ g/kg.

1.2.6 Groundwater Analytical Results

IWM Consulting obtained a total of six (6) groundwater samples for the analysis of VOCs, PAHs, total and dissolved RCRA 8 metals including copper and zinc, PCBs, and/or PFAS.

No VOCs, PAHs, RCRA 8 metals including copper and zinc, or PCBs were detected in any groundwater sample at concentrations exceeding their respective RCG Residential Tap Groundwater Screening Levels (Res TAP GWSLs).

Five (5) groundwater samples and a duplicate were collected and analyzed for PFAS from borings BC-GP10, BC-GP11, BC-GP12, BC-GP13, and BC-GP14. Eight (8) different PFAS compounds were detected in groundwater samples collected from BC-GP12 and/or BC-GP13 ranging from between 3.0 and 23 ng/L. Total PFAS ranged from 30.3 to 48.6 ng/L in BC-GP12 and BC-GP13, respectively.

1.2.7 Soil Gas Analytical Results

IWM Consulting obtained one (1) soil gas sample (BC-SG2) and its duplicate (BC-SG-FD1) for the analysis of VOCs. No contaminants were detected in the soil gas samples at concentrations exceeding their respective calculated RCG Commercial/Industrial Soil Gas Vapor Exposure Screening Levels (Indus SGe VESLs). Water infiltration and/or tight clays prevented the collection of soil gas samples from BC-SG1 and BC-SG3.

1.2.8 Hydrogeology

Groundwater flow beneath the site was determined based on groundwater elevations from the temporary wells to flow to the south-southeast. The groundwater present beneath the site appears to be located within sandy unconsolidated sediments at depths ranging from approximately 19.63 feet bsg (BC-GP11) to approximately 21.18 feet bsg (BC-GP14). Groundwater flow was determined by surveying the elevations of the six (6) temporary well casings to within 1/10th of a foot and the spatial well placement on the Site to within 1/10th of a foot. Groundwater elevations were calculated based on gauging data collected on May 22, 2019.

1.3 Conclusions and Recommendations

Due to the significant debris and metallic objects on the ground surface at the Site, the geophysical survey could not be successfully completed with the equipment utilized at the time of the survey. No obvious buried metallic objects resembling USTs were identified during the geophysical survey.

ACMs were identified in roofing materials and exhaust stack components in the vicinity of the East Central Building and North Building. Asbestos is present in some of the building materials and should be handled appropriately.

Lead based paint (LBP) was identified (1.8 percent by weight) on the East Building associated with the red paint, but is below actionable concentrations of 5 percent by weight. Disposal considerations for these materials should be discussed with the disposal facility.

Several containerized chemicals were identified in the North Building and near the East Building. An inventory of these materials was performed. However, none of these materials were sampled and/or analyzed to determine disposal options.

In general, the most significant lead and arsenic soil impacts are in surface soils ranging from 0- to 3-feet bsg. No contaminants were detected in groundwater at concentrations exceeding their respective RCG Res TAP GWSLs.

PFAS were detected in both soil and groundwater. There are currently no IDEM RCG screening levels for soil or groundwater impacted with PFAS.

No contaminants were detected in soil gas at concentrations exceeding their respective calculated RCG Indus SGe VESLs.

2.0 SITE BACKGROUND/HISTORY

The Site is located at 325 South Broadway Street, north of East Willow Street, in Butler, Indiana as indicated on **Figure 1** (Site Location Map). Additionally, the Site is located in the southwest ¼ of the northwest ¼ of the northwest ¼ of Section 12, Township 34 North, Range 14 East in Wilmington Township, DeKalb County, Indiana. The Site is roughly rectangular in shape and contains a total of 3.55-acres in one (1) parcel. According to the property card from the DeKalb County Assessor, provided in Appendix A, the parcel number is 17-07-12-109-001.000-027. A copy of the Tax Deed for the Site is also provided in Appendix A. A map depicting the surrounding area of the Site is included as Figure 2 (Site Map and Sample Location Map).

A review of the Phase I ESA (dated November 10, 2017) performed for the Site by SES on behalf of the City of Butler indicated that the Site operations between 1888 and 1997 included a machine shop, painting and varnishing shops, plating operations, a foundry, and a chemical company. The ESA also identified at least three (3) buried tanks, possibly corresponding to the USTs located on various portions of the Site as shown on historical Sanborn Fire Insurance Rate Maps. The recognized environmental conditions (RECs) identified by SES in the 2017 Phase I ESA included the following:

- **REC#1** Historic manufacturing operations conducted at the site from at least 1898 until 1997 included a machine shop, painting and varnishing shops, plating, a foundry, and a chemical company. Hazardous substances and petroleum products including but not limited to oil, petroleum fuels, solvents, and/or metals were likely stored and used at the site. The potential exists of releases of hazardous substances or petroleum products to have occurred during the long history of manufacturing operations at the site.
- **REC#2** During investigation of a petroleum release at the east adjacent bulk plant, chlorinated solvents including trichloroethylene (TCE) were detected in a groundwater sample obtained approximately 200 feet east of the site. While IDEM issued "No Further Action" status to the petroleum release, the source and extent of chlorinated solvent impact in groundwater was not determined.
- **REC#3** Evidence of underground storage tanks was not observed during the site inspection; however, a 10-barrel buried oil tank is depicted on the central portion of the site on a historical map from 1897, a gasoline tank is shown on the northeast portion of the site on a map from 1914, and a gasoline tank is shown west of the site beneath South Broadway Street on a map from 1923.

A Phase II ESA dated June 13, 2018 was performed at the Site by SES for the City of Butler. The Phase II included the advancement of seven (7) soil borings, each with a temporary monitoring well. However, groundwater was only identified in six (6) of the temporary wells. Soils encountered in the borings consisted of fill material (bricks, paint chips, cinders, slag, coarse gravel, and wood) which ranged in depth from the surface to about 8 feet bsg. Soils beneath the fill were typically clay with some intermittent sand seams. The borings ranged in depth from 12 to 20 feet bsg. Soil and groundwater samples were analyzed for VOCs, PAHs, and total RCRA 8 metals, including copper and zinc. The Phase II ESA did not identify VOCs, PAHs,

or PCBs in soil and/or groundwater samples collected at the Site that exceeded their respective IDEM RCG Screening Levels. Numerous soil samples had elevated metals concentrations in excess of their respective RCG RDCSLs, IDCSLs, and Res MTGSLs. Lead was detected in one (1) soil sample in excess of its RCG EX DCSL of 1,000 mg/kg.

3.0 POTENTIAL AND KNOWN CONTAMINANTS OF CONCERN (COCs)

Based upon the historical information obtained regarding the subject Site and the IBP's Request for Proposal (RFP), the following potential contaminants of concern were characterized during these Site assessment activities:

- Asbestos using PLM/DS with EPA Method 600/R-93/116 (ACM);
- Lead paint using SW-846 Method 7000B (paint chips);
- VOCs using SW-846 Method TO-15 (soil gas);
- VOCs using SW-846 Method 8260 (soil and groundwater);
- PAHs using SW-846 Method 8270 SIM (soil and groundwater);
- Total RCRA 8 metals including copper and zinc using the appropriate SW-846 Method (soil and groundwater);
- Dissolved RCRA 8 metals including copper and zinc using the appropriate SW-846 Method (groundwater);
- Cr VI low level using SW-846 Method 7199 (soil);
- TCLP metals using SW-846 Method 1311/6010 and/or 1311/7471 (soil);
- PCBs using SW-846 Method 8082 (soil and groundwater);
- Perfluoroalkyl and polyfluoroalkyl substances (PFAS) using SW-846 Method 537M (soil and groundwater); and,
- Percent moisture (soil).

4.0 PROPOSED REUSE OF SITE AND REGULATORY GUIDANCE

The City of Butler Planning Department indicated that the Site may be redeveloped by a local commercial entity that has expressed interest in the Site. The soil analytical results obtained as part of these assessment activities were compared with the applicable 2019 RCG Screening Levels for soil exposure (including residential direct contact, migration to groundwater, and recreational direct contact, if applicable) and the groundwater results were compared to the residential tap screening levels as outlined in Table A-6, Appendix A, of the IDEM RCG, updated March 4, 2019.

5.0 SCOPE OF WORK & METHODOLOGIES

5.1 Proposed Scope of Work

Per the approved SAP, IWM Consulting originally proposed the following scope of work:

- Perform a geophysical survey of the Site to determine if the historical USTs were still present at the Site and/or other buried objects that may pose an environmental risk to the Site were present.
- Perform an asbestos survey of the building materials contained in debris piles (previously razed building structures) and the buildings still standing on the Site.
- Perform a lead paint survey of the building materials contained in debris piles and the buildings still standing on the Site.
- Complete a chemical inventory of potential containerized petroleum products and/or hazardous substances remaining on the Site.
- Install nine (9) soil borings (BC-GP1 through BC-GP9) to one (1) to two (2) feet beneath the fill material which was identified during a previous subsurface investigation at depths ranging from two (2) to seven (7) feet bsg to investigate the current environmental condition of the fill material and underlying clay related to historical Site operations.
- Install six (6) subsurface soil borings (BC-GP10 through BC-GP15) up to 20 feet bsg to investigate the current soil conditions related to historical Site operations.
- Install six (6) temporary groundwater monitoring wells in BC-GP10 through BC-GP15 to determine whether the aquifer has been adversely impacted by historical operations at the Site.
- Analyze select soil and groundwater samples for PFAS to determine their presence.
- Install three (3) soil gas probes adjacent to soil borings which displayed elevated vapor readings during field screening to investigate the potential for vapor intrusion.
- If necessary, perform additional analyses based on initial analytical results and consultation with the IBP Project Manager which include soil samples for Cr VI and TCLP metals and groundwater samples for dissolved RCRA metals including copper and zinc.

The above scope of work was successfully completed (with limited exceptions) as discussed in the following sections of this report. The selection of the final boring locations was based on utility locations and above ground Site features. Site features, utility lines, and boring locations are illustrated on **Figure 2**.

5.2 Geophysical Survey Methodology

Three (3) buried tanks were previously identified on the Site based on a review of historical Sanborn Fire Insurance Rate Maps. A geophysical survey was performed/attempted on the Site by GPRS on May 15, 2019

to determine the presence/absence of the tanks and/or product piping on the Site. GPRS utilized an RD 7000/8000 Radio Frequency detector and a 400-megahertz (MHz) ground penetrating radar (GPR) antenna to identify buried objects on the Site and clear borings prior to the subsurface investigation. Not all areas of the Site could be scanned due to interference from building debris (i.e., wood, metal, concrete, etc.) debris. No buried metallic objects were detected/identified; however, two (2) areas with relic utilities were identified.

5.3 Asbestos Survey Methodology

The asbestos survey included a visual walkthrough at the Site by an Indiana licensed asbestos inspector to identify the presence and general locations of suspect ACMs. The licensed asbestos building inspector conducted an inspection of the accessible building materials contained in debris piles (previously razed building structures) and of the buildings still standing on the Site in accordance with NESHAP requirements for building demolition. Suspect ACMs were located and the materials were delineated into homogeneous areas (areas of suspect ACM that are uniform in color and texture and were installed at the same time for the same purpose).

A total of thirty (30) bulk samples of suspect ACMs from each homogeneous area were collected in accordance with the requirements of 40 CFR 763.86. The suspect ACM samples included roofing materials, brick façade mortar, electrical wire insulation, transite-like panels, fire brick mortar, fire brick, window sealant, and electrical board paper backing. The locations of the bulk samples and homogenous areas are shown on **Figure 3** (**Bulk Asbestos and Lead Paint Sample Location Map**). Standard sampling protocol was employed throughout the inspection, with sampling tools being cleaned between samples and chain-of-custody procedures being observed. The samples were submitted to EMSL Analytical, Inc. (EMSL) of Indianapolis, Indiana, a laboratory accredited to conduct asbestos bulk analyses under the National Voluntary Laboratory Accreditation Program (NVLAP) (Lab Code: 200188-0), and analyzed for asbestos using polarized light microscopy/dispersion staining (PLM/DS) in accordance with EPA Method 600/R-93/116.

5.4 Lead Paint Survey Methodology

The lead paint survey included a visual walkthrough at the Site by an Indiana licensed lead inspector to identify the presence and general locations of suspected, readily accessible LBP. The licensed lead inspector conducted an inspection of the accessible building materials contained in debris piles (previously razed building structures) and of the buildings still standing on the Site. Suspect lead-painted surfaces were located and the materials were delineated into homogeneous areas (areas of suspected LBP that are uniform in color and texture and appeared to be painted at the same time).

IWM Consulting utilized an OLYMPUS[®] Innov-X Systems Alpha Series[™] XRF spectrometer to perform in-situ lead paint determinations. The XRF was utilized to conduct direct field measurements of painted surfaces (e.g., walls, ceilings, window sills, bricks, etc.). Paint chip samples were collected for laboratory analysis from materials with XRF readings exceeding a positive threshold determined by field calibration, substrate correction, and/or model specifications.

IWM Consulting collected one (1) representative paint chip sample from the building near the east Site boundary, where the XRF instrument indicated a positive reading (>1.0%). The paint chip sample was collected from the doorframe on the east side of the building. The location of the paint sample is shown on

Figure 3. The paint chip sample was submitted to EMSL of Indianapolis, Indiana and analyzed for lead using SW-846 Method 7000B by flame atomic absorption.

5.5 Chemical Inventory Methodology

A chemical inventory consisting of identifying potential containerized petroleum and/or chemical materials was performed on the Site and within the Site buildings. The chemical inventory was completed concurrently with the asbestos and lead paint surveys.

5.6 Subsurface Sampling & Decontamination Methodology

Soil sample locations were selected based on the locations of previously identified soil and/or groundwater contamination described in the 2018 Phase II ESA by SES and the anticipated lateral extent of potential soil and groundwater contamination. The boring locations are illustrated on **Figure 2**.

Strict decontamination procedures were followed during the investigation activities by IWM Consulting personnel to reduce the potential for cross-contamination. Drilling and all non-disposable, down-hole sampling equipment was decontaminated prior to first use on-site, and thereafter between borings, using vigorous wash in Alconox[®] solution, followed by a distilled water rinse. For borings where PFAS samples were collected, a high-pressure spray washer was used on all non-disposable, down-hole sampling equipment, followed by a triple rinse with laboratory-provided "PFAS-free" deionized water. Equipment blanks were also collected by pouring laboratory-prepared water or distilled water over, or through, the field sampling equipment (e.g., the cutting shoe or bladder pump) and collecting the rinsate in the proper sample containers for laboratory analysis.

Samples collected for chemical analyses were based on the scope of work for the assessment, field photo-ionization detector (PID) screening results, olfactory and visual observations, and/or changes in lithology. Standard protocols were observed for sample collection, sample handling and preservation, and chain-of-custody documentation. Samples were placed in a cooler containing ice and maintained at a temperature of approximately 4° Celsius prior to analysis.

Soil borings were advanced utilizing direct-push technology. Continuous soil samples were obtained utilizing dual-tube sampling methods for the soil samples where a 4.0-foot long acetate sleeve contained within a stainless-steel casing was advanced hydraulically to obtain the soil sample. A new acetate sleeve was placed inside the casing for continued sampling and advancement of the borehole.

Shallow soil samples were collected from the surface to a depth of two (2) feet bsg with a hand auger at fifteen (15) boring locations in the vicinity of BC-GP3 and SES boring "BC" to delineate lead impacts in soil. The shallow sample locations were identified by their cardinal direction and distance from their respective borings. Since SES boring "BC" does not adhere to the sample designations for this project, soil samples collected in the vicinity of that boring were designated as BC-GP16. The hand auger was decontaminated using a vigorous Alconox[®] solution wash, followed by a distilled water rinse, before first use and between each sample.

Each of the shallow soil samples were screened in the field with an OLYMPUS[®] Innov-X Systems Delta SeriesTM XRF analyzer. The XRF was utilized to try and correlate handheld XRF readings with laboratory

analyzed soil samples for concentrations of lead. The XRF was calibrated in the field in accordance with the Quality Assurance Project Plan (QAPP), dated April 12, 2019, in order to assure accurate testing results. One (1) soil sample exhibiting the highest XRF readings in each cardinal direction was selected for laboratory analysis of lead.

The soil samples collected were field screened using a PID to determine the relative presence of adsorbed VOCs and/or PAHs. Confirmatory soil sampling from the subsurface soil borings included collecting a soil sample from the native soil beneath the fill material, and analyzing samples displaying the highest potential for impairment based on field observations (visual, olfactory, or by field screening with the PID). Where indications of contamination in soil were present (elevated PID readings, odor, or visual evidence), samples were collected for VOC, PAH, and PCB analyses. The VOC soil samples were obtained in general accordance with EPA Sampling Method 5035M using bulk TerraCoreTM sampling supplies, including the 5-gram T-handle sampling device (or comparable).

The soil samples collected from subsurface borings were submitted for laboratory analysis of RCRA 8 metals including copper and zinc. Additional soil samples were also submitted from each soil boring location for laboratory analysis of TCLP RCRA 8 metals and Cr (VI), in the event that additional analyses could be performed if necessary. Select samples were also submitted for VOC, PAH, PCB, and PFAS analyses. Due to strict laboratory sampling guidelines for PFAS analysis and the low detection limits (microgram per kilogram (μ g/kg)) range, PFAS soil samples were collected and containerized prior to other analytical samples. Field reagent blanks (FRBs) were obtained during each day of PFAS soil sampling by decanting laboratory-provided "PFAS-free" water into an appropriate laboratory-provided container.

To facilitate collection of the one-time groundwater samples from the subsurface borings, temporary, 2-inch diameter polyvinyl chloride (PVC) screens were installed in borings B-10 through B-15 at depths ranging from 8 feet bsg to 30 feet bsg. Groundwater samples were obtained using low-flow groundwater sampling techniques as approved by the IBP Project Manager from all well locations. Purging of the wells was completed using a pneumatically-operated bladder pump equipped with new, disposable ¼-inch polyethylene tubing. Water quality parameters measured using a YSI Model 556 multi-meter included temperature (°C), specific conductance (mS/cm^c), dissolved oxygen (mg/L), pH (standard units), and oxygen reduction potential (mV). Groundwater samples were collected from each well when the temperature, specific conductivity (\pm 3%), dissolved oxygen (\pm 10%), pH (\pm 0.1 s.u.), and oxygen reduction potential (\pm 10 mV) reached equilibrium.

The groundwater samples were placed into the appropriate laboratory-provided pre-labeled containers. The groundwater samples were submitted for laboratory analysis of VOCs, PAHs, RCRA 8 metals including copper and zinc (total and dissolved), PCBs, and PFAS. Due to strict laboratory sampling guidelines for PFAS analysis and the low detection limits (nanogram per liter (ng/L)) range, PFAS groundwater samples were collected and containerized prior to other analytical samples. An FRB was obtained during PFAS groundwater sampling by decanting laboratory-provided "PFAS-free" water into an appropriate laboratory-provided container.

For QA/QC purposes, one (1) field duplicate, one (1) equipment blank, and one (1) matrix spike/matrix spike duplicate (MS/MSD) sample per twenty (20) samples from each matrix type were obtained as part of this investigation. One (1) trip blank accompanied each cooler shipment which contained samples for VOC analyses. PFAS QA/QC protocol included a duplicate sample, FRB, and standard laboratory QA/QC deliverables.

Decontamination/purge water generated during well development and groundwater sampling activities was containerized on-site into three (3) labeled, 55-gallon drums for subsequent disposal at an approved off-site facility. Once disposal is completed, drum disposal manifests will be provided as soon as they are received by IWM Consulting for inclusion in **Appendix B**, **Waste Disposal Documentation**.

In an effort to determine the site-specific groundwater flow direction, the top-of-casing (TOC) elevations and ground surface elevations adjacent to each well for the temporary sampling points were surveyed to a common benchmark by Maxwell Surveying & Engineering (Maxwell) of Huntington, Indiana on May 24, 2019. Depth to groundwater measurements were obtained from each of the wells on May 22, 2019 during the groundwater sampling event.

To facilitate collection of the one-time soil gas samples from the subsurface, 6-inch stainless-steel soil vapor probes connected to polyethylene tubing were installed near borings BC-GP7, BC-GP8, and BC-GP12. The locations of the soil vapor probes were determined based on soil lithology, PID readings, and depth to groundwater. Direct push technology was utilized in the same manner as previously described for soil borings.

Prior to collecting soil gas samples, the soil vapor probes, including tubing and annular backfilled space, were purged of up to three (3) volumes of air prior to collecting vapor samples, where possible. A helium shroud and helium meter were utilized prior to sample collection in order to confirm a tight seal existed for each soil vapor probe. One-time soil gas samples were collected for 10-minutes from the soil vapor probes where possible in laboratory provided, 1-liter Summa® canisters.

Upon completion of the site assessment activities, each of the temporary well and soil vapor probe locations were abandoned. The PVC well materials were removed where possible, or the PVC casing material was unscrewed from the well screen at least 5.0-feet bsg, the borings were sealed with bentonite chips and the ground surface at each location was capped with like material.

6.0 GEOPHYSICAL SURVEY RESULTS

No USTs were identified by GPRS during the geophysical survey. Buried relic utilities were identified on the Site including a storm sewer catch basin, buried water, and buried natural gas lines. A Job Summary provided by GPRS describing their findings is provided in **Appendix C**.

7.0 ASBESTOS SURVEY RESULTS

The East Building, located near the eastern Site boundary, did not contain any suspect ACM.

Thirty-two (32) bulk samples of suspect ACM, including two (2) duplicate samples, were collected during the inspection for laboratory analysis. Because of multiple layers of materials on some samples, a total of forty-one (41) analyses were conducted by the laboratory. The bulk samples of suspect ACMs were analyzed by EMSL of Indianapolis, Indiana, using the PLM method.

The laboratory analytical results for each asbestos sample are included in Table 1 (Summary of Bulk Asbestos Sample Laboratory Results) with the complete laboratory analytical report provided in Appendix D.

8.0 LEAD PAINT SURVEY RESULTS

A written description of each paint chip screening location is included in **Table 2** (Summary of Lead Paint Screening Results). The analytical results for the paint chip sample (BC-PB1) indicate that the lead concentration in the red paint was 18,000 ppm, or 1.8 percent by weight. The laboratory analytical report for the paint chip sample is provided in Appendix E.

9.0 CHEMICAL INVENTORY RESULTS

Several containerized products were identified on the Site during this investigation. A written description of each containerized chemical and/or petroleum material located at the Site is included in **Table 3** (Summary of Chemical Inventory). Photographs of the containerized chemicals are provided in Appendix F.

10.0 SOIL BORING INSTALLATION & SAMPLING ACTIVITIES

IWM Consulting personnel supervised SCS Environmental Contracting, Inc. (SCS) personnel during the advancement of the fifteen (15) subsurface soil borings (BC-GP1 through BC-GP15) between May 20, 2019 and May 21, 2019. Borings GP-1 through GP-6, GP-8, and GP-9 were advanced to a depth of 4-feet bsg; boring GP-7 was advanced to a depth of 6-feet bsg; boring GP-13 was advanced to a depth of 16-feet bsg; borings GP-10, GP-11 and GP-12 were advanced to a depth of 28-feet bsg; and borings GP-14 and GP-15 were advanced to a depth of 30-feet bsg. Groundwater was typically encountered within sandy unconsolidated sediments at depths ranging from approximately 22 feet bsg (BC-GP12) to approximately 28 feet bsg (BC-GP14) as identified on the soil boring and temporary well logs provided in **Appendix G**.

Upon completion of soil sampling, temporary 2-inch monitoring wells were installed in six (6) of the subsurface soil borings (GP-10 through GP-15) using direct push methods to facilitate the collection of groundwater samples. Groundwater samples were obtained from each of the six (6) temporary well locations on May 22, 2019.

The 2-inch temporary wells were developed using an electric pump designated to be "PFAS free" by the manufacturer. Groundwater removed during development was stored in three (3) 55-gallon drums and left on the Site pending characterization and disposal/treatment. Disposal documentation for the drums will be forwarded upon receipt by IWM Consulting for inclusion in **Appendix B**.

<u>10.1</u> Soil Sampling Activities

Surface soil samples (0.0-3.0 feet bsg) were collected from each of the fifteen (15) boring locations (BC-GP1 through BC-GP15) on May 20 and 21, 2019. Subsurface soil samples (>3.0 feet bsg) were collected from nine (9) boring locations (BC-GP1 through BC-GP9) on May 20 and 21, 2019. Shallow soil samples (1.0-2.0 feet bsg) were collected from fifteen (15) hand auger locations in the vicinity of BC-GP3 and SES boring "BC" on June 18, 2019. The soils were collected in accordance with the methodologies described in Section 5.6 of this report.

IWM Consulting obtained a total of twenty-four (24) soil samples, comprised of both surface and subsurface soil samples, for the analysis RCRA 8 metals including copper and zinc and percent moisture. Additional soil samples were also submitted from each soil boring location for laboratory analysis of TCLP RCRA 8 metals and Cr (VI), if necessary. Based on analytical results, Cr (VI) analysis was performed on BC-GP6-SB1 (3-4'), BC-GP8-SS1 (2-3'), and BC-GP9-SS1 (1-2') and TCLP lead analysis was performed on BC-GP3-SS1 (1-2'). Two (2) subsurface soil samples were collected from BC-GP7-SB1 (3-4') and BC-GP8-SB1 (3-4') for the analysis of VOCs, PAHs, and PCBs analysis. Eight (8) additional shallow soil samples collected from the vicinity of BC-GP3 and SES boring "BC" were analyzed for lead and percent moisture. The soil samples were delivered to the courier for Pace Analytical Services, LLC (Pace) under chain-of-custody controls for delivery to Pace located in Indianapolis, Indiana for analysis. The soil samples were analyzed using the analytical methods outlined in Section 3.0 of this report.

Five (5) surface soil samples and a duplicate sample were collected for PFAS analysis. The sampling included the field reagent blanks (FRBs) prepared by the laboratory. One (1) FRB per day of sampling was collected and submitted for analysis of PFAS in the event that PFAS were detected in the soil samples. Due to the strict decontamination and sampling procedures for PFAS, the PFAS soil samples were collected prior to the soil samples for the other analyses. The PFAS soil samples were delivered via FedEx standard overnight delivery under chain-of-custody controls to Pace in Minneapolis, Minnesota for analysis. The soil samples were analyzed using the analytical method outlined in Section 3.0 of this report.

QA/QC Sample Type/ ID	Parent Sample ID
BC-SB-FD1	BC-GP13-SS1 (1-2')
BC-SB-FD2	BC-GP4-SS1 (1-2')
BC-SB-FD3	BC-GP8-SB1 (3-4')
BC-SB-FD4	BC-GP3-N5 (1-2')
MS/MSD	BC-GP2-SB1 (3-4')
MS/MSD	BC-GP3-W5 (1-2')
MS/MSD	BC-GP9-SB1 (3-4')

For QA/QC purposes, IWM Consulting also submitted four (4) duplicate and three (3) MS/MSD soil samples. The following table provides the parent sample information related to the field duplicate and MS/MSD samples:

The MS/MSD and duplicate soil samples were submitted for the same laboratory analysis as the parent samples. One (1) trip blank sample (BC-TB1) accompanied the soil samples obtained for VOC analyses and the trip blank was submitted for laboratory analysis of VOCs only. Two (2) FRBs (BC-FRB1 and BC-FRB2), one (1) for each day of sampling, were submitted for PFAS analysis. One (1) equipment blank (BC-EB-SB1) was collected and submitted for VOC, PAH, PCB, RCRA 8 metals analyses. The QA/QC samples were analyzed using Level II QA/QC reporting standards.

10.2 Groundwater Sampling Activities

Groundwater samples were collected from the six (6) temporary monitoring wells (BC-GP10 through BC-GP15) on May 22, 2019 in accordance with the methodologies described in Section 5.6 of this report. Low-flow Water Parameter Monitoring Forms with field notes regarding the sampling procedures are included in **Appendix H**.

IWM Consulting obtained a total of six (6) groundwater samples for the analysis of VOCs, PAHs, total and dissolved RCRA 8 metals including copper and zinc, and PCBs. The groundwater samples were delivered to the courier for Pace under chain-of-custody controls for delivery to Pace located in Indianapolis, Indiana for analysis. The groundwater samples were analyzed using the analytical methods outlined in Section 3.0 of this report.

Five (5) groundwater samples and a duplicate sample were collected for PFAS analysis. One (1) FRB per day of sampling was collected and submitted for analysis of PFAS in the event that PFAS were detected in the groundwater samples. Due to the strict decontamination and sampling procedures for PFAS, the PFAS groundwater samples were collected prior to the samples for the other analyses. The groundwater samples were delivered via FedEx standard overnight delivery under chain-of-custody controls to Pace in Minneapolis, Minnesota. The groundwater samples were analyzed using the analytical method outlined in Section 3.0 of this report.

For QA/QC purposes, IWM Consulting also submitted one (1) duplicate sample and one (1) MS/MSD groundwater sample. The duplicate sample, designated BC-GPGW-FD1, was obtained from the parent groundwater sample BC-GP11-GW1. The MS/MSD sample was obtained from the parent groundwater sample BC-GP15-GW1. The duplicate sample and MS/MSD sample were each analyzed for the same constituents as the parent samples. One (1) trip blank sample (BC-TB1) accompanied the groundwater samples to the Pace-Indianapolis laboratory and were submitted for laboratory analysis of VOCs only. One (1) FRB (BC-FRB3) was submitted for PFAS analysis. One (1) equipment blank (BC-EB-GW1) was collected and submitted for VOC, PAH, PCB, RCRA 8 metals analyses. The QA/QC samples were analyzed using Level II QA/QC reporting standards.

Purge water from the low-flow sampling performed at the Site was placed into one (1) of three (3) drums left on the Site for characterization and disposal/treatment. Disposal documentation for the drums will be forwarded upon receipt by IWM Consulting for inclusion in **Appendix B**.

10.3 Groundwater Gauging Activities

Groundwater measurements, including total well depths, were recorded using an interface probe which makes an intermittent tone when the probe contacts the groundwater and a solid tone when the probe contacts any light non-aqueous phase liquid (LNAPL). The distance between the TOC riser pipe elevation and the water table was read from the incremented probe line, which records measurements to within 0.01 feet. The interface probe utilized at the Site was selected due to the materials of construction being "PFAS free".

Depths to groundwater and groundwater elevations are summarized on **Table 4** (Summary of Groundwater and Well Measurements – May 22, 2019). A report summarizing the professionally surveyed TOC, ground elevations, and horizontal locations for the temporary monitoring well locations is provided in Appendix I.

10.4 Soil Vapor Sampling Activities

Soil gas samples were obtained on May 31, 2019 using the methodologies described in Section 5.6 of this report. Purge tests failed in vapor probes BC-SG1 and BC-SG3 due to water infiltration and/or tight clayey soils. A Soil Gas Sampling Data Sheet with field notes regarding the sampling procedures are included in **Appendix J**.

IWM Consulting obtained one (1) soil gas sample (BC-SG2) for the analysis of VOCs. The soil gas sample was delivered via FedEx under chain-of-custody controls to Pace in Minneapolis, Minnesota. The soil gas sample was analyzed using the analytical method outlined in Section 3.0 of this report.

For QA/QC purposes, IWM Consulting also submitted one (1) duplicate sample (BC-SG-FD1) obtained from the parent soil gas sample BC-SG2. The duplicate sample was collected at the same time as BC-SG2 and attached to the same regulator as the parent sample using a "T-fitting".

11.0 SOIL INVESTIGATION RESULTS

11.1 Lithological Description

Generally, soils encountered in borings advanced at the Site consisted of fill (bricks, paint chips, cinders, slag, coarse gravel, and wood) from the surface to depths ranging from approximately 2-feet to about 8-feet bsg. Soils beneath the fill were typically silty clay with some intermittent sand seams. The borings ranged in depth from 4- to 30-feet bsg. Refer to the boring logs in **Appendix G** for complete soil lithologic descriptions.

11.2 Laboratory Analytical Results Summary – Soil

Soil samples submitted for laboratory analysis are described in Section 10.1 of this report. Tables summarizing the results of the soil samples and QA/QC duplicate samples obtained from the Site are included as Table 5 (Summary of Soil Metals Analytical Results (mg/kg)), Table 6 (Summary of Soil PAH Analytical Results (mg/kg)), Table 7 (Summary of Soil VOC and PCB Analytical Results (mg/kg)), Table 8 (Summary of XRF and Lead Analytical Results), and Table 9 (Summary of Soil PFAS Analytical Results (µg/kg)). The soil analytical results for contaminants in soil at concentrations exceeding RCG IDCSLs are displayed by location on Figure 4 (Soil Analytical Results Map). The soil analytical reports are included in Appendix K.

The analytical results for the four (4) duplicate samples collected for QA/QC measures were generally comparable to the parent samples. Analytical results for the duplicate soil samples are presented with the corresponding samples in **Table 5** through **Table 9**. No contaminants were detected in the equipment blank or trip blank samples submitted with the soil samples.

Soil results for PFAS are provided for information purposes only since there are no current IDEM RCG screening levels established for PFAS constituents. Perfluorooctanoic acid (PFOA) was detected at 0.61 μ g/kg and 0.58 μ g/kg in BC-GP10 (1-2') and its laboratory duplicate, respectively. Perfluorooctanesulfonic acid (PFOS) was detected at 0.54 μ g/kg and 0.46 μ g/kg in BC-GP11-SS1 (0.5-1.5') and BC-GP13-SS1 (1-2'),

respectively, but was not detected in the duplicate sample of BC-GP13-SS1 (BC-SB-FD1). No other PFAS were detected in any soil sample submitted for PFAS analysis.

No VOCs, PAHs, or PCBs were detected at concentrations exceeding their respective IDEM RCG Res MTGSLs in any soil sample.

Each of the RCRA 8 metals including copper and zinc, except silver, were detected above their respective laboratory reporting limits (LRLs) in soil samples analyzed from the Site. Arsenic and lead were each detected in excess of their respective IDEM RCG Res MTGSLs, RDCSLs, and/or IDCSLs in several soil samples. Due to the elevated concentration of lead detected in BC-GP3-SS1 (1-2'), TCLP lead analysis was performed on the sample. The resulting 30.6 mg/L lead detection in the leachate reveals that the lead is leachable in the vicinity of the BC-GP3 and BC-GP16 borings; therefore, no other soil samples were submitted for TCLP lead analysis. The three (3) soil samples exhibiting the highest concentrations of total chromium were also submitted for analysis of Cr (VI). The results indicate that Cr VI is not present in soil at concentrations exceeding its IDEM RCG RDCSLs.

Due to the concentrations of lead detected in BC-GP3-SS1 (1-2') at 3,160 mg/kg and in SES boring "BC" (7,160 mg/kg and 28,700 mg/kg in the duplicate), shallow soil samples from 1-2 feet bsg were collected from 5- to 10-feet in each cardinal direction of the aforementioned borings, with SES boring "BC" corresponding to a BC-GP16 designation for this investigation. Analytical results for the shallow soil samples reveal that the extent of lead contamination at concentrations exceeding IDEM RCG EX DCSLs in soil near these borings has not been delineated.

12.0 GROUNDWATER INVESTIGATION RESULTS

Groundwater samples submitted for laboratory analysis are described in Section 10.2 of this report. Tables summarizing the results of the groundwater samples and QA/QC duplicate samples obtained from the Site are included in Table 10 (Summary of Groundwater Metals Analytical Results (µg/L)), Table 11 (Summary of Soil PAH, VOC, and PCB Analytical Results (µg/L)), and Table 12 (Summary of Groundwater PFAS Analytical Results (ng/L)). The groundwater analytical reports are included in Appendix L.

The analytical results for the one (1) duplicate sample collected for QA/QC purposes was generally comparable to the parent sample. Analytical results for the duplicate groundwater sample are presented with the corresponding sample in **Table 10** through **Table 12**. No contaminants were detected in the equipment blank or trip blank samples submitted with the groundwater samples.

Groundwater results for PFAS are provided for information purposes only since there are no IDEM RCG screening levels established for PFAS constituents. Perfluorobutoanoic acid (PFBA) and PFOS were detected in BC-GP12-GW1 at 7.3 ng/L and 23 ng/L, respectively. Eight (8) PFAS were detected in BC-GP13-GW1 at concentrations ranging from 3.0 ng/L to 13 ng/L. No other groundwater samples contained PFAS at detectable concentrations. The FRBs collected for QA/QC purposes during the groundwater sampling were also non-detectable for PFAS.

No VOCs, PAHs, or PCBs were detected at concentrations exceeding their respective IDEM RCG Res TAP GWSLs in any groundwater sample.

Multiple total RCRA 8 metals including copper and zinc were detected in groundwater samples; however, only barium, cadmium, and zinc were detected in the laboratory-filtered dissolved RCRA 8 metals groundwater samples. No metals detections exceeded their respective IDEM RCG Res TAP GWSLs.

12.1 Hydrogeology

Groundwater flow beneath the site was determined to flow to the south-southeast. The groundwater present beneath the site appears to be located within sandy unconsolidated sediments at depths ranging from approximately 19.63 feet bsg (BC-GP11) to approximately 21.18 feet bsg (BC-GP14). Groundwater flow was determined by surveying the elevations of the six (6) temporary well casings to within 1/100th of a foot and the spatial well placement on the Site to within 1/10th of a foot. Groundwater elevations were calculated based on gauging data collected on May 22, 2019. The groundwater flow direction for the Site is depicted on **Figure 5** (**Groundwater Potentiometric Map**).

13.0 SOIL VAPOR INVESTIGATION RESULTS

Soil gas samples submitted for laboratory analysis are described in Section 10.4 of this report. Analytical results for the soil gas samples are summarized in Table 13 (Summary of Soil Gas Sampling Analytical Results ($\mu g/m^3$)). The soil gas analytical report is provided as Appendix M.

The analytical results for the one (1) duplicate sample collected for QA/QC purposes was generally comparable to the parent sample. Analytical results for the duplicate soil gas sample are presented with the corresponding sample in **Table 13**.

A total of twenty-three (23) separate VOCs were detected in the soil gas samples. However, no contaminants were detected in the soil gas samples at concentrations exceeding their respective calculated IDEM RCG Indus SGe VESLs. The RCG Indus SGe VESLs were calculated using an attenuation factor of 0.1, corresponding to the screened interval shallower than five (5) feet bsg.

14.0 WELLHEAD PROTECTION

Based on the IDEM Wellhead Proximity Determinator website (<u>https://idemmaps.idem.in.gov/whpa2/</u>), the Site is located inside a Wellhead Protection Area (**Appendix N**). According to the Indiana Department of Natural Resources (IDNR) Water Well Record Database (<u>http://www.in.gov/dnr/water/3595.htm</u>) thirty-one (31) mixed use water wells were identified within a 1-mile radius of the Site. Two (2) significant withdrawal (>70 gallons per minute) wells owned by the City of Butler Water Department are used for public supply wells and are shown as being located across Broadway Street, approximately 290 feet west of the Site. Other mixed-use water wells are located in close proximity to the Site as shown on the **1-Mile Radius Water Well Map** included in **Appendix N**.

Well Reference No. 107441 is a high capacity well (1,150 gallons per minute), installed at a depth of 147 feet bsg, and located approximately 290 feet west of the Site. Well Reference No. 107430 is a high capacity well (600 gallons per minute), installed at a depth of 149 feet bsg, and located approximately 430 feet west of the Site. There are six (6) wells identified on the map (Well Reference Nos. 107360, 107415, 107430, 107441, 107471, and

232269) shown being located within a 0.25-mile radius of the Site. The available well logs for the six (6) wells identified are provided in **Appendix N**.

15.0 QAPP FIELD AUDIT & DATA ASSESSMENT REPORT

In accordance with the QAPP, the IWM Consulting Quality Assurance (QA) manager conducted a field audit concurrently with the soil sampling activities on May 21, 2019. The IWM Consulting QA manager also prepared a Data Assessment Report (DAR) in accordance with the QAPP, which discusses the overall precision, accuracy, usability, and completeness of the data collected during the May 2019 Phase II ESA activities. Although several minor variations were noted in the DAR, the data collected during the Phase II ESA activities was deemed acceptable and usable with limitations, as outlined in the DAR. A copy of the Field Audit Report and DAR are included in **Appendix O**.

16.0 CONCLUSIONS AND RECOMMENDATIONS

Due to building debris, trash, and an abundance of metallic objects on the ground surface at the Site, the geophysical survey was limited, and not all of the equipment proposed to be used on the Site could be utilized at the time of the survey. No obvious buried metallic objects were identified during the geophysical survey.

ACMs were identified in the East Central Building debris and North Building, and LBP was identified on the East Building. Asbestos-containing asphalt-based roofing products which are nonfriable and will not be made friable through sanding, grinding, cutting, or abrading are not regulated as ACM under the National Emission Standard for Asbestos (NESHAP) or Solid Waste Management Rule 329 IAC 10-8.1-12; therefore, the asphalt-based roofing materials which are in good condition may be removed and sent to a permitted solid waste disposal site as solid waste. Nonfriable asbestos-containing transite has a high probability of becoming crumbled, pulverized or reduced to powder during disposal (i.e., unloading and compaction); therefore, if these materials are from a commercial, industrial, or institutional structure, they must be disposed at a permitted municipal solid waste landfill. The US EPA requires that construction and demolition (C&D) debris from commercial or industrial sites that is contaminated with lead-based paint must be managed as RCRA hazardous waste if a representative sample meets the toxicity characteristic (D008).

Analytical results for the shallow soil samples reveal that the extent of lead contamination at concentrations exceeding IDEM RCG EX DCSLs in soil near these borings has not been delineated. In general, the most significant soil impacts are in surface soils at depths from 0- to 3-feet bsg.

Groundwater beneath the Site did not contain any contaminants detected in excess of their respective IDEM RCG Res TAP GWSLs and soil gas samples did not contain any contaminants detected in excess of their respective calculated IDEM RCG Indus SGe VESLs.

Based upon the data obtained during this Phase II ESA, IWM recommends delineation of the surface soil lead impacts in the vicinity of borings BC-GP3 and BC-GP16 and development of a Remediation Work Plan to address the surface soil impacts.

Waste disposal documentation for the three (3) drums of well development and purge water will be forwarded upon receipt by IWM Consulting for inclusion in **Appendix B**.

IWM Consulting appreciates the opportunity to provide the IBP with this Phase II ESA Report. If you have any questions regarding this document, please contact Mark Anderson at 260-442-3017, by email at manderson@iwmconsult.com.

Sincerely,

IWM Consulting Group, LLC

Ashley Pepple

Associate Project Manager

Mark Anderson, LPG No. 1403 Senior Project Manager

cc: Ms. Patricia Polston, USEPA Region 5 Project Officer Ms. Tracey Michael, IDEM

TABLES

TABLE 1Summary of Bulk Asbestos Sample Laboratory ResultsThe Butler Company325 South Broadway StreetButler, DeKalb County, IndianaIBP Site No. 4170705

Material Description	Sample ID	НА	Sample Location	ACM	Results
Description	BC-AB1a			I I	ND
Roofing (a) Felt (b)	BC-AB1b			I	ND
	BC-AB2a	1	West Central Building Debris	Ι	ND
	BC-AB2b			Ι	ND
	BC-AB3			II	ND
Mortar	BC-AB4	2	West Central Building Debris	II	ND
	BC-AB5			II	ND
Electrical Wire Insulation	BC-AB6			Ι	ND
	BC-AB7a	3	West Central Building Debris	Ι	ND
	BC-AB7b			Ι	ND
	BC-AB8a	4	Fast Central Building Debris	Ι	2%
Roofing (a) Shingle (b)	BC-AB8b			Ι	<1%
Roomig (a) Shingle (b)	BC-AB9a		Last Central Bunding Debris	Ι	2%
	BC-AB9b			Ι	<1%
	BC-AB10		East Central Building Debris	II	ND
Mortar	BC-AB11	5		II	ND
	BC-AB12			II	ND
Transite Danels	BC-AB13	6	Fast Central Ruilding Stock Debris	II	20%
	BC-AB14	0	Last Central Bunding Stack Deoris	II	15%
Fire Brick Morter	BC-AB15	7	Fast Central Building Stack Debris	II	ND
	BC-AB16	/		II	ND
Fire Prick	BC-AB17	Q	East Central Ruilding Stock Debris	II	ND
ГПС БПСК	BC-AB18	0		II	ND
Fire Prick Glazing	BC-AB19	0	Fast Central Ruilding Stock Debris	II	ND
The blick Olazing	BC-AB20	7	East Central Bunding Stack Deoris	II	ND

TABLE 1Summary of Bulk Asbestos Sample Laboratory ResultsThe Butler Company325 South Broadway StreetButler, DeKalb County, IndianaIBP Site No. 4170705

Material Description	Sample ID	НА	Sample Location	ACM Class. ¹	Results (% Asbestos)
Paper Backing	BC-AB21	10	East Central Building Debris	F	40%
Window Seelant	BC-AB22	11	Fast Control Duilding Dahnis	F	ND
window Sealant	BC-AB23	11	East Central Building Deoris	F	ND
Window Scalant	BC-AB24	12	Control Shad	F	ND
window Sealant	BC-AB25	12	Central Shed		ND
	BC-AB26a		North Building	Ι	ND
	BC-AB26b			Ι	ND
Roofing (a) Felt (b), Tar (c)	BC-AB26c	12		Ι	2%
and Shingle (d)	BC-AB27b	15		Ι	ND
	BC-AB27c			Ι	5%
	BC-AB27d			Ι	ND
	BC-AB28			II	ND
Mortar	BC-AB29	14	North Building	II	ND
	BC-AB30			II	ND

TABLE 2Summary of Lead Paint Screening ResultsThe Butler Company325 South Broadway StreetButler, DeKalb County, IndianaIBP Site No: 4170705

Sample Location	XRF Result	Lab Sample Collected	Sample ID	Laboratory Results (ppm)							
West Central Building											
Handrail - Yellow	Negative	No	NA	NA							
Handrail - White	Negative	No	NA	NA							
Grout on Bricks - Yellow	Negative	No	NA	NA							
Grout on Bricks - White	Negative	No	NA	NA							
	Central Shed										
Windows/Doorframes - Green/Blue	Negative	No	NA	NA							
	East Central Buildin	ng									
Grout on Bricks - Light Blue	Negative	No	NA	NA							
Roof Tile Glaze - Brown	Negative	No	NA	NA							
	East Building										
Door and Doorframe - Red	0.96 ± 0.15	Yes	BC-PB1	18,000							
Sheet Metal - Red	0.60 ± 0.10	No	NA	NA							
	North Building										
Outer Wall - Yellow	Negative	No	NA	NA							
Steps - Light Blue	Negative	No	NA	NA							
Metal Soffit - Red	Negative	No	NA	NA							
Interior Wall - White	Negative	No	NA	NA							
Basement Wall - White	Negative	No	NA	NA							

Negative = Instrument displayed "negative" for the detection of lead

Table 3 - Chemical Inventory (May 15, 2019) - The Butler Company

Building/Area	Chemical Name	No. of Containers	Container Volume	Container Type	Volume of Material	Liquid/Solid	Description
Outside - east side of site	no labels	2	200-gallon	tote	unknown	solid	200-gallon totes with residue/solid material in bottom
Outside various locations	no labels and Ferric Chloride	5	55-gal	drum	unknown	NA	steel drums used for burn barrels and plastic drums used for trash cans, one (1) plastic drum labeled Ferric Chloride
Inside North Building	PCBs	4	ounces	light ballast	unknown	NA	there are four (4) old transformers in fluorescent light ballasts with possible PCBs
Inside North Building	mercury vapor	8	unknown	fluorescent bulbs	unknown	NA	fluorescent light bulbs, four (4) 4-foot and four (4) 8-foot
Inside North Building	oil based stain, water based paint, naphtha, petroleum distillates, heptane solvent, paint thinner, clear lacquer, polyurethane, acetone, toluene, methanol, methylene chloride, xylenes, trimethylbenzene, 1,2,4-trimethylbenzene, methyl 1b ketone, n-butyl acetate, petroleum oil, vegetable oil	60+	8 ounce to 1- gallon	plastic bottles from 8-ounces to 1-gallon, metal paint cans from 8-ounces to 1-gallon, 12 ounce aerosol paint cans	varies from empty containers, solidified contents, less than 10- gallons total	, both	various sized plastic and metal containers from 8-ounces to 1- gallon. Most containers have minimal amounts present, some paint materials and putty materials have soldified. Most small containers are located on plastic shelving in North Building. See photograph log in Appendix F.

TABLE 4Summary of Groundwater and Well Measurements - May 22, 2019The Butler Company325 South Broadway StreetButler, DeKalb County, IndianaIBP Site No. 4170705

Well	Groundwater Observations	TOC Elevation ¹	Depth to Groundwater	Groundwater Elevation ¹
BC-GP10	brn, mod turb, no odor, no sheen	868.22	22.76	845.46
BC-GP11	brn, v sl turb, no odor, no sheen	867.16	21.81	845.35
BC-GP12	lt brn, v sl turb, no odor, no sheen	866.67	21.68	844.99
BC-GP13	cl, v sl turb, no odor, no sheen	866.66	4.88	861.78
BC-GP14	lt brn, sl turb, no odor, no sheen	866.36	21.52	844.84
BC-GP15	brn, sl turb, no odor, no sheen	865.78	20.94	844.84

Notes:

¹Elevation in feet based on survey data prepared by Maxwell Surveying & Engineering, May 24, 2019.

Groundwater observations may include: color (cl-clear, gry-gray, blk-black, brn-brown, orn-orange), turbidity (turb), odor (gas-gasoline,

die-diesel, sep-septic), shade (lt-light, dk-dark), modifier (v-very, sl-slight, mod-moderate, sig-significant)

Groundwater Observations were made at the time the well was purged.

Table 5 Summary of Soil Metals Analytical Results (mg/kg) The Butler Company **325 South Broadway Street** Butler, DeKalb County, Indiana **IBP Site No. 4170705**

Sample ID	Samme Leve	Sumple.	onen	Arsenie C	or management	and and a second	At Continue	COLUMNIA COLUMNIA	and the second	Lead I	A. Longer	oclenium
							MET	ALS				
BC-GP1-SS1	1-2	05/21/19	14.0	80.2	< 0.54	19.1	NA	55.6	61.6	0.92	<1.1	101
BC-GP1-SB1	3-4	05/21/19	2.6	127	< 0.54	24.1	NA	15.2	11.3	< 0.24	<1.1	58.
BC-GP2-SS1	0.5-1.5	05/21/19	8.6	81.1	4.3	13.3	NA	127	97.7	0.58	<1.0	290
BC-GP2-SB1	3-4	05/21/19	9.3	87.5	< 0.60	22.8	NA	21.7	9.4	< 0.24	<1.2	57.
BC-GP3-SS1	1-2	05/21/19	6.7	651	1.2	15.3	NA	90.0	3,160	0.46	<1.1	446
BC-GP3-SB1	3-4	05/21/19	5.5	136	< 0.59	27.3	NA	17.0	11.5	< 0.24	<1.2	72.:
BC-GP4-SS1	1_2	05/21/19	12.0	269	1.9	16.6	NA	88.1	395	< 0.24	1.4	837
BC-SB-FD2	12	05/21/19	11.5	416	1.5	15.2	NA	59.2	691	< 0.26	1.4	684
BC-GP4-SB1	3-4	05/21/19	3.0	76.4	< 0.57	22.0	NA	15.4	11.3	< 0.26	<1.1	71.
BC-GP5-SS1	2-3	05/21/19	10.4	57.7	< 0.58	10.9	NA	62.5	63.1	< 0.24	<1.2	73.
BC-GP5-SB1	3.5-4	05/21/19	5.9	81.8	0.73	19.6	NA	29.1	13.6	< 0.23	<1.1	57.
BC-GP6-SS1	1-2	05/21/19	13.2	55.8	0.77	19.7	NA	90.1	62.5	< 0.22	<1.0	241
BC-GP6-SB1	3-4	05/21/19	5.5	250	2.8	32.7	< 0.423	128	15.6	< 0.32	2.3	77.
BC-GP7-SS1	1-2	05/21/19	44.0	694	1.2	24.2	NA	222	159	< 0.26	<1.3	273
BC-GP7-SB1	3-4	05/21/19	28.2	116	1.2	17.3	NA	52.9	198	< 0.25	1.3	203
BC-GP8-SS1	2-3	05/21/19	33.9	46.2	< 0.54	38.4	<0.263	39.7	25.4	< 0.22	<1.1	91.:
BC-GP8-SB1	3-4	05/21/19	2.8	116	< 0.55	25.6	NA	15.8	10.7	< 0.26	<1.1	66.
BC-SB-FD3	51	05/21/19	27.7	35.9	< 0.50	32.5	NA	35.6	27.0	< 0.23	<1.0	63.
BC-GP9-SS1	1-2	05/21/19	25.5	169	2.4	44.0	0.600 J	688	448	< 0.26	<1.1	745
BC-GP9-SB1	3-4	05/21/19	13.8	85.2	< 0.58	23.5	NA	25.9	12.6	< 0.23	<1.2	77.
BC-GP10-SS1	1-2	05/21/19	11.6	228	0.60	32.2	NA	212	158	0.54	<1.2	159
BC-GP11-SS1	0.5-1.5	05/21/19	15.0	323	5.3	16.7	NA	385	282	< 0.25	1.8	1,23
BC-GP12-SS1	1-2	05/20/19	3.1	131	< 0.54	21.2	NA	13.7	84.7	< 0.22	<1.1	102
BC-GP13-SS1	1-2	05/20/19	13.5	93.7	1.2	13.1	NA	124	137	0.32	<1.1	355
BC-SB-FD1	12	05/20/19	17.1	197	1.1	19.1	NA	68.3	150	< 0.24	<1.1	339
BC-GP14-SS1	0.5-1.5	05/20/19	49.2	192	0.80	19.2	NA	98.1	156	< 0.22	1.7	211
BC-GP15-SS1	0.5-1	05/21/19	12.8	29.2	< 0.46	14.7	NA	27.1	20.8	< 0.22	< 0.93	116
F	RDCSL		9.5	21,000	99	100,000	4.2	4,300	400	3.1	550	32,0
]	IDCSL		30	100,000	980	100,000	63	47,000	800	3.1	5,800	100,0
Res	s MTGSL		5.9	1,700	7.5	1,000,000	0.14	920	270	2.1	5.3	7,50
E	X DCSL		920	100,000	1,900	100,000	2,700	79,000	1,000	3.1	9,800	100,0

Notes:

All concentrations are reported in mg/kg. NA = Not analyzed. NE = No IDEM RCG Screening Level established for this constituent. Unlisted compounds below laboratory detection limits for all samples.

Bold values indicate concentrations above the RCG Residential Soil Exposure Direct Contact Screening Levels (RDCSLs) and/or RCG Residential Soil Migration to Groundwater Screening Levels (Res MTGSLs).

Bold outlined values indicate concentrations above the RCG Commercial/Industrial Soil Exposure Direct Contact Screening Levels (IDCSLs). IDEM Remediation Closure Guide (RCG), Appendix A: Screening Levels, Table A-6: Screening Level Summary Table - March 2019 Screening Levels.

TABLE 6 Summary of Soil PAH Analytical Results (mg/kg) The Butler Company 325 South Broadway Street Butler, DeKalb County, Indiana **IBP Site No. 4170705**

Stample II)	Same	rae Depth in Feet	anple Date	Benzer	Ben.	Benzan	^{Collinorantlene} Benzon	Benzard	(c)lluoranthene	III)Nette	Indeno.	^{11,2,3,colprienc}	² Men.	and the start of t
									PA	Н				
BC-GP7-SB1	3-4	05/21/19	0.0081	0.015	0.011	0.011	0.017	0.013	0.017	0.024	0.012	0.079	0.11	0
BC-GP8-SB1	2.4	05/21/10	< 0.0063	< 0.0063	< 0.0063	< 0.0063	< 0.0063	< 0.0063	< 0.0063	< 0.0063	< 0.0063	< 0.0063	< 0.0063	<0.
BC-SB-FD3	5-4	03/21/19	< 0.0056	< 0.0056	< 0.0056	< 0.0056	< 0.0056	< 0.0056	< 0.0056	< 0.0056	< 0.0056	< 0.0056	0.0071	0.
RD	CSL		25,000	15	1.5	15	NE	150	1,500	3,400	15	250	340	4
IDO	CSL		100,000	210	21	210	NE	2,100	21,000	30,000	210	390	3,000	1
Res M	ITGSL		1,200	2.1	4.7	60	NE	590	1,800	1,800	200	1.2	3.7	0
EXI	DCSL		100000	12000	500	12000	NE	100,000	100,000	68,000	12,000	390	6,800	3,
Notes:														

Notes:

All concentrations are reported in mg/kg. NA = Not analyzed. NE = No IDEM RCG Screening Level established for this constituent. Unlisted compounds below laboratory detection limits for all samples. Bold values indicate concentrations above the RCG Residential Soil Exposure Direct Contact Screening Levels (RDCSLs) and/or RCG Residential Soil Migration to Groundwater Screening Levels (Res MTGSLs). IDEM Remediation Closure Guide (RCG), Appendix A: Screening Levels, Table A-6: Screening Level Summary Table - March 2019 Screening Levels.

Table 7 Summary of Soil VOC and PCB Analytical Results (mg/kg) The Butler Company 325 South Broadway Street Butler, DeKalb County, Indiana IBP Site No. 4170705

Samue II	Sectore .	Same	ne Date	Therane	2 ⁵⁸
			VOC	РСВ]
BC-GP7-SB1	3-4	05/21/19	0.049	< 0.13]
BC-GP8-SB1	2.4	05/21/10	0.071	< 0.13	
BC-SB-FD3	5-4	03/21/19	0.30	< 0.11	
RI	DCSL		140		
II	DCSL		140		
Res	MTGSL		210		
EX	DCSL		140]

Notes:

All concentrations are reported in mg/kg. NA = Not analyzed.

Unlisted compounds below laboratory detection limits for all samples.

Bold values indicate concentrations above the RCG Residential Soil Exposure Direct Contact Screening Levels (RDCSLs) and/or RCG Residential Soil Migration to Groundwater Screening Levels (Res MTGSLs).

IDEM Remediation Closure Guide (RCG), Appendix A: Screening Levels, Table A-6: Screening Level Summary Table - March 2019 Screening Levels.

TABLE 8

Summary of XRF and Lead Analytical Results The Butler Company 325 South Broadway Street Butler, Dekalb County, Indiana IBP Site No. 4170705

Control of the second	- Second	Solo Colo	Lead (ppn)	(un set
BC-GP3-N5 (1-2) BC-SB-FD4	06/18/19	151 151	51.7 228	
BC-GP3-E5 (1-2)	06/18/19	101	NA	
BC-GP3-E10 (1-2)	06/18/19	2,240	75.6	
BC-GP3-W5 (1-2)	06/18/19	345	307	
BC-GP3-W10 (1-2)	06/18/19	12	NA	
BC-GP3-S5 (1-2)	06/18/19	380	NA	
BC-GP3-S10 (1-2)	06/18/19	999	660	
BC-GP16-N5 (1-2)	06/18/19	7,771	49.2	
BC-GP16-N10 (1-2)	06/18/19	87	NA	
BC-GP16-E5 (1-2)	06/18/19	448	NA	
BC-GP16-E10 (1-2)	06/18/19	3,087	4,470	
BC-GP16-W5 (1-2)	06/18/19	672	964	
BC-GP16-W10 (1-2)	06/18/19	94	NA	
BC-GP16-S5 (1-2)	06/18/19	141	NA	
BC-GP16-S10 (1-2)	06/18/19	425	135	
RDCSL		NE	400	
IDCSL		NE	800	
Res MTGSI		NE	270	
EX DCSL		NE	1,000	

Notes:

NA = Not analyzed.

NE = No IDEM RCG Screening Level established for this constituent.

Bold values indicate concentrations above the RCG Residential Soil Exposure Direct Contact Screening Levels (RDCSLs) and/or RCG Commercial/Industrial Soil Exposure Direct Contact Screening Levels (IDCSLs).

Bold and Italicize values indicate concentrations above the RCG Excavation Soil Exposure Direct Contact Screening Levels (ExDCSLs).

TABLE 9

Summary of Soil PFAS Analytical Results (µg/kg) The Butler Company 325 South Broadway Street Butler, DeKalb County, Indiana IBP Site No. 4170705

Sample ID	Sample D.	Same.	Perfluoroocts.	Perfluoroocan	^{ved} (prosultanic
			PF]	
BC-GP10-SS1	1-2	05/21/19	0.61	< 0.24	
BC-GP10-SS1(DUP)	1-2	05/21/19	0.58	< 0.22	
BC-GP11-SS1	0.5-1.5	05/21/19	< 0.23	0.54	
BC-GP12-SS1	1-2	05/20/19	< 0.23	< 0.23	
BC-GP13-SS1	1-2	05/20/19	< 0.24	0.46	
BC-SB-FD1			< 0.23	< 0.22	
BC-GP14-SS1	0.5-1.5	05/20/19	< 0.24	< 0.23	
BC-FRB1		05/20/19	<1.8	<1.8	
BC-FRB2		05/21/19	<1.9	<1.8	
]

Notes:

All concentrations are reported in $\mu g/kg$. NA = Not analyzed.

Field Reagent Blank (FRB) sample results presented in nanogram per liter (ug/L). Unlisted compounds below laboratory detection limits for all samples.

TABLE 10 Summary of Groundwater Metals Analytical Results (µg/L) The Butler Company 325 South Broadway Street Butler, DeKalb County, Indiana IBP Site No. 4170705

Sample ID	Samuel	Parte Date	Dissol	Cod Barium	Dissoftan	a Cadmiun Ch.	Disson	unium Unium TALS	Dissolution	Collipser	Disso	oned Lead	Dissoft	Cal Zinc
BC-GP10-GW1	05/22/19	117	72.0	<2.0	<2.0	17.4	<10.0	14.5	<10.0	<10.0	<10.0	27.6	<10.0	
BC-GP11-GW1	05/22/10	134	115	<2.0	<2.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	56.1	24.4	
BC-GPGW-FD1	03/22/19	133	116	<2.0	<2.0	<10.0	<10.0	10.2	<10.0	<10.0	<10.0	54.4	22.8	
BC-GP12-GW1	05/22/19	121	114	<2.0	<2.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<20.0	<20.0	
BC-GP13-GW1	05/22/19	136	140	3.9	3.8	<10.0	<10.0	35.0	<10.0	<10.0	<10.0	1,610	1,570	
BC-GP14-GW1	05/22/19	158	123	<2.0	<2.0	10.9	<10.0	12.6	<10.0	<10.0	<10.0	22.3	<20.0	
BC-GP15-GW1	05/22/19	150	131	<2.0	<2.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<20.0	<20.0	
Res TAP GW	VSLs	2,000	2,000	5	5	100	100	1,300	1,300	15	15	6,000	6,000	

Notes:

All concentrations are reported in μ g/L. NA = Not analyzed. NE = No IDEM RCG Screening Level established for this constituent.

Unlisted compounds below laboratory detection limits for all samples.

Bold values indicate concentrations above the RCG Residential TAP Groundwater Screening Levels (Res TAP GWSLs).

IDEM Remediation Closure Guide (RCG), Appendix A: Screening Levels, Table A-6: Screening Level Summary Table - March 2019 Screening Levels.

TABLE 11

Summary of Groundwater PAH, VOC, and PCB Analytical Results (µg/L)

The Butler Company 325 South Broadway Street

Butler, DeKalb County, Indiana

IBP Site No. 4170705

Sample ID	Sample	PAR	Teo Con		R.
BC-GP10-GW1	05/22/19	ND	ND	ND	
BC-GP11-GW1	05/22/10	ND	ND	ND	
BC-GPGW-FD1	03/22/19	ND	ND	ND	
BC-GP12-GW1	05/22/19	ND	ND	ND	
BC-GP13-GW1	05/22/19	ND	ND	ND	
BC-GP14-GW1	05/22/19	ND	ND	ND	
BC-GP15-GW1	05/22/19	ND	ND	ND	

Notes:

All concentrations are reported in μ g/L. NA = Not analyzed. ND = No detection. NE = No IDEM RCG Screening Level established for this constituent.

Bold values indicate concentrations above the RCG Residential TAP Groundwater Screening Levels (Res TAP GWSLs).

IDEM Remediation Closure Guide (RCG), Appendix A: Screening Levels, Table A-6: Screening Levels Summary Table - March 2019 Screening Levels.

TABLE 12Summary of Groundwater PFAS Analytical Results (ng/L)The Butler Company325 South Broadway StreetButler, DeKalb County, IndianaIBP Site No. 4170705

Sample ID	So	Perfluorohoo	Perfluence deid (PFBA)	Perfuorobutas	(PrBS) (PrBS) (Drid Perfluorop.	(PrH14) dcid	Perfunction (Pripa) of doid	Print Print (Print onic Acid	Perfunction	(Prostonic Acid
					PF	AS				
BC-GP10-GW1	05/22/19	<2.1	<2.1	<1.8	<2.1	<2.1	<1.9	<2.1	<2.0	
BC-GP11-GW1	05/22/10	<2.0	<2.0	<1.8	<2.0	<2.0	<1.9	<2.0	<1.9	
BC-GPGW-FD1	03/22/19	<2.0	<2.0	<1.8	<2.0	<2.0	<1.9	<2.0	<1.9	
BC-GP12-GW1	05/22/19	7.3	<1.9	<1.9	<1.9	<1.9	<1.8	<1.9	23	
BC-GP13-GW1	05/22/19	13	6.0	3.2	6.8	3.0	6.7	5.3	4.6	
BC-GP14-GW1	05/22/19	<2.0	<2.0	<1.8	<2.0	<2.0	<1.9	<2.0	<2.0	
BC-FRB3	05/22/19	<2.0	<2.0	<1.7	<2.0	<2.0	<1.9	<2.0	<1.9	

Notes:

All concentrations are reported in ng/L. NA = Not analyzed. Unlisted compounds below laboratory detection limits for all samples.

TABLE 13 Summary of Soil Gas Sampling Analytical Results (µg/m³) The Butler Company 325 South Broadway Street Butler, DeKalb County, Indiana **IBP Site No. 4170705**

Sample 1D	Ster	·cenced Interval	anne Date	Acetone	Benzene	C ^a rbon disulfue	Chinologian	Dicition observence	'anteriotiane and	Ethanol	Edythenerge	n.H.phiane	n-Herane	Methylene Chloride	Prontantine Mark	2. Propanol	Propylene	Styrene	^{1 otrachon} othene
													\$	SOIL GAS					
BC-SG2	4.4.5	05/31/10	24.7	14.6	14.8	12.6	4.2	3.0	121	10.3	647	1,260	17.8	16.4	9.4	504	3.4	72.8	<1.1
BC-SG-FD1	4-4.3	05/51/19	27.8	14.4	14.5	12.9	3.8	2.7	118	9.9	629	1,230	29.3	15.2	9.3	498	3.3	70.1	23.0
Calculated RCG Commerc Exposure Screen	ial/Industrial S ing Levels (ug	Soil Gas Vapor g/m ³)	1,400,000	160	31,000	53	NE	4,400	NE	490	18,000	31,000	26,000	130,000	8,800	130,000	44,000	1,800	88,000

Notes:

All concentrations are reported in ug/m³. Screened interval reported in feet below grade. NA = Not analyzed. NE = No IDEM RCG Screening Level established for this constituent.

Bold values indicate concentrations above the RCG Commercial/Industrial Soil Gas Vapor Exposure (Indus SGe VESL).

IDEM Remediation Closure Guide (RCG), Appendix A: Screening Levels, Table A-6: Screening Level Summary Table - March 2019 Screening Levels.

Soil Gas Vapor Exposure Screening Levels were calculated by dividing the corresponding Indoor Air Screening Levels (RCG, updated March 2019) by 0.1 (exterior soil gas points shallower than 5 feet), (assumed attenuation factor) as outlined in IDEM's technical guidance document Attenuation Factors (September 2016).

SUMMA CANISTER VACUUM MEASUREMENTS									
	BC-G2	BC-SG-FD1							
Initial Summa Canister Vacuum Measurement (inches Hg)	-29	-29							
Final Summa Canister Vacuum Measurement (inches Hg)	-2	-2							
Summa Canister Vacuum Measurement Upon Arrival at Laboratory (inches Hg)	-3	-3							

FIGURES

 $\begin{array}{c|c} & \text{PROJECT NUMBER} \\ \hline 1/19 \\$

APPENDIX A

DEKALB COUNTY ASSESSOR PROPERTY CARD AND TAX DEED

Summary -Auditor's Office

Parcel ID	23-07-12-109-001
Tax Bill ID	23-07-12-109-001
State ID	17-07-12-109-001.000-027
Map Reference #	
Property Address	325 S Broadway St
	Butler, IN, 46721
Brief Legal Description	In Mid Pt W1/2 NW1/4
	(Note: Not to be used on legal documents)
Class	COMMERCIAL WAREHOUSE
Tax District	Butler City 027
Tax Rate Code	23065 - Advertised
Property Type	67 - Commercial
Mortgage Co	N/A
Last Change Date	
Acreage	3.55

Owners - Auditor's Office

FSPI 401K EMPL Profit Sharing Plan 401 5200 Dallas Hwy Ste 200-280 Powder Springs, GA 30127

Taxing District - Assessor's Office

-	
County:	Dekalb
Township:	Wilmington Township
State District	027 BUTLER CITY
Local District:	023
School Corp:	DEKALB COUNTY EASTERN COMMUNITY
Neighborhood:	234065-17027 VARIOUS C/I UNPLATTED AREAS 234065-17027

Site Description - Assessor's Office

Topography:	Flat
Public Utilities:	All
Street or Road:	Sidewalk , Paved
Area Ouality	

Land - Assessor's Office

Land Type	Soil ID	Act Front.	Eff. Depth	Size	Rate	Adj. Rate	Ext. Value	Infl.%	Value
Primary Commercial/Indust Land		0	0	2.5500	\$21,000.00	\$21,000.00	\$53,550.00	(\$75.00)	\$13,390.00
Homesite		0	0	1.00	\$9,964.00	\$9,964.00	\$9,964.00	\$0.00	\$9,960.00

Commercial Buildings

Description	C/I Buildi	ng C 05	5			Use Area	2,652		
	6 0					Not in Use	0		
	28		в	1	U	Use	Light Utility Storage		
Wall Type				1		Floor	1		
Heating							-		
A/C									
Sprinkler									
Plumbing RES/CI		#	TF	#	TF				
Total		0	0	0	0				
Description	C/I Buildi	ng C 06	6				756	756	
•		0				Not in Llos	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,50	
	SB		в	1	U	Not in Ose	0	0	
Wall Type			2	2		Use	Light Utility Storage	Light Utility Storage	
Heating						Floor	2	1	
A/C									
Sprinkler									
Plumbing RES/CI		#	TF	#	TF				
Total		0	0	0	0				

Improvements - Assessor's Office

			Year	Eff				Nbhd	Mrkt
Descr	PC	Grade	Built	Year	Cond	LCM	Size	Factor	Factor
C/I Building C 05	100	D	1900	1927	F	1.01	2652	1	0
Fencing	100	С	1960	1960	F	1.01	0	1	0
Barn, Pole (T3) 26X122	100	D	1900	1900	F	1.01	3172	1	0.65
C/I Building C 06	100	D	1900	1927	VP	1.01	1512	1	0

Transfer History (Cama) - Auditor & Assessor's Off

Date	New Owner	Doc ID	Book/Page	Sale Price
11/9/2012	FSPI 401K EMPL PROFIT SHARING PLAN 401			\$0.00
12/29/2006	STROCK, NEIL A.			\$75,000.00
10/2/2006	PORTER, JODY L. TRUSTEE IN TRUST OF			\$400,016.00
	BUTLER CO., THE			\$0.00

Homestead Assessments - Auditor's Office

	2017 Pay 2018	2016 Pay 2017	2015 Pay 2016	2014 Pay 2015	2013 Pay 2014
Land	\$23,400.00	\$23,400.00	\$23,400.00	\$23,400.00	\$23,400.00
Res Land	\$0.00	\$0.00	\$0.00	\$10,000.00	\$10,000.00
Improve	\$12,800.00	\$30,400.00	\$71,500.00	\$66,200.00	\$67,200.00
Res Improve	\$0.00	\$0.00	\$0.00	\$6,150.00	\$6,250.00

Transfer History (Tax)

Date	Transfer From	Instrument	Book	Page	Doc Nbr
11/9/2012	Strock, Neil A.	Tax Deed			
12/29/2006	Porter, Jody L. trustee in trust of the Helen B. Sicard trust	TRST D			
10/2/2006	Butler Co., The	SHERIFF D			
1/1/1900	Unknown At Conversion				

Valuation - Assessor's Office

Assessment Year	2019	2018	2018 (2)	2017	2017 (2)
Reason	Annual Adjustment	Annual Adjustment	Annual Adjustment	Annual Adjustment	DESTROYED STRUCTURE
As Of Date	4/10/2019	3/28/2018	3/26/2018	3/19/2017	9/22/2016
Land	\$23,400	\$23,400	\$23,400	\$23,400	\$23,400
Land Res (1)	\$10,000	\$10,000	\$10,000	\$10,000	\$10,000
Land Non Res (2)	\$0	\$O	\$0	\$0	\$0
Land Non Res (3)	\$13,400	\$13,400	\$13,400	\$13,400	\$13,400
Improvement	\$13,400	\$13,400	\$13,400	\$12,800	\$12,700
Imp Res (1)	\$0	\$0	\$0	\$0	\$0
Imp Non Res (2)	\$0	\$0	\$0	\$0	\$0
Imp Non Res (3)	\$13,400	\$13,400	\$13,400	\$12,800	\$12,700
Total	\$36,800	\$36,800	\$36,800	\$36,200	\$36,100
Total Res (1)	\$10,000	\$10,000	\$10,000	\$10,000	\$10,000
Total Non Res (2)	\$0	\$0	\$0	\$0	\$0
Total Non Res (3)	\$26,800	\$26,800	\$26,800	\$26,200	\$26,100

Exemptions - Auditor's Office

Туре	Description	2014 Pay 2015
Homestead	HOMESTEAD EX	\$9,690.00
Mortgage	MORTGAGE EX	\$3,000.00
Homestead	SUPPLEMENTAL	\$2,261.00

Tax History - Auditor's Office

		2018 Pay 2019	2017 Pay 2018	2016 Pay 2017	2015 Pay 2016	2014 Pay 2015
+	Spring Tax	\$460.50	\$444.66	\$689.68	\$1,264.87	\$1,074.92
+	Spring Penalty	\$46.05	\$44.47	\$68.97	\$126.49	\$107.49
+	Spring Annual	\$694.83	\$605.89	\$467.96	\$214.98	\$0.00
+	Fall Tax	\$460.50	\$444.66	\$689.68	\$1,264.87	\$1,074.92
+	Fall Penalty	\$0.00	\$44.47	\$68.97	\$126.49	\$107.49
+	Fall Annual	\$0.00	\$605.89	\$467.96	\$214.98	\$0.00
+	Delq NTS Tax	\$444.66	\$689.68	\$1,264.87	\$1,074.92	\$1,029.36
+	Delq NTS Pen	\$650.36	\$536.93	\$341.47	\$107.49	\$102.94

		2018 Pay 2019	2017 Pay 2018	2016 Pay 2017	2015 Pay 2016	2014 Pay 2015
+	Delq TS Tax	\$6,503.60	\$5,369.26	\$3,414.71	\$1,074.92	\$1,029.36
+	Delq TS Pen	\$2,622.14	\$1,434.85	\$556.45	\$107.49	\$102.94
+	Other Assess	\$51.12	\$48.28	\$42.60	\$36.92	\$62.48
		0455-00-0 Big Run62223 - \$51.12	0455-00-0 Big Run62223 - \$48.28	0455-00-0 Big Run62223 - \$42.60	0455-00-0 Big Run62223 - \$36.92	0455-00-0 Big Run62223 - \$62.48
+	Advert Fee	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
+	Tax Sale Fee	\$300.00	\$300.00	\$200.00	\$100.00	\$0.00
+	NSF Fee	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
	PTRC	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
	HMST Credit	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
	Circuit Breaker	\$0.00	\$0.00	\$1.24	\$9.99	\$0.00
	Over 65 CB	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
=	Charges	\$12,233.76	\$10,569.04	\$8,273.32	\$5,714.42	\$4,691.90
-	Surplus Transfer	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
-	Credits					(\$2,295.84)
=	Total Due	\$12,233.76	\$10,569.04	\$8,273.32	\$5,714.42	\$2,396.06

Delinquent payments made after the fall due date will still show due in the year they were originally assessed. If paid, payment will show in the next tax year. Amounts shown do not include late penalties. Please call our office at 260-925-2712 for current balance information.

Payments

Year	Receipt #	Transaction Date	Amount
2018 Pay 2019			\$0.00
2017 Pay 2018			\$0.00
2016 Pay 2017			\$0.00
2015 Pay 2016			\$0.00
2014 Pay 2015	1519910	3/9/2015	\$2,295.84

Property Tax Bill

Print tax bill

Amount does not include late penalty

Make a Payment Online

Sketches - Assessor's Office

Мар

Tax and Assessment information will not show on new splits until the following taxing year. Please contact the Auditor or Assessor's Office for data needed.

No data available for the following modules: Residential Dwellings - Assessor's Office.

The information in this web site represents current data from a working file which is updated continuously. Information is believed reliable, but its accuracy cannot be guaranteed. No warranty, expressed or implied, is provided for the data herein, or its use.

Last Data Upload: 7/11/2019, 2:01:57 AM

Version 2.2.30

Prescribed by the State Board of Accounts

TAX DEED

WHEREAS FSPI 401K EMPL PROFTT SHARING PLAN 401 (k) did the 23rd day of August, 2012 produce to the undersigned, JOHN W. FETTERS Auditor of the County of Dekalb in the State of Indiana, a certificate of sale dated the 27th day of February, 2012, signed by John Fetters who, at the date of sale, was Auditor of the County, from which it appears that FSPI 401K EMPL PROFIT SHARING PLAN 401 (k) on the 27th day of February, 2012, purchased at public auction, held pursuant to law, the real property described in this indenture for the sum of \$2001 TWO THOUSAND, ONE AND 0/100 DOLLARS, being the amount due on the following tracts of land returned delinquent in the name Strock, Neil A. for 2010 and prior years, namely:

SEE ATTACHED EXHIBIT A

Property ID#: 23-07-12-109-001

Such real property has been recorded in the Office of the Dekalb County Auditor as delinquent for the nonpayment of taxes and proper notice of the sale has been given. It appearing that FSPI 401K EMPL PROFIT SHARING PLAN 401 (k) yy the owner of the certificate of sale, that the time for redeeming such real property has expired, that the property has not been redeemed, that the undersigned has received a court order for the issuance of a deed for the real property described in the certificate of sale, that the records of the Dekalb County Auditor's Office state that the real property was legally liable for taxation, and the real property has been duly assessed and properly charged on the duplicate with the taxes and special assessments for 2010 and prior years.

THEREFORE, this indenture, made this 2^{++} , day of <u>Notember 2012</u> between the State of Indiana by JOHN W. FETTERS Auditor of Dekalb County, of the first part, and FSPI 401K EMPL PROFIT SHARING PLAN 401 (k) of the second part, witnesseth; That the party of the first part, for and in consideration of the premises, has granted and bargained and sold to the party of the second part, their heirs and assigns, the real property described in the certificate of sale, situated in the County of Dekalb, and State of Indiana, namely and more particularly described as follows:

Property ID#: 23-07-12-109-001

SEE ATTACHED EXHIBIT A

to have and to hold such real property, with the appurtenances belonging thereto, in as full and ample a manner as the Auditor of said County is empowered by law to convey the same.

In testimony whereof, JOHN W. FETTERS, Auditor of Dekalb County, has hereunto set his/her hand, and affixed the seal of the Board of County Commissioners, the day and year last above mentioned.

Attest: HOLLY ALBRIGHT Treasurer: Dekalb County

State of Indiana

County of Dekalb

Before me, the undersigned, MARTHA GRIMM, in and for said County, this day, personally came the sime mended JOHN W. FETTERS, Auditor of said County, and acknowledged that he/she signed and sealed the foregoing deed for the next and supposes therein mentioned.

i ss.

In witness whereof, I have hereunto set my hand and seal this $\frac{9}{4}$ day of

GRIMM, Clerk of

W. FEITERS, Auditor of Dekalb County

(L.S.)

This instrument prepared by JOHN W. FETTERS, Auditor

I affirm, under the penalties for perjury, that I have taken reasonable care to redact each Social Security nurse in Fis Document, unless required by law. JOHN W. FETTERS, Auditor

Post Office address of grantee:

FSPI 401K EMPL PROFIT SHARING PLAN 401 (k) 5200 Dallas Hwy; Ste 200-280 Powder Springs, GA 30127

DULY ENTERED FOR TAXATION

NOV 0 9 7012

AUCH LA DENALS COUNTY

EXHIBIT A – LEGAL DESCRIPTION

Property ID#: 23-07-12-109-001

Part of the West Half of the Northwest Quarter of Section 12, Township 34 North, Range 14 East in DeKalb County, Indiana, bounded by a line commencing at a point on the west line of said Section at the south boundary line of the right-of-way of the Wabash Railroad Company and conning thence South 4 chains; thence East 6 chains and 50 links; thence North to the south boundary of said Railroad right-of-way and thence Southwesterly along said boundary of said Railroad to the point of beginning.

More commonly known as: 325 S Broadway St.

APPENDIX B

WASTE DISPOSAL DOCUMENTATION

APPENDIX C

GPRS JOB SUMMARY

Job Summary

Job Date : 5/15/2019

Customer IWM Consulting Group				Phone Number (206) 497-9620				
Bil	ling Address	1. S. 1	City	State	Zip			
10	15 Production F	d	Fort Wayne	IN	46808			
Jot	Details							
lot	bsite Location	325 S Broadway St						
Cit	ty	Butler						
Sta	ate	IN						
W	A Number	127306						
Jol	b Num	10716-10						
PC) Num	FW19716-10						
Lea	ad Technician	COOK, BEN	Phone	260-205-0278 Email	ben.cook@gprsinc.com			
•	on site and soil RD 7000/8000 tracer wires, or GSSI EMP-400 f	conditions. Radio Frequency det passively detect elec Electromagnetic Prof	ector. Detects e ctric,communica iler. This system	lectromagnetic fields. Use itions and other lines. generates an electromag	ed to actively trace metallic pipes and metic field around the user, records			
	interactions be underground st	tween the EM field a orage tanks or reinfo	nd the soil, and prced concrete f	maps the results. Most se oundations.	ensitive to large metallic objects such as			
Vork P	erformed							
Ground	d Penetrating Ra	adar Systems perform	ned the followir	ng work on this project:				
Inder	ground Utility							
icannii iny acc ocatio ipprop	ng the specified cessible metallion ns of any detec priate means, ar	area to locate unde cutility or tracer wire ted utilities and anor nd results were revie	rground utilities e, and the area v nalies were mar wed with onsite	and other significant ano vas scanned with GPR to l ked directly at the site wi personnel.	malies. A tracer signal was sent along ocate any additional targets. The th paint, flags, stakes, or other			
•	The total area s	canned was approxi	mately 154,638	square feet.				
	The total area	scanned was approxi	mately 3.55 acr	es.				
•	Scanning the ar scanned. A tota	eas around proposed I of 15 boring locatio	d soil borings. Ty ns were scanne	pically a 10' radius aroun d.	d each proposed soil boring will be			
•	Entire area in th EMI will also be	ne SOW provided by used in locations wh	client's map will nere it can be us	be searched for unknow ed effectively away from	n utilities and clear 15 soil borings. The building debris and obstructions.			

Job Summary

Job Date : 5/15/2019

- The effective depth of GPR will vary throughout a site depending on surface and soil conditions. In this area, the
 maximum effective GPR depth was approximately 3 feet.
- The perimeter of the property was scanned for any utilities entering the site. Only one location was found to have this. It was marked on the surface with red paint and flags. Two other interior locations gave reactions that were marked with the red as well. A gas line off Broadway St was marked with yellow paint and flags to a valve near the old railway. A short section of another line was marked there as well. The only other utility seen was either a water or gas line in the middle of the property off of Broadway that went approximately 100' to the E and stopped. It was marked with yellow and blue paint and flags since it's utility was not known for sure. Fifteen specific location were cleared for soil borings. These were marked with wooden stakes by the client. Corners of these areas were marked with white paint. Not all of these could be scanned with the GPR due to debris from the demolished buildings. All were checked with the RD though.

Pictures

Utility Limitations

TERMS & CONDITIONS

http://www.gprsinc.com/termsandconditions.html

APPENDIX D

LABORATORY ANALYTICAL REPORT – BULK ASBESTOS

EMSL Order: 161909340 **EMSL** Analytical, Inc. Customer ID: IWMC25 6340 CastlePlace Dr. Indianapolis, IN 46250 MSL **Customer PO:** Tel/Fax: (317) 803-2997 / (317) 803-3047 Project ID: http://www.EMSL.com / indianapolislab@emsl.com Attention: Mark Anderson Phone: (260) 497-9620 **IWM Consulting Group** Fax: 1015 Production Road Received Date: 05/16/2019 11:12 AM Fort Wayne, IN 46808 05/22/2019 - 05/23/2019 Analysis Date: Collected Date: 05/15/2019 Project: 19-716-10 Butler Co.

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

		Non-Asbestos			Asbestos
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Туре
BC-AB1-Roofing	W Central Building - Roofing (multi-layer) (2)	Gray/Black Fibrous Heterogeneous	50% Cellulose	50% Non-fibrous (Other)	None Detected
BC-AB1-Felt	W Central Building - Roofing (multi-layer)	Brown/Black Fibrous	70% Cellulose	30% Non-fibrous (Other)	None Detected
161909340-0001A	(2)	Heterogeneous			
BC-AB2-Roofing	W Central Building - Roofing (multi-layer)	Black Fibrous	60% Cellulose	40% Non-fibrous (Other)	None Detected
161909340-0002	(2)	Homogeneous			
BC-AB2-Felt	W Central Building - Roofing (multi-layer)	Brown Fibrous	60% Cellulose	40% Non-fibrous (Other)	None Detected
101909340-0002A		Holliogeneous		00% 0	New Datastal
BC-AB3	W Central Building - Mortar	Gray Non-Fibrous Homogeneous		20% Quartz 80% Non-fibrous (Other)	None Detected
	W Control Building	Crov		20% Quartz	Nana Datastad
161909340-0004	Mortar	Non-Fibrous Homogeneous		80% Non-fibrous (Other)	None Delected
BC-AB5	W Central Building - Mortar	Various Non-Fibrous		100% Non-fibrous (Other)	None Detected
161909340-0005		Homogeneous			
BC-AB6	W Central Building - Electrical Wire	Gray/Black Fibrous	70% Cellulose 5% Glass	25% Non-fibrous (Other)	None Detected
161909340-0006	Insulation	Heterogeneous			
BC-AB7-Insulation	W Central Building - Electrical Wire	Brown Fibrous	90% Cellulose	10% Non-fibrous (Other)	None Detected
161909340-0007	Insulation	Homogeneous			
BC-AB7-Insulation	W Central Building - Electrical Wire	Black Fibrous Homogeneous	95% Cellulose	5% Non-fibrous (Other)	None Detected
BC AB8 Roofing	E Central Building	Black		58% Non-fibrous (Other)	2% Chrysotile
161909340-0008	Roofing (multi-layer) (2)	Fibrous Heterogeneous			
BC-AB8-Shingle	E Central Building - Roofing (multi-layer)	White/Black Fibrous	30% Cellulose	70% Non-fibrous (Other)	<1% Chrysotile
161909340-0008A	(2)	Heterogeneous			
BC-AB9-Roofing	E Central Building - Roofing (multi-layer)	Black Non-Fibrous		98% Non-fibrous (Other)	2% Chrysotile
161909340-0009	(2)	Homogeneous			
BC-AB9-Shingle	E Central Building - Roofing (multi-layer)	Black Non-Fibrous		100% Non-fibrous (Other)	<1% Chrysotile
161909340-0009A	(2)	Homogeneous			
BC-AB10	E Central Building - Mortar	Gray Non-Fibrous		20% Quartz 80% Non-fibrous (Other)	None Detected
101909340-0010		nomogeneous		2027	Nuc Data tal
BC-AB11 161909340-0011	E Central Building - Mortar	Gray Non-Fibrous Homogeneous		20% Quartz 80% Non-fibrous (Other)	None Detected

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

			Non-Asbe	stos	<u>Asbestos</u>
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Туре
BC-AB12	E Central Building - Mortar	Gray Non-Fibrous		100% Non-fibrous (Other)	None Detected
161909340-0012		Homogeneous			
BC-AB13	E Central Building - Transite Panels	Gray Fibrous		80% Non-fibrous (Other)	20% Chrysotile
161909340-0013		Homogeneous			
BC-AB14	E Central Building - Transite Panels	Gray Fibrous		85% Non-fibrous (Other)	15% Chrysotile
161909340-0014		Homogeneous			
BC-AB15	E Central Building - Fire Brick Mortar	Gray Non-Fibrous		10% Quartz 90% Non-fibrous (Other)	None Detected
161909340-0015		Homogeneous			
BC-AB16	E Central Building - Fire Brick Mortar	Gray Non-Fibrous		100% Non-fibrous (Other)	None Detected
161909340-0016		Homogeneous			
BC-AB17	E Central Building - Fire Brick	Tan Non-Fibrous		100% Non-fibrous (Other)	None Detected
161909340-0017		Homogeneous			
BC-AB18	E Central Building - Fire Brick	Tan/White Non-Fibrous		100% Non-fibrous (Other)	None Detected
161909340-0018		Homogeneous			
BC-AB19	E Central Building - Fire Brick Interior	Brown/Black Non-Fibrous		100% Non-fibrous (Other)	None Detected
	Glazing (1)	-			
BC-AB20	E Central Building - Fire Brick Interior Glazing (1)	Tan Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
RO A DO4	Clazing (1)	Crow		200/ Nen fibrous (Other)	40% Chrysotile
BC-AB21 161909340-0021	Paper Backing	Gray Fibrous Homogeneous	40% Cellulose	20% Non-librous (Other)	40% Chrysolie
BC-4B22	E Central Building -	White		100% Non-fibrous (Other)	None Detected
161909340-0022	Window Sealant	Non-Fibrous Homogeneous			None Deteoleu
BC-AB23	E Central Building -	Tan		100% Non-fibrous (Other)	None Detected
161909340-0023	Window Sealant	Non-Fibrous Homogeneous			
BC-AB24	Central Shed -	Gray/White		100% Non-fibrous (Other)	None Detected
161909340-0024	Window Sealant	Non-Fibrous Homogeneous			
BC-AB25	Central Shed - Window Sealant	Gray/White Non-Fibrous		100% Non-fibrous (Other)	None Detected
161909340-0025		Homogeneous			
BC-AB26-Roofing	N Building - Roofing (multi-layer)(2)	White/Black Fibrous	15% Cellulose	85% Non-fibrous (Other)	None Detected
161909340-0026		Heterogeneous			
BC-AB26-Felt	N Building - Roofing (multi-layer)(2)	Black Fibrous	60% Cellulose	40% Non-fibrous (Other)	None Detected
161909340-0026A		Homogeneous			
BC-AB26-Tar	N Building - Roofing (multi-layer)(2)	Black Non-Fibrous	10% Cellulose	88% Non-fibrous (Other)	2% Chrysotile
101909340-0020B		Black			50/ Ohm 11
BC-AB27-1ar	N Building - Roofing (multi-layer)(2)	Black Fibrous Homogeneous		95% Non-fibrous (Other)	5% Chrysotile
DO ADOZ C' '					Nucl Data to 1
BC-AB27-Shingle	N Building - Roofing (multi-layer)(2)	vvnite/Black Non-Fibrous Homogeneous		100% Non-Tibrous (Other)	None Detected

Initial report from: 05/23/2019 15:16:20

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

			Non-Asbe	stos	Asbestos
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Туре
BC-AB27-Felt	N Building - Roofing (multi-layer)(2)	Black Fibrous	50% Cellulose	50% Non-fibrous (Other)	None Detected
161909340-0027B		Homogeneous			
BC-AB28	N Building - Mortar	Gray Non-Fibrous		20% Quartz 80% Non-fibrous (Other)	None Detected
161909340-0028		Homogeneous			
BC-AB29	N Building - Mortar	Gray Non-Fibrous		20% Quartz 80% Non-fibrous (Other)	None Detected
161909340-0029		Homogeneous			
BC-AB30	N Building - Mortar	Gray Non-Fibrous		100% Non-fibrous (Other)	None Detected
161909340-0030		Homogeneous			
BC-AB-DUP1	Mortar	Gray Non-Fibrous		20% Quartz 80% Non-fibrous (Other)	None Detected
161909340-0031		Homogeneous			
BC-AB-DUP2	Mortar	Gray Non-Fibrous		100% Non-fibrous (Other)	None Detected
161909340-0032		Homogeneous			

Analyst(s)

Crystal Oshurak (19) Paul Rihm (22)

Vehard

Richard Harding, Laboratory Manager or Other Approved Signatory

EMSL maintains liability limited to cost of analysis. The above analyses were performed in general compliance with Appendix E to Subpart E of 40 CFR (previously EPA 600/M4-82-020 "Interim Method"), but augmented with procedures outlined in the 1993 ("final") version of the method. This report relates only to the samples reported above, and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. All samples received in acceptable condition unless otherwise noted. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. EMSL recommends gravimetric reduction for all non-friable organically bound materials prior to analysis. Estimation of uncertainty is available on request.

Samples analyzed by EMSL Analytical, Inc. Indianapolis, IN NVLAP Lab Code 200188-0, AZ0939, CA 2575, CO AL-15132, TX 300262, LA 04135

Initial report from: 05/23/2019 15:16:20

OrderID:	161909340
----------	-----------

EMS

EMSL ANALYTICAL, INC.

Ast	pestos Bulk Building Material
	Chain of Custody
E	MSL Order Number (Lab Use Only):

EMSL ANALYTICAL, INC. 200 ROUTE 130 NORTH CINNAMINSON, NJ 08077 PHONE: (800) 220-3675 FAX: (856) 786-5974

		-		
11	.0	1	2	2
110	14	()	9	2

LABORATORY - PRODUCTS - TRAINING	16190	9340	FAX: (856) 786-5974						
Company : IWA Cons	the	EMSL-Bill to: Same Different							
Street: 1015 Produc	than 2d	Third Party Billin	Third Party Billing requires written authorization from third party						
City: Fi. Wayne IN 1	46808 State/Province: IN	Zip/Postal Code:	46808 Country: U.S.A.						
Report To (Name): Ma	urk Anderson	Telephone #: (24	10) 497-96 20/(260) 442-3017						
Email Address: mand	erson@ nom consult. com	Fax #:	Purchase Order:						
Project Name/Number:	19-716-10 Botler Co.	Please Provide Res	ults: Fax Email						
U.S. State Samples Tak	Turnaround Time (TAT) Options* – Please							
3 Hour 6 Hour 24 Hour 48 Hour 72 Hour 96 Hour 24 Hour 0 48 Hour 72 Hour 96 Hour 24 Hour 0 48									
PLM - B	ulk (reporting limit)		TEM – Bulk						
PLM EPA 600/R-93/1	16 (<1%)		PA 600/R-93/116 Section 2.5.5.1						
PLM EPA NOB (<1%)	25%	Chatfield Protocol (s	98.4 (TEM)						
Point Count w/Gravimetri	$[c \Box 400 (<0.25\%) \Box 1000 (<0.1\%)$	TEM % by Mass – E	PA 600/R-93/116 Section 2.5.5.2						
□ NIOSH 9002 (<1%)		TEM Qualitative via	Filtration Prep Technique						
NY ELAP Method 19	8.1 (friable in NY)	TEM Qualitative via	Drop Mount Prep Technique						
NY ELAP Method 19	8.6 NOB (non-friable-NY)		Other						
Standard Addition Mo	ed								
			6112110						
Check For Positive S	Stop – Clearly Identify Homogenou	s Group Date Sampled	1: 2/12/14						
Samplers Name: ASK	lug tepple	Samplers Signatu							
Sample # HA #	Sample Location		Material Description						
BC-ABI I W	Central Building	Ro	ofing (Multi-Layer) (2)						
BC-4B2 h	1. Central Building	Ro	ofing (Multi-Layer)(2)						
BC-AB3 2 1	N. Contral Building	Mortar							
3C-A34 2 W	v. Central Building	Mortar							
BC-AB5 2 1	N. Central Building	Mortar							
BC-AB6 3 V	N. Central Building	E	lectrical Wire Insulation						
BC-ABY 3	W. Central Building	EI	ectrical Wire Insulations						
BC-AB8 4	E. Central Building	R	bofing (Multi-Lager)						
BC-AB9 4	E. Central Building	P	sofing (Multi-Layer)&						
BC-ABID 5 E. Central Building Mortar									
Client Sample # (s): BC	AB1-BC-AB,30, BC-AB-DA	PI, BC-AB-DUP2	Total # of Samples: 32						
Relinquished (Client): Time: M. Date: 5-16-19 Time: M.D.									
Received (Lab): Date: 5-16-19 Time: 11.12.00 Comments/Special Instructions:									
OAnalyze Brown Black Layer only Q Analyze Each roofing Layer									
Controlled Document - Asbestos COC - R6	- 11/29/2012 Page 1 of 2	nades							

Page 1 Of

2

Asbestos Bulk Building Material **Chain of Custody**

EMSL Order Number (Lab Use Only): 340

EMSL ANALYTICAL, INC. 200 ROUTE 130 NORTH CINNAMINSON, NJ 08077 PHONE: (800) 220-3675 FAX: (856) 786-5974

Additional Pages of the Chain of Custody are only necessary if needed for additional sample information

0

Sample #	HA #	Sample Location	Material Description						
BC-ABI	5	E. Central Building	Mortar						
BC-AB12	5	E. Central Building	Mortor						
BC-AB13	6	E. central Building	Transite Panels						
BC-ABIH	6	E. Central Building	Transite Panels						
BC-ADIS	7	E. Central Boilding	Fire Brick Mortar						
K-ABI6	7	E. Central Building	Fire Brick Morton						
BC-AB17	8	E. central Building	Fire Brick						
BC-AB 18	8	E. Central Building	Fire Brick						
BC-AB19	9	E. Central Building	Fire Brick Interior Glazing						
BC-AB20	9	E. Central Building	Fire Brick Interior Glazing						
BC-AB21	10	E. Central Building	Paper Backing						
BC-A822	11	E. Central Building	Window Sealant						
BC-AB23	11	E. Central Building	Window Sealant						
8-A824	12	Central Shed	Window Sealant						
BC-AB 25	12	Central Shed	Window Scalant						
BC-AB26	13	N. Building	Roofing (Multi-Layer)						
PC-AB27	13	N. Building	Roofing (Multi-Layer)						
BL-AB28	14	N. Boilding	Mortar						
BC-AB29	14	N. Building	Martar						
BC-4830	14	N. Building	Mortar						
BC-AB-DUP	- 1	0	Mortar						
BC-AB-DUM	-	- Chi mutadi	Morter						
And the second s									
*Commen	*Comments/Special Instructions:								
2 A	(2) Analyze each Roofing Layer								

Page 2 of 2 pages

Controlled Document - Asbestos COC - R6 - 11/29/2012

Page 2 Of 2 **APPENDIX E**

LABORATORY ANALYTICAL REPORT – LEAD PAINT

EMSL	EMSL Analytical, Inc. 6340 CastlePlace Dr., Indianapolis, IN Phone/Fax: (317) 803-2997 / (317) 8 http://www.EMSL.com	EMSL Order: 161909357 CustomerID: IWMC25 CustomerPO: ProjectID:				
Attn: Mark A	nderson	Phone:	(260) 497-9620			
IWM Co	onsulting Group	Fax:				
1015 Pr	roduction Road	Received:	05/16/19 11:11 AM			
Fort Wa	ayne, IN 46808	Collected:	5/15/2019			

Project: 19216-10 / BUTLER CO. / IN

Test Report: Lead in Paint Chips by Flame AAS (SW 846 3050B/7000B)*

Client SampleDescription	Collected	Analyzed	Weight	RDL	Lead Concentration
BC-PB1	5/15/2019	5/22/2019	0.2311 g	2200 ppm	18000 ppm
161909357-0001	Site: E BL	JILDING			

Doug Wiegand, Laboratory Manager or other approved signatory

*Analysis following Lead in Paint by EMSL SOP/Determination of Environmental Lead by FLAA. Reporting limit is 0.010 % wt based on the minimum sample weight per our SOP. Unless noted, results in this report are not blank corrected. This report relates only to the samples reported above and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities. Samples received in good condition unless otherwise noted. "<" (less than) result signifies that the analyte was not detected at or above the reporting limit. Measurement of uncertainty is available upon request. The QC data associated with the sample results included in this report meet the recovery and precision requirements unless specifically indicated otherwise. Definitions of modifications are available upon request.

Samples analyzed by EMSL Analytical, Inc. Indianapolis, IN AIHA-LAP, LLC--ELLAP 157245, OH E10040

Initial report from 05/22/2019 15:21:35

EMSL

EMSL ANALYTICAL, INC.

Lead (Pb) Chain of Custody EMŚL

~/			• •			
Ore	der	ID	(Lab	Use	Only	<i>):</i>

PHONE: () Fax: ()

6190935

Company: IWM Consulting		EMSL-Bill to: Same Different If Bill to is Different note instructions in Comments**							
Street: 1015 Production RD		Th	Third Party Billing requires written authorization from third party						
City: Fort Wayne State/F	Province:	Zip/Posta	Zip/Postal Code: 46 808 Country: U.S.A.						
Report To (Name): Mark Andusson		Telephon	e #: (2به)	497-9620	(260)	142-501	ד		
Email Address: mander sone juncon	so 4.com	Fax #:			Pu	Irchase Order			
Project Name/Number: 19-116-17) Butter Co.	Please Pr	ovide Res	ults: 🗍 Fax	MEma				
U.S. State Samples Taken:		CT Samp		mmercial/Tax		esidential/Tax	Exempt		
Ti	rnaround Time (TA	AT) Option	s* - Pleas	e Check			Exempt		
	Hour A8 Hou			96 Hour	1 141	Week	2 Week		
*Analysis complete	d in accordance with EM	ISL's Terms al	nd Condition	is located in the P	Price Guide				
Matrix	Method		Ins	trument	Repo	orting Limit	Check		
Chips [] % by wt. [] mg/cm² 🖉 ppm (mg/kg)	SW846-7000	рΒ	Flame At	omic Absorption		0.01%	X		
Air	NIOSH 708	2	Flame At	omic Absorption	4	µg/filter			
	NIOSH 710	5	Graphit	te Furnace AA	0.0	3 µg/filter			
	NIOSH 7300M/NIO	SH 7303	K	CP-OES	0.	5 µg/filter			
Wipe* ASTM	SW846-7000)B	Flame At	omic Absorption	10	l µg/wipe			
non AS I M *if no box checked, non-ASTM Wipe _assumed	SW846-6010B	or C		CP-OES	1.0) µg/wipe			
TCLP	SW846-1311/7000B/	SM 3111B	Flame At	omic Absorption	0.4 r	ng/L (ppm)			
	SW846-1311/SW846-	6010B or C	10	CP-OES	0.1 r	mg/L (ppm)			
SPI P	SW846-1312/7000B/	Flame Atomic Absorption		0.4 r	ng/L (ppm)				
	SW846-1312/SW846-	6010B or C	ICP-OES		<u>0.1 r</u>	ng/L (ppm)			
TTLC	22 CCR App. II, 700	Flame Atomic Absorption		<u>40 m</u>	40 mg/kg (ppm)				
	22 CCR App. II, SW846-	ICP-OES		<u>2 m</u>	2 mg/kg (ppm)				
STLC	22 CCR App. II, 700	ICP-OES		0.4	0.4 mg/L (ppm)				
Soil	SW846-7000B		Flame Atomic Absorption		40 m	40 mg/kg (ppm)			
	SW846-6010B or C		ICP-OES		2 m	2 ma/ka (ppm)			
	SM3111B/SW846-7000B		Flame Atomic Absorption		0.4	0.4 mg/l (ppm)			
Wastewater Unpreserved	EPA 200.9)	Graphite Furnace AA		0.003	0.003 mg/L (ppm)			
Preserved with HNO ₃ pH < 2 \Box	EPA 200.7	7	ICP-OES		0.020	0.020 mg/L (ppm)			
	EPA 200.8	3		ICP-MS	0.001	0.001 mg/L (ppm)			
Preserved with HNO, pH < 2	EPA 200.9)	Graphite Furnace AA		0.003	0.003 mg/L (ppm)			
	EPA 200.5	5	ICP-OES		0.003	0.003 mg/L (ppm)			
TSP/SPM Filter	40 CFR Part	50	ICP-OES		12	12 µg/filter			
	40 CFR Part	50	Graphite Furnace AA		3.0	3.6 µg/filter			
Other:						<u> </u>	\mathbf{L}		
Name of Sampler: Ashley HEDD	Le	Signa	ture of S	ampler:	<u>L</u>	$\Delta \rightarrow c$			
Sample # Locat	lon	-	Volun	ne/Area	}	Date/Time :	Sampled		
BC-PBI E. Building		<u>3" ×</u>	<u>4"</u>			5/15/19	·		
Client Sample #s				Total # -64	Samalaa		/i		
Relinquished (Client):	THE PAL	5-16-19		Time			\$		
	- vy orale.			2	<u>, r</u>				
Received (Lab):	aun Date:		16-14	Time:		C	Ш		
			/						
L <u></u>							. <u></u>		
	Page 1 of								
	Page 1 0	<u> </u>	,						

APPENDIX F

CHEMICAL INVENTORY PHOTOGRAPHS

Photograph No. 1: Approximate 200-gallon plastic totes on east side of site adjacent to property line. No labels.

Photograph No. 3: One of numerous empty plastic, 55-gallon drums which formerly contained ferric chloride.

Photograph No. 2: Inside of plastic tote in Photograph No. 1. Appears to show the tote as re-used as a filter for water treatment. Residue in both totes, no apparent liquids.

Photograph No. 4: Tote inside North Building with several inches of residue in the bottom, no liquids. Tote labeled as formerly containing ferric chloride.

Photograph No. 5: Approx. 200-gallon totes with several inches of residue, no liquids. No labels, except for diesel (1993) label.

Photograph No. 7: Fluorescent light ballasts (4-foot and 8-foot) inside North Building. Possible PCB transformers and mercury vapor light bulbs.

Photograph No. 6: Approximate 200-gallon tote labeled as ferric chloride (empty) and half full, with liquid, 55-gallon drum (no label).

Photograph No. 8: Various paints, stains, putty, cleaners, and solvents on plastic shelves in North Building. Containers appeared in good condition.

Photograph No. 9: Unlabeled containers, paint stripper, polyurethane, and metal cleaner.

Photograph No. 11: Pipe thread compound, metal polish, ink dyes, aerosol paint cans.

Photograph No. 10: Solvent, thinner, pipe thread compound, and latex paint.

Photograph No. 12: Wood filler, automotive body filler, and metal polish.

APPENDIX G

SOIL BORING LOGS, TEMPORAROY WELL DIAGRAMS, AND SOIL VAPOR PROBE LOGS

Soil Boring: BC-GP1

Logged By: CGP

Initial Water Level (ft):

Total Depth of Boring (ft): -4'

Date Drilled: 5/21/19

Drilled By: SCS

Sample Tool: Dual Tube

Project Name: Butler Project Number: 19-716-10

Sample	Scale	Graphic Log	USCS	Lithology	PID/FID (ppmv)	%Recovery	Notes
	1 0					11]

		_		FILI	FILL: gravel, cinders, slag, wood debris.	1.1		Analyzed soil sample -1 to -2 feet.
		2—		TILL	Tan grav mottling SILTY CLAY: dense slightly			
		-		CL	moist.	0.3		Analyzed soil sample -3 to -4 feet.
/		-						
		6—						
		_						
	$\overline{\mathbb{N}}$	8—						
		- 10						
		12 —						
		-						
		14						
		16 —						
		-						
		18 —						
		- 20						
/		- 20						
		22 —						
		-						
	$\overline{\mathbb{N}}$	24 —						
		- 26 —						
╞		28 —						
		-						
L		30 —	1		1		11	1

Soil Boring: BC-GP2

Logged By: CGP

Initial Water Level (ft):

Date Drilled: 5/21/19

Drilled By: SCS

Project Name: Butler Total Depth of Boring (ft): -4' Sample Tool: Dual Tube Project Number: 19-716-10 PID/FID (ppmv) %Recovery Graphic Log Sample USCS Scale Lithology Notes 0 Dark brown, FILL: brick, wood and cinders 0.2 FILL present, moist. Analyzed soil sample -0.5 to -1.5 feet. 2 100% Gray, FILL: sandy gravel, slightly moist, no odor. CL 0.2 Analyzed soil sample -3 to -4 feet. Gray, orange mottling, SILTY CLAY: trace Δ gravel, slightly moist, no odor. 6 8 10 -12 14 16 18 20 22 24 26 28

Soil Boring: BC-GP3

Logged By: CGP

Date Drilled: 5/21/19

Drilled By: SCS

Initial Water Level (ft): Project Name: Butler Total Depth of Boring (ft): -4' Sample Tool: Dual Tube Project Number: 19-716-10 PID/FID (ppmv) %Recovery Graphic Log Sample USCS Scale Lithology Notes 0 GW Fill TOPSOIL: fill. 0.7 Analyzed soil sample -1 to -2 feet. Tan, FILL: sand and gravel, poorly sorted, slightly SP Fill 2 60% moist. 0.3 Analyzed soil sample -3 to -4 feet. CL Dark brown, SAND: fill, with some gravel and Δ cinders. Gray, orange mottling, SILTY CLAY: trace 6 gravel, slightly moist, no odor. 8 10 -12 14 -16 18 20 22 24 26 28

Soil Boring: BC GP3-N5

Logged By: CGP

Initial Water Level (ft):

Total Depth of Boring (ft): -2'

Date Drilled: 6/18/19

Drilled By: SCS

Sample Tool: Hand Auger

Project Name: Butler Project Number: 19-716-10

Sample	Scale	Graphic Log	USCS	Lithology	PID/FID (ppmv)	%Recovery	Notes
	0		OL	TOPSOIL: organics present, moist, no odor. Brown, GRAVELLY, CLAYEY SAND: moist, no odor. Brown, GRAVELLY, CLAYEY SAND: some bricks, moist, no odor.			
	2-		CL	Gray, brown mottling, SILTY CLAY: slightly dense, slightly moist, no odor.			Soil sample analyzed between -1 and -2 feet.

Soil Boring: BC GP3-E5

Logged By: CGP

Initial Water Level (ft):

Total Depth of Boring (ft): -2'

Date Drilled: 6/18/19

Drilled By: SCS

Sample Tool: Hand Auger

PID/FID (ppmv) %Recovery Graphic Log Sample USCS Scale Lithology Notes 0 TOPSOIL: organics present, moist, no odor. OL Brown, GRAVELLY, CLAYEY SAND: medium to large grained, slightly moist, no odor. SP Soil sample analyzed between Black, SAND: foundry sand and slag, clay at -2 -1 and -2 feet. feet.

Project Name: Butler Project Number: 19-716-10

Soil Boring: BC GP3-S5

Logged By: CGP

Initial Water Level (ft):

Date Drilled: 6/18/19

Drilled By: SCS

Project Name: Butler Project Number: 19-716-10

Total Depth of Boring (ft): -1.25

Sample	Scale	Graphic Log	USCS	Lithology	PID/FID (ppmv)	%Recovery	Notes
	0		OL	TOPSOIL: organics present, moist, no odor. Brown, GRAVELLY, CLAYEY SAND: medium to large grained, slightly moist, no odor. Black, SAND: foundry sand and slag. Refusal at -14 inches.			Soil sample analyzed between -1 and -1.25 feet.

Project Number: 19-716-10

Soil Boring: BC GP3-W5

Logged By: CGP

Initial Water Level (ft):

Total Depth of Boring (ft): -1.5

Date Drilled: 6/18/19

Drilled By: SCS

Sample Tool: Hand Auger

PID/FID (ppmv) %Recovery Graphic Log Sample USCS Scale Lithology Notes 0 Brown, GRAVELLY, CLAYEY SAND: organics present between 0 to -0.5 feet, slightly moist, no odor. SP Dark brown, GRAVELLY, CLAYEY SAND: slightly moist, no odor. Soil sample analyzed between -1 and -1.75 feet. Brown, GRAVELLY SAND: slightly moist, no odor. 2

Soil Boring: BC GP3-E10

Logged By: CGP

Initial Water Level (ft):

Date Drilled: 6/18/19

Drilled By: SCS

Project Number: 19-716-10 Total Depth of Boring (ft): -2'

Sample	Scale	Graphic Log	NSCS	Lithology	PID/FID (ppmv)	%Recovery	Notes
			SP	Brown, GRAVELLY SAND: medium to large grained, with cobbles, slightly moist, no odor.			Soil sample analyzed between -1 and -2 feet.

Project Number: 19-716-10

Soil Boring: BC GP3-S10

Logged By: CGP

Initial Water Level (ft):

Total Depth of Boring (ft): -2'

Date Drilled: 6/18/19

Drilled By: SCS

Sample	Scale	Graphic Log	USCS	Lithology	PID/FID (ppmv)	%Recovery	Notes
	2		SP	Brown, GRAVELLY SAND: medium to large grained, with cobbles, slightly moist, no odor.			Soil sample analyzed between -1 and -2 feet.

Project Number: 19-716-10

Soil Boring: BC GP3-W10

Logged By: CGP

Initial Water Level (ft):

Total Depth of Boring (ft): -1.75

Date Drilled: 6/18/19

Drilled By: SCS

Sample Tool: Hand Auger

PID/FID (ppmv) %Recovery Graphic Log Sample USCS Scale Lithology Notes 0 Brown, GRAVELLY, CLAYEY SAND: organics present between 0 to -0.5 feet, slightly moist, no odor. SP Dark brown, GRAVELLY, CLAYEY SAND: slightly moist, no odor. Soil sample analyzed between -1 and -1.75 feet. Brown, GRAVELLY SAND: slightly moist, no odor. 2

Logged By: CGP

Initial Water Level (ft):

Total Depth of Boring (ft): -4'

Date Drilled: 5/21/19

Drilled By: SCS

Sample Tool: Dual Tube

Project Name: Butler Project Number: 19-716-10

Sample	Scale	Graphic Log	USCS	Lithology	PID/FID (ppmv)	%Recovery	Notes
	. 0—.					1	

	TOPSOIL: organics present.	03		Analyzed soil sample 1 to 2 feet
FILL	Dark brown, SANDY FILL: slag, cinders, wood debris present.	0.5	60%	Analyzed son sample -1 to -2 feet.
CL	Gray, orange mottling, SILTY CLAY: trace gravel, slightly moist, no odor.	0.2		Analyzed soil sample -3 to -4 feet.
]

Logged By: CGP

Date Drilled: 5/21/19

CONSU	Initial Water Lev	el (ft)	:	Drilled By: SCS			
Project Name: Butler Project Number: 19-7	716-10	Total Depth of Bo	oring	(ft): -4	Sample Tool: Dual Tube		
Sample Scale Graphic Log USCS	Litholog	y	PID/FID (ppmv)	%Recovery	Notes		
$ \begin{array}{c} 0 \\ 2 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	Tan, FILL: silty clay, brick an present, slag present at -3 feet. Gray, orange mottling, SILTY moist, no odor.	d some gravel	0.3	100%	Analyzed soil sample -2 to -3 feet. Analyzed soil sample -3.5 to -4 feet.		

Logged By: CGP

Initial Water Level (ft):

Total Depth of Boring (ft): -4'

Date Drilled: 5/21/19

Drilled By: SCS

Sample Tool: Dual Tube

FILL

CL

Sample	Scale	Graphic Log	USCS	Lithology	PID/FID (ppmv)	%Recovery	Notes
				TOPSOIL: organics present.	/ 0.2		

Dark brown, FILL: some sand and some gravel present, slag, cinders, wood debris, brick, one inch of black, fine, foundy sand at -2 feet bgg present, slightly moist, no odor. Gray, SILTY CLAY: plastic, moist, no odor.	TOPSOIL: organics present.	0.2		Anchered as it seems to 145. 2 foot	
Gray, SILTY CLAY: plastic, moist, no odor.	Dark brown, FILL: some sand and some gravel present, slag, cinders, wood debris, brick, one inch of black, fine, foundry sand at -2 feet bsg present, slightly moist, no odor.	0.3	60%	Analyzed soil sample -1 to -2 feet.	
	Gray, SILTY CLAY: plastic, moist, no odor.				

some gravel, no odor.

dense, slightly moist, no odor.

Gray, orange/brown mottling, SILTY CLAY:

Soil Boring: BC-GP7

90%

90%

4.5

0.3

Logged By: CGP

Initial Water Level (ft):

Total Depth of Boring (ft): -6'

Date Drilled: 5/21/19

Drilled By: SCS

Sample Tool: Dual Tube

Project Name: Butler Project Number: 19-716-10

CL

6

8

10 -

12

14

16

18

20

22

24

26

28

Sample	Scale	Graphic Log	USCS	Lithology	PID/FID (ppmv)	%Recovery	Notes
			FILL	TOPSOIL: organics present. Dark brown, FILL: wood, slag, cinder present,	0.3		Analyzed soil sample -1 to -2 feet.

Logged By: CGP

Initial Water Level (ft):

Date Drilled: 5/21/19

Drilled By: SCS

Project Name: Butler Project Number: 19-716-10

Total Depth of Boring (ft): -4'

Sample Tool: Dual Tube

Sample	Scale	Graphic Log	NSCS	Lithology	PID/FID (ppmv)	%Recovery	Notes
$ \langle \cdots \rangle \langle \cdots$	0		FILL	TOPSOIL: organics present. Dark brown, FILL: slag, wood, slag, cinder present some gravel, no odor. Gray, orange mottling, SILTY CLAY: dense, slightly moist, no odor.		70%	Analyzed soil sample -2 to -3 feet. Analyzed soil sample -3 to -4 feet.

Logged By: CGP

Initial Water Level (ft):

Total Depth of Boring (ft): -4'

Date Drilled: 5/21/19

Drilled By: SCS

Sample Tool: Dual Tube

Project Name: Butler Project Number: 19-716-10

10

12 ·

14 -

16

18 -

20

22 -

24

26

28

30

Sample	Scale	Graphic Log	USCS	Lithology	PID/FID (ppmv)	%Recovery	Notes
$\qquad \qquad $			FILL	TOPSOIL: organics present. Dark brown, SANDY FILL: cinders, slag, wood debris present, slightly moist. Gray, orange mottling, SILTY CLAY: trace gravel, slightly moist, no odor.	0.3	100%	Analyzed soil sample -1 to -2 feet. Analyzed soil sample -3 to -4 feet.

Project Name: But Project Number: 19	tler 9-716-	ING GROUP	Temporary W Logged By: CGP Date Drilled: 5/21/19 Drilled By: SCS Sample Tool: Dual Tube				Vell: BC-GP10 Initial Water Level (ft): -24' Final Water Level (ft): Total Depth of Boring (ft): -28" Top of Casing Elevation (ft):			
Sample Scale Graphic Log	USCS	Lithology		%Recovery	PID/FID	Scale	Well Constructio	n	Notes	
$\begin{array}{c} 2\\ 0\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2\\ -2$	FILL CL SP ML SP	Tan, SANDY FILL: brick, cinder present. Orange, gray mottling, SILTY CL gravel, dense, moist, no odor. Tan, gray mottling, SILTY CLAY dense, moist, no odor. Gray, tan-brown mottling, SILTY slightly moist, no odor. Gray, SAND: fine to medium gras and seam at -19 feet, very moist, for odor. Gray, GRAVELLY SAND: coars moist, no odor. Tan, SANDY SILT: tight, plastic, odor. Gray, SAND: medium grained, tra at -24 feet, no odor.	s and slag AY: trace 7: trace gravel, 7 CLAY: dense, ined, two inch no odor. e grained, very , very moist, no ace gravel, wet	40% 90% 100% 100% 100% 100%	0.2 0.2 0.3 0.7 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	$\begin{bmatrix} 2 \\ -0 \\ -2 \\ -4 \\ -6 \\ -8 \\ -10 \\ -12 \\ -14 \\ -16 \\ -18 \\ -20 \\ -22 \\ -24 \\ -22 \\ -22 \\ -24 \\ -28 \\ -30 \end{bmatrix}$			Borehole Diameter: 3.25 inches Well Diameter: 2 inch Analyzed soil sample -1 to -2 feet. Bentonite Bentonite 10' 10-Slot PVC Screen Sand Wet at -24 feet.	

Project Name: Butler Project Number: 19-7	6-10	Tempo Logged By: CGF Date Drilled: 5/2 Drilled By: SCS Sample Tool: Du	Temporary Well: BC-GP11Logged By: CGPInitial Water Level (ft): -24'Date Drilled: 5/21/19Final Water Level (ft):Drilled By: SCSTotal Depth of Boring (ft): -28'Sample Tool: Dual TubeTop of Casing Elevation (ft):					
Sample Scale Graphic Log	Lithology	%Recovery	PID/FID	Scale	Well Construction	Notes		
$ \begin{array}{c} 2 \\ 0 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2$	TOPSOIL: organics present. Dark brown, SANDY FILL: brid depris present, slightly moist, no CL Gray, FILL: silty clay, dense, sligodor. Wood debris. Gray, SILTY CLAY: plastic, mo Tan, SILTY CLAY: trace gravel no odor. Gray, SILTY CLAY: trace grave no odor. Gray, SAND: fine to medium gradense, very moist, no odor. Gray, GRAVELLY SAND: coar moist, no odor. Tan, CLAYEY SILT: dense, ver Gray, GRAVELLY SAND: med very moist to wet at -24 feet, no of the set of the se	k, glass and burn odor. 609 ghtly moist, no ist, no odor. 509 , dense, moist, 809 1, dense, moist, 1000 1000 uined, slightly 1000 se grained, very y moist, no odor. 709 ium grained, odor. 709	0.3 0.2 0.2 0.2 0.2 0.4 0.2 % 0.2 % 0.2 % 0.2 % 0.2 % 0.2 % 0.2 % 0.2 % 0.2 % 0.2 % 0.2 % 0.2 % 0.2 % 0.2 % 0.2 % 0.2	$\begin{bmatrix} 2 \\ -0 \\ -2 \\ -4 \\6 \\8 \\10 \\12 \\14 \\16 \\18 \\20 \\22 \\24 \\26 \\28 \\$		 ■ Borehole Diameter: 3.25 inches Well Diameter: 2 inch Analyzed soil sample -0.5 to -1.5 feet. ■ Bentonite ■ Bentonite ■ 10' 10-Slot PVC Screen ■ Sand ■ Wet at -24 feet. 		

Project Name: Butler Project Number: 19-716-10		Temporary Well: BC-GP12Logged By: CGPInitial Water Level (ft): -22'Date Drilled: 5/20/19Final Water Level (ft):Drilled By: SCSTotal Depth of Boring (ft): -28'Sample Tool: Dual TubeTop of Casing Elevation (ft):						P12 (ft): -22' (ft): ing (ft): -28' ration (ft):
Sample Scale Graphic Log USCS	Lithology		%Recovery	PID/FID	Scale	Well Construction		Notes
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TOPSOIL: organics present, mois' Brown, FILL: pea gravel, medium moist, no odor. Gray, SILTY CLAY: dense, brick at -2 feet, moist, no odor. Gray, SILTY CLAY: dense, orang begins at -8 feet bsg, moist, no odo Gray, SAND: fine grained, some s no odor. Brown, SILTY CLAY: dense, very odor. Gray, SILTY CLAY: dense, very odor. Gray, SILTY SAND: fine, some g moist, no odor. Gray, SILTY CLAY: dense, very Tan, gray, CLAYEY SILT: sand, 1 moist to wet from -22 to -23 feet, 1 Gray, SANDY CLAY: some grave dense, moist, no odor.	t. a grained, debris present ge mottling or. filt, very moist, y moist, no moist, no odor. ravel present, moist, no odor. trace gravel, no odor. el present, oderately	60% 60% 90% 100% 100%	1.0 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	$\begin{bmatrix} 2 \\ -0 \\ -2 \\ -4 \\6 \\8 \\10 \\12 \\14 \\16 \\18 \\20 \\22 \\24 \\26 \\28 \\28 \\28 \\30 \end{bmatrix}$			Borehole Diameter: 3.25 inches Well Diameter: 2 inch Analyzed soil sample -1 to -2 feet. Bentonite Bentonite

Project Name: Butler Project Number: 19-716-10	Logged By Date Drille Drilled By: Sample To	CGP d: 5/20/1 SCS ol: Dual	9 Tube	Vell: BC-C Initial Water Lev Final Water Lev Total Depth of B Top of Casing E	GP13 rel (ft): -4' el (ft): oring (ft): -16' levation (ft):	
Sample Scale USCS USCS USCS	gy	%Recovery	PID/FID	Scale	Well Construction	Notes
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	glass, brick and wet at -4 feet, no soft peat, very astic to dense at -7	30% 50% 60%	0.3 0.3 0.2 0.2 0.2 0.2 0.2	$\begin{bmatrix} -2 \\ -0 \\ -2 \\ -2 \\ -4 \\ -2 \\ -4 \\ -2 \\ -2 \\ -2$		Borehole Diameter: 3.25 inches Well Diameter: 2 inch Bentonite Analyzed soil sample -1 to -2 feet. Wet at -4 feet. Sand 5' 10-Slot PVC Screen

Project Name: Butler Project Number: 19-716-10	Tempon Logged By: CGP Date Drilled: 5/20/ Drilled By: SCS Sample Tool: Dual	ary 19 Tube	W	Vell: BC-GP14 Initial Water Level (ft): -28' Final Water Level (ft): Total Depth of Boring (ft): -30' Top of Casing Elevation (ft):			
Sample Scale USCS USCS Tithologi	%Recovery	PID/FID	ocale	Well Construction	Notes		
2 0 U TOPSOIL: organics present, mois -2 -2 -2 Brown, SILTY CLAY: trace grave and burn debris present at -1 foot imoist, no odor. -4 -6 -6 Brown, SILTY CLAY: trace grave slightly moist, no odor. -6 -6 -6 Brown, SILTY CLAY: trace grave slightly moist, no odor. -10 -6 -6 Gray, brown mottling, SILTY CL -10 -10 -10 Gray, brown mottling, SILTY CL -10 -12 -12 Brown, SILTY CLAY: trace grave slightly moist, no odor. -14 -14 -14 Gray, SILTY CLAY: trace grave slightly moist, no odor. -18 -16 Gray, SAND: fine to medium grai moderately sorted, moist to slightl odor. -20 -21 -22 -24 -22 -24 -24 -24 -24 -24 -24 -26 -26 -28 -21 -22	t. el, dense, brick bsg, slightly el, dense, AY: trace dor. 100% AY: trace dor. 100%	0.2 0.2 0.2 0.3 -0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	2 0 -2 -4 -6 -8 -10 -12 -14 -16 -12 -14 -16 -20 -22 -24 -26 -28		Borehole Diameter: 3.25 inches Well Diameter: 2 inch Analyzed soil sample -0.5 to -1.5 feet. Bentonite 10' 10-Slot PVC Screen Sand Wet at -28 feet.		
Gray, SAND: medium to coarse g gravel, wet, no odor.	rained, some	0.3	-30				

Project Name: Butler Project Number: 19-716-10	Tempor Logged By: CGP Date Drilled: 5/21/ Drilled By: SCS Sample Tool: Dual	ary 19 Tube	y W	Vell: BC-GP15 Initial Water Level (ft): -27' Final Water Level (ft): Total Depth of Boring (ft): -30' Top of Casing Elevation (ft):			
Sample Scale USCS USCS USCS Titpologi	%Recovery	PID/FID	Scale	Well Construction	Notes		
2 0 0 TOPSOIL: organics present. -2 -2 0 Dark brown, SANDY FILL: grave present. -4 -4 Gray, orange mottling, SILTY CL gravel, dense, slightly moist to motor of the state of the	el and cinders AY: trace ist, no odor. 50% 100% 100% 100%	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	$\begin{bmatrix} 2 \\ -0 \\ -2 \\4 \\6 \\8 \\10 \\12 \\14 \\16 \\18 \end{bmatrix}$		Borehole Diameter: 3.25 inches Well Diameter: 2 inch Analyzed soil sample -0.5 to -1 feet. Bentonite		
SP -20 -20 -22 -22 -22 -24 -24 -26 -26 -26 -26 -26 -26 -26 -26	ned, odor. 100% lense, very 100% 80% 80%	0.3 0.3 0.3 0.3 0.3	- 20 - 22 - 24 - 26		10' 10-Slot PVC Screen Sand Wet at -27 feet.		
$\begin{array}{ c c c c }\hline & & & & \\ \hline \\ \hline$	rained, some 70%	0.3					

Soil Boring: BC GP16-N5

Logged By: CGP

Initial Water Level (ft):

Total Depth of Boring (ft): -2'

Date Drilled: 6/18/19

Drilled By: SCS

Project Name: Butler Project Number: 19-716-10

Sample	Scale	Graphic Log	USCS	Lithology	PID/FID (ppmv)	%Recovery	Notes
			SP	Black, SAND: foundry sand and slag prsent, slightly moist, no odor.			Soil sample analyzed between -1 and -2 feet.

Soil Boring: BC GP16-E5

Logged By: CGP

Initial Water Level (ft):

Total Depth of Boring (ft): -1.75

Date Drilled: 6/18/19

Drilled By: SCS

Project Name: Butler Project Number: 19-716-10

Sample	Scale	Graphic Log	NSCS	Lithology	PID/FID (ppmv)	%Recovery	Notes
			SP	Black, SAND: foundry sand and slag prsent, slightly moist, no odor. Brown, SAND: fine to medium grained, brick present, moist, no odor.			Soil sample analyzed between -1 and -1.75 feet.

Soil Boring: BC GP16-S5

Logged By: CGP

Initial Water Level (ft):

Date Drilled: 6/18/19

Drilled By: SCS

Project Name: Butler Project Number: 19-716-10

Total Depth of Boring (ft): -1.5' Sample Tool: Hand Auger

Samule	orduno C1-	Scale	Graphic Log	USCS	Lithology	PID/FID (ppmv)	%Recovery	Notes	
				SP	Black, SAND: foundry sand, some slag, slightly moist, no odor.			Soil sample analyzed between -1 and -1.5 feet.	

Soil Boring: BC GP16-W5

Logged By: CGP

Initial Water Level (ft):

Date Drilled: 6/18/19

Drilled By: SCS

Project Name: Butler Project Number: 19-716-10

Total Depth of Boring (ft): -1.5' Sample Tool: Hand Auger

Sample	Scale	Graphic Log	USCS	Lithology	PID/FID (ppmv)	%Recovery	Notes
			SP	Black, SAND: foundry sand, some slag, slightly moist, no odor.			Soil sample analyzed between -1 and -1.5 feet.

Soil Boring: BC GP16-N10

Logged By: CGP

Initial Water Level (ft):

Total Depth of Boring (ft): -2'

Date Drilled: 6/18/19

Drilled By: SCS

Pro	Project Number: 19-716-10				Total Depth of B	oring	(11)	2 Sample 1001: Hand Auger
Sample	Scale	Graphic Log	NSCS	Litholog	y	PID/FID (ppmv)	%Recovery	Notes
	2-		SP	Black, SAND: foundry sand a slightly moist, no odor.	nd slag prsent,			Soil sample analyzed between -1 and -2 feet.

Soil Boring: BC GP16-E10

Logged By: CGP

Initial Water Level (ft):

Date Drilled: 6/18/19

Drilled By: SCS

Sample Tool: Hand Auger

Total Depth of Boring (ft): -1.5' Project Number: 19-716-10 PID/FID (ppmv) %Recovery Graphic Log Sample USCS Scale Lithology Notes 0 Black, SAND: foundry sand, some slag and brick, slightly moist, no odor. SP 2

Soil Boring: BC GP16-S10

Logged By: CGP

Initial Water Level (ft):

Total Depth of Boring (ft): -2'

Date Drilled: 6/18/19

Drilled By: SCS

Project Name: Butler Project Number: 19-716-10

Sample	Scale	Graphic Log	USCS	Lithology	PID/FID (ppmv)	%Recovery	Notes
	2		SP	Black, SAND: foundry sand, some slag, slightly moist, no odor.			Soil sample analyzed between -1 and -2 feet.

Project Number: 19-716-10

Soil Boring: BC GP16-W10

Logged By: CGP

Initial Water Level (ft):

Total Depth of Boring (ft): -2'

Date Drilled: 6/18/19

Drilled By: SCS

Sample	Scale	Graphic Log	USCS	Lithology	PID/FID (ppmv)	%Recovery	Notes		
	2-		SP	Black, SAND: foundry sand, some slag, slightly moist, no odor.			Soil sample analyzed between -1 and -2 feet.		

Project Name: Butler Project Number: 19-716-10					Soil Vapor Probe:BC-SG1Logged By: CGPInitial Water Level (ft):Date Drilled: 5/21/19Final Water Level (ft):Drilled By: SCSTotal Depth of Boring (ft): -7Sample Tool: Dual TubeTop of Casing Elevation (ft):						G1 el (ft): el (ft): oring (ft): -7 evation (ft):
Sample	Scale	Graphic Log	USCS	Lithology	%Recovery	PID/FID	Well Construction			Notes	
	-2 -		OL FILL	TOPSOIL: organics present. Dark brown, FILL: wood, slag, ci some gravel, no odor. Gray, orange/brown mottling, SII dense, slightly moist, no odor.	nder present,						Borehole Diameter: 2.25 inches Bentonite Chips 6' 1/4" Teflon Tubing Bentonite Grout Sand 6" Stainless Steel Screen

Pro Pro	ject N ject N	Vame: Bu	NSULT utler 19-716-	ING GROUP	Soil V Logged By: Date Drilled Drilled By: Sample Tool	Soil Vapor Probe:BC-SG2Logged By: CGPInitial Water Level (ft):Date Drilled: 5/21/19Final Water Level (ft):Drilled By: SCSTotal Depth of Boring (ft): -5Sample Tool: Dual TubeTop of Casing Elevation (ft):				
Sample	Scale	Graphic Log	USCS	Lithology		%Recovery	PID/FID	Scale	Well Construction	Notes
	-2		OL FILL	TOPSOIL: organics present. Dark brown, FILL: wood, slag, ci some gravel, no odor. Gray, orange/brown mottling, SII dense, slightly moist, no odor.	inder present,					Borehole Diameter: 2.25 inches Bentonite Chips 4' 1/4" Teflon Tubing to grade Bentonite Grout Sand 6" Stainless Steel Screen

APPENDIX H

WATER PARAMETER MONITORING FORMS

OTHER:

	Water Parame	ter Monitoring	Form
PROJECT No .: 19716-10 PRO	APL WEATHER:	4er 72° 5	WELL NO .: GP-10
WELL DIA: (In): 2 WATER DE	B.G. 4 B.G. 4 PTH: <u>28.00</u> + SCREEN PTH: <u>22.716</u> HEIGHT	SOLL DEPTH	(BGL): TO GRADE (Ft):
HEIGHT OF WATER COLUMN (Ft.): FREE PRODUCT PRESENT (Ft): INTAKE DEPTH (Ft. BELOW TOC):_	7.24 DEPTH TO	TO SCREEN BELOW TOC (IEADSPACE READING IN I	Ft):TO opm (PID/FID):
EQUIPMENT. METERS & METHODS	UTILIZED:		
SUBMERSIBLE PUMP	BLADDER PUMP	PERISTALTIC	BAILER
DOWN-HOLE METER	FLOW-THRU CELL	OPEN CONTAINER	AT SURFACE
MICROTPW TURBIDIMETER	INTERFACE PROBE	XWL METER	XSI 556
KLOW-FLOW	3 WELL VOLUMES	WELL PURGED DR	Y 2.0 TOTAL VOL. PURGED (GAL.)

Time	Temp.	Sp. Cond. (mS/cm ^c)	D.O.	pН	ORP	Turbidity (NTU)	Rate	DTW	Comments
12	(°C)	Or Cond. (mS/em)	(mg/L)	(s.u.)	(mV)	Or (VIS.)	(mL/Min)	(Ft.)	
15:53	0	Start	ed to	mpi	na	high	175	Ja. 4	2
16:05	12.57	1.353	0.55	7.25	-452.1	VI	V	23.14	
16:08	1240	1.354	0.49	7.23	-458.9	· ·	V	23.20	
16:11	1245	1.354	0.40	7.22	-473.4	5 F	Y	23.25	
16:14	12.47	1.355	0.37	7.21	-4565	-1	J	23.27	
16:17	12.56	1.356	0.36	7.21	-4779	Mad.	r	V	
16:20	12.59	1.357	0.35	7.20	-489.8	V	J	23.28	
6:23	12.48	1.360	0.34	7.20	-493.7	V	V	23,29	
6:26	12.60	1358	0.32	7.19	-501.5	V	Y	V	
16:29	12.68	1.361	0.29	7.19	-498.0	L	J	23.30	
6:32	P.50	1.367	0.30	7,19	-506.9	X	V	V	
· ·	V	V	,V	5	L	- V	V	V	Stable
16:35	Sa	moleo	1 0	SP-	0				
		1			Prov.			L	
	1.1				1.001	-			
	-			-					
	J. (1	<u> </u>					<u> </u>	

	Water Parame	ter Monitoring	Form
PROJECT No.: 19716-10 PRO. DATE: 05 22 9 SAMPLERS:	APSWEATHER:	165 163° F P-CI	WELL NO .: GP-11
WELL INFORMATION: REF. POINT: TOTAL DEI WELL DIA.:(In): WATER DE HEIGHT OF WATER COLUMN (Ft.): FREE PRODUCT PRESENT (Ft): INTAKE DEPTH (Ft. BELOW TOC):	B.G. + $2ft$ pth: 28.60 + $2ft$ screen pth: 21.81 Height Height 8.19 Depth To Well H 26.00	- ZO CO I LENGTH (Ft): DEPTH OF TOC ABOVE/BELOW TO SCREEN BELOW TOC IEADSPACE READING IN	I (BGL):TO GRADE (Ft): (Ft):TO ppm (PID/FID):
EQUIPMENT. METERS & METHODS	UTILIZED:		
SUBMERSIBLE PUMP DOWN-HOLE METER MICROTPW TURBIDIMETER	BLADDER PUMP	PERISTALTIC OPEN CONTAINE WL METER	BAILER R AT SURFACE YSI 556
OTHER:	3 WELL VOLUMES	WELL PURGED D	RY 26 TOTAL VOL. PURGED (GAL.

Time	Temp.	Sp. Cond.	D.O.	pH	ORP	Turbidity	Rate	DTW	Comments
	(°C)	Or Cond.	(mg/L)	(s.u.)	(mV)	(NIU) Or	(mL/Min)	(Ft.)	
		(mS/cm)	<u></u>			(VIS.)			
13:56	1	Star	100	Pump	ING	High	175	21.83	
4:17	11.96	1261	0.81	7.01	-69.9	Mod.	Y	21.87	
4120	12.14	1.260	0.97	7.00	-51.5	V	J	V	
4:23	12.19	1.262	0.90	6.99	-522	Slight	V	V	
4:26	12.20	1.263	0,75	6.98	-52.6	5	Y	V	
14:29	12.24	1.265	0.69	6.99	-59.2	J	V	V	
14:32	12.11	1.26de	OUH	6.98	-61.4	J	V	V	
4:35	11.92	1.267	0.62	6.98	-60.8	V	F	V	
14:39	11.80	1.265	0.66	697	-62.5	V	V	Y	1
1	V	V	1	V	V	- ~	- ~	V	Stable
14:41	5	ande	21	GF	-11		1111	1	
1 11		1	0						· · · · · · · · · · · · · · · · · · ·
			1	1	11		1.		
1			-						
								,	

OTHER:

Wa	ter Paramet	er Monitoring Fo	orm
PROJECT No .: 19716-10 PROJECT NA	ME: Butler	WE	ILL NO .: 67-12
DATE: 05/22/19 SAMPLERS: APS	WEATHER:	so Rain	
WELL INFORMATION:	3.6. + 24	= 30 ft	
REF. POINT: TOTAL DEPTH:	3.00 SCREEN	LENGTH (Ft):DEPTH (BO	3L):TO
WELL DIA .: (In): 2 WATER DEPTH:	0168 HEIGHT	OF TOC ABOVE/BELOW GR.	ADE (Ft):
HEIGHT OF WATER COLUMN (FL):	32 DEPTH T	O SCREEN BELOW TOC (Ft)	то
FREE PRODUCT PRESENT (Ft):TO	WELL HI	EADSPACE READING IN ppm	(PID/FID):
INTAKE DEPTH (Ft. BELOW TOC):	5.94		
EQUIPMENT. METERS & METHODS UTILIZ	ED:		
SUBMERSIBLE PUMP	LADDER PUMP	PERISTALTIC	BAILER
DOWN-HOLE METER	LOW-THRU CELL	OPEN CONTAINER A	I SURFACE
MICROTPW TURBIDIMETER	TERFACE PROBE	🔀 WL METER	YSI 556
LOW-FLOW3	WELL VOLUMES	WELL PURGED DRY	2.0 TOTAL VOL. PURGED (GAL.)

fime	Тетр. (°С)	Sp. Cond.	D.O. > (mg/L)	рН (s.u.)	ORP (mV)	Turbidity (NTU) Or	Rate (mL/Min)	DTW (Ft.)	Comments
0:04		Start	ed f	empi	196	mad.	175	21.67	r
0:19	10.17	0.877	1.17	7.23	-414,5	V	¥.	21.76	
0:22	10.15	0.877	0.87	7.22	-416.9	Sight	¥	V	
0:25	10.17	0.873	0.71	7.2/	-419.0	14	¥	×	
0:28	10.18	0.872	0.44	7.21	414.7	V	t	V	
0:31	10,15	0.872	0.57	1.21	412	4	V	X	
0.39	10.18	0.013	0,52	1.00	-117.1	Y,	1	V	
0:31	10.10	0.012	0,57	1.01	-117.6	X	Y	X	
10:40		Samp	let	G	P-12				
			-				-		

Equipment blank (BK-EB-GWI) Jaken after decontaminanting GP-12 C 11:20 bladdo

	Water Parame	ter Monitoring Fo	orm
PROJECT No.: 19716-10 PRO. DATE: 05/22/19 SAMPLERS:	APSBU+	ler we	ELL No.: 6P-13
WELL INFORMATION: REF. POINT: TOTAL DEF WELL DIA.:(In): WATER DE HEIGHT OF WATER COLUMN (Ft.): FREE PRODUCT PRESENT (Ft): INTAKE DEPTH (Ft. BELOW TOC):	BG TH: 8.00 PTH: 4.98 HEIGHT 5.12 DEPTH TO WELL H 7.50	LENGTH (Ft): DEPTH (BC OF TOC ABOVE/BELOW GR TO SCREEN BELOW TOC (Ft) EADSPACE READING IN ppm	GL):TOADE (Ft):TO :TO t (PID/FID):
EQUIPMENT. METERS & METHODS SUBMERSIBLE PUMP DOWN-HOLE METER MICROTPW TURBIDIMETER	UTILIZED: BLADDER PUMP FLOW-THRU CELL INTERFACE PROBE	PERISTALTIC OPEN CONTAINER AT WEL METER	BAILER T SURFACE YSI 556
OTHER:	3 WELL VOLUMES	WELL PURGED DRY	/

Time	Temp.	Sp. Cond. (mS/cm [*]) Or Cond. (mS/cm)	D.O. (mg/L)	рН (s.u.)	ORP (mV)	Turbidity (NTU) Or (VIS.)	Rate (mL/Min)	DTW (Ft.)	Comments
2:31		Sta	Frd	Pump	:10	Mod	175	4.87	
12:45	9.50	0.592	1.02	7.11	1.9	Slight	- 1	V	4
12:48	9.57	0.595	0.79	7.10	-21.8	V.Slak	- L	X	
12:51	9.69	0.594	0.72	7.09	-32.0	Jul Jul	J	V	
12:54	9.82	0.595	0.64	7.09	-36.9	V	V	d	
12:57	10,05	0.594	0.58	7.10	-35.7	1	V	N	
3:00	10.19	0,593	0.62	7.10	-28.5	TV	V	V	
-	V	~	V	V	V	~	V	V	Stable
3:03	5	ampto	- (6P-	3				
	-	1				i ait			
						1.1			
-									
			11	1/	11 -	T .	60	11	1

W	ater Paramet	er Monitoring Fo	orm
PROJECT No.: 19714 -10 PROJECT N DATE: 05/22/9 SAMPLERS: AP	weather:	ler we 52° (loud	GP-14 4
WELL INFORMATION: REF. POINT: TOC TOTAL DEPTH:	BG. 900 + 0.5 SCREEN 21.52 HEIGHT	LENGTH (Ft):DEPTH (B0 OF TOC ABOVE/BELOW GR.	GL):TO ADE (Ft):Ø.5
HEIGHT OF WATER COLUMN (Ft.):	98 DEPTH T	O SCREEN BELOW TOC (Ft)	TO
INTAKE DEPTH (Ft. BELOW TOC): 25	,50 WELL N	CADSFACE READING IN PPI	
EQUIPMENT. METERS & METHODS UTIL	ZED:		
SUBMERSIBLE PUMP	BLADDER PUMP	PERISTALTIC	BAILER
DOWN-HOLE METER	FLOW-THRU CELL	OPEN CONTAINER A	T SURFACE
MICROTPW TURBIDIMETER	INTERFACE PROBE		YSI 556
LOW-FLOW	3 WELL VOLUMES	WELL PURGED DRY	TOTAL VOL. PURGED (GAL.)
OTHER:			

ïme	Temp. (°C)	Sp. Cond. (mS/cm) Or Cond. (mS/cm)	D.O. (mg/L)	рН (s.u.)	ORP (mV)	Turbidity (NTU) Or (VIS.)	Rate (mL/Min)	DTW (Ft)	Comments
1:14	10.54	1.119	A.A.	Aing 7.21	-4565	high	175	21.51 21.57	
1:35	10.48	1.123	0.53	7.21	-154,5 -4535	1	Y	Y	
1:44	10.95 V	amole	et a	V GP-	178.4	04	V	V	Stable
-		1				1101			

OTHER:

Wate	r Paramet	er Monitoring Fo	orm
PROJECT No .: 19716-10 PROJECT NAME	Butle	WE WE	LL NO.: 6P-15
DATE: 05722 SAMPLERS: 43	WEATHER:	75 F 16544	Sung
WELL INFORMATION: B.G.	+ 0.3	30.30	7
REF. POINT: 10C TOTAL DEPTH: 50	SCREEN	LENGTH (Ft):DEPTH (BO	GL):TO
WELL DIA .: (In): WATER DEPTH: 20.9	HEIGHT	OF TOC ABOVE/BELOW GRA	ADE (Ft): 0.5
HEIGHT OF WATER COLUMN (Ft.): 9.3	DEPTH T	O SCREEN BELOW TOC (Ft)	TO
FREE PRODUCT PRESENT (Ft):TO	WELL H	EADSPACE READING IN ppm	(PID/FID):
INTAKE DEPTH (Ft. BELOW TOC): 25.	50		
EQUIPMENT. METERS & METHODS UTILIZED			
SUBMERSIBLE PUMP	DDER PUMP	PERISTALTIC	BAILER
DOWN-HOLE METER	W-THRU CELL	OPEN CONTAINER A	I SURFACE
MICROTPW TURBIDIMETER INTE	RFACE PROBE	WIL METER	XYSI 556
LOW-FLOW3 WE	LL VOLUMES	WELL PURGED DRY	<u>30</u> TOTAL VOL. PURGED (GAL.)

Time	Temp.	Sp. Cond.	D.O.	pH	ORP	Turbidity	Rate	DTW	Comments
1.1	6	(mS/cm ^c)	1			(NTU)	1.1.1		
1.0	(°C)	Or Cond.	(mg/L)	(s.u.)	(mV)	Or	(mL/Min)	(Ft.)	
		(mS/cm)	120			(VIS.)			
7.20	d	starta	Per Per	mpin	9	high	175	20.91	
17:41	12.95	1.058	0.70	7.33	-4589	1	L	21.01	
17:44	12.97	1.059	0.61	7.32	-4668	V	S	V	
7:47	12.90	1.063	0,60	7.31	-392.7	Y	Y	4	
17:50	12.92	1.065	0.56	7.30	-437.5	MOD.	Y	V	
17:53	13:00	1.065	045	7.30	-4569	I	Y	V	
17:56	1293	1.0/9	04/0	7.29	-4290	L	Y	L	
17:59	1297	1.069	04B	7.29	-405.0	.V	J	V	
13.02	12.92	1070	040	728	-4123	J	V	J	
18:05	1797	1070	039	728	-463	1 Ju	Ĩ	.l	
0.07	10,01	V	V	1.00	101.0		1º		Stable
10,0	V	amola	2 /	D-I	5	V	V	V	Strong
0.0	2	u pie	0 0	PFI	2				
	_	-	-	-		-			
		-							
-									
								-	
			· · · · · ·			1	_		

Sampling Observations: MG MGD

08-15 Nol taken p

YSI 556 Calibration Form

Personnel:	Shirmeye	Instrument Reading	Instrument Reading	
Parameter	Standard Value	Before Calibration	After Calibration	Calibration Accepted
ORP 190°	240.1 mV1	240.0	240.1	Yes
Sp Conductance	4.45 mS/cm		- GIGI	Yes/No
Sp Conductance	1413 µs/cm	1406	141.3	(Yes/No
pH	4.00 s.u.	3.97	400	Yes/No
pH	7.00 s.u.	7.02	7.00	YestNo
pH	10.00 s.u.	991	099	Yeshio
DO	% 02	97.8%	97.3 %	Kes No

Notes:

¹Temperature Effects On Redox Potential Measurements Of Zobell Solution ORP Standard

Temperature (°C)	ORP Value (mV)	Temperature (°C)	ORP Value (mV)
10	250.5	23	233.6
11	249.2	24	232.3
12	247.9	25	231.0
13	246.6	26	229.7
14	245.3	27	228.4
15	244.0	28	227.1
16	242.7	29	225.8
17	241.4	30	224.5
(18)	240.1	31	223.2
19	238.8	32	221.9
20	237.5	33	220.6
21	236.2	34	219.3
22	234.9	35	218.0

Post Sample Cal. Check

YSI 556 Calibration Form Stated 19:50

Date: Personnel:

Parameter	Calibration Standard Value	Instrument Reading Before Calibration	Instrument Reading After Calibration	Calibration Accepted
ORP 230	233/mV1	2289	$1 \times / c$	Yes/No
Sp Conductance	4.45 mS/cm	000.1		Yes/No
Sp Conductance	1413 µs/cm	1407		YesNo
pН	4.00 s.u.	4.06	X	(Yes/No
pН	7.00 s.u.	708		YesNo
pН	10.00 s.u.	9.93		Yes/No
DO	% 02	9769		YesNo

Notes:

¹Temperature Effects On Redox Potential Measurements Of Zobell Solution ORP Standard

Temperature (°C)	ORP Value (mV)	Temperature (°C)	ORP Value (mV)
10	250.5	23	233.6
11	249.2	24	232.3
12	247.9	25	231.0
13	246.6	26	229.7
14	245.3	27	228.4
15	244.0	28	227.1
16	242.7	29	225.8
17	241.4	30	224.5
18	240.1	31	223.2
19	238.8	32	221.9
20	237.5	33	220.6
21	236.2	34	219.3
22	234.9	35	218.0

APPENDIX I

MAXWELL SURVEYING & ENGINEERING SURVEY DATA, MAY 24, 2019

P.O BOX 5068 HUNTINGTON, IN 46750 260-224-6813

EAST WILLOW STREET

F:\active-surveys\1905-016-IWM-Butler\dwg\1905-016.dwg

File:

Monitoring Well Location & Elevation Data The Butler Company IBP Site No. 4170705 325 South Broadway Street Butler, DeKalb County, Indiana Indiana East State Plane

CIVIL ENGINEERS * LAND SURVEYORS * LAND PLANNERS

Maxwell Surveying and Engineering Survey Data The Butler Company 325 South Broadway Street Butler, DeKalb County, Indiana IBP Site No. 4170705

Northing	Easting	Elevation	Description
2251539.32	546270.92	868.22	mw
2251539.63	546270.87	865.99	el
2251569.26	546379.07	867.16	mw
2251569.58	546379.09	864.98	el
2251446.91	546388.18	866.67	mw
2251447.28	546388.14	864.64	el
2251593.94	546521.92	866.66	mw
2251594.41	546521.90	864.28	el
2251424.77	546541.05	866.36	mw
2251424.87	546540.95	866.03	el
2251363.09	546461.29	865.78	mw
2251363.18	546461.30	865.42	el
	Northing 2251539.32 2251539.63 2251569.26 2251569.58 2251446.91 2251447.28 2251593.94 2251594.41 2251424.77 2251424.87 2251363.09 2251363.18	NorthingEasting2251539.32546270.922251539.63546270.872251569.26546379.072251569.58546379.092251446.91546388.182251447.28546388.142251593.94546521.922251424.77546541.052251424.87546540.952251363.09546461.292251363.18546461.30	NorthingEastingElevation2251539.32546270.92868.222251539.63546270.87865.992251569.26546379.07867.162251569.58546379.09864.982251446.91546388.18866.672251447.28546388.14864.642251593.94546521.92866.662251594.41546521.90864.282251424.77546541.05866.362251424.87546540.95866.032251363.09546461.29865.782251363.18546461.30865.42

APPENDIX J

SOIL GAS SAMPLING DATA SHEET

Sample ID		Sampling Location	on	Sam	pling Time	Vacuum (in Hg)		Canister Details	
BC -561	Near BC-S	SAL D	eat site	Start	NIS	Initial		Canister ID #	NIA
	700T	Jor Ip	10		1. 1.			Flow Controller #	
Vacuum (in Hg)									
Sample ID	290 test. 12 i/).1	Sampling Location		Sam	pling Time	Vacu	um (in Hg)	Canister	r Details
	Near BC-G	P7. Central	are onste.	Start	10:35	Initial	29	Canister ID #	2924
86- 562				End	10:47	Final	2	Flow Controller #	FC 2207
Time	10:38	10:40	10:42	10	: 94	10:	46	10:47	
Vacuum (in Hg)	22	17	13		8		4	2	
ne Type: Soil-Gas X Sewer Backfill m Test: Shroud: 96 %; Samp ; Purge + Cor Passed V	Material Gas Dle Train ppm 	Bottom of Screen Dep PIICATE 0150	Timeframe: 24-Hr oth (ft.): 4.5 HCKEN: BC - Si	8-Hr Analytica	Grab X al Method: TO-18 1 ; Can; 540	Canister	Type: 6L Summ -15 SIM S	a 1L Summą <u>k</u> Shortlist W FC2207 rc	other
Sample ID		Sampling Location	m	Sam	pling Time	Vacuum (in Hg)		Canister	Details
<u></u>	New BC-GP	12. Central-U	wast side of side	Start	N. S.	Initial		Canister ID #	
BC- 563	Not	Sampled		End	N.S.	Final		Flow Controller #	
Time				1					

APPENDIX K

LABORATORY ANALYTICAL REPORTS - SOIL

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

July 08, 2019

Mr. Mark Anderson IWM Consulting Group LLC 1015 Production Drive Fort Wayne, IN 46808

RE: Project: The Butler Co. Pace Project No.: 50225929

Dear Mr. Anderson:

Enclosed are the analytical results for sample(s) received by the laboratory on May 23, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Revised report replaces the one issued on 05/31/19 and 06/20/19

Hexachrome and TCLP lead added to select samples. ccb 06/12/19

Sample ID's fixed for -011 and -012. ccb 07/08/19

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Clingtobbayle

Chris Boyle chris.boyle@pacelabs.com (317)228-3100 Project Manager

Enclosures

cc: Cassidy Heltzel, IWM Consulting Group, LLC

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

CERTIFICATIONS

Project:The Butler Co.Pace Project No.:50225929

Indiana Certification IDs

7726 Moller Road, Indianapolis, IN 46268 Illinois Certification #: 200074 Indiana Certification #: C-49-06 Kansas/NELAP Certification #: E-10177 Kentucky UST Certification #: 80226 Kentucky WW Certification #: 98019 Michigan Department of Environmental Quality, Laboratory #9050 Ohio VAP Certification #: CL0065 Oklahoma Certification #: 2018-101 Texas Certification #: T104704355 West Virginia Certification #: 330 Wisconsin Certification #: 999788130 USDA Soil Permit #: P330-16-00257

SAMPLE SUMMARY

Project:The Butler Co.Pace Project No.:50225929

Lab ID	Sample ID	Matrix	Date Collected	Date Received
50225929001	BC-GP1-SS1 (1-2)	Solid	05/21/19 15:37	05/23/19 08:35
50225929002	BC-GP1-SB1 (3-4)	Solid	05/21/19 15:40	05/23/19 08:35
50225929003	BC-GP2-SS1 (0.5-1.5)	Solid	05/21/19 16:23	05/23/19 08:35
50225929004	BC-GP2-SB1 (3-4)	Solid	05/21/19 16:26	05/23/19 08:35
50225929005	BC-GP3-SS1 (1-2)	Solid	05/21/19 15:56	05/23/19 08:35
50225929006	BC-GP3-SB1 (3-4)	Solid	05/21/19 16:00	05/23/19 08:35
50225929007	BC-GP4-SS1 (1-2)	Solid	05/21/19 16:16	05/23/19 08:35
50225929008	BC-GP4-SB1 (3-4)	Solid	05/21/19 16:20	05/23/19 08:35
50225929009	BC-GP5-SS1 (2-3)	Solid	05/21/19 15:47	05/23/19 08:35
50225929010	BC-GP5-SB1 (3.5-4)	Solid	05/21/19 15:50	05/23/19 08:35
50225929011	BC-GP6-SS1 (1-2)	Solid	05/21/19 17:09	05/23/19 08:35
50225929012	BC-GP6-SB1 (3-4)	Solid	05/21/19 17:11	05/23/19 08:35
50225929013	BC-GP7-SS1 (1-2)	Solid	05/21/19 16:59	05/23/19 08:35
50225929014	BC-GP7-SB1 (3-4)	Solid	05/21/19 17:01	05/23/19 08:35
50225929015	BC-GP8-SS1 (2-3)	Solid	05/21/19 17:19	05/23/19 08:35
50225929016	BC-GP8-SB1 (3-4)	Solid	05/21/19 17:21	05/23/19 08:35
50225929017	BC-GP9-SS1 (1-2)	Solid	05/21/19 16:31	05/23/19 08:35
50225929018	BC-GP9-SB1 (3-4)	Solid	05/21/19 16:37	05/23/19 08:35
50225929019	BC-GP10-SS1 (1-2)	Solid	05/21/19 12:11	05/23/19 08:35
50225929020	BC-GP11-SS1 (0.5-1.5)	Solid	05/21/19 09:51	05/23/19 08:35
50225929021	BC-GP12-SS1 (1-2)	Solid	05/20/19 09:55	05/23/19 08:35
50225929022	BC-GP13-SS1 (1-2)	Solid	05/20/19 17:10	05/23/19 08:35
50225929023	BC-GP14-SS1 (0.5-1.5)	Solid	05/20/19 12:07	05/23/19 08:35
50225929024	BC-GP15-SS1 (0.5-1)	Solid	05/21/19 14:50	05/23/19 08:35
50225929025	BC-SB-FD1	Solid	05/20/19 00:00	05/23/19 08:35
50225929026	BC-SB-FD2	Solid	05/21/19 00:00	05/23/19 08:35
50225929027	BC-SB-FD3	Solid	05/21/19 00:00	05/23/19 08:35
50225929028	BC-EB-SB1	Water	05/20/19 09:45	05/23/19 08:35
50225929029	BC-TB1	Water	05/21/19 08:00	05/23/19 08:35

SAMPLE ANALYTE COUNT

Project:The Butler Co.Pace Project No.:50225929

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
50225929001		EPA 6010	JPK	9	PASI-I
		EPA 7471	ILP	1	PASI-I
		SM 2540G	RM1	1	PASI-I
50225929002	BC-GP1-SB1 (3-4)	EPA 6010	JPK	9	PASI-I
		EPA 7471	ILP	1	PASI-I
		SM 2540G	RM1	1	PASI-I
50225929003	BC-GP2-SS1 (0.5-1.5)	EPA 6010	JPK	9	PASI-I
		EPA 7471	ILP	1	PASI-I
		SM 2540G	RM1	1	PASI-I
50225929004	BC-GP2-SB1 (3-4)	EPA 6010	JPK	9	PASI-I
		EPA 7471	ILP	1	PASI-I
		SM 2540G	RM1	1	PASI-I
50225929005	BC-GP3-SS1 (1-2)	EPA 6010	JPK	9	PASI-I
		EPA 6010	JPK	1	PASI-I
		EPA 7471	ILP	1	PASI-I
		SM 2540G	RM1	1	PASI-I
50225929006	BC-GP3-SB1 (3-4)	EPA 6010	JPK	9	PASI-I
		EPA 7471	ILP	1	PASI-I
		SM 2540G	RM1	1	PASI-I
50225929007	BC-GP4-SS1 (1-2)	EPA 6010	JPK	9	PASI-I
		EPA 7471	ILP	1	PASI-I
		SM 2540G	RM1	1	PASI-I
50225929008	BC-GP4-SB1 (3-4)	EPA 6010	JPK	9	PASI-I
		EPA 7471	ILP	1	PASI-I
		SM 2540G	RM1	1	PASI-I
50225929009	BC-GP5-SS1 (2-3)	EPA 6010	JPK	9	PASI-I
		EPA 7471	ILP	1	PASI-I
		SM 2540G	RM1	1	PASI-I
50225929010	BC-GP5-SB1 (3.5-4)	EPA 6010	JPK	9	PASI-I
		EPA 7471	ILP	1	PASI-I
		SM 2540G	RM1	1	PASI-I
50225929011	BC-GP6-SS1 (1-2)	EPA 6010	JPK	9	PASI-I
		EPA 7471	ILP	1	PASI-I
		SM 2540G	RM1	1	PASI-I
50225929012	BC-GP6-SB1 (3-4)	EPA 6010	JPK	9	PASI-I
		EPA 7471	ILP	1	PASI-I
		SM 2540G	RM1	1	PASI-I

SAMPLE ANALYTE COUNT

Project:The Butler Co.Pace Project No.:50225929

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
50225929013	BC-GP7-SS1 (1-2)	EPA 6010	JPK	9	PASI-I
		EPA 7471	ILP	1	PASI-I
		SM 2540G	RM1	1	PASI-I
50225929014	BC-GP7-SB1 (3-4)	EPA 8082	RID	8	PASI-I
		EPA 6010	JPK	9	PASI-I
		EPA 7471	ILP	1	PASI-I
		EPA 8270 by SIM	JCM	20	PASI-I
		EPA 8260	RSW	72	PASI-I
		SM 2540G	RM1	1	PASI-I
50225929015	BC-GP8-SS1 (2-3)	EPA 6010	JPK	9	PASI-I
		EPA 7471	ILP	1	PASI-I
		SM 2540G	RM1	1	PASI-I
50225929016	BC-GP8-SB1 (3-4)	EPA 8082	RID	8	PASI-I
		EPA 6010	JPK	9	PASI-I
		EPA 7471	ILP	1	PASI-I
		EPA 8270 by SIM	JCM	20	PASI-I
		EPA 8260	RSW	72	PASI-I
		SM 2540G	RM1	1	PASI-I
50225929017	BC-GP9-SS1 (1-2)	EPA 6010	JPK	9	PASI-I
		EPA 7471	ILP	1	PASI-I
		SM 2540G	RM1	1	PASI-I
50225929018	BC-GP9-SB1 (3-4)	EPA 6010	JPK	9	PASI-I
		EPA 7471	ILP	1	PASI-I
		SM 2540G	RM1	1	PASI-I
50225929019	BC-GP10-SS1 (1-2)	EPA 6010	JPK	9	PASI-I
		EPA 7471	ILP	1	PASI-I
		SM 2540G	RM1	1	PASI-I
50225929020	BC-GP11-SS1 (0.5-1.5)	EPA 6010	JPK	9	PASI-I
		EPA 7471	ILP	1	PASI-I
		SM 2540G	RM1	1	PASI-I
50225929021	BC-GP12-SS1 (1-2)	EPA 6010	JPK	9	PASI-I
		EPA 7471	ILP	1	PASI-I
		SM 2540G	RM1	1	PASI-I
50225929022	BC-GP13-SS1 (1-2)	EPA 6010	JPK	9	PASI-I
		EPA 7471	ILP	1	PASI-I
		SM 2540G	RM1	1	PASI-I
50225929023	BC-GP14-SS1 (0.5-1.5)	EPA 6010	JPK	9	PASI-I

SAMPLE ANALYTE COUNT

Project:The Butler Co.Pace Project No.:50225929

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 7471	ILP	1	PASI-I
		SM 2540G	RM1	1	PASI-I
50225929024	BC-GP15-SS1 (0.5-1)	EPA 6010	JPK	9	PASI-I
		EPA 7471	ILP	1	PASI-I
		SM 2540G	RM1	1	PASI-I
50225929025	BC-SB-FD1	EPA 6010	JPK	9	PASI-I
		EPA 7471	ILP	1	PASI-I
		SM 2540G	RM1	1	PASI-I
50225929026	BC-SB-FD2	EPA 6010	JPK	9	PASI-I
		EPA 7471	ILP	1	PASI-I
		SM 2540G	RM1	1	PASI-I
50225929027	BC-SB-FD3	EPA 8082	RID	8	PASI-I
		EPA 6010	JPK	9	PASI-I
		EPA 7471	ILP	1	PASI-I
		EPA 8270 by SIM	JCM	20	PASI-I
		EPA 8260	RSW	72	PASI-I
		SM 2540G	RM1	1	PASI-I
50225929028	BC-EB-SB1	EPA 8082	KAV	8	PASI-I
		EPA 6010	KJE	9	PASI-I
		EPA 7470	LBT	1	PASI-I
		EPA 8270 by SIM LVE	GRM	20	PASI-I
		EPA 8260	RSW	72	PASI-I
50225929029	BC-TB1	EPA 8260	RSW	72	PASI-I

Project: The Butler Co.

Pace Project No.: 50225929

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
50225929001	BC-GP1-SS1 (1-2)					
EPA 6010	Arsenic	14.0	mg/kg	1.1	05/26/19 00:14	
EPA 6010	Barium	80.2	mg/kg	1.1	05/26/19 00:14	
EPA 6010	Chromium	19.1	mg/kg	1.1	05/26/19 00:14	
EPA 6010	Copper	55.6	mg/kg	1.1	05/26/19 00:14	
EPA 6010	Lead	61.6	mg/kg	1.1	05/26/19 00:14	
EPA 6010	Zinc	101	mg/kg	1.1	05/26/19 00:14	
EPA 7471	Mercury	0.92	mg/kg	0.24	05/29/19 11:32	
SM 2540G	Percent Moisture	20.8	%	0.10	05/28/19 10:36	
50225929002	BC-GP1-SB1 (3-4)					
EPA 6010	Arsenic	2.6	mg/kg	1.1	05/26/19 00:16	
EPA 6010	Barium	127	mg/kg	1.1	05/26/19 00:16	
EPA 6010	Chromium	24.1	mg/kg	1.1	05/26/19 00:16	
EPA 6010	Copper	15.2	mg/kg	1.1	05/26/19 00:16	
EPA 6010	Lead	11.3	mg/kg	1.1	05/26/19 00:16	
EPA 6010	Zinc	58.8	mg/kg	1.1	05/26/19 00:16	
SM 2540G	Percent Moisture	18.0	%	0.10	05/28/19 10:37	
50225929003	BC-GP2-SS1 (0.5-1.5)					
EPA 6010	Arsenic	8.6	mg/kg	1.0	05/26/19 00:18	
EPA 6010	Barium	81.1	mg/kg	1.0	05/26/19 00:18	
EPA 6010	Cadmium	4.3	mg/kg	0.52	05/26/19 00:18	
EPA 6010	Chromium	13.3	mg/kg	1.0	05/26/19 00:18	
EPA 6010	Copper	127	mg/kg	1.0	05/26/19 00:18	
EPA 6010	Lead	97.7	mg/kg	1.0	05/26/19 00:18	
EPA 6010	Zinc	290	mg/kg	1.0	05/26/19 00:18	
EPA 7471	Mercury	0.58	mg/kg	0.22	05/29/19 11:37	
SM 2540G	Percent Moisture	13.8	%	0.10	05/28/19 10:37	
50225929004	BC-GP2-SB1 (3-4)					
EPA 6010	Arsenic	9.3	mg/kg	1.2	05/26/19 00:21	
EPA 6010	Barium	87.5	mg/kg	1.2	05/26/19 00:21	
EPA 6010	Chromium	22.8	mg/kg	1.2	05/26/19 00:21	
EPA 6010	Copper	21.7	mg/kg	1.2	05/26/19 00:21	
EPA 6010	Lead	9.4	mg/kg	1.2	05/26/19 00:21	
EPA 6010	Zinc	57.7	mg/kg	1.2	05/26/19 00:21	
SM 2540G	Percent Moisture	19.4	%	0.10	05/28/19 10:37	
50225929005	BC-GP3-SS1 (1-2)					
EPA 6010	Arsenic	6.7	mg/kg	1.1	05/26/19 00:36	
EPA 6010	Barium	651	mg/kg	1.1	05/26/19 00:36	
EPA 6010	Cadmium	1.2	mg/kg	0.57	05/26/19 00:36	
EPA 6010	Chromium	15.3	mg/kg	1.1	05/26/19 00:36	
EPA 6010	Copper	90.0	mg/kg	1.1	05/26/19 00:36	
EPA 6010	Lead	3160	mg/kg	1.1	05/26/19 00:36	
EPA 6010	Zinc	446	mg/kg	1.1	05/26/19 00:36	
EPA 6010	Lead	30.6	mg/L	0.10	06/15/19 01:41	
EPA 7471	Mercury	0.46	mg/kg	0.25	05/29/19 11:46	
SM 2540G	Percent Moisture	19.4	%	0.10	05/28/19 10:38	

Project: The Butler Co.

Pace Project No.: 50225929

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
50225929006	BC-GP3-SB1 (3-4)					
EPA 6010	Arsenic	5.5	mg/kg	1.2	05/26/19 00:38	
EPA 6010	Barium	136	mg/kg	1.2	05/26/19 00:38	
EPA 6010	Chromium	27.3	mg/kg	1.2	05/26/19 00:38	
EPA 6010	Copper	17.0	mg/kg	1.2	05/26/19 00:38	
EPA 6010	Lead	11.5	mg/kg	1.2	05/26/19 00:38	
EPA 6010	Zinc	72.5	mg/kg	1.2	05/26/19 00:38	
SM 2540G	Percent Moisture	20.4	%	0.10	05/28/19 10:38	
50225929007	BC-GP4-SS1 (1-2)					
EPA 6010	Arsenic	12.0	mg/kg	1.3	05/26/19 00:40	
EPA 6010	Barium	269	mg/kg	1.3	05/26/19 00:40	
EPA 6010	Cadmium	1.9	mg/kg	0.63	05/26/19 00:40	
EPA 6010	Chromium	16.6	mg/kg	1.3	05/26/19 00:40	
EPA 6010	Copper	88.1	mg/kg	1.3	05/26/19 00:40	
EPA 6010	Lead	395	mg/kg	1.3	05/26/19 00:40	
EPA 6010	Selenium	1.4	mg/kg	1.3	05/26/19 00:40	
EPA 6010	Zinc	837	mg/kg	1.3	05/26/19 00:40	
SM 2540G	Percent Moisture	21.9	%	0.10	05/28/19 10:38	
50225929008	BC-GP4-SB1 (3-4)					
EPA 6010	Arsenic	3.0	mg/kg	1.1	05/26/19 00:42	
EPA 6010	Barium	76.4	mg/kg	1.1	05/26/19 00:42	
EPA 6010	Chromium	22.0	mg/kg	1.1	05/26/19 00:42	
EPA 6010	Copper	15.4	mg/kg	1.1	05/26/19 00:42	
EPA 6010	Lead	11.3	mg/kg	1.1	05/26/19 00:42	
EPA 6010	Zinc	71.6	mg/kg	1.1	05/26/19 00:42	
SM 2540G	Percent Moisture	22.5	%	0.10	05/28/19 10:38	
50225929009	BC-GP5-SS1 (2-3)					
EPA 6010	Arsenic	10.4	mg/kg	1.2	05/26/19 00:45	
EPA 6010	Barium	57.7	mg/kg	1.2	05/26/19 00:45	
EPA 6010	Chromium	10.9	mg/kg	1.2	05/26/19 00:45	
EPA 6010	Copper	62.5	mg/kg	1.2	05/26/19 00:45	
EPA 6010	Lead	63.1	mg/kg	1.2	05/26/19 00:45	
EPA 6010	Zinc	73.1	mg/kg	1.2	05/26/19 00:45	
SM 2540G	Percent Moisture	20.2	%	0.10	05/28/19 10:39	
50225929010	BC-GP5-SB1 (3.5-4)					
EPA 6010	Arsenic	5.9	mg/kg	1.1	05/26/19 00:47	
EPA 6010	Barium	81.8	mg/kg	1.1	05/26/19 00:47	
EPA 6010	Cadmium	0.73	mg/kg	0.55	05/26/19 00:47	
EPA 6010	Chromium	19.6	mg/kg	1.1	05/26/19 00:47	
EPA 6010	Copper	29.1	mg/kg	1.1	05/26/19 00:47	
EPA 6010	Lead	13.6	mg/kg	1.1	05/26/19 00:47	
EPA 6010	Zinc	57.8	mg/kg	1.1	05/26/19 00:47	
SM 2540G	Percent Moisture	19.4	%	0.10	05/28/19 10:39	
50225929011	BC-GP6-SS1 (1-2)					
EPA 6010	Arsenic	13.2	mg/kg	1.0	05/26/19 00:49	

Project: The Butler Co.

Pace Project No.: 50225929

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
50225929011	BC-GP6-SS1 (1-2)					
EPA 6010	Barium	55.8	mg/kg	1.0	05/26/19 00:49	
EPA 6010	Cadmium	0.77	mg/kg	0.52	05/26/19 00:49	
EPA 6010	Chromium	19.7	mg/kg	1.0	05/26/19 00:49	
EPA 6010	Copper	90.1	mg/kg	1.0	05/26/19 00:49	
EPA 6010	Lead	62.5	mg/kg	1.0	05/26/19 00:49	
EPA 6010	Zinc	241	mg/kg	1.0	05/26/19 00:49	
SM 2540G	Percent Moisture	15.9	%	0.10	05/28/19 10:39	
50225929012	BC-GP6-SB1 (3-4)					
EPA 6010	Arsenic	5.5	mg/kg	1.6	05/26/19 00:51	
EPA 6010	Barium	250	mg/kg	1.6	05/26/19 00:51	
EPA 6010	Cadmium	2.8	mg/kg	0.79	05/26/19 00:51	
EPA 6010	Chromium	32.7	mg/kg	1.6	05/26/19 00:51	
EPA 6010	Copper	128	mg/kg	1.6	05/26/19 00:51	
EPA 6010	Lead	15.6	mg/kg	1.6	05/26/19 00:51	
EPA 6010	Selenium	2.3	mg/kg	1.6	05/26/19 00:51	
EPA 6010	Zinc	77.6	mg/kg	1.6	05/26/19 00:51	
SM 2540G	Percent Moisture	38.2	%	0.10	05/28/19 10:39	
50225929013	BC-GP7-SS1 (1-2)					
EPA 6010	Arsenic	44.0	mg/kg	1.3	05/26/19 00:53	
EPA 6010	Barium	694	mg/kg	1.3	05/26/19 00:53	
EPA 6010	Cadmium	1.2	mg/kg	0.63	05/26/19 00:53	
EPA 6010	Chromium	24.2	mg/kg	1.3	05/26/19 00:53	
EPA 6010	Copper	222	mg/kg	1.3	05/26/19 00:53	
EPA 6010	Lead	159	mg/kg	1.3	05/26/19 00:53	
EPA 6010	Zinc	273	mg/kg	1.3	05/26/19 00:53	
SM 2540G	Percent Moisture	24.7	%	0.10	05/28/19 10:39	
50225929014	BC-GP7-SB1 (3-4)					
EPA 6010	Arsenic	28.2	mg/kg	1.1	05/26/19 00:55	
EPA 6010	Barium	116	mg/kg	1.1	05/26/19 00:55	
EPA 6010	Cadmium	1.2	mg/kg	0.56	05/26/19 00:55	
EPA 6010	Chromium	17.3	mg/kg	1.1	05/26/19 00:55	
EPA 6010	Copper	52.9	mg/kg	1.1	05/26/19 00:55	
EPA 6010	Lead	198	mg/kg	1.1	05/26/19 00:55	
EPA 6010	Selenium	1.3	mg/kg	1.1	05/26/19 00:55	
EPA 6010	Zinc	203	mg/kg	1.1	05/26/19 00:55	
EPA 8270 by SIM	Anthracene	0.0081	mg/kg	0.0064	05/30/19 18:55	
EPA 8270 by SIM	Benzo(a)anthracene	0.015	mg/kg	0.0064	05/30/19 18:55	
EPA 8270 by SIM	Benzo(a)pyrene	0.011	mg/kg	0.0064	05/30/19 18:55	
EPA 8270 by SIM	Benzo(b)fluoranthene	0.011	mg/kg	0.0064	05/30/19 18:55	
EPA 8270 by SIM	Benzo(g,h,i)perylene	0.017	mg/kg	0.0064	05/30/19 18:55	
EPA 8270 by SIM	Benzo(k)fluoranthene	0.013	mg/kg	0.0064	05/30/19 18:55	
EPA 8270 by SIM	Chrysene	0.017	mg/kg	0.0064	05/30/19 18:55	
EPA 8270 by SIM	Fluoranthene	0.024	mg/kg	0.0064	05/30/19 18:55	
EPA 8270 by SIM	Indeno(1,2,3-cd)pyrene	0.012	mg/kg	0.0064	05/30/19 18:55	
EPA 8270 by SIM	1-Methylnaphthalene	0.079	mg/kg	0.0064	05/30/19 18:55	N2
EPA 8270 by SIM	2-Methylnaphthalene	0.11	mg/kg	0.0064	05/30/19 18:55	

Project: The Butler Co.

Pace Project No.: 50225929

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
50225929014	BC-GP7-SB1 (3-4)					
EPA 8270 by SIM	Naphthalene	0.10	mg/kg	0.0064	05/30/19 18:55	
EPA 8270 by SIM	Phenanthrene	0.043	mg/kg	0.0064	05/30/19 18:55	
EPA 8270 by SIM	Pyrene	0.027	mg/kg	0.0064	05/30/19 18:55	
EPA 8260	n-Hexane	0.049	mg/kg	0.0063	05/31/19 08:57	CL,H7
SM 2540G	Percent Moisture	22.4	%	0.10	05/28/19 10:40	
50225929015	BC-GP8-SS1 (2-3)					
EPA 6010	Arsenic	33.9	mg/kg	1.1	05/26/19 01:02	
EPA 6010	Barium	46.2	mg/kg	1.1	05/26/19 01:02	
EPA 6010	Chromium	38.4	mg/kg	1.1	05/26/19 01:02	
EPA 6010	Copper	39.7	mg/kg	1.1	05/26/19 01:02	
EPA 6010	Lead	25.4	mg/kg	1.1	05/26/19 01:02	
EPA 6010	Zinc	91.5	mg/kg	1.1	05/26/19 01:02	
SM 2540G	Percent Moisture	10.9	%	0.10	05/28/19 10:40	
50225929016	BC-GP8-SB1 (3-4)					
EPA 6010	Arsenic	2.8	mg/kg	1.1	05/26/19 01:04	
EPA 6010	Barium	116	mg/kg	1.1	05/26/19 01:04	
EPA 6010	Chromium	25.6	mg/kg	1.1	05/26/19 01:04	
EPA 6010	Copper	15.8	mg/kg	1.1	05/26/19 01:04	
EPA 6010	Lead	10.7	mg/kg	1.1	05/26/19 01:04	
EPA 6010	Zinc	66.3	mg/kg	1.1	05/26/19 01:04	
EPA 8260	n-Hexane	0.071	mg/kg	0.0068	05/31/19 09:32	CL,H7
SM 2540G	Percent Moisture	21.6	%	0.10	05/28/19 10:41	
50225929017	BC-GP9-SS1 (1-2)					
EPA 6010	Arsenic	25.5	mg/kg	1.1	05/26/19 01:06	
EPA 6010	Barium	169	mg/kg	1.1	05/26/19 01:06	
EPA 6010	Cadmium	2.4	mg/kg	0.56	05/26/19 01:06	
EPA 6010	Chromium	44.0	mg/kg	1.1	05/26/19 01:06	
EPA 6010	Copper	688	mg/kg	1.1	05/26/19 01:06	
EPA 6010	Lead	448	mg/kg	1.1	05/26/19 01:06	
EPA 6010	Zinc	745	mg/kg	1.1	05/26/19 01:06	
SM 2540G	Percent Moisture	21.1	%	0.10	05/28/19 13:27	
50225929018	BC-GP9-SB1 (3-4)					
EPA 6010	Arsenic	13.8	mg/kg	1.2	05/26/19 02:11	
EPA 6010	Barium	85.2	mg/kg	1.2	05/26/19 02:11	
EPA 6010	Chromium	23.5	mg/kg	1.2	05/26/19 02:11	
EPA 6010	Copper	25.9	mg/kg	1.2	05/26/19 02:11	
EPA 6010	Lead	12.6	mg/kg	1.2	05/26/19 02:11	
EPA 6010	Zinc	77.6	mg/kg	1.2	05/26/19 02:11	
SM 2540G	Percent Moisture	16.9	%	0.10	05/28/19 13:27	
50225929019	BC-GP10-SS1 (1-2)					
EPA 6010	Arsenic	11.6	mg/kg	1.2	05/26/19 01:09	
EPA 6010	Barium	228	mg/kg	1.2	05/26/19 01:09	
EPA 6010	Cadmium	0.60	mg/kg	0.58	05/26/19 01:09	
EPA 6010	Chromium	32.2	mg/kg	1.2	05/26/19 01:09	

Project: The Butler Co.

Pace Project No.: 50225929

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
50225929019	BC-GP10-SS1 (1-2)					
EPA 6010	Copper	212	mg/kg	1.2	05/26/19 01:09	
EPA 6010	Lead	158	mg/kg	1.2	05/26/19 01:09	
EPA 6010	Zinc	159	mg/kg	1.2	05/26/19 01:09	
EPA 7471	Mercury	0.54	mg/kg	0.25	05/29/19 12:30	
SM 2540G	Percent Moisture	23.3	%	0.10	05/28/19 13:27	
50225929020	BC-GP11-SS1 (0.5-1.5)					
EPA 6010	Arsenic	15.0	mg/kg	1.2	05/26/19 01:11	
EPA 6010	Barium	323	mg/kg	1.2	05/26/19 01:11	
EPA 6010	Cadmium	5.3	mg/kg	0.60	05/26/19 01:11	
EPA 6010	Chromium	16.7	mg/kg	1.2	05/26/19 01:11	
EPA 6010	Copper	385	mg/kg	1.2	05/26/19 01:11	
EPA 6010	Lead	282	mg/kg	1.2	05/26/19 01:11	
EPA 6010	Selenium	1.8	mg/kg	1.2	05/26/19 01:11	
EPA 6010	Zinc	1230	mg/kg	1.2	05/26/19 01:11	
SM 2540G	Percent Moisture	20.1	%	0.10	05/28/19 13:27	
50225929021	BC-GP12-SS1 (1-2)					
EPA 6010	Arsenic	3.1	mg/kg	1.1	05/26/19 01:13	
EPA 6010	Barium	131	mg/kg	1.1	05/26/19 01:13	
EPA 6010	Chromium	21.2	mg/kg	1.1	05/26/19 01:13	
EPA 6010	Copper	13.7	mg/kg	1.1	05/26/19 01:13	
EPA 6010	Lead	84.7	mg/kg	1.1	05/26/19 01:13	
EPA 6010	Zinc	102	mg/kg	1.1	05/26/19 01:13	
SM 2540G	Percent Moisture	18.5	%	0.10	05/28/19 13:28	
50225929022	BC-GP13-SS1 (1-2)					
EPA 6010	Arsenic	13.5	mg/kg	1.1	05/26/19 02:17	
EPA 6010	Barium	93.7	mg/kg	1.1	05/26/19 02:17	
EPA 6010	Cadmium	1.2	mg/kg	0.56	05/26/19 02:17	
EPA 6010	Chromium	13.1	mg/kg	1.1	05/26/19 02:17	
EPA 6010	Copper	124	mg/kg	1.1	05/26/19 02:17	
EPA 6010	Lead	137	mg/kg	1.1	05/26/19 02:17	
EPA 6010	Zinc	355	mg/kg	1.1	05/26/19 02:17	
EPA 7471	Mercury	0.32	mg/kg	0.21	05/29/19 14:13	
SM 2540G	Percent Moisture	13.9	%	0.10	05/28/19 13:28	
50225929023	BC-GP14-SS1 (0.5-1.5)					
EPA 6010	Arsenic	49.2	mg/kg	1.1	05/26/19 02:19	
EPA 6010	Barium	192	mg/kg	1.1	05/26/19 02:19	
EPA 6010	Cadmium	0.80	mg/kg	0.54	05/26/19 02:19	
EPA 6010	Chromium	19.2	mg/kg	1.1	05/26/19 02:19	
EPA 6010	Copper	98.1	mg/kg	1.1	05/26/19 02:19	
EPA 6010	Lead	156	mg/kg	1.1	05/26/19 02:19	
EPA 6010	Selenium	1.7	mg/kg	1.1	05/26/19 02:19	
EPA 6010	Zinc	211	mg/kg	1.1	05/26/19 02:19	
SM 2540G	Percent Moisture	16.5	%	0.10	05/28/19 13:28	

Project: The Butler Co.

Pace Project No.: 50225929

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
50225929024	BC-GP15-SS1 (0.5-1)					
EPA 6010	Arsenic	12.8	mg/kg	0.93	05/26/19 02:21	
EPA 6010	Barium	29.2	mg/kg	0.93	05/26/19 02:21	
EPA 6010	Chromium	14.7	mg/kg	0.93	05/26/19 02:21	
EPA 6010	Copper	27.1	mg/kg	0.93	05/26/19 02:21	
EPA 6010	Lead	20.8	mg/kg	0.93	05/26/19 02:21	
EPA 6010	Zinc	116	mg/kg	0.93	05/26/19 02:21	
SM 2540G	Percent Moisture	7.0	%	0.10	05/28/19 13:28	
50225929025	BC-SB-FD1					
EPA 6010	Arsenic	17.1	mg/kg	1.1	05/26/19 02:28	
EPA 6010	Barium	197	mg/kg	1.1	05/26/19 02:28	
EPA 6010	Cadmium	1.1	mg/kg	0.55	05/26/19 02:28	
EPA 6010	Chromium	19.1	mg/kg	1.1	05/26/19 02:28	
EPA 6010	Copper	68.3	mg/kg	1.1	05/26/19 02:28	
EPA 6010	Lead	150	mg/kg	1.1	05/26/19 02:28	
EPA 6010	Zinc	339	mg/kg	1.1	05/26/19 02:28	
SM 2540G	Percent Moisture	16.1	%	0.10	05/28/19 13:29	
50225929026	BC-SB-FD2					
EPA 6010	Arsenic	11.5	mg/kg	1.2	05/26/19 02:30	
EPA 6010	Barium	416	mg/kg	1.2	05/26/19 02:30	
EPA 6010	Cadmium	1.5	mg/kg	0.59	05/26/19 02:30	
EPA 6010	Chromium	15.2	mg/kg	1.2	05/26/19 02:30	
EPA 6010	Copper	59.2	mg/kg	1.2	05/26/19 02:30	
EPA 6010	Lead	691	mg/kg	1.2	05/26/19 02:30	
EPA 6010	Selenium	1.4	mg/kg	1.2	05/26/19 02:30	
EPA 6010	Zinc	684	mg/kg	1.2	05/26/19 02:30	
SM 2540G	Percent Moisture	24.4	%	0.10	05/28/19 13:29	
50225929027	BC-SB-FD3					
EPA 6010	Arsenic	27.7	mg/kg	1.0	05/26/19 02:32	
EPA 6010	Barium	35.9	mg/kg	1.0	05/26/19 02:32	
EPA 6010	Chromium	32.5	mg/kg	1.0	05/26/19 02:32	
EPA 6010	Copper	35.6	mg/kg	1.0	05/26/19 02:32	
EPA 6010	Lead	27.0	mg/kg	1.0	05/26/19 02:32	
EPA 6010	Zinc	63.0	mg/kg	1.0	05/26/19 02:32	
EPA 8270 by SIM	2-Methylnaphthalene	0.0071	mg/kg	0.0056	05/29/19 16:43	
EPA 8270 by SIM	Naphthalene	0.019	mg/kg	0.0056	05/29/19 16:43	
EPA 8270 by SIM	Phenanthrene	0.0085	mg/kg	0.0056	05/29/19 16:43	
EPA 8260	n-Hexane	0.30	mg/kg	0.0059	05/31/19 10:06	CL,H7
SM 2540G	Percent Moisture	11.1	%	0.10	05/28/19 13:29	

Project: The Butler Co.

Pace Project No.: 50225929

Sample: BC-GP1-SS1 (1-2)	Lab ID: 502	25929001	Collected: 05/21/1	9 15:37	7 Received: 05	/23/19 08:35 N	latrix: Solid	
Results reported on a "dry weig	ght" basis and are adj	usted for p	ercent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 60	10 Preparation Meth	nod: EP	A 3050			
Arsenic	14.0	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:14	7440-38-2	
Barium	80.2	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:14	7440-39-3	
Cadmium	ND	mg/kg	0.54	1	05/24/19 06:34	05/26/19 00:14	7440-43-9	
Chromium	19.1	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:14	7440-47-3	
Copper	55.6	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:14	7440-50-8	
Lead	61.6	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:14	7439-92-1	
Selenium	ND	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:14	7782-49-2	
Silver	ND	mg/kg	0.54	1	05/24/19 06:34	05/26/19 00:14	7440-22-4	
Zinc	101	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:14	7440-66-6	
7471 Mercury	Analytical Meth	nod: EPA 74	71 Preparation Meth	nod: EP	A 7471			
Mercury	0.92	mg/kg	0.24	1	05/28/19 23:10	05/29/19 11:32	7439-97-6	
Percent Moisture	Analytical Meth	nod: SM 254	0G					
Percent Moisture	20.8	%	0.10	1		05/28/19 10:36		

Project: The Butler Co.

Pace Project No.: 50225929

Sample: BC-GP1-SB1 (3-4)	Lab ID: 502	25929002	Collected: 05/21/1	9 15:40) Received: 05	/23/19 08:35 N	latrix: Solid	
Results reported on a "dry wei	ight" basis and are adj	usted for p	ercent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 60	10 Preparation Meth	nod: EP	A 3050			
Arsenic	2.6	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:16	7440-38-2	
Barium	127	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:16	7440-39-3	
Cadmium	ND	mg/kg	0.54	1	05/24/19 06:34	05/26/19 00:16	7440-43-9	
Chromium	24.1	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:16	7440-47-3	
Copper	15.2	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:16	7440-50-8	
Lead	11.3	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:16	7439-92-1	
Selenium	ND	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:16	7782-49-2	
Silver	ND	mg/kg	0.54	1	05/24/19 06:34	05/26/19 00:16	7440-22-4	
Zinc	58.8	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:16	7440-66-6	
7471 Mercury	Analytical Meth	nod: EPA 74	71 Preparation Meth	nod: EP	A 7471			
Mercury	ND	mg/kg	0.24	1	05/28/19 23:10	05/29/19 11:34	7439-97-6	
Percent Moisture	Analytical Meth	nod: SM 254	0G					
Percent Moisture	18.0	%	0.10	1		05/28/19 10:37		

Project: The Butler Co.

Pace Project No.: 50225929

Sample: BC-GP2-SS1 (0.5-1.5)	Lab ID: 502	25929003	Collected: 05/21/1	9 16:23	B Received: 05	5/23/19 08:35 N	latrix: Solid	
Results reported on a "dry weight"	" basis and are adj	justed for per	rcent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Met	hod: EPA 6010	0 Preparation Meth	nod: EP	A 3050			
Arsenic	8.6	mg/kg	1.0	1	05/24/19 06:34	05/26/19 00:18	7440-38-2	
Barium	81.1	mg/kg	1.0	1	05/24/19 06:34	05/26/19 00:18	7440-39-3	
Cadmium	4.3	mg/kg	0.52	1	05/24/19 06:34	05/26/19 00:18	7440-43-9	
Chromium	13.3	mg/kg	1.0	1	05/24/19 06:34	05/26/19 00:18	7440-47-3	
Copper	127	mg/kg	1.0	1	05/24/19 06:34	05/26/19 00:18	7440-50-8	
Lead	97.7	mg/kg	1.0	1	05/24/19 06:34	05/26/19 00:18	7439-92-1	
Selenium	ND	mg/kg	1.0	1	05/24/19 06:34	05/26/19 00:18	7782-49-2	
Silver	ND	mg/kg	0.52	1	05/24/19 06:34	05/26/19 00:18	7440-22-4	
Zinc	290	mg/kg	1.0	1	05/24/19 06:34	05/26/19 00:18	7440-66-6	
7471 Mercury	Analytical Met	hod: EPA 747	1 Preparation Meth	nod: EP	A 7471			
Mercury	0.58	mg/kg	0.22	1	05/28/19 23:10	05/29/19 11:37	7439-97-6	
Percent Moisture	Analytical Met	hod: SM 2540	G					
Percent Moisture	13.8	%	0.10	1		05/28/19 10:37		

Project: The Butler Co.

Pace Project No.: 50225929

Sample: BC-GP2-SB1 (3-4)	Lab ID: 502	25929004	Collected: 05/21/1	9 16:26	6 Received: 05	/23/19 08:35 N	Aatrix: Solid	
Results reported on a "dry weig	ht" basis and are adj	iusted for pe	rcent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Mether	nod: EPA 601	0 Preparation Meth	nod: EF	PA 3050			
Arsenic	9.3	mg/kg	1.2	1	05/24/19 06:34	05/26/19 00:21	7440-38-2	
Barium	87.5	mg/kg	1.2	1	05/24/19 06:34	05/26/19 00:21	7440-39-3	
Cadmium	ND	mg/kg	0.60	1	05/24/19 06:34	05/26/19 00:21	7440-43-9	
Chromium	22.8	mg/kg	1.2	1	05/24/19 06:34	05/26/19 00:21	7440-47-3	
Copper	21.7	mg/kg	1.2	1	05/24/19 06:34	05/26/19 00:21	7440-50-8	
Lead	9.4	mg/kg	1.2	1	05/24/19 06:34	05/26/19 00:21	7439-92-1	
Selenium	ND	mg/kg	1.2	1	05/24/19 06:34	05/26/19 00:21	7782-49-2	
Silver	ND	mg/kg	0.60	1	05/24/19 06:34	05/26/19 00:21	7440-22-4	
Zinc	57.7	mg/kg	1.2	1	05/24/19 06:34	05/26/19 00:21	7440-66-6	
7471 Mercury	Analytical Mether	nod: EPA 747	1 Preparation Meth	nod: EF	PA 7471			
Mercury	ND	mg/kg	0.24	1	05/28/19 23:10	05/29/19 11:39	7439-97-6	
Percent Moisture	Analytical Meth	nod: SM 2540)G					
Percent Moisture	19.4	%	0.10	1		05/28/19 10:37		

Project: The Butler Co.

- -

Pace Project No.: 50225929

Sample: BC-GP3-SS1 (1-2)	Lab ID: 502	25929005	Collected: 05/21/1	9 15:50	6 Received: 05	/23/19 08:35 N	latrix: Solid	
Results reported on a "dry weigh	ht" basis and are adj	usted for pe	ercent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 601	0 Preparation Meth	nod: EF	PA 3050			
Arsenic	6.7	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:36	7440-38-2	
Barium	651	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:36	7440-39-3	
Cadmium	1.2	mg/kg	0.57	1	05/24/19 06:34	05/26/19 00:36	7440-43-9	
Chromium	15.3	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:36	7440-47-3	
Copper	90.0	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:36	7440-50-8	
Lead	3160	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:36	7439-92-1	
Selenium	ND	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:36	7782-49-2	
Silver	ND	mg/kg	0.57	1	05/24/19 06:34	05/26/19 00:36	7440-22-4	
Zinc	446	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:36	7440-66-6	
6010 MET ICP, TCLP	Analytical Method: EPA 6010 Preparation Method: EPA 3010							
	Leachate Meth	od/Date: EP	A 1311; 06/13/19 13	:35 Ini	tial pH: 8.07; Fina	l pH: 5.85		
Lead	30.6	mg/L	0.10	1	06/14/19 13:20	06/15/19 01:41	7439-92-1	
7471 Mercury	Analytical Meth	nod: EPA 747	1 Preparation Meth	nod: EF	PA 7471			
Mercury	0.46	mg/kg	0.25	1	05/28/19 23:10	05/29/19 11:46	7439-97-6	
Percent Moisture	Analytical Meth	nod: SM 2540	DG					
Percent Moisture	19.4	%	0.10	1		05/28/19 10:38		

Project: The Butler Co.

Pace Project No.: 50225929

Sample: BC-GP3-SB1 (3-4)	Lab ID: 502	25929006	Collected: 05/21/1	9 16:00) Received: 05	5/23/19 08:35 N	latrix: Solid	
Results reported on a "dry weigh	nt" basis and are adj	iusted for pe	ercent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Mether	hod: EPA 601	0 Preparation Meth	nod: EP	A 3050			
Arsenic	5.5	mg/kg	1.2	1	05/24/19 06:34	05/26/19 00:38	7440-38-2	
Barium	136	mg/kg	1.2	1	05/24/19 06:34	05/26/19 00:38	7440-39-3	
Cadmium	ND	mg/kg	0.59	1	05/24/19 06:34	05/26/19 00:38	7440-43-9	
Chromium	27.3	mg/kg	1.2	1	05/24/19 06:34	05/26/19 00:38	7440-47-3	
Copper	17.0	mg/kg	1.2	1	05/24/19 06:34	05/26/19 00:38	7440-50-8	
Lead	11.5	mg/kg	1.2	1	05/24/19 06:34	05/26/19 00:38	7439-92-1	
Selenium	ND	mg/kg	1.2	1	05/24/19 06:34	05/26/19 00:38	7782-49-2	
Silver	ND	mg/kg	0.59	1	05/24/19 06:34	05/26/19 00:38	7440-22-4	
Zinc	72.5	mg/kg	1.2	1	05/24/19 06:34	05/26/19 00:38	7440-66-6	
7471 Mercury	Analytical Mether	hod: EPA 747	1 Preparation Meth	nod: EP	A 7471			
Mercury	ND	mg/kg	0.24	1	05/28/19 23:10	05/29/19 11:49	7439-97-6	
Percent Moisture	Analytical Meth	hod: SM 254	0G					
Percent Moisture	20.4	%	0.10	1		05/28/19 10:38		

Project: The Butler Co.

Pace Project No.: 50225929

Sample: BC-GP4-SS1 (1-2)	Lab ID: 502	25929007	Collected: 05/21/1	9 16:16	6 Received: 05	/23/19 08:35 N	latrix: Solid	
Results reported on a "dry weigh	ht" basis and are adj	iusted for pe	ercent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Mether	nod: EPA 601	0 Preparation Meth	nod: EP	A 3050			
Arsenic	12.0	mg/kg	1.3	1	05/24/19 06:34	05/26/19 00:40	7440-38-2	
Barium	269	mg/kg	1.3	1	05/24/19 06:34	05/26/19 00:40	7440-39-3	
Cadmium	1.9	mg/kg	0.63	1	05/24/19 06:34	05/26/19 00:40	7440-43-9	
Chromium	16.6	mg/kg	1.3	1	05/24/19 06:34	05/26/19 00:40	7440-47-3	
Copper	88.1	mg/kg	1.3	1	05/24/19 06:34	05/26/19 00:40	7440-50-8	
Lead	395	mg/kg	1.3	1	05/24/19 06:34	05/26/19 00:40	7439-92-1	
Selenium	1.4	mg/kg	1.3	1	05/24/19 06:34	05/26/19 00:40	7782-49-2	
Silver	ND	mg/kg	0.63	1	05/24/19 06:34	05/26/19 00:40	7440-22-4	
Zinc	837	mg/kg	1.3	1	05/24/19 06:34	05/26/19 00:40	7440-66-6	
7471 Mercury	Analytical Mether	nod: EPA 747	1 Preparation Meth	nod: EP	A 7471			
Mercury	ND	mg/kg	0.24	1	05/28/19 23:10	05/29/19 11:56	7439-97-6	
Percent Moisture	Analytical Meth	nod: SM 2540)G					
Percent Moisture	21.9	%	0.10	1		05/28/19 10:38		

Project: The Butler Co.

Pace Project No.: 50225929

Sample: BC-GP4-SB1 (3-4)	Lab ID: 502	25929008	Collected: 05/21/1	9 16:20) Received: 05	5/23/19 08:35 N	latrix: Solid	
Results reported on a "dry weigh	nt" basis and are adj	iusted for p	ercent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Mether	hod: EPA 60	10 Preparation Meth	nod: EP	A 3050			
Arsenic	3.0	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:42	7440-38-2	
Barium	76.4	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:42	7440-39-3	
Cadmium	ND	mg/kg	0.57	1	05/24/19 06:34	05/26/19 00:42	7440-43-9	
Chromium	22.0	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:42	7440-47-3	
Copper	15.4	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:42	7440-50-8	
Lead	11.3	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:42	7439-92-1	
Selenium	ND	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:42	7782-49-2	
Silver	ND	mg/kg	0.57	1	05/24/19 06:34	05/26/19 00:42	7440-22-4	
Zinc	71.6	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:42	7440-66-6	
7471 Mercury	Analytical Mether	hod: EPA 74	71 Preparation Meth	nod: EP	A 7471			
Mercury	ND	mg/kg	0.26	1	05/28/19 23:10	05/29/19 11:59	7439-97-6	
Percent Moisture	Analytical Meth	hod: SM 254	0G					
Percent Moisture	22.5	%	0.10	1		05/28/19 10:38		

Project: The Butler Co.

Pace Project No.: 50225929

Sample: BC-GP5-SS1 (2-3)	Lab ID: 502	25929009	Collected: 05/21/1	9 15:47	' Received: 05	5/23/19 08:35 N	latrix: Solid	
Results reported on a "dry weigh	nt" basis and are adj	iusted for pe	ercent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Met	hod: EPA 601	0 Preparation Meth	nod: EP	A 3050			
Arsenic	10.4	mg/kg	1.2	1	05/24/19 06:34	05/26/19 00:45	7440-38-2	
Barium	57.7	mg/kg	1.2	1	05/24/19 06:34	05/26/19 00:45	7440-39-3	
Cadmium	ND	mg/kg	0.58	1	05/24/19 06:34	05/26/19 00:45	7440-43-9	
Chromium	10.9	mg/kg	1.2	1	05/24/19 06:34	05/26/19 00:45	7440-47-3	
Copper	62.5	mg/kg	1.2	1	05/24/19 06:34	05/26/19 00:45	7440-50-8	
Lead	63.1	mg/kg	1.2	1	05/24/19 06:34	05/26/19 00:45	7439-92-1	
Selenium	ND	mg/kg	1.2	1	05/24/19 06:34	05/26/19 00:45	7782-49-2	
Silver	ND	mg/kg	0.58	1	05/24/19 06:34	05/26/19 00:45	7440-22-4	
Zinc	73.1	mg/kg	1.2	1	05/24/19 06:34	05/26/19 00:45	7440-66-6	
7471 Mercury	Analytical Met	hod: EPA 747	1 Preparation Meth	od: EP	A 7471			
Mercury	ND	mg/kg	0.24	1	05/28/19 23:10	05/29/19 12:01	7439-97-6	
Percent Moisture	Analytical Met	hod: SM 2540	0G					
Percent Moisture	20.2	%	0.10	1		05/28/19 10:39		

Project: The Butler Co.

Pace Project No.: 50225929

Sample: BC-GP5-SB1 (3.5-4)	Lab ID: 502	25929010 (Collected: 05/21/1	9 15:50	0 Received: 05	5/23/19 08:35 N	latrix: Solid	
Results reported on a "dry weigh	t" basis and are adj	iusted for per	cent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Met	nod: EPA 6010	Preparation Meth	nod: EP	PA 3050			
Arsenic	5.9	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:47	7440-38-2	
Barium	81.8	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:47	7440-39-3	
Cadmium	0.73	mg/kg	0.55	1	05/24/19 06:34	05/26/19 00:47	7440-43-9	
Chromium	19.6	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:47	7440-47-3	
Copper	29.1	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:47	7440-50-8	
Lead	13.6	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:47	7439-92-1	
Selenium	ND	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:47	7782-49-2	
Silver	ND	mg/kg	0.55	1	05/24/19 06:34	05/26/19 00:47	7440-22-4	
Zinc	57.8	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:47	7440-66-6	
7471 Mercury	Analytical Met	nod: EPA 7471	Preparation Meth	nod: EP	PA 7471			
Mercury	ND	mg/kg	0.23	1	05/28/19 23:10	05/29/19 12:04	7439-97-6	
Percent Moisture	Analytical Met	nod: SM 25400	3					
Percent Moisture	19.4	%	0.10	1		05/28/19 10:39		

Project: The Butler Co.

Pace Project No.: 50225929

Sample: BC-GP6-SS1 (1-2)	Lab ID: 502	25929011	Collected: 05/21/1	9 17:09	9 Received: 05	/23/19 08:35 N	latrix: Solid	
Results reported on a "dry weig	ht" basis and are adj	iusted for pe	ercent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Met	nod: EPA 60'	10 Preparation Meth	nod: EF	PA 3050			
Arsenic	13.2	mg/kg	1.0	1	05/24/19 06:34	05/26/19 00:49	7440-38-2	
Barium	55.8	mg/kg	1.0	1	05/24/19 06:34	05/26/19 00:49	7440-39-3	
Cadmium	0.77	mg/kg	0.52	1	05/24/19 06:34	05/26/19 00:49	7440-43-9	
Chromium	19.7	mg/kg	1.0	1	05/24/19 06:34	05/26/19 00:49	7440-47-3	
Copper	90.1	mg/kg	1.0	1	05/24/19 06:34	05/26/19 00:49	7440-50-8	
Lead	62.5	mg/kg	1.0	1	05/24/19 06:34	05/26/19 00:49	7439-92-1	
Selenium	ND	mg/kg	1.0	1	05/24/19 06:34	05/26/19 00:49	7782-49-2	
Silver	ND	mg/kg	0.52	1	05/24/19 06:34	05/26/19 00:49	7440-22-4	
Zinc	241	mg/kg	1.0	1	05/24/19 06:34	05/26/19 00:49	7440-66-6	
7471 Mercury	Analytical Met	nod: EPA 747	71 Preparation Meth	nod: EF	PA 7471			
Mercury	ND	mg/kg	0.22	1	05/28/19 23:10	05/29/19 12:06	7439-97-6	
Percent Moisture	Analytical Met	nod: SM 254	0G					
Percent Moisture	15.9	%	0.10	1		05/28/19 10:39		

Project: The Butler Co.

Pace Project No.: 50225929

Sample: BC-GP6-SB1 (3-4)	Lab ID: 502	25929012 (Collected: 05/21/1	9 17:11	Received: 05	/23/19 08:35 N	latrix: Solid	
Results reported on a "dry weig	ht" basis and are adj	iusted for per	cent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Met	hod: EPA 6010	Preparation Meth	nod: EP	A 3050			
Arsenic	5.5	mg/kg	1.6	1	05/24/19 06:34	05/26/19 00:51	7440-38-2	
Barium	250	mg/kg	1.6	1	05/24/19 06:34	05/26/19 00:51	7440-39-3	
Cadmium	2.8	mg/kg	0.79	1	05/24/19 06:34	05/26/19 00:51	7440-43-9	
Chromium	32.7	mg/kg	1.6	1	05/24/19 06:34	05/26/19 00:51	7440-47-3	
Copper	128	mg/kg	1.6	1	05/24/19 06:34	05/26/19 00:51	7440-50-8	
Lead	15.6	mg/kg	1.6	1	05/24/19 06:34	05/26/19 00:51	7439-92-1	
Selenium	2.3	mg/kg	1.6	1	05/24/19 06:34	05/26/19 00:51	7782-49-2	
Silver	ND	mg/kg	0.79	1	05/24/19 06:34	05/26/19 00:51	7440-22-4	
Zinc	77.6	mg/kg	1.6	1	05/24/19 06:34	05/26/19 00:51	7440-66-6	
7471 Mercury	Analytical Met	hod: EPA 7471	Preparation Meth	nod: EP	A 7471			
Mercury	ND	mg/kg	0.32	1	05/28/19 23:10	05/29/19 12:08	7439-97-6	
Percent Moisture	Analytical Met	hod: SM 25400	3					
Percent Moisture	38.2	%	0.10	1		05/28/19 10:39		

Project: The Butler Co.

Pace Project No.: 50225929

Sample: BC-GP7-SS1 (1-2)	Lab ID: 502	25929013	Collected: 05/21/1	9 16:59	9 Received: 05	/23/19 08:35 N	latrix: Solid	
Results reported on a "dry weig	ht" basis and are adj	usted for pe	rcent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Mether	nod: EPA 601	0 Preparation Meth	nod: EF	PA 3050			
Arsenic	44.0	mg/kg	1.3	1	05/24/19 06:34	05/26/19 00:53	7440-38-2	
Barium	694	mg/kg	1.3	1	05/24/19 06:34	05/26/19 00:53	7440-39-3	
Cadmium	1.2	mg/kg	0.63	1	05/24/19 06:34	05/26/19 00:53	7440-43-9	
Chromium	24.2	mg/kg	1.3	1	05/24/19 06:34	05/26/19 00:53	7440-47-3	
Copper	222	mg/kg	1.3	1	05/24/19 06:34	05/26/19 00:53	7440-50-8	
Lead	159	mg/kg	1.3	1	05/24/19 06:34	05/26/19 00:53	7439-92-1	
Selenium	ND	mg/kg	1.3	1	05/24/19 06:34	05/26/19 00:53	7782-49-2	
Silver	ND	mg/kg	0.63	1	05/24/19 06:34	05/26/19 00:53	7440-22-4	
Zinc	273	mg/kg	1.3	1	05/24/19 06:34	05/26/19 00:53	7440-66-6	
7471 Mercury	Analytical Mether	nod: EPA 747	1 Preparation Meth	nod: EF	PA 7471			
Mercury	ND	mg/kg	0.26	1	05/28/19 23:10	05/29/19 12:11	7439-97-6	
Percent Moisture	Analytical Mether	nod: SM 2540)G					
Percent Moisture	24.7	%	0.10	1		05/28/19 10:39		

Project: The Butler Co.

Pace Project No.: 50225929

Sample: BC-GP7-SB1 (3-4)	Lab ID: 502	25929014	Collected: 05/21/1	9 17:0	1 Received: 05	5/23/19 08:35 N	latrix: Solid	
Results reported on a "dry weigh	ht" basis and are ad	justed for pe	rcent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB Solids	Analytical Met	hod: EPA 808	2 Preparation Meth	nod: EF	PA 3546			
PCB-1016 (Aroclor 1016)	ND	mg/kg	0.13	1	05/27/19 13:30	05/29/19 07:29	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	mg/kg	0.13	1	05/27/19 13:30	05/29/19 07:29	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	mg/kg	0.13	1	05/27/19 13:30	05/29/19 07:29	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	mg/kg	0.13	1	05/27/19 13:30	05/29/19 07:29	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	mg/kg	0.13	1	05/27/19 13:30	05/29/19 07:29	12672-29-6	
PCB-1254 (Aroclor 1254)	ND	ma/ka	0.13	1	05/27/19 13:30	05/29/19 07:29	11097-69-1	
PCB-1260 (Aroclor 1260)	ND	ma/ka	0.13	1	05/27/19 13:30	05/29/19 07:29	11096-82-5	
Surrogates				-				
Tetrachloro-m-xylene (S)	61	%.	26-140	1	05/27/19 13:30	05/29/19 07:29	877-09-8	
6010 MET ICP	Analytical Met	hod: EPA 601	0 Preparation Meth	nod: EF	PA 3050			
Arsenic	28.2	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:55	7440-38-2	
Barium	116	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:55	7440-39-3	
Cadmium	1.2	mg/kg	0.56	1	05/24/19 06:34	05/26/19 00:55	7440-43-9	
Chromium	17.3	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:55	7440-47-3	
Copper	52.9	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:55	7440-50-8	
Lead	198	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:55	7439-92-1	
Selenium	1.3	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:55	7782-49-2	
Silver	ND	ma/ka	0.56	1	05/24/19 06:34	05/26/19 00:55	7440-22-4	
Zinc	203	mg/kg	1.1	1	05/24/19 06:34	05/26/19 00:55	7440-66-6	
7471 Mercury	Analytical Met	hod: EPA 747	1 Preparation Meth	nod: EF	PA 7471			
Mercury	ND	mg/kg	0.25	1	05/28/19 23:10	05/29/19 12:13	7439-97-6	
8270 PAH Soil	Analytical Met	hod: EPA 827	0 by SIM Preparati	on Met	hod: EPA 3546			
Acenaphthene	ND	mg/kg	0.0064	1	05/28/19 10:10	05/30/19 18:55	83-32-9	
Acenaphthylene	ND	mg/kg	0.0064	1	05/28/19 10:10	05/30/19 18:55	208-96-8	
Anthracene	0.0081	ma/ka	0.0064	1	05/28/19 10:10	05/30/19 18:55	120-12-7	
Benzo(a)anthracene	0.015	ma/ka	0.0064	1	05/28/19 10:10	05/30/19 18:55	56-55-3	
Benzo(a)pyrene	0.011	ma/ka	0.0064	1	05/28/19 10:10	05/30/19 18:55	50-32-8	
Benzo(b)fluoranthene	0.011	mg/kg	0.0064	1	05/28/19 10:10	05/30/19 18:55	205-99-2	
Benzo(a.h.i)pervlene	0.017	ma/ka	0.0064	1	05/28/19 10:10	05/30/19 18:55	191-24-2	
Benzo(k)fluoranthene	0.013	ma/ka	0.0064	1	05/28/19 10:10	05/30/19 18:55	207-08-9	
Chrvsene	0.017	ma/ka	0.0064	1	05/28/19 10:10	05/30/19 18:55	218-01-9	
Dibenz(a,h)anthracene	ND	ma/ka	0.0064	1	05/28/19 10:10	05/30/19 18:55	53-70-3	
Fluoranthene	0.024	ma/ka	0.0064	1	05/28/19 10:10	05/30/19 18:55	206-44-0	
Fluorene	ND	ma/ka	0.0064	1	05/28/19 10:10	05/30/19 18:55	86-73-7	
Indeno(1,2,3-cd)pyrene	0.012	ma/ka	0.0064	1	05/28/19 10:10	05/30/19 18:55	193-39-5	
1-Methylnaphthalene	0.079	ma/ka	0.0064	1	05/28/19 10:10	05/30/19 18:55	90-12-0	N2
2-Methylnaphthalene	0.11	ma/ka	0 0064	1	05/28/19 10:10	05/30/19 18:55	91-57-6	
Naphthalene	0.10	ma/ka	0.0064	1	05/28/19 10:10	05/30/19 18:55	91-20-3	
Phenanthrene	0.10	ma/ka	0.0004	1	05/28/10 10:10	05/30/10 18:55	85-01-8	
Pyrene	0.045	ma/ka	0.0004	1	05/28/10 10:10	05/30/10 18:55	129-00-0	
Surrogates	0.021	ing/itg	0.0004		00/20/10 10.10	00,00,10,10.00	120 00 0	
2-Fluorobiphenvl (S)	65	%.	23-107	1	05/28/19 10:10	05/30/19 18:55	321-60-8	
p-Terphenyl-d14 (S)	63	%.	16-117	1	05/28/19 10:10	05/30/19 18:55	1718-51-0	

Project: The Butler Co.

Pace Project No.: 50225929

Sample: BC-GP7-SB1 (3-4)	Lab ID: 502	25929014	Collected: 05/21/1	19 17:01	Received: 0	05/23/19 08:35 N	Aatrix: Solid	
Results reported on a "dry weig	ht" basis and are ad	iusted for pe	rcent moisture, sa	imple si	ze and any dil	utions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5035A VOA	Analytical Met	hod: EPA 826	0					
Acetone	ND	mg/kg	0.13	1		05/31/19 08:57	67-64-1	
Acrolein	ND	mg/kg	0.13	1		05/31/19 08:57	107-02-8	
Acrylonitrile	ND	mg/kg	0.13	1		05/31/19 08:57	107-13-1	
Benzene	ND	mg/kg	0.0063	1		05/31/19 08:57	71-43-2	
Bromobenzene	ND	mg/kg	0.0063	1		05/31/19 08:57	108-86-1	
Bromochloromethane	ND	mg/kg	0.0063	1		05/31/19 08:57	74-97-5	
Bromodichloromethane	ND	mg/kg	0.0063	1		05/31/19 08:57	75-27-4	
Bromoform	ND	mg/kg	0.0063	1		05/31/19 08:57	75-25-2	
Bromomethane	ND	mg/kg	0.0063	1		05/31/19 08:57	74-83-9	
2-Butanone (MEK)	ND	mg/kg	0.031	1		05/31/19 08:57	78-93-3	
n-Butylbenzene	ND	mg/kg	0.0063	1		05/31/19 08:57	104-51-8	
sec-Butylbenzene	ND	mg/kg	0.0063	1		05/31/19 08:57	135-98-8	
tert-Butylbenzene	ND	mg/kg	0.0063	1		05/31/19 08:57	98-06-6	
Carbon disulfide	ND	mg/kg	0.013	1		05/31/19 08:57	75-15-0	
Carbon tetrachloride	ND	mg/kg	0.0063	1		05/31/19 08:57	56-23-5	
Chlorobenzene	ND	mg/kg	0.0063	1		05/31/19 08:57	108-90-7	
Chloroethane	ND	mg/kg	0.0063	1		05/31/19 08:57	75-00-3	
Chloroform	ND	mg/kg	0.0063	1		05/31/19 08:57	67-66-3	
Chloromethane	ND	mg/kg	0.0063	1		05/31/19 08:57	74-87-3	
2-Chlorotoluene	ND	mg/kg	0.0063	1		05/31/19 08:57	95-49-8	
4-Chlorotoluene	ND	mg/kg	0.0063	1		05/31/19 08:57	106-43-4	
Dibromochloromethane	ND	mg/kg	0.0063	1		05/31/19 08:57	124-48-1	
1.2-Dibromoethane (EDB)	ND	ma/ka	0.0063	1		05/31/19 08:57	106-93-4	
Dibromomethane	ND	ma/ka	0.0063	1		05/31/19 08:57	74-95-3	
1,2-Dichlorobenzene	ND	mg/kg	0.0063	1		05/31/19 08:57	95-50-1	
1,3-Dichlorobenzene	ND	mg/kg	0.0063	1		05/31/19 08:57	541-73-1	
1.4-Dichlorobenzene	ND	ma/ka	0.0063	1		05/31/19 08:57	106-46-7	
trans-1.4-Dichloro-2-butene	ND	ma/ka	0.13	1		05/31/19 08:57	110-57-6	
Dichlorodifluoromethane	ND	ma/ka	0.0063	1		05/31/19 08:57	75-71-8	
1.1-Dichloroethane	ND	ma/ka	0.0063	1		05/31/19 08:57	75-34-3	
1.2-Dichloroethane	ND	ma/ka	0.0063	1		05/31/19 08:57	107-06-2	
1,1-Dichloroethene	ND	mg/kg	0.0063	1		05/31/19 08:57	75-35-4	
cis-1.2-Dichloroethene	ND	ma/ka	0.0063	1		05/31/19 08:57	156-59-2	
trans-1.2-Dichloroethene	ND	ma/ka	0.0063	1		05/31/19 08:57	156-60-5	
1.2-Dichloropropane	ND	ma/ka	0.0063	1		05/31/19 08:57	78-87-5	
1.3-Dichloropropane	ND	ma/ka	0.0063	1		05/31/19 08:57	142-28-9	
2.2-Dichloropropane	ND	ma/ka	0.0063	1		05/31/19 08:57	594-20-7	
1.1-Dichloropropene	ND	ma/ka	0.0063	1		05/31/19 08:57	563-58-6	
cis-1.3-Dichloropropene	ND	ma/ka	0.0063	1		05/31/19 08:57	10061-01-5	
trans-1.3-Dichloropropene	ND	ma/ka	0.0063	1		05/31/19 08:57	10061-02-6	
Ethylbenzene	ND	ma/ka	0.0063	1		05/31/19 08:57	100-41-4	
Ethyl methacrylate	ND	ma/ka	0.13	1		05/31/19 08:57	97-63-2	
Hexachloro-1.3-butadiene	ND	ma/ka	0 0063	1		05/31/19 08:57	87-68-3	
n-Hexane	0.049	ma/ka	0.0063	1		05/31/19 08:57	110-54-3	CL H7
2-Hexanone	ND	ma/ka	0.13	1		05/31/19 08:57	591-78-6	- ,
lodomethane	ND	ma/ka	0.13	1		05/31/19 08:57	74-88-4	
			0.10					

Project: The Butler Co.

Pace Project No.: 50225929

Sample: BC-GP7-SB1 (3-4)	Lab ID: 50225929014 Collected: 05/21/19 17:01 Received: 05/23/19 08:35 Matrix: Solid								
Results reported on a "dry weigh	nt" basis and are ad	justed for pe	rcent moisture, sa	mple si	ze and any dilu	ıtions.			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
8260 MSV 5035A VOA	Analytical Met	hod: EPA 826	0						
Isopropylbenzene (Cumene)	ND	mg/kg	0.0063	1		05/31/19 08:57	98-82-8		
p-Isopropyltoluene	ND	mg/kg	0.0063	1		05/31/19 08:57	99-87-6		
Methylene Chloride	ND	mg/kg	0.025	1		05/31/19 08:57	75-09-2		
4-Methyl-2-pentanone (MIBK)	ND	mg/kg	0.031	1		05/31/19 08:57	108-10-1		
Methyl-tert-butyl ether	ND	mg/kg	0.0063	1		05/31/19 08:57	1634-04-4		
n-Propylbenzene	ND	mg/kg	0.0063	1		05/31/19 08:57	103-65-1		
Styrene	ND	mg/kg	0.0063	1		05/31/19 08:57	100-42-5		
1,1,1,2-Tetrachloroethane	ND	mg/kg	0.0063	1		05/31/19 08:57	630-20-6		
1,1,2,2-Tetrachloroethane	ND	mg/kg	0.0063	1		05/31/19 08:57	79-34-5		
Tetrachloroethene	ND	mg/kg	0.0063	1		05/31/19 08:57	127-18-4		
Toluene	ND	mg/kg	0.0063	1		05/31/19 08:57	108-88-3		
1,2,3-Trichlorobenzene	ND	mg/kg	0.0063	1		05/31/19 08:57	87-61-6		
1,2,4-Trichlorobenzene	ND	mg/kg	0.0063	1		05/31/19 08:57	120-82-1		
1,1,1-Trichloroethane	ND	mg/kg	0.0063	1		05/31/19 08:57	71-55-6		
1,1,2-Trichloroethane	ND	mg/kg	0.0063	1		05/31/19 08:57	79-00-5		
Trichloroethene	ND	mg/kg	0.0063	1		05/31/19 08:57	79-01-6		
Trichlorofluoromethane	ND	mg/kg	0.0063	1		05/31/19 08:57	75-69-4		
1,2,3-Trichloropropane	ND	mg/kg	0.0063	1		05/31/19 08:57	96-18-4		
1,2,4-Trimethylbenzene	ND	mg/kg	0.0063	1		05/31/19 08:57	95-63-6		
1,3,5-Trimethylbenzene	ND	mg/kg	0.0063	1		05/31/19 08:57	108-67-8		
Vinyl acetate	ND	mg/kg	0.13	1		05/31/19 08:57	108-05-4	L2	
Vinyl chloride	ND	mg/kg	0.0063	1		05/31/19 08:57	75-01-4		
Xylene (Total)	ND	mg/kg	0.013	1		05/31/19 08:57	1330-20-7		
Surrogates									
Dibromofluoromethane (S)	110	%.	77-131	1		05/31/19 08:57	1868-53-7		
Toluene-d8 (S)	121	%.	77-127	1		05/31/19 08:57	2037-26-5		
4-Bromofluorobenzene (S)	67	%.	65-119	1		05/31/19 08:57	460-00-4		
Percent Moisture	Analytical Met	hod: SM 2540	G						
Percent Moisture	22.4	%	0.10	1		05/28/19 10:40			

Project: The Butler Co.

Pace Project No.: 50225929

Sample: BC-GP8-SS1 (2-3)	Lab ID: 502	Lab ID: 50225929015 Collected: 05/21/19 17:				17:19 Received: 05/23/19 08:35 Matrix: Solid				
Results reported on a "dry weig	ht" basis and are adj	iusted for per	rcent moisture, sa	mple s	ize and any dilu	tions.				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
6010 MET ICP	Analytical Mether	nod: EPA 6010	0 Preparation Meth	nod: EP	A 3050					
Arsenic	33.9	mg/kg	1.1	1	05/24/19 06:34	05/26/19 01:02	7440-38-2			
Barium	46.2	mg/kg	1.1	1	05/24/19 06:34	05/26/19 01:02	7440-39-3			
Cadmium	ND	mg/kg	0.54	1	05/24/19 06:34	05/26/19 01:02	7440-43-9			
Chromium	38.4	mg/kg	1.1	1	05/24/19 06:34	05/26/19 01:02	7440-47-3			
Copper	39.7	mg/kg	1.1	1	05/24/19 06:34	05/26/19 01:02	7440-50-8			
Lead	25.4	mg/kg	1.1	1	05/24/19 06:34	05/26/19 01:02	7439-92-1			
Selenium	ND	mg/kg	1.1	1	05/24/19 06:34	05/26/19 01:02	7782-49-2			
Silver	ND	mg/kg	0.54	1	05/24/19 06:34	05/26/19 01:02	7440-22-4			
Zinc	91.5	mg/kg	1.1	1	05/24/19 06:34	05/26/19 01:02	7440-66-6			
7471 Mercury	Analytical Mether	nod: EPA 747	1 Preparation Meth	nod: EP	A 7471					
Mercury	ND	mg/kg	0.22	1	05/28/19 23:10	05/29/19 12:16	7439-97-6			
Percent Moisture	Analytical Mether	nod: SM 2540	G							
Percent Moisture	10.9	%	0.10	1		05/28/19 10:40				

Project: The Butler Co.

Pace Project No.: 50225929

Sample: BC-GP8-SB1 (3-4)	Lab ID: 502	Lab ID: 50225929016 Collected: 05/21/19 17:21 Received: 05/23/19 08:35 Matrix: Solid								
Results reported on a "dry weig	ht" basis and are ad	justed for pe	rcent moisture, sa	mple s	size and any dilu	tions.				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
8082 GCS PCB Solids	Analytical Met	hod: EPA 808	2 Preparation Meth	nod: EF	PA 3546					
PCB-1016 (Aroclor 1016)	ND	mg/kg	0.13	1	05/27/19 13:30	05/29/19 07:57	12674-11-2			
PCB-1221 (Aroclor 1221)	ND	mg/kg	0.13	1	05/27/19 13:30	05/29/19 07:57	11104-28-2			
PCB-1232 (Aroclor 1232)	ND	mg/kg	0.13	1	05/27/19 13:30	05/29/19 07:57	11141-16-5			
PCB-1242 (Aroclor 1242)	ND	mg/kg	0.13	1	05/27/19 13:30	05/29/19 07:57	53469-21-9			
PCB-1248 (Aroclor 1248)	ND	mg/kg	0.13	1	05/27/19 13:30	05/29/19 07:57	12672-29-6			
PCB-1254 (Aroclor 1254)	ND	mg/kg	0.13	1	05/27/19 13:30	05/29/19 07:57	11097-69-1			
PCB-1260 (Aroclor 1260)	ND	mg/kg	0.13	1	05/27/19 13:30	05/29/19 07:57	11096-82-5			
Surrogates		00								
Tetrachloro-m-xylene (S)	69	%.	26-140	1	05/27/19 13:30	05/29/19 07:57	877-09-8			
6010 MET ICP	Analytical Met	hod: EPA 601	0 Preparation Meth	nod: EF	PA 3050					
Arsenic	2.8	mg/kg	1.1	1	05/24/19 06:34	05/26/19 01:04	7440-38-2			
Barium	116	mg/kg	1.1	1	05/24/19 06:34	05/26/19 01:04	7440-39-3			
Cadmium	ND	mg/kg	0.55	1	05/24/19 06:34	05/26/19 01:04	7440-43-9			
Chromium	25.6	mg/kg	1.1	1	05/24/19 06:34	05/26/19 01:04	7440-47-3			
Copper	15.8	mg/kg	1.1	1	05/24/19 06:34	05/26/19 01:04	7440-50-8			
Lead	10.7	mg/kg	1.1	1	05/24/19 06:34	05/26/19 01:04	7439-92-1			
Selenium	ND	mg/kg	1.1	1	05/24/19 06:34	05/26/19 01:04	7782-49-2			
Silver	ND	mg/kg	0.55	1	05/24/19 06:34	05/26/19 01:04	7440-22-4			
Zinc	66.3	mg/kg	1.1	1	05/24/19 06:34	05/26/19 01:04	7440-66-6			
7471 Mercury	Analytical Met	hod: EPA 747	1 Preparation Meth	nod: EF	PA 7471					
Mercury	ND	mg/kg	0.26	1	05/28/19 23:10	05/29/19 12:18	7439-97-6			
8270 PAH Soil	Analytical Met	hod: EPA 827	0 by SIM Preparati	on Met	hod: EPA 3546					
Acenaphthene	ND	mg/kg	0.0063	1	05/28/19 10:10	05/30/19 19:13	83-32-9			
Acenaphthylene	ND	mg/kg	0.0063	1	05/28/19 10:10	05/30/19 19:13	208-96-8			
Anthracene	ND	mg/kg	0.0063	1	05/28/19 10:10	05/30/19 19:13	120-12-7			
Benzo(a)anthracene	ND	mg/kg	0.0063	1	05/28/19 10:10	05/30/19 19:13	56-55-3			
Benzo(a)pyrene	ND	mg/kg	0.0063	1	05/28/19 10:10	05/30/19 19:13	50-32-8			
Benzo(b)fluoranthene	ND	mg/kg	0.0063	1	05/28/19 10:10	05/30/19 19:13	205-99-2			
Benzo(g,h,i)perylene	ND	mg/kg	0.0063	1	05/28/19 10:10	05/30/19 19:13	191-24-2			
Benzo(k)fluoranthene	ND	mg/kg	0.0063	1	05/28/19 10:10	05/30/19 19:13	207-08-9			
Chrysene	ND	mg/kg	0.0063	1	05/28/19 10:10	05/30/19 19:13	218-01-9			
Dibenz(a,h)anthracene	ND	mg/kg	0.0063	1	05/28/19 10:10	05/30/19 19:13	53-70-3			
Fluoranthene	ND	mg/kg	0.0063	1	05/28/19 10:10	05/30/19 19:13	206-44-0			
Fluorene	ND	mg/kg	0.0063	1	05/28/19 10:10	05/30/19 19:13	86-73-7			
Indeno(1,2,3-cd)pyrene	ND	mg/kg	0.0063	1	05/28/19 10:10	05/30/19 19:13	193-39-5			
1-Methylnaphthalene	ND	mg/kg	0.0063	1	05/28/19 10:10	05/30/19 19:13	90-12-0	N2		
2-Methylnaphthalene	ND	mg/kg	0.0063	1	05/28/19 10:10	05/30/19 19:13	91-57-6			
Naphthalene	ND	mg/kg	0.0063	1	05/28/19 10:10	05/30/19 19:13	91-20-3			
Phenanthrene	ND	mg/kg	0.0063	1	05/28/19 10:10	05/30/19 19:13	85-01-8			
Pyrene	ND	mg/kg	0.0063	1	05/28/19 10:10	05/30/19 19:13	129-00-0			
Surrogates		~ -								
2-Fluorobiphenyl (S)	65	%.	23-107	1	05/28/19 10:10	05/30/19 19:13	321-60-8			
p-Terphenyl-d14 (S)	72	%.	16-117	1	05/28/19 10:10	05/30/19 19:13	1718-51-0			

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: The Butler Co.

Pace Project No.: 50225929

Results reported on a "dy weight" basis and are adjusted for percent molsture, sample size and any dilutions. Parameters Results Units Report Limit DF Prepared A nalyced CAS No. Qual 8260 MSV 5035A VOA Analytical Method: EPA 8280 Acatonin ND mg/kg 0.14 1 05/31/19 09.32 07-08-8 Acrolenin ND mg/kg 0.14 1 05/31/19 09.32 07-08-8 Benzane ND mg/kg 0.0068 1 05/31/19 09.32 74-87-2 Bromochizoranehane ND mg/kg 0.0068 1 05/31/19 09.32 72-72-4 Bromochizoranehane ND mg/kg 0.0068 1 05/31/19 09.32 72-83-3 Bromochizoranehane ND mg/kg 0.0068 1 05/31/19 09.32 72-83-3 Alburdenzene ND mg/kg 0.0068 1 05/31/19 09.32 74-83-9 2-Buranone (MEK) ND mg/kg 0.0068 1 05/31/19 09.32 27-84-3 <	Sample: BC-GP8-SB1 (3-4)	Lab ID: 502	Lab ID: 50225929016 Collected: 05/21/19 17:21 Received: 05/23/19 08:35 Matrix: Solid							
Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8260 MSV 5035A VOA Analytical Method: EPA 8260 Acrolein ND mg/kg 0.14 1 05/31/19 09:32 67-64-1 Acrolein ND mg/kg 0.14 1 05/31/19 09:32 107-02-8 Acrylonintie ND mg/kg 0.0068 1 05/31/19 09:32 74-32 Bromochloromethane ND mg/kg 0.0068 1 05/31/19 09:32 74-97-5 Bromochloromethane ND mg/kg 0.0068 1 05/31/19 09:32 75-72-4 Bromochloromethane ND mg/kg 0.0068 1 05/31/19 09:32 75-72-8 Bromochloromethane ND mg/kg 0.0068 1 05/31/19 09:32 74-5-75-2 Bromochloromethane ND mg/kg 0.0068 1 05/31/19 09:32 74-5-75-2 Bromochloromethane ND mg/kg 0.0068 1 05/31/19 09:32	Results reported on a "dry weig	ht" basis and are ad	justed for perc	rcent moisture, sa	imple si	ze and any dil	utions.			
acesone ND mg/kg 0.14 1 05/31/19 05/32 05/4-1 Acrolein ND mg/kg 0.14 1 05/31/19 03/2 107-02-3 Acrolein ND mg/kg 0.048 1 05/31/19 03/2 107-05-1 Benzene ND mg/kg 0.0668 1 05/31/19 03/2 74-37-5 Bromochinormethane ND mg/kg 0.0068 1 05/31/19 03/2 75-27-4 Bromochinormethane ND mg/kg 0.0068 1 05/31/19 03/2 76-37-4 Bromochinormethane ND mg/kg 0.0068 1 05/31/19 03/2 76-37-4 Bromochinormethane ND mg/kg 0.0068 1 05/31/19 03/2 76-37-4 Bromochinormethane ND mg/kg 0.0068 1 05/31/19 03/2 16-45-1 Bromochinormethane ND mg/kg 0.0068 1 05/31/19	Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
Acetonin ND mg/kg 0.14 1 06/31/19 09:32 67-64-1 Acrolein ND mg/kg 0.14 1 05/31/19 09:32 107-02-8 Benzene ND mg/kg 0.008 1 05/31/19 09:32 71-43-2 Bromobenzene ND mg/kg 0.008 1 05/31/19 09:32 72-74 Bromodchioromethane ND mg/kg 0.0068 1 05/31/19 09:32 72-74 Bromodchioromethane ND mg/kg 0.0068 1 05/31/19 09:32 75-25-2 Bromodchioromethane ND mg/kg 0.0068 1 05/31/19 09:32 75-35-3 2-Buranone (MEK) ND mg/kg 0.0068 1 06/31/19 09:32 75-63-3 2-Buranone (MEK) ND mg/kg 0.0068 1 06/31/19 09:32 75-63-6 Carbon disulide ND mg/kg 0.0068 1 05/31/19 09:32 76-63-3 Chiorobenzene ND mg/kg 0.0068	8260 MSV 5035A VOA	Analytical Met	hod: EPA 826	0						
Acrolenim ND mg/kg 0.14 1 06/31/19 (9:32 107-02-8 Berzene ND mg/kg 0.0068 1 06/31/19 (9:32 71-43-2 Bromochicoromethane ND mg/kg 0.0068 1 06/31/19 (9:32 74-87-5 Bromochicoromethane ND mg/kg 0.0068 1 06/31/19 (9:32 75-27-4 Bromochicoromethane ND mg/kg 0.0068 1 06/31/19 (9:32 75-27-4 Bromochicoromethane ND mg/kg 0.0068 1 06/31/19 (9:32 78-83-9 Securythenzene ND mg/kg 0.0068 1 06/31/19 (9:32 74-83-9 Securythenzene ND mg/kg 0.0068 1 06/31/19 (9:32 74-87-5 Carbon tetrachioride ND mg/kg 0.0068 1 06/31/19 (9:32 75-6 Carbon tetrachioride ND mg/kg 0.0068 1 06/31/19 (9:32 75-6 Chicorobenzene ND mg/kg	Acetone	ND	mg/kg	0.14	1		05/31/19 09:32	67-64-1		
Acytonitrile ND mg/kg 0.14 1 06/31/19 09:32 17-13-1 Bromobenzene ND mg/kg 0.068 1 06/31/19 09:32 104-86-1 Bromobloromethane ND mg/kg 0.068 1 06/31/19 09:32 74-27 Bromobloromethane ND mg/kg 0.068 1 05/31/19 09:32 74-28-3 Bromobloromethane ND mg/kg 0.068 1 05/31/19 09:32 75-25-2 2-Buranone (MEK) ND mg/kg 0.068 1 05/31/19 09:32 75-26-3 2-Buranone (MEK) ND mg/kg 0.068 1 05/31/19 09:32 75-16-3 Carbon transhoreme ND mg/kg 0.068 1 06/31/19 09:32 76-16-3 Carbon transhoreme ND mg/kg 0.068 1 06/31/19 09:32 76-76-3 Chiorothane ND mg/kg 0.068 1 06/31/19 09:32 76-76-3 Chiorothane ND mg/kg 0.068 <td>Acrolein</td> <td>ND</td> <td>mg/kg</td> <td>0.14</td> <td>1</td> <td></td> <td>05/31/19 09:32</td> <td>107-02-8</td> <td></td>	Acrolein	ND	mg/kg	0.14	1		05/31/19 09:32	107-02-8		
Benzene ND mg/kg 0.0068 1 05/31/19 09:32 71-43-2 Bromochoromethane ND mg/kg 0.0068 1 05/31/19 09:32 75-27-4 Bromochoromethane ND mg/kg 0.0068 1 05/31/19 09:32 75-27-4 Bromodin ND mg/kg 0.0068 1 05/31/19 09:32 75-25-2 Bromomethane ND mg/kg 0.0068 1 05/31/19 09:32 75-25-2 Bromomethane ND mg/kg 0.0068 1 05/31/19 09:32 75-37-3 Bromotin ND mg/kg 0.0068 1 05/31/19 09:32 75-57-57-57-57-57-57-57-57-57-57-57-57-5	Acrylonitrile	ND	mg/kg	0.14	1		05/31/19 09:32	107-13-1		
Bromochloromethane ND mg/kg 0.0088 1 05/31/19 03:2 108-86-1 Bromochloromethane ND mg/kg 0.0088 1 05/31/19 03:2 75-27-4 Bromochloromethane ND mg/kg 0.0088 1 05/31/19 03:2 75-25-2 Bromochloromethane ND mg/kg 0.0088 1 05/31/19 03:2 75-25-2 Semomethane ND mg/kg 0.0088 1 05/31/19 03:2 75-27-27-4 Seutybenzene ND mg/kg 0.0088 1 05/31/19 03:2 75-83-3 Carbon disulficit ND mg/kg 0.0088 1 05/31/19 03:2 75-16-3 Carbon disulficit ND mg/kg 0.0088 1 05/31/19 03:2 75-6-3 Chioroberane ND mg/kg 0.0088 1 05/31/19 03:2 76-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-	Benzene	ND	mg/kg	0.0068	1		05/31/19 09:32	71-43-2		
Bromechikoremethane ND mg/kg 0.0068 1 05/31/19 22 74-7-5 Bromedichizomethane ND mg/kg 0.0068 1 05/31/19 032 75-27-4 Bromedichizomethane ND mg/kg 0.0068 1 05/31/19 032 75-25-2 Bromenthane ND mg/kg 0.0068 1 05/31/19 032 74-83-3 Selbutybenzene ND mg/kg 0.0068 1 05/31/19 032 75-57-3 Carbon disulide ND mg/kg 0.0068 1 05/31/19 032 75-15-0 Carbon tetrachloride ND mg/kg 0.0068 1 05/31/19 032 75-70-3 Chiorotethane ND mg/kg 0.0068 1 05/31/19 032 76-63 Chiorotethane ND mg/kg 0.0068 1 05/31/19 032 76-63 Chiorotethane ND mg/kg 0.0068 1 05/31/190	Bromobenzene	ND	mg/kg	0.0068	1		05/31/19 09:32	108-86-1		
Bromotion ND mg/kg 0.008 1 05/31/19 09:32 75:27-4 Bromotomethane ND mg/kg 0.0068 1 06/31/19 09:32 75:25-2 Bromotomethane ND mg/kg 0.0088 1 05/31/19 09:32 76:43-3 2-Butanone (MEK) ND mg/kg 0.0088 1 05/31/19 09:32 124-951-8 Sen-Butylbenzene ND mg/kg 0.0088 1 05/31/19 09:32 126-96-5 Carbon transcholded ND mg/kg 0.0068 1 05/31/19 09:32 76-50-5 Chlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 76-37-3 Chlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 76-47-3 Chlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 74-87-3 Chlorobenethane ND mg/kg 0.0068 1 05/31/19 09:32 74-57-3 1.2-Dichorobenzene ND mg/kg	Bromochloromethane	ND	mg/kg	0.0068	1		05/31/19 09:32	74-97-5		
Bronnotom ND mg/kg 0.0068 1 05/31/19 09:32 72-52-2 Semomethane ND mg/kg 0.034 1 05/31/19 09:32 74-83-3 2-Butanone (MEK) ND mg/kg 0.0068 1 05/31/19 09:32 126-91-18 Se-Butylbenzene ND mg/kg 0.0068 1 05/31/19 09:32 126-96-6 Carbon disulfide ND mg/kg 0.0068 1 05/31/19 09:32 57-65-0 Carbon disulfide ND mg/kg 0.0068 1 05/31/19 09:32 57-63-3 Chiorothane ND mg/kg 0.0068 1 05/31/19 09:32 67-66-3 Chiorothane ND mg/kg 0.0068 1 05/31/19 09:32 67-46-3 Chiorothane ND mg/kg 0.0068 1 05/31/19 09:32 67-48-3 Chiorothane ND mg/kg 0.0068 1 05/31/19 09:32 16-43-4 Dichorothourenthane ND mg/kg 0.0068	Bromodichloromethane	ND	mg/kg	0.0068	1		05/31/19 09:32	75-27-4		
Bromomethane ND mg/kg 0.008 1 05/31/19 09:32 74-31-9 2-Butanone (MEK) ND mg/kg 0.0068 1 05/31/19 09:32 74-31-8 n-Butylbenzene ND mg/kg 0.0068 1 05/31/19 09:32 75-16 carbon disulficite ND mg/kg 0.0068 1 05/31/19 09:32 76-50-3 Carbon disulficite ND mg/kg 0.0068 1 05/31/19 09:32 76-70-3 Chioroberzene ND mg/kg 0.0068 1 05/31/19 09:32 76-47-3 Chiorobertane ND mg/kg 0.0068 1 05/31/19 09:32 76-47-3 Chiorobertane ND mg/kg 0.0068 1 05/31/19 09:32 76-48-3 Chiorobertane ND mg/kg 0.0068 1 05/31/19 09:32 76-48-3 Chiorobertane ND mg/kg 0.0068 1 05/31/19 09:32 168-43-4 Dibromochane (CDD) ND mg/kg 0.0	Bromoform	ND	mg/kg	0.0068	1		05/31/19 09:32	75-25-2		
2-Butanne (MEK) ND mg/kg 0.034 1 05/31/19 03:22 78-93-3 n-Butylbenzene ND mg/kg 0.0068 1 05/31/19 09:32 125-98-8 carbon disutylbenzene ND mg/kg 0.0068 1 05/31/19 09:32 78-76-3 carbon disutylbenzene ND mg/kg 0.0068 1 05/31/19 09:32 75-76-3 Carbon disutylbenzene ND mg/kg 0.0068 1 05/31/19 09:32 75-00-3 Chlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 75-60-3 Chlorobethane ND mg/kg 0.0068 1 05/31/19 09:32 74-76-3 Chlorobulene ND mg/kg 0.0068 1 05/31/19 09:32 74-8-3 Chlorobulene ND mg/kg 0.0068 1 05/31/19 09:32 74-8-3 Chlorobulene ND mg/kg 0.0068 1 05/31/19 09:32 74-7-3 1.2-Dichlorobenzene ND mg/kg	Bromomethane	ND	mg/kg	0.0068	1		05/31/19 09:32	74-83-9		
n-Butybenzene ND mg/kg 0.068 1 05/31/19 03:2 104-51-8 sac-Butybenzene ND mg/kg 0.0068 1 05/31/19 03:2 135-98-8 (https://www.sac.ac//mathematical//mathematic	2-Butanone (MEK)	ND	mg/kg	0.034	1		05/31/19 09:32	78-93-3		
sec-Butybenzene ND mg/kg 0.0068 1 05/31/19 09:32 125-88-8 tarl-Butybenzene ND mg/kg 0.0068 1 05/31/19 09:32 57-15-0 Carbon disulfide ND mg/kg 0.0068 1 05/31/19 09:32 57-15-0 Chlorobetnare ND mg/kg 0.0068 1 05/31/19 09:32 57-60-3 Chlorobetnare ND mg/kg 0.0068 1 05/31/19 09:32 27-60-3 Chloroothane ND mg/kg 0.0068 1 05/31/19 09:32 27-48-7.3 Chloroothane ND mg/kg 0.0068 1 05/31/19 09:32 16-48-3 Dibromochhane (EDB) ND mg/kg 0.0068 1 05/31/19 09:32 16-43-4 Dibromochhane (EDB) ND mg/kg 0.0068 1 05/31/19 09:32 16-43-4 Dibromochhane (EDB) ND mg/kg 0.0068 1 05/31/19 09:32 16-46-7 1,2-Dichorobenzene ND mg/kg	n-Butylbenzene	ND	mg/kg	0.0068	1		05/31/19 09:32	104-51-8		
tert-Burybenzene ND mg/kg 0.0068 1 05/31/19 09:32 98-06-6 Carbon disulfide ND mg/kg 0.014 1 05/31/19 09:32 75-15-0 Carbon tetrachloride ND mg/kg 0.0068 1 05/31/19 09:32 75-16-0 Chlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 76-66-3 Chloroform ND mg/kg 0.0068 1 05/31/19 09:32 74-87-3 Chloroform ND mg/kg 0.0068 1 05/31/19 09:32 74-87-3 Chloroformethane ND mg/kg 0.0068 1 05/31/19 09:32 74-87-3 Chlorotoluene ND mg/kg 0.0068 1 05/31/19 09:32 12-48-1 1.2-Diorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 74-95-3 1.2-Dichorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 75-05-3 1.2-Dichorobenzene ND mg/kg <	sec-Butylbenzene	ND	mg/kg	0.0068	1		05/31/19 09:32	135-98-8		
Carbon disulfide ND mg/kg 0.014 1 05/31/19 09:32 75-15-0 Carbon tetrachloride ND mg/kg 0.0068 1 05/31/19 09:32 75-16-0 Chlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 76-06-3 Chloroberhane ND mg/kg 0.0068 1 05/31/19 09:32 74-87-3 Chloroberhane ND mg/kg 0.0068 1 05/31/19 09:32 74-87-3 2-Chlorotoluene ND mg/kg 0.0068 1 05/31/19 09:32 74-87-3 2-Chlorotoluene ND mg/kg 0.0068 1 05/31/19 09:32 164-34 Dibromoethane (EDB) ND mg/kg 0.0068 1 05/31/19 09:32 164-34 1,2-Dichlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 164-7 1,3-Dichlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 165-61-1 1,4-Dichlorobenzene ND mg/kg <td>tert-Butylbenzene</td> <td>ND</td> <td>mg/kg</td> <td>0.0068</td> <td>1</td> <td></td> <td>05/31/19 09:32</td> <td>98-06-6</td> <td></td>	tert-Butylbenzene	ND	mg/kg	0.0068	1		05/31/19 09:32	98-06-6		
Carbon tetrachloride ND mg/kg 0.0068 1 05/31/19 09:32 56:23-5 Chlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 75:00-3 Chlorothane ND mg/kg 0.0068 1 05/31/19 09:32 67:66-3 Chlorothuene ND mg/kg 0.0068 1 05/31/19 09:32 95:49:8 2-Chlorotoluene ND mg/kg 0.0068 1 05/31/19 09:32 95:49:8 2-Chlorotoluene ND mg/kg 0.0068 1 05/31/19 09:32 106:43:4 Dibromochloromethane ND mg/kg 0.0068 1 05/31/19 09:32 106:43:4 J2-Dichlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 26:4-7 J.2-Dichlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 26:4-7 J.3-Dichlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 26:4-7 J.4-Dichlorobenzene ND mg/kg	Carbon disulfide	ND	mg/kg	0.014	1		05/31/19 09:32	75-15-0		
Chlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 108-90-7 Chloroterhane ND mg/kg 0.0068 1 05/31/19 09:32 75-60-3 Chlorotoluene ND mg/kg 0.0068 1 05/31/19 09:32 74-87-3 2-Chlorotoluene ND mg/kg 0.0068 1 05/31/19 09:32 164-34 Chlorotoluene ND mg/kg 0.0068 1 05/31/19 09:32 164-34 Dibromochloromethane ND mg/kg 0.0068 1 05/31/19 09:32 74-87-3 1,2-Dichlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 74-87-3 1,2-Dichlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 74-74-7 1,4-Dichlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 166-67 1,3-Dichlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 75-71-8 1,1-Dichlorocethane ND mg/kg	Carbon tetrachloride	ND	mg/kg	0.0068	1		05/31/19 09:32	56-23-5		
Chloroethane ND mg/kg 0.0068 1 05/31/19 03:22 75-00-3 Chloroothane ND mg/kg 0.0068 1 05/31/19 03:22 74-87-3 2-Chlorotoluene ND mg/kg 0.0068 1 05/31/19 03:22 74-87-3 2-Chlorotoluene ND mg/kg 0.0068 1 05/31/19 03:22 164-84 1/2-Dibromotonomethane ND mg/kg 0.0068 1 05/31/19 03:22 164-34 1/2-Dibromotonomethane ND mg/kg 0.0068 1 05/31/19 03:22 164-34 1/2-Dibrobotoparene ND mg/kg 0.0068 1 05/31/19 03:22 164-7 1/3-Dichorobarzene ND mg/kg 0.0068 1 05/31/19 03:22 105-76 Dichorodifuoromethane ND mg/kg 0.0068 1 05/31/19 03:22 107-76 1/1-Dichoroethane ND mg/kg 0.0068 <td< td=""><td>Chlorobenzene</td><td>ND</td><td>mg/kg</td><td>0.0068</td><td>1</td><td></td><td>05/31/19 09:32</td><td>108-90-7</td><td></td></td<>	Chlorobenzene	ND	mg/kg	0.0068	1		05/31/19 09:32	108-90-7		
Chloroform ND mg/kg 0.0068 1 05/31/19 09:32 67-66-3 Chloromethane ND mg/kg 0.0068 1 05/31/19 09:32 74-87-3 2-Chlorotoluene ND mg/kg 0.0068 1 05/31/19 09:32 164-34 4-Chlorotoluene ND mg/kg 0.0068 1 05/31/19 09:32 124-48-1 1.2-Dibromoethane (EDB) ND mg/kg 0.0068 1 05/31/19 09:32 74-87-3 1.2-Dibromoethane (EDB) ND mg/kg 0.0068 1 05/31/19 09:32 74-95-3 1.2-Dibrohoetnzene ND mg/kg 0.0068 1 05/31/19 09:32 74-95-3 1.4-Dichlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 74-95-3 1.4-Dichlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 76-76- Dichlorotfluomethane ND mg/kg 0.0068 1 05/31/19 09:32 75-34-3 1.2-Dichloroethane ND	Chloroethane	ND	mg/kg	0.0068	1		05/31/19 09:32	75-00-3		
Chloromethane ND mg/kg 0.0068 1 05/31/19 09:32 74-87-3 2-Chlorotoluene ND mg/kg 0.0068 1 05/31/19 09:32 195-49-8 4-Chlorotoluene ND mg/kg 0.0068 1 05/31/19 09:32 106-43.4 Dibromochhane (EDB) ND mg/kg 0.0068 1 05/31/19 09:32 106-93.4 Dibromochhane (EDB) ND mg/kg 0.0068 1 05/31/19 09:32 74-87-3 1,2-Dichlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 74-95-3 1,2-Dichlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 106-46-7 1,3-Dichlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 106-76-1 1,4-Dichloroethane ND mg/kg 0.0068 1 05/31/19 09:32 106-76-7 1,1-Dichloroethane ND mg/kg 0.0068 1 05/31/19 09:32 75-74-8 1,1-Dichloroethane ND	Chloroform	ND	mg/kg	0.0068	1		05/31/19 09:32	67-66-3		
2-Chlorotoluene ND mg/kg 0.0068 1 05/31/19 09:32 95-49-8 4-Chlorotoluene ND mg/kg 0.0068 1 05/31/19 09:32 106-43-4 1,2-Dibromochlare (EDB) ND mg/kg 0.0068 1 05/31/19 09:32 106-43-4 1,2-Dibromochlare (EDB) ND mg/kg 0.0068 1 05/31/19 09:32 74-95-3 1,2-Dibromocharene ND mg/kg 0.0068 1 05/31/19 09:32 541-73-1 1,3-Dichlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 541-73-1 1,4-Dichlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 541-73-1 1,4-Dichlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 541-73-1 1,4-Dichlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 57-1-8 1,1-Dichlorocethane ND mg/kg 0.0068 1 05/31/19 09:32 156-59-2 trans-1,2-Dichloroethene <td>Chloromethane</td> <td>ND</td> <td>mg/kg</td> <td>0.0068</td> <td>1</td> <td></td> <td>05/31/19 09:32</td> <td>74-87-3</td> <td></td>	Chloromethane	ND	mg/kg	0.0068	1		05/31/19 09:32	74-87-3		
4-Chlorotoluene ND mg/kg 0.0068 1 05/31/19 09:32 106-43-4 Dibromochloromethane ND mg/kg 0.0068 1 05/31/19 09:32 124-48-1 1,2-Dibromoethane (EDB) ND mg/kg 0.0068 1 05/31/19 09:32 74-95-3 1,2-Dichorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 541-73-1 1,3-Dichorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 106-46-7 1,4-Dichlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 105-76 Dichlorodfluoromethane ND mg/kg 0.0068 1 05/31/19 09:32 75-71-8 1,1-Dichloroethane ND mg/kg 0.0068 1 05/31/19 09:32 75-34-3 1,2-Dichloroethane ND mg/kg 0.0068 1 05/31/19 09:32 75-34-3 1,2-Dichloroethene ND mg/kg 0.0068 1 05/31/19 09:32 75-35-4 1,2-Dichloroethene ND mg/kg 0.0068 1 05/31/19 09:32 75-35-4 <td>2-Chlorotoluene</td> <td>ND</td> <td>mg/kg</td> <td>0.0068</td> <td>1</td> <td></td> <td>05/31/19 09:32</td> <td>95-49-8</td> <td></td>	2-Chlorotoluene	ND	mg/kg	0.0068	1		05/31/19 09:32	95-49-8		
Dibromochloromethane ND mg/kg 0.0068 1 05/31/19 09:32 124-48-1 1,2-Dibromoethane (EDB) ND mg/kg 0.0068 1 05/31/19 09:32 106-93-4 Dibromomethane ND mg/kg 0.0068 1 05/31/19 09:32 74-95-3 1,2-Dichlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 74-95-3 1,3-Dichlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 74-73-1 1,4-Dichlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 75-76 Dichlorodifuoromethane ND mg/kg 0.0068 1 05/31/19 09:32 75-74-8 1,1-Dichloroethane ND mg/kg 0.0068 1 05/31/19 09:32 75-34-3 1,2-Dichloroethane ND mg/kg 0.0068 1 05/31/19 09:32 75-34-3 1,2-Dichloroethene ND mg/kg 0.0068 1 05/31/19 09:32 75-6-5-2 trans-1,2-Dichloroethene	4-Chlorotoluene	ND	mg/kg	0.0068	1		05/31/19 09:32	106-43-4		
1,2-Dibromoethane (EDB) ND mg/kg 0.0068 1 05/31/19 09:32 106-93-4 Dibromomethane ND mg/kg 0.0068 1 05/31/19 09:32 74-95-3 1,2-Dichlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 541-73-1 1,3-Dichlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 106-46-7 1,4-Dichloro-2-butene ND mg/kg 0.014 1 05/31/19 09:32 75-76 Dichlorodifluoromethane ND mg/kg 0.014 1 05/31/19 09:32 75-74 1,1-Dichloroethane ND mg/kg 0.0068 1 05/31/19 09:32 75-74 1,2-Dichloroethane ND mg/kg 0.0068 1 05/31/19 09:32 75-34-3 1,2-Dichloroethene ND mg/kg 0.0068 1 05/31/19 09:32 156-59-2 1,3-Dichloroethene ND mg/kg 0.0068 1 05/31/19 09:32 156-59-2 1,2-Dichloroethene ND mg/kg 0.0068 1 05/31/19 09:32 156-59-2	Dibromochloromethane	ND	mg/kg	0.0068	1		05/31/19 09:32	124-48-1		
Dibromomethane ND mg/kg 0.0068 1 05/31/19 99:32 74-95-3 1,2-Dichlorobenzene ND mg/kg 0.0068 1 05/31/19 99:32 95-50-1 1,3-Dichlorobenzene ND mg/kg 0.0068 1 05/31/19 99:32 164-46-7 1,4-Dichloro-2-butene ND mg/kg 0.0168 1 05/31/19 99:32 75-71-8 1,4-Dichloro-2-butene ND mg/kg 0.0068 1 05/31/19 99:32 75-71-8 1,1-Dichloroethane ND mg/kg 0.0068 1 05/31/19 99:32 75-34-3 1,2-Dichloroethane ND mg/kg 0.0068 1 05/31/19 99:32 165-59-2 1,1-Dichloroethene ND mg/kg 0.0068 1 05/31/19 99:32 156-59-2 trans-1,2-Dichloroethene ND mg/kg 0.0068 1 05/31/19 99:32 156-60-5 1,3-Dichloropropane ND mg/kg	1,2-Dibromoethane (EDB)	ND	mg/kg	0.0068	1		05/31/19 09:32	106-93-4		
1,2-Dichlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 95-50-1 1,3-Dichlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 541-73-1 1,4-Dichlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 541-73-1 1,4-Dichloro-2-butene ND mg/kg 0.014 1 05/31/19 09:32 75-76 Dichlorodifluoromethane ND mg/kg 0.0068 1 05/31/19 09:32 75-71-8 1,1-Dichloroethane ND mg/kg 0.0068 1 05/31/19 09:32 75-74- 1,1-Dichloroethane ND mg/kg 0.0068 1 05/31/19 09:32 75-74- 1,1-Dichloroethane ND mg/kg 0.0068 1 05/31/19 09:32 75-74- cis-1,2-Dichloroethene ND mg/kg 0.0068 1 05/31/19 09:32 165-69-2 trans-1,2-Dichloroethene ND mg/kg 0.0068 1 05/31/19 09:32 78-87-5 1,3-Dichloropropane ND mg/kg 0.0068 1 05/31/19 09:32 78-87-5	Dibromomethane	ND	mg/kg	0.0068	1		05/31/19 09:32	74-95-3		
1,3-Dichlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 541-73-1 1,4-Dichlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 106-46-7 trans-1,4-Dichloro-2-butene ND mg/kg 0.0068 1 05/31/19 09:32 105-76 Dichlorodifluoromethane ND mg/kg 0.0068 1 05/31/19 09:32 75-71-8 1,1-Dichloroethane ND mg/kg 0.0068 1 05/31/19 09:32 75-34-3 1,2-Dichloroethane ND mg/kg 0.0068 1 05/31/19 09:32 75-35-4 1,1-Dichloroethene ND mg/kg 0.0068 1 05/31/19 09:32 156-59-2 1,2-Dichloroethene ND mg/kg 0.0068 1 05/31/19 09:32 156-60-5 1,3-Dichloroptopane ND mg/kg 0.0068 1 05/31/19 09:32 78-87-5 1,3-Dichloropropane ND mg/kg 0.0068 1 05/31/19 09:32 542-07-7 1,1-Dichloropropene ND mg/kg 0.0068 1 05/31/19 09:32 542-07-7 </td <td>1,2-Dichlorobenzene</td> <td>ND</td> <td>mg/kg</td> <td>0.0068</td> <td>1</td> <td></td> <td>05/31/19 09:32</td> <td>95-50-1</td> <td></td>	1,2-Dichlorobenzene	ND	mg/kg	0.0068	1		05/31/19 09:32	95-50-1		
1,4-Dichlorobenzene ND mg/kg 0.0068 1 05/31/19 09:32 106-46-7 trans-1,4-Dichloro-2-butene ND mg/kg 0.14 1 05/31/19 09:32 75-71-8 Dichlorodifluoromethane ND mg/kg 0.0068 1 05/31/19 09:32 75-71-8 1,1-Dichloroethane ND mg/kg 0.0068 1 05/31/19 09:32 75-34-3 1,2-Dichloroethane ND mg/kg 0.0068 1 05/31/19 09:32 75-35-4 1,1-Dichloroethene ND mg/kg 0.0068 1 05/31/19 09:32 75-35-4 cis-1,2-Dichloroethene ND mg/kg 0.0068 1 05/31/19 09:32 75-35-4 trans-1,2-Dichloroethene ND mg/kg 0.0068 1 05/31/19 09:32 78-87-5 1,3-Dichloropropane ND mg/kg 0.0068 1 05/31/19 09:32 78-87-5 1,3-Dichloropropane ND mg/kg 0.0068 1 05/31/19 09:32 78-87-5 1,3-Dichloropropene ND mg/kg 0.0068 1 05/31/19 09:32 504-20	1,3-Dichlorobenzene	ND	mg/kg	0.0068	1		05/31/19 09:32	541-73-1		
trans-1,4-Dichloro-2-butene ND mg/kg 0.14 1 05/31/19 09:32 110-57-6 Dichlorodifluoromethane ND mg/kg 0.0068 1 05/31/19 09:32 75-71-8 1,1-Dichloroethane ND mg/kg 0.0068 1 05/31/19 09:32 75-34-3 1,2-Dichloroethane ND mg/kg 0.0068 1 05/31/19 09:32 75-35-4 1,1-Dichloroethene ND mg/kg 0.0068 1 05/31/19 09:32 75-35-4 cis-1,2-Dichloroethene ND mg/kg 0.0068 1 05/31/19 09:32 75-65-2 trans-1,2-Dichloroethene ND mg/kg 0.0068 1 05/31/19 09:32 75-87-5 1,2-Dichloroptopane ND mg/kg 0.0068 1 05/31/19 09:32 78-87-5 1,3-Dichloroptopane ND mg/kg 0.0068 1 05/31/19 09:32 74-87-5 1,1-Dichloroptopene ND mg/kg 0.0068 1 05/31/19 09:32 54-20-7 1,1-Dichloroptopene ND mg/kg 0.0068 1 05/31/19 09:32 563-58	1,4-Dichlorobenzene	ND	mg/kg	0.0068	1		05/31/19 09:32	106-46-7		
Dichlorodifluoromethane ND mg/kg 0.0068 1 05/31/19 09:32 75-71-8 1,1-Dichloroethane ND mg/kg 0.0068 1 05/31/19 09:32 75-34-3 1,2-Dichloroethane ND mg/kg 0.0068 1 05/31/19 09:32 75-35-4 1,1-Dichloroethene ND mg/kg 0.0068 1 05/31/19 09:32 75-35-4 cis-1,2-Dichloroethene ND mg/kg 0.0068 1 05/31/19 09:32 156-59-2 trans-1,2-Dichloroethene ND mg/kg 0.0068 1 05/31/19 09:32 156-60-5 1,3-Dichloropropane ND mg/kg 0.0068 1 05/31/19 09:32 142-28-9 2,2-Dichloropropane ND mg/kg 0.0068 1 05/31/19 09:32 54-20-7 1,1-Dichloropropane ND mg/kg 0.0068 1 05/31/19 09:32 56-35-6 cis-1,3-Dichloropropene ND mg/kg 0.0068 1 05/31/19 09:32 10061-01-5 trans-1,3-Dich	trans-1,4-Dichloro-2-butene	ND	mg/kg	0.14	1		05/31/19 09:32	110-57-6		
1,1-Dichloroethane ND mg/kg 0.0068 1 05/31/19 09:32 75-34-3 1,2-Dichloroethane ND mg/kg 0.0068 1 05/31/19 09:32 107-06-2 1,1-Dichloroethene ND mg/kg 0.0068 1 05/31/19 09:32 75-35-4 cis-1,2-Dichloroethene ND mg/kg 0.0068 1 05/31/19 09:32 156-69-2 trans-1,2-Dichloroethene ND mg/kg 0.0068 1 05/31/19 09:32 156-60-5 1,3-Dichloropropane ND mg/kg 0.0068 1 05/31/19 09:32 78-75 2,2-Dichloropropane ND mg/kg 0.0068 1 05/31/19 09:32 78-75 1,3-Dichloropropane ND mg/kg 0.0068 1 05/31/19 09:32 54-28-9 2,2-Dichloropropane ND mg/kg 0.0068 1 05/31/19 09:32 54-28-9 1,1-Dichloropropene ND mg/kg 0.0068 1 05/31/19 09:32 563-58-6 cis-1,3-Dichloropropene ND mg/kg 0.0068 1 05/31/19 09:32 10061-01-5 <td>Dichlorodifluoromethane</td> <td>ND</td> <td>mg/kg</td> <td>0.0068</td> <td>1</td> <td></td> <td>05/31/19 09:32</td> <td>75-71-8</td> <td></td>	Dichlorodifluoromethane	ND	mg/kg	0.0068	1		05/31/19 09:32	75-71-8		
1,2-Dichloroethane ND mg/kg 0.0068 1 05/31/19 09:32 107-06-2 1,1-Dichloroethene ND mg/kg 0.0068 1 05/31/19 09:32 75-35-4 cis-1,2-Dichloroethene ND mg/kg 0.0068 1 05/31/19 09:32 156-59-2 trans-1,2-Dichloroethene ND mg/kg 0.0068 1 05/31/19 09:32 78-87-5 1,3-Dichloropropane ND mg/kg 0.0068 1 05/31/19 09:32 78-87-5 1,3-Dichloropropane ND mg/kg 0.0068 1 05/31/19 09:32 78-87-5 1,3-Dichloropropane ND mg/kg 0.0068 1 05/31/19 09:32 594-20-7 1,1-Dichloropropane ND mg/kg 0.0068 1 05/31/19 09:32 563-58-6 cis-1,3-Dichloropropene ND mg/kg 0.0068 1 05/31/19 09:32 10061-01-5 trans-1,3-Dichloropropene ND mg/kg 0.0068 1 05/31/19 09:32 100-61-02-6 <tr< td=""><td>1,1-Dichloroethane</td><td>ND</td><td>mg/kg</td><td>0.0068</td><td>1</td><td></td><td>05/31/19 09:32</td><td>75-34-3</td><td></td></tr<>	1,1-Dichloroethane	ND	mg/kg	0.0068	1		05/31/19 09:32	75-34-3		
1,1-Dichloroethene ND mg/kg 0.0068 1 05/31/19 09:32 75-35-4 cis-1,2-Dichloroethene ND mg/kg 0.0068 1 05/31/19 09:32 156-59-2 trans-1,2-Dichloroethene ND mg/kg 0.0068 1 05/31/19 09:32 156-60-5 1,2-Dichloropropane ND mg/kg 0.0068 1 05/31/19 09:32 78-87-5 1,3-Dichloropropane ND mg/kg 0.0068 1 05/31/19 09:32 74-28-9 2,2-Dichloropropane ND mg/kg 0.0068 1 05/31/19 09:32 594-20-7 1,1-Dichloropropane ND mg/kg 0.0068 1 05/31/19 09:32 563-58-6 cis-1,3-Dichloropropene ND mg/kg 0.0068 1 05/31/19 09:32 10061-01-5 trans-1,3-Dichloropropene ND mg/kg 0.0068 1 05/31/19 09:32 10061-02-6 Ethyl methacrylate ND mg/kg 0.0068 1 05/31/19 09:32 100-41-4 Hexachloro-1,3-butadiene ND mg/kg 0.0068 1 05/31/19 09:32	1,2-Dichloroethane	ND	mg/kg	0.0068	1		05/31/19 09:32	107-06-2		
cis-1,2-Dichloroethene ND mg/kg 0.0068 1 05/31/19 93.2 156-59-2 trans-1,2-Dichloroethene ND mg/kg 0.0068 1 05/31/19 93.2 156-60-5 1,2-Dichloropropane ND mg/kg 0.0068 1 05/31/19 93.2 78-87-5 1,3-Dichloropropane ND mg/kg 0.0068 1 05/31/19 93.2 54-20-7 2,2-Dichloropropane ND mg/kg 0.0068 1 05/31/19 93.2 563-58-6 2,2-Dichloropropane ND mg/kg 0.0068 1 05/31/19 93.2 563-58-6 cis-1,3-Dichloropropene ND mg/kg 0.0068 1 05/31/19 93.2 10061-01-5 trans-1,3-Dichloropropene ND mg/kg 0.0068 1 05/31/19 93.2 10061-02-6 Ethylbenzene ND mg/kg 0.0068 1 05/31/19 93.2 100-41-4 Ethyl methacrylate ND mg/kg 0.0068 1 05/31/19 93.2 10-54-3 CL,H7	1,1-Dichloroethene	ND	mg/kg	0.0068	1		05/31/19 09:32	75-35-4		
trans-1,2-Dichloroethene ND mg/kg 0.0068 1 05/31/19 09:32 156-60-5 1,2-Dichloropropane ND mg/kg 0.0068 1 05/31/19 09:32 78-87-5 1,3-Dichloropropane ND mg/kg 0.0068 1 05/31/19 09:32 542-0-7 1,3-Dichloropropane ND mg/kg 0.0068 1 05/31/19 09:32 563-58-6 2,2-Dichloropropane ND mg/kg 0.0068 1 05/31/19 09:32 563-58-6 cis-1,3-Dichloropropene ND mg/kg 0.0068 1 05/31/19 09:32 10061-01-5 trans-1,3-Dichloropropene ND mg/kg 0.0068 1 05/31/19 09:32 10061-02-6 Ethylbenzene ND mg/kg 0.0068 1 05/31/19 09:32 100-41-4 Ethyl methacrylate ND mg/kg 0.0068 1 05/31/19 09:32 97-63-2 Hexachloro-1,3-butadiene ND mg/kg 0.14 1 05/31/19 09:32 87-68-3 n-Hexane 0.071 mg/kg 0.0068 1 05/31/19 09:32 591-78-6 </td <td>cis-1,2-Dichloroethene</td> <td>ND</td> <td>mg/kg</td> <td>0.0068</td> <td>1</td> <td></td> <td>05/31/19 09:32</td> <td>156-59-2</td> <td></td>	cis-1,2-Dichloroethene	ND	mg/kg	0.0068	1		05/31/19 09:32	156-59-2		
1,2-Dichloropropane ND mg/kg 0.0068 1 05/31/19 09:32 78-87-5 1,3-Dichloropropane ND mg/kg 0.0068 1 05/31/19 09:32 142-28-9 2,2-Dichloropropane ND mg/kg 0.0068 1 05/31/19 09:32 594-20-7 1,1-Dichloropropane ND mg/kg 0.0068 1 05/31/19 09:32 563-58-6 cis-1,3-Dichloropropene ND mg/kg 0.0068 1 05/31/19 09:32 10061-01-5 trans-1,3-Dichloropropene ND mg/kg 0.0068 1 05/31/19 09:32 10061-02-6 Ethylbenzene ND mg/kg 0.0068 1 05/31/19 09:32 100-41-4 Ethyl methacrylate ND mg/kg 0.0068 1 05/31/19 09:32 97-63-2 Hexachloro-1,3-butadiene ND mg/kg 0.0068 1 05/31/19 09:32 87-68-3 n-Hexane 0.071 mg/kg 0.0068 1 05/31/19 09:32 87-68-3 lodomethane ND mg/kg 0.14 1 05/31/19 09:32 591-78-6	trans-1,2-Dichloroethene	ND	mg/kg	0.0068	1		05/31/19 09:32	156-60-5		
1,3-Dichloropropane ND mg/kg 0.0068 1 05/31/19 09:32 142-28-9 2,2-Dichloropropane ND mg/kg 0.0068 1 05/31/19 09:32 594-20-7 1,1-Dichloropropane ND mg/kg 0.0068 1 05/31/19 09:32 563-58-6 cis-1,3-Dichloropropene ND mg/kg 0.0068 1 05/31/19 09:32 10061-01-5 trans-1,3-Dichloropropene ND mg/kg 0.0068 1 05/31/19 09:32 10061-02-6 Ethylbenzene ND mg/kg 0.0068 1 05/31/19 09:32 100-41-4 Ethyl methacrylate ND mg/kg 0.014 1 05/31/19 09:32 97-63-2 Hexachloro-1,3-butadiene ND mg/kg 0.0068 1 05/31/19 09:32 87-68-3 n-Hexane 0.071 mg/kg 0.0068 1 05/31/19 09:32 110-54-3 CL,H7 2-Hexanone ND mg/kg 0.14 1 05/31/19 09:32 591-78-6 lodomethane ND mg/kg 0.14 1 05/31/19 09:32 591-78-6 <td>1,2-Dichloropropane</td> <td>ND</td> <td>mg/kg</td> <td>0.0068</td> <td>1</td> <td></td> <td>05/31/19 09:32</td> <td>78-87-5</td> <td></td>	1,2-Dichloropropane	ND	mg/kg	0.0068	1		05/31/19 09:32	78-87-5		
2,2-Dichloropropane ND mg/kg 0.0068 1 05/31/19 09:32 594-20-7 1,1-Dichloropropene ND mg/kg 0.0068 1 05/31/19 09:32 563-58-6 cis-1,3-Dichloropropene ND mg/kg 0.0068 1 05/31/19 09:32 10061-01-5 trans-1,3-Dichloropropene ND mg/kg 0.0068 1 05/31/19 09:32 10061-02-6 Ethylbenzene ND mg/kg 0.0068 1 05/31/19 09:32 100-41-4 Ethyl methacrylate ND mg/kg 0.014 1 05/31/19 09:32 97-63-2 Hexachloro-1,3-butadiene ND mg/kg 0.0068 1 05/31/19 09:32 87-68-3 n-Hexane 0.071 mg/kg 0.0068 1 05/31/19 09:32 110-54-3 CL,H7 2-Hexanone ND mg/kg 0.14 1 05/31/19 09:32 591-78-6 lodomethane ND mg/kg 0.14 1 05/31/19 09:32 591-78-6	1,3-Dichloropropane	ND	mg/kg	0.0068	1		05/31/19 09:32	142-28-9		
1,1-Dichloropropene ND mg/kg 0.0068 1 05/31/19 09:32 563-58-6 cis-1,3-Dichloropropene ND mg/kg 0.0068 1 05/31/19 09:32 10061-01-5 trans-1,3-Dichloropropene ND mg/kg 0.0068 1 05/31/19 09:32 10061-02-6 Ethylbenzene ND mg/kg 0.0068 1 05/31/19 09:32 100-41-4 Ethyl methacrylate ND mg/kg 0.14 1 05/31/19 09:32 97-63-2 Hexachloro-1,3-butadiene ND mg/kg 0.0068 1 05/31/19 09:32 87-68-3 n-Hexane 0.071 mg/kg 0.0068 1 05/31/19 09:32 110-54-3 CL,H7 2-Hexanone ND mg/kg 0.14 1 05/31/19 09:32 591-78-6 Iodomethane ND mg/kg 0.14 1 05/31/19 09:32 74-88-4	2,2-Dichloropropane	ND	mg/kg	0.0068	1		05/31/19 09:32	594-20-7		
cis-1,3-Dichloropropene ND mg/kg 0.0068 1 05/31/19 09:32 10061-01-5 trans-1,3-Dichloropropene ND mg/kg 0.0068 1 05/31/19 09:32 10061-01-5 Ethylbenzene ND mg/kg 0.0068 1 05/31/19 09:32 100-41-4 Ethyl methacrylate ND mg/kg 0.14 1 05/31/19 09:32 97-63-2 Hexachloro-1,3-butadiene ND mg/kg 0.0068 1 05/31/19 09:32 87-68-3 n-Hexane 0.071 mg/kg 0.0068 1 05/31/19 09:32 110-54-3 CL,H7 2-Hexanone ND mg/kg 0.14 1 05/31/19 09:32 591-78-6 Iodomethane ND mg/kg 0.14 1 05/31/19 09:32 74-88-4	1,1-Dichloropropene	ND	mg/kg	0.0068	1		05/31/19 09:32	563-58-6		
trans-1,3-Dichloropropene ND mg/kg 0.0068 1 05/31/19 09:32 10061-02-6 Ethylbenzene ND mg/kg 0.0068 1 05/31/19 09:32 100-41-4 Ethyl methacrylate ND mg/kg 0.14 1 05/31/19 09:32 97-63-2 Hexachloro-1,3-butadiene ND mg/kg 0.0068 1 05/31/19 09:32 87-68-3 n-Hexane 0.071 mg/kg 0.0068 1 05/31/19 09:32 110-54-3 CL,H7 2-Hexanone ND mg/kg 0.14 1 05/31/19 09:32 591-78-6 Iodomethane ND mg/kg 0.14 1 05/31/19 09:32 74-88-4	cis-1,3-Dichloropropene	ND	mg/kg	0.0068	1		05/31/19 09:32	10061-01-5		
Ethylbenzene ND mg/kg 0.0068 1 05/31/19 09:32 100-41-4 Ethyl methacrylate ND mg/kg 0.14 1 05/31/19 09:32 97-63-2 Hexachloro-1,3-butadiene ND mg/kg 0.0068 1 05/31/19 09:32 87-68-3 n-Hexane 0.071 mg/kg 0.0068 1 05/31/19 09:32 110-54-3 CL,H7 2-Hexanone ND mg/kg 0.14 1 05/31/19 09:32 591-78-6 Iodomethane ND mg/kg 0.14 1 05/31/19 09:32 74-88-4	trans-1,3-Dichloropropene	ND	mg/kg	0.0068	1		05/31/19 09:32	10061-02-6		
Ethyl methacrylate ND mg/kg 0.14 1 05/31/19 09:32 97-63-2 Hexachloro-1,3-butadiene ND mg/kg 0.0068 1 05/31/19 09:32 87-68-3 n-Hexane 0.071 mg/kg 0.0068 1 05/31/19 09:32 110-54-3 CL,H7 2-Hexanone ND mg/kg 0.14 1 05/31/19 09:32 591-78-6 Iodomethane ND mg/kg 0.14 1 05/31/19 09:32 74-88-4	Ethylbenzene	ND	mg/kg	0.0068	1		05/31/19 09:32	100-41-4		
Hexachloro-1,3-butadiene ND mg/kg 0.0068 1 05/31/19 09:32 87-68-3 n-Hexane 0.071 mg/kg 0.0068 1 05/31/19 09:32 110-54-3 CL,H7 2-Hexanone ND mg/kg 0.14 1 05/31/19 09:32 591-78-6 Iodomethane ND mg/kg 0.14 1 05/31/19 09:32 74-88-4	Ethyl methacrylate	ND	mg/kg	0.14	1		05/31/19 09:32	97-63-2		
n-Hexane 0.071 mg/kg 0.0068 1 05/31/19 09:32 110-54-3 CL,H7 2-Hexanone ND mg/kg 0.14 1 05/31/19 09:32 591-78-6 Iodomethane ND mg/kg 0.14 1 05/31/19 09:32 74-88-4	Hexachloro-1,3-butadiene	ND	mg/kg	0.0068	1		05/31/19 09:32	87-68-3		
2-Hexanone ND mg/kg 0.14 1 05/31/19 09:32 591-78-6 Iodomethane ND mg/kg 0.14 1 05/31/19 09:32 74-88-4	n-Hexane	0.071	mg/kg	0.0068	1		05/31/19 09:32	110-54-3	CL,H7	
lodomethane ND mg/kg 0.14 1 05/31/19 09:32 74-88-4	2-Hexanone	ND	mg/kg	0.14	1		05/31/19 09:32	591-78-6		
	lodomethane	ND	mg/kg	0.14	1		05/31/19 09:32	74-88-4		

Project: The Butler Co.

Pace Project No.: 50225929

Sample: BC-GP8-SB1 (3-4)	Lab ID: 50225929016 Collected: 05/21/19 17:21 Received: 05/23/19 08:35 Matrix: Solid								
Results reported on a "dry weigh	t" basis and are ad	iusted for pe	rcent moisture, sa	mple si	ize and any dilu	utions.			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
8260 MSV 5035A VOA	Analytical Met	hod: EPA 826	0						
Isopropylbenzene (Cumene)	ND	mg/kg	0.0068	1		05/31/19 09:32	98-82-8		
p-Isopropyltoluene	ND	mg/kg	0.0068	1		05/31/19 09:32	99-87-6		
Methylene Chloride	ND	mg/kg	0.027	1		05/31/19 09:32	75-09-2		
4-Methyl-2-pentanone (MIBK)	ND	mg/kg	0.034	1		05/31/19 09:32	108-10-1		
Methyl-tert-butyl ether	ND	mg/kg	0.0068	1		05/31/19 09:32	1634-04-4		
n-Propylbenzene	ND	mg/kg	0.0068	1		05/31/19 09:32	103-65-1		
Styrene	ND	mg/kg	0.0068	1		05/31/19 09:32	100-42-5		
1,1,1,2-Tetrachloroethane	ND	mg/kg	0.0068	1		05/31/19 09:32	630-20-6		
1,1,2,2-Tetrachloroethane	ND	mg/kg	0.0068	1		05/31/19 09:32	79-34-5		
Tetrachloroethene	ND	mg/kg	0.0068	1		05/31/19 09:32	127-18-4		
Toluene	ND	mg/kg	0.0068	1		05/31/19 09:32	108-88-3		
1,2,3-Trichlorobenzene	ND	mg/kg	0.0068	1		05/31/19 09:32	87-61-6		
1,2,4-Trichlorobenzene	ND	mg/kg	0.0068	1		05/31/19 09:32	120-82-1		
1,1,1-Trichloroethane	ND	mg/kg	0.0068	1		05/31/19 09:32	71-55-6		
1,1,2-Trichloroethane	ND	mg/kg	0.0068	1		05/31/19 09:32	79-00-5		
Trichloroethene	ND	mg/kg	0.0068	1		05/31/19 09:32	79-01-6		
Trichlorofluoromethane	ND	mg/kg	0.0068	1		05/31/19 09:32	75-69-4		
1,2,3-Trichloropropane	ND	mg/kg	0.0068	1		05/31/19 09:32	96-18-4		
1,2,4-Trimethylbenzene	ND	mg/kg	0.0068	1		05/31/19 09:32	95-63-6		
1,3,5-Trimethylbenzene	ND	mg/kg	0.0068	1		05/31/19 09:32	108-67-8		
Vinyl acetate	ND	mg/kg	0.14	1		05/31/19 09:32	108-05-4	L2	
Vinyl chloride	ND	mg/kg	0.0068	1		05/31/19 09:32	75-01-4		
Xylene (Total)	ND	mg/kg	0.014	1		05/31/19 09:32	1330-20-7		
Surrogates									
Dibromofluoromethane (S)	99	%.	77-131	1		05/31/19 09:32	1868-53-7		
Toluene-d8 (S)	103	%.	77-127	1		05/31/19 09:32	2037-26-5		
4-Bromofluorobenzene (S)	74	%.	65-119	1		05/31/19 09:32	460-00-4		
Percent Moisture	Analytical Met	hod: SM 2540)G						
Percent Moisture	21.6	%	0.10	1		05/28/19 10:41			

Project: The Butler Co.

Pace Project No.: 50225929

Sample: BC-GP9-SS1 (1-2)	Lab ID: 50225929017 Collected: 05/21/19 16:31			Received: 05	Received: 05/23/19 08:35 Matrix: Solid				
Results reported on a "dry weigh	ht" basis and are adj	iusted for pe	ercent moisture, sa	mple s	ize and any dilu	tions.			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
6010 MET ICP	Analytical Mether	hod: EPA 60 ⁻	10 Preparation Meth	nod: EP	A 3050				
Arsenic	25.5	mg/kg	1.1	1	05/24/19 06:34	05/26/19 01:06	7440-38-2		
Barium	169	mg/kg	1.1	1	05/24/19 06:34	05/26/19 01:06	7440-39-3		
Cadmium	2.4	mg/kg	0.56	1	05/24/19 06:34	05/26/19 01:06	7440-43-9		
Chromium	44.0	mg/kg	1.1	1	05/24/19 06:34	05/26/19 01:06	7440-47-3		
Copper	688	mg/kg	1.1	1	05/24/19 06:34	05/26/19 01:06	7440-50-8		
Lead	448	mg/kg	1.1	1	05/24/19 06:34	05/26/19 01:06	7439-92-1		
Selenium	ND	mg/kg	1.1	1	05/24/19 06:34	05/26/19 01:06	7782-49-2		
Silver	ND	mg/kg	0.56	1	05/24/19 06:34	05/26/19 01:06	7440-22-4		
Zinc	745	mg/kg	1.1	1	05/24/19 06:34	05/26/19 01:06	7440-66-6		
7471 Mercury	Analytical Mether	hod: EPA 74	71 Preparation Meth	od: EP	A 7471				
Mercury	ND	mg/kg	0.26	1	05/28/19 23:10	05/29/19 12:28	7439-97-6		
Percent Moisture	Analytical Meth	hod: SM 254	0G						
Percent Moisture	21.1	%	0.10	1		05/28/19 13:27			

Project: The Butler Co.

Pace Project No.: 50225929

Sample: BC-GP9-SB1 (3-4)	Lab ID: 502	Lab ID: 50225929018 Collected: 05/21/19 16:37				Received: 05/23/19 08:35 Matrix: Solid				
Results reported on a "dry weigh	ht" basis and are adj	iusted for pe	ercent moisture, sa	mple s	ize and any dilu	tions.				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
6010 MET ICP	Analytical Met	nod: EPA 601	10 Preparation Meth	nod: EP	A 3050					
Arsenic	13.8	mg/kg	1.2	1	05/25/19 13:18	05/26/19 02:11	7440-38-2			
Barium	85.2	mg/kg	1.2	1	05/25/19 13:18	05/26/19 02:11	7440-39-3			
Cadmium	ND	mg/kg	0.58	1	05/25/19 13:18	05/26/19 02:11	7440-43-9			
Chromium	23.5	mg/kg	1.2	1	05/25/19 13:18	05/26/19 02:11	7440-47-3			
Copper	25.9	mg/kg	1.2	1	05/25/19 13:18	05/26/19 02:11	7440-50-8			
Lead	12.6	mg/kg	1.2	1	05/25/19 13:18	05/26/19 02:11	7439-92-1			
Selenium	ND	mg/kg	1.2	1	05/25/19 13:18	05/26/19 02:11	7782-49-2			
Silver	ND	mg/kg	0.58	1	05/25/19 13:18	05/26/19 02:11	7440-22-4			
Zinc	77.6	mg/kg	1.2	1	05/25/19 13:18	05/26/19 02:11	7440-66-6			
7471 Mercury	Analytical Met	nod: EPA 747	71 Preparation Meth	nod: EP	PA 7471					
Mercury	ND	mg/kg	0.23	1	05/28/19 23:10	05/29/19 14:06	7439-97-6			
Percent Moisture	Analytical Method: SM 2540G									
Percent Moisture	16.9	%	0.10	1		05/28/19 13:27				

Project: The Butler Co.

Pace Project No.: 50225929

Sample: BC-GP10-SS1 (1-2)	Lab ID: 50225929019		Collected: 05/21/1	9 12:11	Received: 05			
Results reported on a "dry weigh	t" basis and are adj	iusted for pe	rcent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Met	hod: EPA 601	0 Preparation Meth	nod: EP	A 3050			
Arsenic	11.6	mg/kg	1.2	1	05/24/19 06:34	05/26/19 01:09	7440-38-2	
Barium	228	mg/kg	1.2	1	05/24/19 06:34	05/26/19 01:09	7440-39-3	
Cadmium	0.60	mg/kg	0.58	1	05/24/19 06:34	05/26/19 01:09	7440-43-9	
Chromium	32.2	mg/kg	1.2	1	05/24/19 06:34	05/26/19 01:09	7440-47-3	
Copper	212	mg/kg	1.2	1	05/24/19 06:34	05/26/19 01:09	7440-50-8	
Lead	158	mg/kg	1.2	1	05/24/19 06:34	05/26/19 01:09	7439-92-1	
Selenium	ND	mg/kg	1.2	1	05/24/19 06:34	05/26/19 01:09	7782-49-2	
Silver	ND	mg/kg	0.58	1	05/24/19 06:34	05/26/19 01:09	7440-22-4	
Zinc	159	mg/kg	1.2	1	05/24/19 06:34	05/26/19 01:09	7440-66-6	
7471 Mercury	Analytical Met	hod: EPA 747	1 Preparation Meth	nod: EP	A 7471			
Mercury	0.54	mg/kg	0.25	1	05/28/19 23:10	05/29/19 12:30	7439-97-6	
Percent Moisture	Analytical Met	hod: SM 2540)G					
Percent Moisture	23.3	%	0.10	1		05/28/19 13:27		

Project: The Butler Co.

Pace Project No.: 50225929

Sample: BC-GP11-SS1 (0.5-1.5)	Lab ID: 50225929020 Collected: 05/21/1			9 09:51	9 09:51 Received: 05/23/19 08:35 Matrix: Solid					
Results reported on a "dry weight"	basis and are adj	iusted for per	cent moisture, sa	mple s	ize and any dilu	tions.				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
6010 MET ICP	Analytical Met	hod: EPA 6010	Preparation Meth	nod: EP	A 3050					
Arsenic	15.0	mg/kg	1.2	1	05/24/19 06:34	05/26/19 01:11	7440-38-2			
Barium	323	mg/kg	1.2	1	05/24/19 06:34	05/26/19 01:11	7440-39-3			
Cadmium	5.3	mg/kg	0.60	1	05/24/19 06:34	05/26/19 01:11	7440-43-9			
Chromium	16.7	mg/kg	1.2	1	05/24/19 06:34	05/26/19 01:11	7440-47-3			
Copper	385	mg/kg	1.2	1	05/24/19 06:34	05/26/19 01:11	7440-50-8			
Lead	282	mg/kg	1.2	1	05/24/19 06:34	05/26/19 01:11	7439-92-1			
Selenium	1.8	mg/kg	1.2	1	05/24/19 06:34	05/26/19 01:11	7782-49-2			
Silver	ND	mg/kg	0.60	1	05/24/19 06:34	05/26/19 01:11	7440-22-4			
Zinc	1230	mg/kg	1.2	1	05/24/19 06:34	05/26/19 01:11	7440-66-6			
7471 Mercury	Analytical Met	hod: EPA 7471	Preparation Meth	nod: EP	A 7471					
Mercury	ND	mg/kg	0.25	1	05/28/19 23:10	05/29/19 12:33	7439-97-6			
Percent Moisture	Analytical Met	hod: SM 25400	G							
Percent Moisture	20.1	%	0.10	1		05/28/19 13:27				

Project: The Butler Co.

Pace Project No.: 50225929

Sample: BC-GP12-SS1 (1-2)	Lab ID: 502	Lab ID: 50225929021 Collected: 05/20/19 09:55			5 Received: 05/23/19 08:35 Matrix: Solid				
Results reported on a "dry weigh	t" basis and are adj	iusted for p	ercent moisture, sa	mple s	ize and any dilu	tions.			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Meth	nod: EP	A 3050				
Arsenic	3.1	mg/kg	1.1	1	05/24/19 06:34	05/26/19 01:13	7440-38-2		
Barium	131	mg/kg	1.1	1	05/24/19 06:34	05/26/19 01:13	7440-39-3		
Cadmium	ND	mg/kg	0.54	1	05/24/19 06:34	05/26/19 01:13	7440-43-9		
Chromium	21.2	mg/kg	1.1	1	05/24/19 06:34	05/26/19 01:13	7440-47-3		
Copper	13.7	mg/kg	1.1	1	05/24/19 06:34	05/26/19 01:13	7440-50-8		
Lead	84.7	mg/kg	1.1	1	05/24/19 06:34	05/26/19 01:13	7439-92-1		
Selenium	ND	mg/kg	1.1	1	05/24/19 06:34	05/26/19 01:13	7782-49-2		
Silver	ND	mg/kg	0.54	1	05/24/19 06:34	05/26/19 01:13	7440-22-4		
Zinc	102	mg/kg	1.1	1	05/24/19 06:34	05/26/19 01:13	7440-66-6		
7471 Mercury	Analytical Met	hod: EPA 74	71 Preparation Meth	nod: EP	PA 7471				
Mercury	ND	mg/kg	0.22	1	05/28/19 23:10	05/29/19 12:35	7439-97-6		
Percent Moisture	Analytical Method: SM 2540G								
Percent Moisture	18.5	%	0.10	1		05/28/19 13:28			

Project: The Butler Co.

Pace Project No.: 50225929

Sample: BC-GP13-SS1 (1-2)	Lab ID: 502	Lab ID: 50225929022 Collected: 05/20/19 17:10			Received: 05/23/19 08:35 Matrix: Solid				
Results reported on a "dry weigh	t" basis and are adj	iusted for p	ercent moisture, sa	mple s	ize and any dilu	tions.			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
6010 MET ICP	Analytical Met	hod: EPA 60	10 Preparation Meth	nod: EP	A 3050				
Arsenic	13.5	mg/kg	1.1	1	05/25/19 13:18	05/26/19 02:17	7440-38-2		
Barium	93.7	mg/kg	1.1	1	05/25/19 13:18	05/26/19 02:17	7440-39-3		
Cadmium	1.2	mg/kg	0.56	1	05/25/19 13:18	05/26/19 02:17	7440-43-9		
Chromium	13.1	mg/kg	1.1	1	05/25/19 13:18	05/26/19 02:17	7440-47-3		
Copper	124	mg/kg	1.1	1	05/25/19 13:18	05/26/19 02:17	7440-50-8		
Lead	137	mg/kg	1.1	1	05/25/19 13:18	05/26/19 02:17	7439-92-1		
Selenium	ND	mg/kg	1.1	1	05/25/19 13:18	05/26/19 02:17	7782-49-2		
Silver	ND	mg/kg	0.56	1	05/25/19 13:18	05/26/19 02:17	7440-22-4		
Zinc	355	mg/kg	1.1	1	05/25/19 13:18	05/26/19 02:17	7440-66-6		
7471 Mercury	Analytical Met	hod: EPA 74	71 Preparation Meth	nod: EP	A 7471				
Mercury	0.32	mg/kg	0.21	1	05/28/19 23:10	05/29/19 14:13	7439-97-6		
Percent Moisture	Analytical Met	hod: SM 254	0G						
Percent Moisture	13.9	%	0.10	1		05/28/19 13:28			

Project: The Butler Co.

- -

_

Pace Project No.: 50225929

Sample: BC-GP14-SS1 (0.5-1.5)	Lab ID: 502	25929023 Co	ollected: 05/20/1	9 12:0	Received: 05	/23/19 08:35 N	latrix: Solid	
Results reported on a "dry weight"	basis and are ad	justed for perc	ent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Met	hod: EPA 6010	Preparation Meth	nod: EP	PA 3050			
Arsenic	49.2	mg/kg	1.1	1	05/25/19 13:18	05/26/19 02:19	7440-38-2	
Barium	192	mg/kg	1.1	1	05/25/19 13:18	05/26/19 02:19	7440-39-3	
Cadmium	0.80	mg/kg	0.54	1	05/25/19 13:18	05/26/19 02:19	7440-43-9	
Chromium	19.2	mg/kg	1.1	1	05/25/19 13:18	05/26/19 02:19	7440-47-3	
Copper	98.1	mg/kg	1.1	1	05/25/19 13:18	05/26/19 02:19	7440-50-8	
Lead	156	mg/kg	1.1	1	05/25/19 13:18	05/26/19 02:19	7439-92-1	
Selenium	1.7	mg/kg	1.1	1	05/25/19 13:18	05/26/19 02:19	7782-49-2	
Silver	ND	mg/kg	0.54	1	05/25/19 13:18	05/26/19 02:19	7440-22-4	
Zinc	211	mg/kg	1.1	1	05/25/19 13:18	05/26/19 02:19	7440-66-6	
7471 Mercury	Analytical Met	hod: EPA 7471	Preparation Meth	nod: EP	PA 7471			
Mercury	ND	mg/kg	0.22	1	05/28/19 23:10	05/29/19 14:16	7439-97-6	
Percent Moisture	Analytical Met	hod: SM 2540G						
Percent Moisture	16.5	%	0.10	1		05/28/19 13:28		

Project: The Butler Co.

Pace Project No.: 50225929

Sample: BC-GP15-SS1 (0.5-1)	Lab ID: 502	25929024	Collected: 05/21/1	9 14:50	Received: 05	Received: 05/23/19 08:35 Matrix: Solid				
Results reported on a "dry weight"	" basis and are adj	iusted for p	ercent moisture, sa	mple s	ize and any dilu	tions.				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
6010 MET ICP	Analytical Method: EPA 6010 Preparation Method: EPA 3050									
Arsenic	12.8	mg/kg	0.93	1	05/25/19 13:18	05/26/19 02:21	7440-38-2			
Barium	29.2	mg/kg	0.93	1	05/25/19 13:18	05/26/19 02:21	7440-39-3			
Cadmium	ND	mg/kg	0.46	1	05/25/19 13:18	05/26/19 02:21	7440-43-9			
Chromium	14.7	mg/kg	0.93	1	05/25/19 13:18	05/26/19 02:21	7440-47-3			
Copper	27.1	mg/kg	0.93	1	05/25/19 13:18	05/26/19 02:21	7440-50-8			
Lead	20.8	mg/kg	0.93	1	05/25/19 13:18	05/26/19 02:21	7439-92-1			
Selenium	ND	mg/kg	0.93	1	05/25/19 13:18	05/26/19 02:21	7782-49-2			
Silver	ND	mg/kg	0.46	1	05/25/19 13:18	05/26/19 02:21	7440-22-4			
Zinc	116	mg/kg	0.93	1	05/25/19 13:18	05/26/19 02:21	7440-66-6			
7471 Mercury	Analytical Mether	hod: EPA 74	71 Preparation Meth	nod: EP	A 7471					
Mercury	ND	mg/kg	0.22	1	05/28/19 23:10	05/29/19 14:18	7439-97-6			
Percent Moisture	Analytical Meth	Analytical Method: SM 2540G								
Percent Moisture	7.0	%	0.10	1		05/28/19 13:28				

Project: The Butler Co.

Pace Project No.: 50225929

Sample: BC-SB-FD1	Lab ID: 502	Lab ID: 50225929025 Collected: 05/20/19 00				00 Received: 05/23/19 08:35 Matrix: Solid					
Results reported on a "dry wei	ight" basis and are adj	usted for p	ercent moisture, sa	mple s	ize and any dilu	tions.					
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual			
6010 MET ICP	Analytical Meth	Analytical Method: EPA 6010 Pre		nod: EP	A 3050						
Arsenic	17.1	mg/kg	1.1	1	05/25/19 13:18	05/26/19 02:28	7440-38-2				
Barium	197	mg/kg	1.1	1	05/25/19 13:18	05/26/19 02:28	7440-39-3				
Cadmium	1.1	mg/kg	0.55	1	05/25/19 13:18	05/26/19 02:28	7440-43-9				
Chromium	19.1	mg/kg	1.1	1	05/25/19 13:18	05/26/19 02:28	7440-47-3				
Copper	68.3	mg/kg	1.1	1	05/25/19 13:18	05/26/19 02:28	7440-50-8				
Lead	150	mg/kg	1.1	1	05/25/19 13:18	05/26/19 02:28	7439-92-1				
Selenium	ND	mg/kg	1.1	1	05/25/19 13:18	05/26/19 02:28	7782-49-2				
Silver	ND	mg/kg	0.55	1	05/25/19 13:18	05/26/19 02:28	7440-22-4				
Zinc	339	mg/kg	1.1	1	05/25/19 13:18	05/26/19 02:28	7440-66-6				
7471 Mercury	Analytical Meth	nod: EPA 74	71 Preparation Meth	nod: EP	A 7471						
Mercury	ND	mg/kg	0.24	1	05/28/19 23:10	05/29/19 14:21	7439-97-6				
Percent Moisture	Analytical Meth	nod: SM 254	0G								
Percent Moisture	16.1	%	0.10	1		05/28/19 13:29					

Project: The Butler Co.

Pace Project No.: 50225929

Sample: BC-SB-FD2	Lab ID: 502	25929026	Collected: 05/21/1	9 00:00	Received: 05	/23/19 08:35 N	/latrix: Solid		
Results reported on a "dry wei	ight" basis and are adj	usted for pe	ercent moisture, sa	mple s	ize and any dilu	tions.			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
6010 MET ICP	Analytical Meth	Analytical Method: EPA 6010 Pre		od: EP	A 3050				
Arsenic	11.5	mg/kg	1.2	1	05/25/19 13:18	05/26/19 02:30	7440-38-2		
Barium	416	mg/kg	1.2	1	05/25/19 13:18	05/26/19 02:30	7440-39-3		
Cadmium	1.5	mg/kg	0.59	1	05/25/19 13:18	05/26/19 02:30	7440-43-9		
Chromium	15.2	mg/kg	1.2	1	05/25/19 13:18	05/26/19 02:30	7440-47-3		
Copper	59.2	mg/kg	1.2	1	05/25/19 13:18	05/26/19 02:30	7440-50-8		
Lead	691	mg/kg	1.2	1	05/25/19 13:18	05/26/19 02:30	7439-92-1		
Selenium	1.4	mg/kg	1.2	1	05/25/19 13:18	05/26/19 02:30	7782-49-2		
Silver	ND	mg/kg	0.59	1	05/25/19 13:18	05/26/19 02:30	7440-22-4		
Zinc	684	mg/kg	1.2	1	05/25/19 13:18	05/26/19 02:30	7440-66-6		
7471 Mercury	Analytical Mether	nod: EPA 74	71 Preparation Meth	od: EP	A 7471				
Mercury	ND	mg/kg	0.26	1	05/28/19 23:10	05/29/19 14:31	7439-97-6		
Percent Moisture	Analytical Mether	Analytical Method: SM 2540G							
Percent Moisture	24.4	%	0.10	1		05/28/19 13:29			

Project: The Butler Co.

Pace Project No.: 50225929

Sample: BC-SB-FD3	Lab ID: 502	25929027	Collected: 05/21/1	9 00:00	0 Received: 05	/23/19 08:35 N	latrix: Solid	
Results reported on a "dry weig	ght" basis and are ad	iusted for pe	ercent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB Solids	Analytical Met	hod: EPA 808	32 Preparation Met	nod: EF	PA 3546			
PCB-1016 (Aroclor 1016)	ND	mg/kg	0.11	1	05/27/19 13:30	05/29/19 08:33	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	mg/kg	0.11	1	05/27/19 13:30	05/29/19 08:33	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	mg/kg	0.11	1	05/27/19 13:30	05/29/19 08:33	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	mg/kg	0.11	1	05/27/19 13:30	05/29/19 08:33	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	mg/kg	0.11	1	05/27/19 13:30	05/29/19 08:33	12672-29-6	
PCB-1254 (Aroclor 1254)	ND	mg/kg	0.11	1	05/27/19 13:30	05/29/19 08:33	11097-69-1	
PCB-1260 (Aroclor 1260)	ND	mg/kg	0.11	1	05/27/19 13:30	05/29/19 08:33	11096-82-5	
Surrogates		0 0						
Tetrachloro-m-xylene (S)	60	%.	26-140	1	05/27/19 13:30	05/29/19 08:33	877-09-8	
6010 MET ICP	Analytical Met	hod: EPA 601	10 Preparation Met	nod: EF	PA 3050			
Arsenic	27.7	mg/kg	1.0	1	05/25/19 13:18	05/26/19 02:32	7440-38-2	
Barium	35.9	mg/kg	1.0	1	05/25/19 13:18	05/26/19 02:32	7440-39-3	
Cadmium	ND	mg/kg	0.50	1	05/25/19 13:18	05/26/19 02:32	7440-43-9	
Chromium	32.5	mg/kg	1.0	1	05/25/19 13:18	05/26/19 02:32	7440-47-3	
Copper	35.6	mg/kg	1.0	1	05/25/19 13:18	05/26/19 02:32	7440-50-8	
Lead	27.0	mg/kg	1.0	1	05/25/19 13:18	05/26/19 02:32	7439-92-1	
Selenium	ND	mg/kg	1.0	1	05/25/19 13:18	05/26/19 02:32	7782-49-2	
Silver	ND	mg/kg	0.50	1	05/25/19 13:18	05/26/19 02:32	7440-22-4	
Zinc	63.0	mg/kg	1.0	1	05/25/19 13:18	05/26/19 02:32	7440-66-6	
7471 Mercury	Analytical Mether	hod: EPA 747	71 Preparation Met	nod: EF	PA 7471			
Mercury	ND	mg/kg	0.23	1	05/28/19 23:10	05/29/19 14:33	7439-97-6	
8270 PAH Soil	Analytical Mether	hod: EPA 827	70 by SIM Preparat	ion Met	hod: EPA 3546			
Acenaphthene	ND	mg/kg	0.0056	1	05/28/19 10:10	05/29/19 16:43	83-32-9	
Acenaphthylene	ND	mg/kg	0.0056	1	05/28/19 10:10	05/29/19 16:43	208-96-8	
Anthracene	ND	mg/kg	0.0056	1	05/28/19 10:10	05/29/19 16:43	120-12-7	
Benzo(a)anthracene	ND	mg/kg	0.0056	1	05/28/19 10:10	05/29/19 16:43	56-55-3	
Benzo(a)pyrene	ND	mg/kg	0.0056	1	05/28/19 10:10	05/29/19 16:43	50-32-8	
Benzo(b)fluoranthene	ND	mg/kg	0.0056	1	05/28/19 10:10	05/29/19 16:43	205-99-2	
Benzo(g,h,i)perylene	ND	mg/kg	0.0056	1	05/28/19 10:10	05/29/19 16:43	191-24-2	
Benzo(k)fluoranthene	ND	mg/kg	0.0056	1	05/28/19 10:10	05/29/19 16:43	207-08-9	
Chrysene	ND	mg/kg	0.0056	1	05/28/19 10:10	05/29/19 16:43	218-01-9	
Dibenz(a,h)anthracene	ND	mg/kg	0.0056	1	05/28/19 10:10	05/29/19 16:43	53-70-3	
Fluoranthene	ND	mg/kg	0.0056	1	05/28/19 10:10	05/29/19 16:43	206-44-0	
Fluorene	ND	mg/kg	0.0056	1	05/28/19 10:10	05/29/19 16:43	86-73-7	
Indeno(1,2,3-cd)pyrene	ND	mg/kg	0.0056	1	05/28/19 10:10	05/29/19 16:43	193-39-5	
1-Methylnaphthalene	ND	mg/kg	0.0056	1	05/28/19 10:10	05/29/19 16:43	90-12-0	N2
2-Methylnaphthalene	0.0071	mg/kg	0.0056	1	05/28/19 10:10	05/29/19 16:43	91-57-6	
Naphthalene	0.019	mg/kg	0.0056	1	05/28/19 10:10	05/29/19 16:43	91-20-3	
Phenanthrene	0.0085	mg/kg	0.0056	1	05/28/19 10:10	05/29/19 16:43	85-01-8	
Pyrene	ND	mg/kg	0.0056	1	05/28/19 10:10	05/29/19 16:43	129-00-0	
Surrogates								
2-Fluorobiphenyl (S)	68	%.	23-107	1	05/28/19 10:10	05/29/19 16:43	321-60-8	
p-Terphenyl-d14 (S)	78	%.	16-117	1	05/28/19 10:10	05/29/19 16:43	1718-51-0	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: The Butler Co.

Pace Project No.: 50225929

Sample: BC-SB-FD3	Lab ID: 502	25929027	Collected: 05/21/1	9 00:00	Received: 0)5/23/19 08:35 N	Aatrix: Solid	
Results reported on a "dry weig	ht" basis and are adj	iusted for pe	rcent moisture, sa	imple si	ze and any dil	utions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5035A VOA	Analytical Mether	hod: EPA 826	0					
Acetone	ND	mg/kg	0.12	1		05/31/19 10:06	67-64-1	
Acrolein	ND	mg/kg	0.12	1		05/31/19 10:06	107-02-8	
Acrylonitrile	ND	mg/kg	0.12	1		05/31/19 10:06	107-13-1	
Benzene	ND	mg/kg	0.0059	1		05/31/19 10:06	71-43-2	
Bromobenzene	ND	mg/kg	0.0059	1		05/31/19 10:06	108-86-1	
Bromochloromethane	ND	mg/kg	0.0059	1		05/31/19 10:06	74-97-5	
Bromodichloromethane	ND	mg/kg	0.0059	1		05/31/19 10:06	75-27-4	
Bromoform	ND	mg/kg	0.0059	1		05/31/19 10:06	75-25-2	
Bromomethane	ND	mg/kg	0.0059	1		05/31/19 10:06	74-83-9	
2-Butanone (MEK)	ND	mg/kg	0.030	1		05/31/19 10:06	78-93-3	
n-Butylbenzene	ND	mg/kg	0.0059	1		05/31/19 10:06	104-51-8	
sec-Butylbenzene	ND	mg/kg	0.0059	1		05/31/19 10:06	135-98-8	
tert-Butvlbenzene	ND	ma/ka	0.0059	1		05/31/19 10:06	98-06-6	
Carbon disulfide	ND	ma/ka	0.012	1		05/31/19 10:06	75-15-0	
Carbon tetrachloride	ND	ma/ka	0.0059	1		05/31/19 10:06	56-23-5	
Chlorobenzene	ND	ma/ka	0.0059	1		05/31/19 10:06	108-90-7	
Chloroethane	ND	ma/ka	0.0059	1		05/31/19 10:06	75-00-3	
Chloroform	ND	ma/ka	0.0059	1		05/31/19 10:06	67-66-3	
Chloromethane	ND	ma/ka	0.0059	1		05/31/19 10:06	74-87-3	
2-Chlorotoluene	ND	ma/ka	0.0059	1		05/31/19 10:06	95-49-8	
4-Chlorotoluene	ND	ma/ka	0.0059	1		05/31/19 10:06	106-43-4	
Dibromochloromethane	ND	ma/ka	0.0059	1		05/31/19 10:06	124-48-1	
1.2-Dibromoethane (EDB)	ND	ma/ka	0.0059	1		05/31/19 10:06	106-93-4	
Dibromomethane	ND	ma/ka	0.0059	1		05/31/19 10:06	74-95-3	
1.2-Dichlorobenzene	ND	ma/ka	0.0059	1		05/31/19 10:06	95-50-1	
1.3-Dichlorobenzene	ND	ma/ka	0.0059	1		05/31/19 10:06	541-73-1	
1.4-Dichlorobenzene	ND	ma/ka	0.0059	1		05/31/19 10:06	106-46-7	
trans-1 4-Dichloro-2-butene	ND	ma/ka	0.12	1		05/31/19 10:06	110-57-6	
Dichlorodifluoromethane	ND	ma/ka	0.0059	1		05/31/19 10:06	75-71-8	
1 1-Dichloroethane	ND	ma/ka	0.0059	1		05/31/19 10:06	75-34-3	
1 2-Dichloroethane	ND	ma/ka	0.0059	1		05/31/19 10:06	107-06-2	
1 1-Dichloroethene	ND	ma/ka	0.0059	1		05/31/19 10:06	75-35-4	
cis-1 2-Dichloroethene	ND	ma/ka	0.0059	1		05/31/19 10:06	156-59-2	
trans-1 2-Dichloroethene	ND	ma/ka	0.0059	1		05/31/19 10:06	156-60-5	
1.2-Dichloropropane	ND	ma/ka	0.0059	1		05/31/19 10:06	78-87-5	
1.3-Dichloropropane	ND	ma/ka	0.0059	1		05/31/19 10:06	142-28-9	
2 2-Dichloropropane	ND	ma/ka	0.0059	1		05/31/19 10:06	594-20-7	
1 1-Dichloropropene	ND	ma/ka	0.0059	1		05/31/19 10:06	563-58-6	
cis-1 3-Dichloropropene	ND	mg/kg	0.0000	1		05/31/19 10:06	10061-01-5	
trans-1 3-Dichloropropene	ND	mg/kg	0.0059	1		05/31/19 10:06	10061-02-6	
Ethylbenzene	ND	ma/ka	0.0000	1		05/31/19 10:06	100-41-4	
Ethyl methacrylate	ND	ma/ka	0.0000 0 12	1		05/31/19 10:06	97-63-2	
Hexachloro-1 3-butadiene		ma/ka	0.12	1		05/31/10 10:00	87-68-3	
n-Hexane	0.30	ma/ka	0.0009	1		05/31/10 10:00	110-54-3	CL H7
2-Hexanone		ma/ka	0.0039 0.12	1		05/31/19 10:06	591-78-6	02,117
Iodomethane		ma/ka	0.12	1		05/31/10 10:00	74-88-4	
		iiig/kg	0.12			55/51/13 10.00	1 T 00-4	

Project: The Butler Co.

Pace Project No.: 50225929

Sample: BC-SB-FD3	Lab ID: 502	Lab ID: 50225929027 Collected: 05/21/19 00:00 Received: 05/23/19 08:35 Matrix: Solid								
Results reported on a "dry weigh	t" basis and are ad	iusted for pe	rcent moisture, sa	mple si	ze and any dilu	ıtions.				
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
8260 MSV 5035A VOA	Analytical Met	hod: EPA 826	0							
Isopropylbenzene (Cumene)	ND	mg/kg	0.0059	1		05/31/19 10:06	98-82-8			
p-Isopropyltoluene	ND	mg/kg	0.0059	1		05/31/19 10:06	99-87-6			
Methylene Chloride	ND	mg/kg	0.024	1		05/31/19 10:06	75-09-2			
4-Methyl-2-pentanone (MIBK)	ND	mg/kg	0.030	1		05/31/19 10:06	108-10-1			
Methyl-tert-butyl ether	ND	mg/kg	0.0059	1		05/31/19 10:06	1634-04-4			
n-Propylbenzene	ND	mg/kg	0.0059	1		05/31/19 10:06	103-65-1			
Styrene	ND	mg/kg	0.0059	1		05/31/19 10:06	100-42-5			
1,1,1,2-Tetrachloroethane	ND	mg/kg	0.0059	1		05/31/19 10:06	630-20-6			
1,1,2,2-Tetrachloroethane	ND	mg/kg	0.0059	1		05/31/19 10:06	79-34-5			
Tetrachloroethene	ND	mg/kg	0.0059	1		05/31/19 10:06	127-18-4			
Toluene	ND	mg/kg	0.0059	1		05/31/19 10:06	108-88-3			
1,2,3-Trichlorobenzene	ND	mg/kg	0.0059	1		05/31/19 10:06	87-61-6			
1,2,4-Trichlorobenzene	ND	mg/kg	0.0059	1		05/31/19 10:06	120-82-1			
1,1,1-Trichloroethane	ND	mg/kg	0.0059	1		05/31/19 10:06	71-55-6			
1,1,2-Trichloroethane	ND	mg/kg	0.0059	1		05/31/19 10:06	79-00-5			
Trichloroethene	ND	mg/kg	0.0059	1		05/31/19 10:06	79-01-6			
Trichlorofluoromethane	ND	mg/kg	0.0059	1		05/31/19 10:06	75-69-4			
1,2,3-Trichloropropane	ND	mg/kg	0.0059	1		05/31/19 10:06	96-18-4			
1,2,4-Trimethylbenzene	ND	mg/kg	0.0059	1		05/31/19 10:06	95-63-6			
1,3,5-Trimethylbenzene	ND	mg/kg	0.0059	1		05/31/19 10:06	108-67-8			
Vinyl acetate	ND	mg/kg	0.12	1		05/31/19 10:06	108-05-4	L2		
Vinyl chloride	ND	mg/kg	0.0059	1		05/31/19 10:06	75-01-4			
Xylene (Total)	ND	mg/kg	0.012	1		05/31/19 10:06	1330-20-7			
Surrogates										
Dibromofluoromethane (S)	99	%.	77-131	1		05/31/19 10:06	1868-53-7			
Toluene-d8 (S)	114	%.	77-127	1		05/31/19 10:06	2037-26-5			
4-Bromofluorobenzene (S)	73	%.	65-119	1		05/31/19 10:06	460-00-4			
Percent Moisture	Analytical Met	hod: SM 2540)G							
Percent Moisture	11.1	%	0.10	1		05/28/19 13:29				

Project: The Butler Co.

Pace Project No.: 50225929

Sample: BC-EB-SB1	Lab ID: 5022	Collected: 05/20/19	Received: 05/23/19 08:35 Matrix: Water					
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB RV Waters	Analytical Meth	od: EPA 80	82 Preparation Metho	od: EPA	A 3510			
PCB-1016 (Aroclor 1016)	ND	ug/L	0.10	1	05/31/19 08:34	05/31/19 11:41	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ug/L	0.20	1	05/31/19 08:34	05/31/19 11:41	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	ug/L	0.10	1	05/31/19 08:34	05/31/19 11:41	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	ug/L	0.10	1	05/31/19 08:34	05/31/19 11:41	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	ug/L	0.10	1	05/31/19 08:34	05/31/19 11:41	12672-29-6	
PCB-1254 (Aroclor 1254)	ND	ug/L	0.10	1	05/31/19 08:34	05/31/19 11:41	11097-69-1	
PCB-1260 (Aroclor 1260)	ND	ug/L	0.10	1	05/31/19 08:34	05/31/19 11:41	11096-82-5	
Tetrachloro-m-xylene (S)	54	%.	10-148	1	05/31/19 08:34	05/31/19 11:41	877-09-8	
6010 MET ICP	Analytical Meth	od: EPA 60	010 Preparation Metho	od: EPA	A 3010			
Arsenic	ND	ug/L	10.0	1	05/25/19 12:30	05/27/19 09:33	7440-38-2	
Barium	ND	ug/L	10.0	1	05/25/19 12:30	05/27/19 09:33	7440-39-3	
Cadmium	ND	ug/L	2.0	1	05/25/19 12:30	05/27/19 09:33	7440-43-9	
Chromium	ND	ug/L	10.0	1	05/25/19 12:30	05/27/19 09:33	7440-47-3	
Copper	ND	ug/L	10.0	1	05/25/19 12:30	05/27/19 09:33	7440-50-8	
Lead	ND	ug/L	10.0	1	05/25/19 12:30	05/27/19 09:33	7439-92-1	
Selenium	ND	ug/L	10.0	1	05/25/19 12:30	05/27/19 09:33	7782-49-2	
Silver	ND	ug/L	10.0	1	05/25/19 12:30	05/27/19 09:33	7440-22-4	
Zinc	ND	ug/L	20.0	1	05/25/19 12:30	05/27/19 09:33	7440-66-6	
7470 Mercury	Analytical Meth	od: EPA 74	70 Preparation Metho	od: EPA	A 7470			
Mercury	ND	ug/L	2.0	1	05/26/19 20:13	05/27/19 22:14	7439-97-6	
8270 MSSV PAHLV	Analytical Meth	od: EPA 82	270 by SIM LVE Prepa	ration	Method: EPA 35	10		
Acenaphthene	ND	ug/L	1.0	1	05/24/19 11:36	05/24/19 16:50	83-32-9	
Acenaphthylene	ND	ug/L	1.0	1	05/24/19 11:36	05/24/19 16:50	208-96-8	
Anthracene	ND	ug/L	0.10	1	05/24/19 11:36	05/24/19 16:50	120-12-7	
Benzo(a)anthracene	ND	ug/L	0.10	1	05/24/19 11:36	05/24/19 16:50	56-55-3	
Benzo(a)pyrene	ND	ug/L	0.10	1	05/24/19 11:36	05/24/19 16:50	50-32-8	
Benzo(b)fluoranthene	ND	ug/L	0.10	1	05/24/19 11:36	05/24/19 16:50	205-99-2	
Benzo(g,h,i)perylene	ND	ug/L	0.10	1	05/24/19 11:36	05/24/19 16:50	191-24-2	
Benzo(k)fluoranthene	ND	ug/L	0.10	1	05/24/19 11:36	05/24/19 16:50	207-08-9	
Chrysene	ND	ug/L	0.50	1	05/24/19 11:36	05/24/19 16:50	218-01-9	
Dibenz(a,h)anthracene	ND	ug/L	0.10	1	05/24/19 11:36	05/24/19 16:50	53-70-3	
Fluoranthene	ND	ug/L	1.0	1	05/24/19 11:36	05/24/19 16:50	206-44-0	
Fluorene	ND	ug/L	1.0	1	05/24/19 11:36	05/24/19 16:50	86-73-7	
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.10	1	05/24/19 11:36	05/24/19 16:50	193-39-5	
1-Methylnaphthalene	ND	ug/L	1.0	1	05/24/19 11:36	05/24/19 16:50	90-12-0	N2
2-Methylnaphthalene	ND	ug/L	1.0	1	05/24/19 11:36	05/24/19 16:50	91-57-6	
Naphthalene	ND	ug/L	1.0	1	05/24/19 11:36	05/24/19 16:50	91-20-3	
Phenanthrene	ND	ug/L	1.0	1	05/24/19 11:36	05/24/19 16:50	85-01-8	
Pyrene	ND	ug/L	1.0	1	05/24/19 11:36	05/24/19 16:50	129-00-0	
Surrogates		0/	40 405		05/04/40 44 00	05/04/40 40 50	204 00 0	
∠-riuoropipnenyi (S)	12	%.	10-105	1	05/24/19 11:36	05/24/19 16:50	321-60-8	
p-ierphenyi-a14 (S)	80	%.	10-142	1	05/24/19 11:36	05/24/19 16:50	1718-51-0	

Project: The Butler Co.

Pace Project No.: 50225929

Sample: BC-EB-SB1	Lab ID: 5022592902		Collected: 05/20/1	9 09:45	Received: 05/23			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260/5030 MSV	Analytical Meth	iod: EPA 82	260					
Acetone	ND	ug/L	100	1	0	5/30/19 21:58	67-64-1	
Acrolein	ND	ug/L	50.0	1	0	5/30/19 21:58	107-02-8	
Acrylonitrile	ND	ug/L	100	1	0	5/30/19 21:58	107-13-1	
Benzene	ND	ug/L	5.0	1	0	5/30/19 21:58	71-43-2	
Bromobenzene	ND	ug/L	5.0	1	0	5/30/19 21:58	108-86-1	
Bromochloromethane	ND	ug/L	5.0	1	0	5/30/19 21:58	74-97-5	
Bromodichloromethane	ND	ug/L	5.0	1	0	5/30/19 21:58	75-27-4	
Bromoform	ND	ug/L	5.0	1	0	5/30/19 21:58	75-25-2	
Bromomethane	ND	ug/L	5.0	1	0	5/30/19 21:58	74-83-9	
2-Butanone (MEK)	ND	ug/L	25.0	1	0	5/30/19 21:58	78-93-3	
n-Butylbenzene	ND	ug/L	5.0	1	0	5/30/19 21:58	104-51-8	
sec-Butylbenzene	ND	ug/L	5.0	1	0	5/30/19 21:58	135-98-8	
tert-Butylbenzene	ND	ug/L	5.0	1	0	5/30/19 21:58	98-06-6	
Carbon disulfide	ND	ug/L	10.0	1	0	5/30/19 21:58	75-15-0	
Carbon tetrachloride	ND	ug/L	5.0	1	0	5/30/19 21:58	56-23-5	
Chlorobenzene	ND	ug/L	5.0	1	0	5/30/19 21:58	108-90-7	
Chloroethane	ND	ug/L	5.0	1	0	5/30/19 21:58	75-00-3	
Chloroform	ND	ug/L	5.0	1	0	5/30/19 21:58	67-66-3	
Chloromethane	ND	ug/L	5.0	1	0	5/30/19 21:58	74-87-3	
2-Chlorotoluene	ND	ug/L	5.0	1	0	5/30/19 21:58	95-49-8	
4-Chlorotoluene	ND	ug/L	5.0	1	0	5/30/19 21:58	106-43-4	
Dibromochloromethane	ND	ug/L	5.0	1	0	5/30/19 21:58	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	1	0	5/30/19 21:58	106-93-4	
Dibromomethane	ND	ug/L	5.0	1	0	5/30/19 21:58	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	1	0	5/30/19 21:58	95-50-1	
1.3-Dichlorobenzene	ND	ua/L	5.0	1	0	5/30/19 21:58	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	1	0	5/30/19 21:58	106-46-7	
trans-1.4-Dichloro-2-butene	ND	ua/L	100	1	0	5/30/19 21:58	110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	1	0	5/30/19 21:58	75-71-8	
1.1-Dichloroethane	ND	ua/L	5.0	1	0	5/30/19 21:58	75-34-3	
1.2-Dichloroethane	ND	ua/L	5.0	1	0	5/30/19 21:58	107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	1	0	5/30/19 21:58	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	5.0	1	0	5/30/19 21:58	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	1	0	5/30/19 21:58	156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	1	0	5/30/19 21:58	78-87-5	
1,3-Dichloropropane	ND	ug/L	5.0	1	0	5/30/19 21:58	142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	1	0	5/30/19 21:58	594-20-7	
1,1-Dichloropropene	ND	ug/L	5.0	1	0	5/30/19 21:58	563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	1	0	5/30/19 21:58	10061-01-5	
trans-1.3-Dichloropropene	ND	ua/L	5.0	1	0	5/30/19 21:58	10061-02-6	
Ethvlbenzene	ND	ua/L	5.0	1	0	5/30/19 21:58	100-41-4	
Ethyl methacrylate	ND	uq/L	100	1	0	5/30/19 21:58	97-63-2	
Hexachloro-1,3-butadiene	ND	ua/L	5.0	1	0	5/30/19 21:58	87-68-3	L1
n-Hexane	ND	ua/L	5.0	1	0	5/30/19 21:58	110-54-3	
2-Hexanone	ND	ua/L	25.0	1	0	5/30/19 21:58	591-78-6	
lodomethane	ND	ua/L	10.0	1	0	5/30/19 21:58	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	1	0	5/30/19 21:58	98-82-8	

Project: The Butler Co.

Pace Project No.: 50225929

Sample: BC-EB-SB1	Lab ID: 50225929028		Collected: 05/20/1	Collected: 05/20/19 09:45		5/23/19 08:35 N	latrix: Water			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
8260/5030 MSV	Analytical Meth	Analytical Method: EPA 8260								
p-Isopropyltoluene	ND	ug/L	5.0	1		05/30/19 21:58	99-87-6			
Methylene Chloride	ND	ug/L	5.0	1		05/30/19 21:58	75-09-2			
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	1		05/30/19 21:58	108-10-1			
Methyl-tert-butyl ether	ND	ug/L	4.0	1		05/30/19 21:58	1634-04-4			
n-Propylbenzene	ND	ug/L	5.0	1		05/30/19 21:58	103-65-1			
Styrene	ND	ug/L	5.0	1		05/30/19 21:58	100-42-5			
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	1		05/30/19 21:58	630-20-6			
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	1		05/30/19 21:58	79-34-5			
Tetrachloroethene	ND	ug/L	5.0	1		05/30/19 21:58	127-18-4	L1		
Toluene	ND	ug/L	5.0	1		05/30/19 21:58	108-88-3			
1,2,3-Trichlorobenzene	ND	ug/L	5.0	1		05/30/19 21:58	87-61-6			
1,2,4-Trichlorobenzene	ND	ug/L	5.0	1		05/30/19 21:58	120-82-1			
1,1,1-Trichloroethane	ND	ug/L	5.0	1		05/30/19 21:58	71-55-6			
1,1,2-Trichloroethane	ND	ug/L	5.0	1		05/30/19 21:58	79-00-5			
Trichloroethene	ND	ug/L	5.0	1		05/30/19 21:58	79-01-6			
Trichlorofluoromethane	ND	ug/L	5.0	1		05/30/19 21:58	75-69-4			
1,2,3-Trichloropropane	ND	ug/L	5.0	1		05/30/19 21:58	96-18-4			
1,2,4-Trimethylbenzene	ND	ug/L	5.0	1		05/30/19 21:58	95-63-6			
1,3,5-Trimethylbenzene	ND	ug/L	5.0	1		05/30/19 21:58	108-67-8			
Vinyl acetate	ND	ug/L	50.0	1		05/30/19 21:58	108-05-4			
Vinyl chloride	ND	ug/L	2.0	1		05/30/19 21:58	75-01-4			
Xylene (Total)	ND	ug/L	10.0	1		05/30/19 21:58	1330-20-7			
Surrogates		0								
Dibromofluoromethane (S)	107	%.	80-122	1		05/30/19 21:58	1868-53-7			
4-Bromofluorobenzene (S)	91	%.	85-114	1		05/30/19 21:58	460-00-4			
Toluene-d8 (S)	91	%.	85-114	1		05/30/19 21:58	2037-26-5			

Project: The Butler Co.

Pace Project No.: 50225929

Sample: BC-TB1	Lab ID: 502	Lab ID: 50225929029		19 08:00	Received: 05/23/19 08:35	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qual
8260/5030 MSV	Analytical Mether	nod: EPA 82	260				
Acetone	ND	ug/L	100	1	05/30/19 22:3	32 67-64-1	
Acrolein	ND	ug/L	50.0	1	05/30/19 22:3	32 107-02-8	
Acrylonitrile	ND	ug/L	100	1	05/30/19 22:3	32 107-13-1	
Benzene	ND	ug/L	5.0	1	05/30/19 22:3	32 71-43-2	
Bromobenzene	ND	ug/L	5.0	1	05/30/19 22:3	32 108-86-1	
Bromochloromethane	ND	ug/L	5.0	1	05/30/19 22:3	32 74-97-5	
Bromodichloromethane	ND	ug/L	5.0	1	05/30/19 22:3	32 75-27-4	
Bromoform	ND	ug/L	5.0	1	05/30/19 22:3	32 75-25-2	
Bromomethane	ND	ug/L	5.0	1	05/30/19 22:3	32 74-83-9	
2-Butanone (MEK)	ND	ug/L	25.0	1	05/30/19 22:3	32 78-93-3	
n-Butylbenzene	ND	ug/L	5.0	1	05/30/19 22:3	32 104-51-8	
sec-Butylbenzene	ND	ug/L	5.0	1	05/30/19 22:3	32 135-98-8	
tert-Butylbenzene	ND	ug/L	5.0	1	05/30/19 22:3	32 98-06-6	
Carbon disulfide	ND	ug/L	10.0	1	05/30/19 22:3	32 75-15-0	
Carbon tetrachloride	ND	ug/L	5.0	1	05/30/19 22:3	32 56-23-5	
Chlorobenzene	ND	ug/L	5.0	1	05/30/19 22:3	108-90-7	
Chloroethane	ND	ug/L	5.0	1	05/30/19 22:3	32 75-00-3	
Chloroform	ND	ug/L	5.0	1	05/30/19 22:3	32 67-66-3	
Chloromethane	ND	ug/L	5.0	1	05/30/19 22:3	32 74-87-3	
2-Chlorotoluene	ND	ug/L	5.0	1	05/30/19 22:3	32 95-49-8	
4-Chlorotoluene	ND	ug/L	5.0	1	05/30/19 22:3	32 106-43-4	
Dibromochloromethane	ND	ug/L	5.0	1	05/30/19 22:3	32 124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	1	05/30/19 22:3	32 106-93-4	
Dibromomethane	ND	ug/L	5.0	1	05/30/19 22:3	32 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	1	05/30/19 22:3	32 95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	1	05/30/19 22:3	32 541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	1	05/30/19 22:3	32 106-46-7	
trans-1,4-Dichloro-2-butene	ND	ug/L	100	1	05/30/19 22:3	32 110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	1	05/30/19 22:3	32 75-71-8	
1,1-Dichloroethane	ND	ug/L	5.0	1	05/30/19 22:3	32 75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	1	05/30/19 22:3	32 107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	1	05/30/19 22:3	32 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	5.0	1	05/30/19 22:3	32 156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	1	05/30/19 22:3	32 156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	1	05/30/19 22:3	32 78-87-5	
1,3-Dichloropropane	ND	ug/L	5.0	1	05/30/19 22:3	32 142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	1	05/30/19 22:3	32 594-20-7	
1,1-Dichloropropene	ND	ug/L	5.0	1	05/30/19 22:3	32 563-58-6	
cis-1.3-Dichloropropene	ND	ua/L	5.0	1	05/30/19 22:3	32 10061-01-5	
trans-1.3-Dichloropropene	ND	ua/L	5.0	1	05/30/19 22:3	32 10061-02-6	
Ethvlbenzene	ND	ua/L	5.0	1	05/30/19 22:3	32 100-41-4	
Ethyl methacrylate	ND	ua/L	100	1	05/30/19 22:3	32 97-63-2	
Hexachloro-1,3-butadiene	ND	ua/L	5.0	1	05/30/19 22:3	32 87-68-3	L1
n-Hexane	ND	ua/L	5.0	1	05/30/19 22:3	32 110-54-3	
2-Hexanone	ND	ua/L	25.0	1	05/30/19 22:3	32 591-78-6	
lodomethane	ND	ua/L	10.0	1	05/30/19 22:3	32 74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	1	05/30/19 22:3	32 98-82-8	

Project: The Butler Co.

Pace Project No.: 50225929

Sample: BC-TB1	Lab ID: 50225929029		Collected: 05/21/1	Collected: 05/21/19 08:00		Received: 05/23/19 08:35 Matrix: Water			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
8260/5030 MSV	Analytical Mether								
p-Isopropyltoluene	ND	ug/L	5.0	1		05/30/19 22:32	99-87-6		
Methylene Chloride	ND	ug/L	5.0	1		05/30/19 22:32	75-09-2		
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	1		05/30/19 22:32	108-10-1		
Methyl-tert-butyl ether	ND	ug/L	4.0	1		05/30/19 22:32	1634-04-4		
n-Propylbenzene	ND	ug/L	5.0	1		05/30/19 22:32	103-65-1		
Styrene	ND	ug/L	5.0	1		05/30/19 22:32	100-42-5		
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	1		05/30/19 22:32	630-20-6		
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	1		05/30/19 22:32	79-34-5		
Tetrachloroethene	ND	ug/L	5.0	1		05/30/19 22:32	127-18-4	L1	
Toluene	ND	ug/L	5.0	1		05/30/19 22:32	108-88-3		
1,2,3-Trichlorobenzene	ND	ug/L	5.0	1		05/30/19 22:32	87-61-6		
1,2,4-Trichlorobenzene	ND	ug/L	5.0	1		05/30/19 22:32	120-82-1		
1,1,1-Trichloroethane	ND	ug/L	5.0	1		05/30/19 22:32	71-55-6		
1,1,2-Trichloroethane	ND	ug/L	5.0	1		05/30/19 22:32	79-00-5		
Trichloroethene	ND	ug/L	5.0	1		05/30/19 22:32	79-01-6		
Trichlorofluoromethane	ND	ug/L	5.0	1		05/30/19 22:32	75-69-4		
1,2,3-Trichloropropane	ND	ug/L	5.0	1		05/30/19 22:32	96-18-4		
1,2,4-Trimethylbenzene	ND	ug/L	5.0	1		05/30/19 22:32	95-63-6		
1,3,5-Trimethylbenzene	ND	ug/L	5.0	1		05/30/19 22:32	108-67-8		
Vinyl acetate	ND	ug/L	50.0	1		05/30/19 22:32	108-05-4		
Vinvl chloride	ND	ua/L	2.0	1		05/30/19 22:32	75-01-4		
Xylene (Total)	ND	ug/L	10.0	1		05/30/19 22:32	1330-20-7		
Surrogates		0							
Dibromofluoromethane (S)	105	%.	80-122	1		05/30/19 22:32	1868-53-7		
4-Bromofluorobenzene (S)	93	%.	85-114	1		05/30/19 22:32	460-00-4		
Toluene-d8 (S)	95	%.	85-114	1		05/30/19 22:32	2037-26-5		

Mercury	ug/L	ND	5	5	5 5.3	5.5	106	109	75-125	3	20	
Paramete	r Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
		50225483001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
MATRIX SPIKE & M	ATRIX SPIKE DUF	PLICATE: 2318	172 MS	MSD	2318173							
		ug/L)	5.2	104	+ (50-120				
Mercury					52	10		30-120		_		
Para	neter	Units	Spike Conc.	L. Re	CS esult	LCS % Rec	% Re Limi	ec ts	Qualifiers			
LABORATORY CO	NTROL SAMPLE:	2318171										
Mercury		ug/L		ND	2.0	0 05/27/1	9 21:45					
Para	meter	Units	Resu	lt	Limit	Analy	/zed	Qualifier	S			
Associated Lab Gal	iipics. 30223929	028	Blan	<	Reporting							
Associated Lab Sau	nnles: 50225020	028		viatina. v	Valor							
	2318170			Matrix: V	N/ater							
Associated Lab Sar	mples: 50225929	028										
QC Batch Method:	EPA 7470		Analys	sis Desci	ription: 7	7470 Mercu	ry					
QC Batch:	502298		Analys	sis Metho	od: E	EPA 7470						
Pace Project No.:	50225929											
Project:	The Butler Co.											

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	The Bu	tler Co.											
Pace Project No.:	502259	29											
QC Batch:	50264	18		Analy	sis Meth	od:	EPA 7471						
QC Batch Method:	EPA 7	471		Analy	ysis Desc	ription:	7471 Mercu	iry					
Associated Lab Sar	nples:	502259290 502259290 502259290	01, 5022592900 08, 5022592900 15, 5022592901	2, 5022592 9, 5022592 6, 5022592	29003, 50 29010, 50 29017, 50	225929004, 225929011, 225929019,	502259290 502259290 502259290	05, 502259 12, 502259 20, 502259	29006, 50 29013, 50 29021	225929007 225929014	7, I,		
METHOD BLANK:	232009	6			Matrix:	Solid							
Associated Lab Sar	nples:	502259290 502259290 502259290	01, 5022592900 08, 5022592900 15, 5022592901	2, 5022592 9, 5022592 6, 5022592 Blar	29003, 50 29010, 50 29017, 50 nk	225929004, 225929011, 225929019, Reporting	502259290 502259290 502259290	05, 502259 12, 502259 20, 502259	29006, 50 29013, 50 29021	225929007 225929014	7, I,		
Parameter			Units	Res	ult	Limit	Anal	yzed	Qualifier	s			
Mercury			mg/kg		ND	0.2	20 05/29/1	9 11:27					
LABORATORY CO		SAMPLE:	2320097										
Paran	neter		Units	Spike Conc.	L Re	.CS esult	LCS % Rec	% Ri Limi	ec ts (Qualifiers			
Mercury			mg/kg	0.	.5	0.52	10	4 8	30-120				
MATRIX SPIKE & M	IATRIX S		LICATE: 2320	098		232009	9						
			50225020004	MS Spiko	MSD Spike	MS	MSD	MS	MSD	% Poc		Max	
Parameter	r	Units	Result	Conc.	Spike Conc.	Result	Result	% Rec	% Rec	% Rec	RPD	RPD	Qual
Mercury		mg/kg	ND	0.63	0.57	7 0.67	0.60	102	101	75-125	11	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	The Butler Co.											
Pace Project No.:	50225929											
QC Batch:	502650		Analy	sis Meth	od: I	EPA 7471						
QC Batch Method:	EPA 7471		Analy	ysis Desc	ription:	7471 Mercu	ry					
Associated Lab Sar	nples: 5022592	9018, 5022592902	2, 5022592	29023, 50	225929024,	502259290	25, 50225	929026, 50	225929027	7		
METHOD BLANK:	2320104			Matrix: S	Solid							
Associated Lab Sar	mples: 5022592	9018, 5022592902	2, 5022592	29023, 50	225929024,	502259290	25, 50225	929026, 50	225929027	7		
			Blar	nk	Reporting							
Parar	neter	Units	Res	ult	Limit	Anal	/zed	Qualifier	S			
Mercury		mg/kg		ND	0.2	0 05/29/1	9 13:46					
LABORATORY CO	NTROL SAMPLE:	2320105										
			Spike	L	CS	LCS	% R	lec				
Parar	neter	Units	Conc.	Re	esult	% Rec	Lim	its	Qualifiers			
Mercury		mg/kg	0.	.5	0.52	10	4	80-120				
MATRIX SPIKE & N	IATRIX SPIKE DU	PLICATE: 2320	106		2320107	,						
			MS	MSD								
Paramete	r Unit	50225929018 s Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Mercury	mg/ł	kg ND	0.57	0.57	0.58	0.61	102	106	75-125	5	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Th	e Butler Co.							
Pace Project No.: 50	225929							
QC Batch: 5	502185		Analysis M	ethod:	EP	A 6010		
QC Batch Method: E	EPA 3050		Analysis De	escription:	601	0 MET		
Associated Lab Sample	es: 50225929001, 50225929008, 50225929015,	50225929002, 50225929009, 50225929016,	50225929003, 50225929010, 50225929017,	50225929004 50225929011, 50225929019	, 502 502 , 502	225929005, 5022 225929012, 5022 225929020, 5022	5929006, 5022592900 5929013, 502259290 5929021)7, 14,
METHOD BLANK: 23	17308		Matrix	x: Solid				
Associated Lab Sample	es: 50225929001, 50225929008, 50225929015,	50225929002, 50225929009, 50225929016,	50225929003, 50225929010, 50225929017,	50225929004 50225929011, 50225929019	, 502 502 , 502	225929005, 5022 225929012, 5022 225929020, 5022	5929006, 5022592900 5929013, 5022592901 5929021)7, I4,
			Blank	Reporting				
Paramete	er	Units	Result	Limit		Analyzed	Qualifiers	
Arsenic		mg/kg	NE	0 1	.0	05/26/19 00:10		
Barium		mg/kg	NE	D 1	.0	05/26/19 00:10		
Cadmium		mg/kg	NE	0.9	50	05/26/19 00:10		
Chromium		mg/kg	NE) 1	.0	05/26/19 00:10		
Copper		mg/kg	NE) 1	.0	05/26/19 00:10		
Lead		mg/kg	NE) 1	.0	05/26/19 00:10		
Selenium		mg/kg	NE) 1	.0	05/26/19 00:10		
Silver		mg/kg	NE	0.	50	05/26/19 00:10		
Zinc		mg/kg	NE) 1	.0	05/26/19 00:10		

LABORATORY CONTROL SAMPLE: 2317309

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/kg	50	50.7	101	80-120	
Barium	mg/kg	50	52.5	105	80-120	
Cadmium	mg/kg	50	51.4	103	80-120	
Chromium	mg/kg	50	51.3	103	80-120	
Copper	mg/kg	50	51.0	102	80-120	
Lead	mg/kg	50	50.0	100	80-120	
Selenium	mg/kg	50	51.8	104	80-120	
Silver	mg/kg	25	25.6	102	80-120	
Zinc	mg/kg	50	51.6	103	80-120	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2317310

2317311
2317311

		50225929004	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	mg/kg	9.3	60.7	59.9	62.2	60.6	87	86	75-125	3	20	
Barium	mg/kg	87.5	60.7	59.9	162	171	123	139	75-125	5	20	MO
Cadmium	mg/kg	ND	60.7	59.9	54.2	53.8	89	89	75-125	1	20	
Chromium	mg/kg	22.8	60.7	59.9	79.3	78.7	93	93	75-125	1	20	
Copper	mg/kg	21.7	60.7	59.9	79.1	76.2	95	91	75-125	4	20	
Lead	mg/kg	9.4	60.7	59.9	58.9	55.1	82	76	75-125	7	20	
Selenium	mg/kg	ND	60.7	59.9	51.4	51.2	84	85	75-125	0	20	
Silver	mg/kg	ND	30.3	30	27.6	27.5	91	92	75-125	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:The Butler Co.Pace Project No.:50225929

MATRIX SPIKE & MATRIX SP	310		2317311									
			MS	MSD								
	į	50225929004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Zinc	mg/kg	57.7	60.7	59.9	123	113	107	92	75-125	8	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

	THE D	lier Co.							
Pace Project No.:	50225	929							
QC Batch:	5021	86		Analysis	Method:	EF	PA 6010		
QC Batch Method:	EPA	3050		Analysis	Description:	60	10 MET		
Associated Lab Sa	mples:	50225929018, 50	0225929022, 5	5022592902	3, 502259290	24, 50)225929025,	50225929026,	50225929027
IETHOD BLANK:	23173	12		Ма	trix: Solid				
Associated Lab Sa	mples:	50225929018, 50	0225929022, 5	5022592902	3, 502259290	24, 50)225929025,	50225929026,	50225929027
				Blank	Reportir	ng			
Para	meter		Units	Result	Limit		Analyzed	d Qualif	iers
Arsenic			mg/kg		ND	1.0	05/26/19 01	:23	
Barium			mg/kg		ND	1.0	05/26/19 01	:23	
Cadmium			mg/kg		ND	0.50	05/26/19 01	:23	
Chromium			mg/kg		ND	1.0	05/26/19 01	:23	
Copper			mg/kg		ND	1.0	05/26/19 01	:23	
_ead			mg/kg		ND	1.0	05/26/19 01	:23	
Selenium			mg/kg		ND	1.0	05/26/19 01	:23	
Silver			mg/kg		ND	0.50	05/26/19 01	:23	
linc			mg/kg	ļ	ND	1.0	05/26/19 01	:23	
ABORATORY CC	NTROL	SAMPLE: 23173	313						
				Snike	LCS		LCS	% Rec	
				Opino					
Para	meter		Units	Conc.	Result	ç	% Rec	Limits	Qualifiers
Para	meter		Units mg/kg	Conc. 50	Result 47.5		% Rec 95	Limits 80-120	Qualifiers
Para Arsenic Barium	meter		Units mg/kg mg/kg	Conc. 50 50	Result 47.5 48.1		% Rec 95 96	Limits 80-120 80-120	Qualifiers
Para Arsenic Barium Xadmium	meter		Units mg/kg mg/kg mg/kg	Conc. 50 50 50	Result 47.5 48.1 47.4		% Rec 95 96 95	Limits 80-120 80-120 80-120	Qualifiers
Para Arsenic 3arium Cadmium Chromium	meter		Units mg/kg mg/kg mg/kg mg/kg	Conc. 50 50 50 50 50	Result 47.5 48.1 47.4 47.0		% Rec	Limits 80-120 80-120 80-120 80-120	Qualifiers
Para srsenic arium admium hromium opper	meter		Units mg/kg mg/kg mg/kg mg/kg mg/kg	Conc. 50 50 50 50 50 50 50	Result 47.5 48.1 47.4 47.0 46.5		% Rec 95 96 95 94 93	Limits 80-120 80-120 80-120 80-120 80-120	Qualifiers
Para rsenic arium admium hromium opper ead	meter		Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Conc. 50 50 50 50 50 50 50 50	Result 47.5 48.1 47.4 47.0 46.5 46.3		% Rec 95 96 95 94 93 93	Limits 80-120 80-120 80-120 80-120 80-120 80-120	Qualifiers
Para vrsenic Barium Cadmium Chromium Copper ead Felenium	meter		Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Conc. 50 50 50 50 50 50 50 50 50	Result 47.5 48.1 47.4 47.0 46.5 46.3 47.5		% Rec 95 96 95 94 93 93 95	Limits 80-120 80-120 80-120 80-120 80-120 80-120 80-120	Qualifiers
Para Arsenic Barium Cadmium Chromium Copper Lead Selenium Silver	meter		Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	Conc. 50 50 50 50 50 50 50 50 50 25	Result 47.5 48.1 47.4 47.0 46.5 46.3 47.5 24.2		% Rec 95 96 95 94 93 93 95 95 94	Limits 80-120 80-120 80-120 80-120 80-120 80-120 80-120 80-120	Qualifiers

MATRIX SPIKE & MATRIX S	314		2317315									
Parameter	50 Linits	0225398001 Result	MS Spike Conc	MSD Spike Conc	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec	RPD	Max	Qual
							/01100	/01100				
Arsenic	mg/kg	6.9	47.1	47.7	49.9	54.6	91	100	75-125	9	20	
Barium	mg/kg	31.6	47.1	47.7	78.7	78.9	100	99	75-125	0	20	
Cadmium	mg/kg	ND	47.1	47.7	43.8	46.3	93	96	75-125	5	20	
Chromium	mg/kg	8.7	47.1	47.7	47.2	50.8	82	88	75-125	7	20	
Copper	mg/kg	13.1	47.1	47.7	53.4	57.8	86	94	75-125	8	20	
Lead	mg/kg	5.6	47.1	47.7	40.3	43.2	74	79	75-125	7	20	M0
Selenium	mg/kg	ND	47.1	47.7	42.5	44.9	90	93	75-125	5	20	
Silver	mg/kg	ND	23.5	23.9	23.2	24.6	98	102	75-125	6	20	
Zinc	mg/kg	34.3	47.1	47.7	68.4	75.1	72	85	75-125	9	20	MO

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:	The Butler Co.
Pace Project No .:	50225929

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2317		2317317								
Parameter	Units	50225929018 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Arsenic	mg/kg	13.8	55.8	58.5	58.5	64.2	80	86	75-125	9	20	
Barium	mg/kg	85.2	55.8	58.5	123	147	67	106	75-125	18	20	MO
Cadmium	mg/kg	ND	55.8	58.5	44.1	51.2	78	87	75-125	15	20	
Chromium	mg/kg	23.5	55.8	58.5	64.6	75.4	74	89	75-125	15	20	M0
Copper	mg/kg	25.9	55.8	58.5	69.0	74.8	77	84	75-125	8	20	
Lead	mg/kg	12.6	55.8	58.5	52.5	58.9	71	79	75-125	11	20	MO
Selenium	mg/kg	ND	55.8	58.5	42.2	49.0	76	84	75-125	15	20	
Silver	mg/kg	ND	27.9	29.2	22.4	26.0	80	89	75-125	15	20	
Zinc	mg/kg	77.6	55.8	58.5	116	125	68	81	75-125	8	20	M0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	The Butler Co. 50225929											
QC Batch:	506440		Anal	ysis Method	l: E	PA 6010						
QC Batch Method:	EPA 3010	005	Anal	ysis Descrip	otion: 6	010 MET T	CLP					
Associated Lab Sam	ples: 50225929	005										
METHOD BLANK:	2336962			Matrix: Wa	ater							
Associated Lab Sam	ples: 50225929	005	Bla	nk [Poporting							
Param	eter	Units	Res	sult	Limit	Analy	/zed	Qualifier	s			
Lead		mg/L		ND	0.010	06/15/19	9 01:37					
LABORATORY CON	TROL SAMPLE:	2336963										
Param	eter	Units	Spike Conc.	LC Res	S ult	LCS % Rec	% Lii	Rec mits	Qualifiers			
Lead		mg/L		1	0.93	93	3	80-120				
MATRIX SPIKE & MA	ATRIX SPIKE DUP	PLICATE: 23369	964		2336965							
Parameter	Units	50225929005 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Lead	mg/L	30.6	10	10	38.7	38.3	8	1 77	50-150	1	20	
MATRIX SPIKE SAM	IPLE:	2336966										
Param	otor	Units	50220 R	6729001 Soult	Spike Conc	MS Result		MS % Rec	% Rec		Qualif	iore
Lead		mg/L		ND	10	Result	8.8	88	50	-150	Quaim	
MATRIX SPIKE SAM	IPLE:	2336967										
Dever	-4	l la ita	50226	5868001	Spike	MS		MS	% Rec		Qualit	
Lead		mg/L		ND	10	Result	9.5	95 %	50·	-150	Qualin	
MATRIX SPIKE SAM	IPLE:	2336968										
_			50226	6870001	Spike	MS		MS	% Rec			
Param	eter	Units	Re	esult	Conc.	Result		% Rec	Limits		Qualifi	iers
Lead		mg/L		ND	10		9.1	91	50	-150		
MATRIX SPIKE SAM	IPLE:	2336969	5022	7410002	Spike	MS		MS	% Rec			
Param	eter	Units	Re	esult	Conc.	Result		% Rec	Limits		Qualifi	iers
Lead		mg/L		ND	10		8.8	88	50-	-150		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:The Butler Co.Pace Project No.:50225929

MATRIX SPIKE SAMPLE:	2336970						
		50227700001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Lead	mg/L	0.43	10	9.6	91	50-150	
MATRIX SPIKE SAMPLE:	2336971						
		50227703001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Lead	mg/L	ND	10	9.0	90	50-150	
MATRIX SPIKE SAMPLE:	2336972						
		50227716001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Lead	mg/L	ND	10	8.9	89	50-150	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: The Butler Co. Pace Project No.: 50225929

-							
QC Batch:	502382		Analysis Metl	hod: E	EPA 6010		
QC Batch Method:	EPA 3010		Analysis Des	cription: 6	010 MET		
Associated Lab Sam	ples: 50225929028						
METHOD BLANK:	2318425		Matrix:	Water			
Associated Lab Sam	ples: 50225929028						
			Blank	Reporting			
Param	eter	Units	Result	Limit	Analyzed	Qualifiers	
Arsenic		ug/L	ND	10.0	05/27/19 09:18		
Barium		ug/L	ND	10.0	05/27/19 09:18		
Cadmium		ug/L	ND	2.0	05/27/19 09:18		
Chromium		ug/L	ND	10.0	05/27/19 09:18		
Copper		ug/L	ND	10.0	05/27/19 09:18		
Lead		ug/L	ND	10.0	05/27/19 09:18		
Selenium		ua/L	ND	10.0	05/27/19 09:18		

ND

ND

10.0 05/27/19 09:18

20.0 05/27/19 09:18

LABORATORY CONTROL SAMPLE: 2318426

Silver

Zinc

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	ug/L	1000	970	97	80-120	
Barium	ug/L	1000	1000	100	80-120	
Cadmium	ug/L	1000	1000	100	80-120	
Chromium	ug/L	1000	980	98	80-120	
Copper	ug/L	1000	997	100	80-120	
Lead	ug/L	1000	953	95	80-120	
Selenium	ug/L	1000	1010	101	80-120	
Silver	ug/L	500	488	98	80-120	
Zinc	ug/L	1000	1000	100	80-120	

ug/L

ug/L

MATRIX SPIKE & MATRIX SPI	E DUP	LICATE: 2318	427		2318428							
Parameter	Units	50226007004 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Arsenic	ug/L	ND	1000	1000	966	994	96	99	75-125	3	20	
Barium	ug/L	133	1000	1000	1110	1140	98	101	75-125	3	20	
Cadmium	ug/L	ND	1000	1000	997	1030	100	103	75-125	3	20	
Chromium	ug/L	ND	1000	1000	943	974	94	97	75-125	3	20	
Copper	ug/L	ND	1000	1000	984	1010	98	101	75-125	3	20	
Lead	ug/L	ND	1000	1000	910	931	91	93	75-125	2	20	
Selenium	ug/L	ND	1000	1000	1000	1020	100	102	75-125	2	20	
Silver	ug/L	ND	500	500	487	498	97	100	75-125	2	20	
Zinc	ug/L	ND	1000	1000	953	984	95	98	75-125	3	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: The Butler Co.

Pace Project No.: 50225929

 QC Batch:
 503512
 Analysis Method:
 EPA 8260

 QC Batch Method:
 EPA 8260
 Analysis Description:
 8260 MSV

 Associated Lab Samples:
 50225929028, 50225929029
 Matrix: Water

 METHOD BLANK:
 2323503
 Matrix: Water

 Associated Lab Samples:
 50225929028, 50225929029
 Blank
 Reporting

ParameterUnitsResultLimitAnalyzedQualifier1,1,1,2-Tetrachloroethaneug/LND5.005/30/19 12:421,1,1-Trichloroethaneug/LND5.005/30/19 12:421,1,2,2-Tetrachloroethaneug/LND5.005/30/19 12:421,1,2,2-Tetrachloroethaneug/LND5.005/30/19 12:42
1,1,1,2-Tetrachloroethane ug/L ND 5.0 05/30/19 12:42 1,1,1-Trichloroethane ug/L ND 5.0 05/30/19 12:42 1,1,2,2-Tetrachloroethane ug/L ND 5.0 05/30/19 12:42 1,1 2-Trichloroethane ug/L ND 5.0 05/30/19 12:42
1,1,1-Trichloroethane ug/L ND 5.0 05/30/19 12:42 1,1,2,2-Tetrachloroethane ug/L ND 5.0 05/30/19 12:42 1,1,2-Trichloroethane ug/L ND 5.0 05/30/19 12:42
1,1,2,2-Tetrachloroethane ug/L ND 5.0 05/30/19 12:42 1.1.2-Trichloroethane ug/L ND 5.0 05/30/19 12:42
1.1.2-Trichloroethane ug/ ND 5.0.05/30/19.12:42
1,1-Dichloroethane ug/L ND 5.0 05/30/19 12:42
1,1-Dichloroethene ug/L ND 5.0 05/30/19 12:42
1,1-Dichloropropene ug/L ND 5.0 05/30/19 12:42
1,2,3-Trichlorobenzene ug/L ND 5.0 05/30/19 12:42
1,2,3-Trichloropropane ug/L ND 5.0 05/30/19 12:42
1,2,4-Trichlorobenzene ug/L ND 5.0 05/30/19 12:42
1,2,4-Trimethylbenzene ug/L ND 5.0 05/30/19 12:42
1,2-Dibromoethane (EDB) ug/L ND 5.0 05/30/19 12:42
1,2-Dichlorobenzene ug/L ND 5.0 05/30/19 12:42
1,2-Dichloroethane ug/L ND 5.0 05/30/19 12:42
1,2-Dichloropropane ug/L ND 5.0 05/30/19 12:42
1,3,5-Trimethylbenzene ug/L ND 5.0 05/30/19 12:42
1,3-Dichlorobenzene ug/L ND 5.0 05/30/19 12:42
1,3-Dichloropropane ug/L ND 5.0 05/30/19 12:42
1,4-Dichlorobenzene ug/L ND 5.0 05/30/19 12:42
2,2-Dichloropropane ug/L ND 5.0 05/30/19 12:42
2-Butanone (MEK) ug/L ND 25.0 05/30/19 12:42
2-Chlorotoluene ug/L ND 5.0 05/30/19 12:42
2-Hexanone ug/L ND 25.0 05/30/19 12:42
4-Chlorotoluene ug/L ND 5.0 05/30/19 12:42
4-Methyl-2-pentanone (MIBK) ug/L ND 25.0 05/30/19 12:42
Acetone ug/L ND 100 05/30/19 12:42
Acrolein ug/L ND 50.0 05/30/19 12:42
Acrylonitrile ug/L ND 100 05/30/19 12:42
Benzene ug/L ND 5.0 05/30/19 12:42
Bromobenzene ug/L ND 5.0 05/30/19 12:42
Bromochloromethane ug/L ND 5.0 05/30/19 12:42
Bromodichloromethane ug/L ND 5.0 05/30/19 12:42
Bromoform ug/L ND 5.0 05/30/19 12:42
Bromomethane ug/L ND 5.0 05/30/19 12:42
Carbon disulfide ua/L ND 10.0 05/30/19 12:42
Carbon tetrachloride ug/L ND 5.0 05/30/19 12:42
Chlorobenzene ug/L ND 5.0 05/30/19 12:42
Chloroethane ug/L ND 5.0 05/30/19 12:42
Chloroform ug/L ND 5.0 05/30/19 12:42
Chloromethane ug/L ND 5.0 05/30/19 12:42
cis-1.2-Dichloroethene ug/L ND 5.0 05/30/19 12:42

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: The Butler Co. Pace Project No.: 50225929

METHOD BLANK: 232350	3	Matrix:	Water		
Associated Lab Samples:	50225929028, 50225929029				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
cis-1,3-Dichloropropene	ug/L	ND	5.0	05/30/19 12:42	
Dibromochloromethane	ug/L	ND	5.0	05/30/19 12:42	
Dibromomethane	ug/L	ND	5.0	05/30/19 12:42	
Dichlorodifluoromethane	ug/L	ND	5.0	05/30/19 12:42	
Ethyl methacrylate	ug/L	ND	100	05/30/19 12:42	
Ethylbenzene	ug/L	ND	5.0	05/30/19 12:42	
Hexachloro-1,3-butadiene	ug/L	ND	5.0	05/30/19 12:42	
lodomethane	ug/L	ND	10.0	05/30/19 12:42	
Isopropylbenzene (Cumene)	ug/L	ND	5.0	05/30/19 12:42	
Methyl-tert-butyl ether	ug/L	ND	4.0	05/30/19 12:42	
Methylene Chloride	ug/L	ND	5.0	05/30/19 12:42	
n-Butylbenzene	ug/L	ND	5.0	05/30/19 12:42	
n-Hexane	ug/L	ND	5.0	05/30/19 12:42	
n-Propylbenzene	ug/L	ND	5.0	05/30/19 12:42	
p-Isopropyltoluene	ug/L	ND	5.0	05/30/19 12:42	
sec-Butylbenzene	ug/L	ND	5.0	05/30/19 12:42	
Styrene	ug/L	ND	5.0	05/30/19 12:42	
tert-Butylbenzene	ug/L	ND	5.0	05/30/19 12:42	
Tetrachloroethene	ug/L	ND	5.0	05/30/19 12:42	
Toluene	ug/L	ND	5.0	05/30/19 12:42	
trans-1,2-Dichloroethene	ug/L	ND	5.0	05/30/19 12:42	
trans-1,3-Dichloropropene	ug/L	ND	5.0	05/30/19 12:42	
trans-1,4-Dichloro-2-butene	ug/L	ND	100	05/30/19 12:42	
Trichloroethene	ug/L	ND	5.0	05/30/19 12:42	
Trichlorofluoromethane	ug/L	ND	5.0	05/30/19 12:42	
Vinyl acetate	ug/L	ND	50.0	05/30/19 12:42	
Vinyl chloride	ug/L	ND	2.0	05/30/19 12:42	
Xylene (Total)	ug/L	ND	10.0	05/30/19 12:42	
4-Bromofluorobenzene (S)	~. %.	92	85-114	05/30/19 12:42	
Dibromofluoromethane (S)	%.	107	80-122	05/30/19 12:42	
Toluene-d8 (S)	%.	91	85-114	05/30/19 12:42	

LABORATORY CONTROL SAMPLE: 2323504

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	53.4	107	78-120	
1,1,1-Trichloroethane	ug/L	50	60.4	121	72-127	
1,1,2,2-Tetrachloroethane	ug/L	50	41.5	83	70-124	
1,1,2-Trichloroethane	ug/L	50	47.7	95	79-121	
1,1-Dichloroethane	ug/L	50	52.7	105	70-119	
1,1-Dichloroethene	ug/L	50	61.8	124	71-126	
1,1-Dichloropropene	ug/L	50	56.0	112	76-122	
1,2,3-Trichlorobenzene	ug/L	50	57.9	116	71-126	
1,2,3-Trichloropropane	ug/L	50	47.7	95	75-119	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: The Butler Co. Pace Project No.: 50225929

LABORATORY CONTROL SAMPLE:	2323504

Parameter Units Conc. Result % Rec Limits Qualitiers 1,2,4-Trinethylberzene ug/L 50 60.4 121 68-130 1,2-A-Trinethylberzene ug/L 50 48.4 97 81-119 1,2-Dichtoroberzene ug/L 50 48.1 96 79-126 1,3-Dichtoroberzene ug/L 50 46.2 92 78-114 1,2-Dichtoropropane ug/L 50 46.2 92 78-118 1,3-Dichtoropropane ug/L 50 51.3 103 82-124 1,4-Dichtoropropane ug/L 50 57.3 115 53-137 2-Dichtoropropane ug/L 50 57.3 115 53-137 2-Dichtoropropane ug/L 50 48.2 96 76-120 2-Hexanone ug/L 250 204 82 60-143 4-Chiorobluene ug/L 250 204 82 60-143 Acrolein ug/L	_		Spike	LCS	LCS	% Rec	
1,2,4-Trinchicrobenzene ug/L 50 60.4 121 68-130 1,2,4-Trinchylbenzene ug/L 50 48.4 97 81-119 1,2-Dichoroberzene ug/L 50 48.4 97 81-119 1,2-Dichoroberzene ug/L 50 48.1 96 79-126 1,2-Dichoroberzene ug/L 50 46.2 92 78-114 1,3-Dichorobenzene ug/L 50 51.3 103 82-124 1,3-Dichoroporpane ug/L 50 51.3 103 82-124 1,4-Dichorobenzene ug/L 50 57.3 115 53-137 2-Butanone (MEK) ug/L 250 204 88 62-140 2-Chiorobuene ug/L 250 204 82 60-143 Acetione ug/L 250 204 82 60-143 Acetione ug/L 50 50.3 102 76-114 2-Motorobuene ug/L 50 50.9 102 76-114 4-Methyl-2-pentanone (MEK) ug/L 50	Parameter	Units	Conc	Result	% Rec	Limits	Qualifiers
1.2.4-Trimethylbenzene ug/L 50 48.2 92 79-117 1.2-Dibriorobenzene ug/L 50 48.4 97 81-119 1.2-Dichlorobenzene ug/L 50 52.5 105 68-119 1.2-Dichlorobenzene ug/L 50 48.1 96 79-126 1.3.5-Trimethylbenzene ug/L 50 46.2 92 78-118 1.3-Dichlorobenzene ug/L 50 51.3 103 82-124 1.3-Dichloropopane ug/L 50 50.8 102 77-111 2.2-Dichloropopane ug/L 250 246 98 62-140 2-Chlorotoluene ug/L 250 246 98 62-140 2-Chlorotoluene ug/L 250 205 82 62-143 4-Chiorotoluene ug/L 250 204 88 64-140 2-Chlorotoluene ug/L 250 220 88 44-156 Acrolein ug/L 50 53.2 106 78-117 Bromotohioromethane ug/L 50<	1,2,4-Trichlorobenzene	ug/L	50	60.4	121	68-130	
1.2-Dichloromethane (EDB) ug/L 50 48.4 97 81-119 1.2-Dichloromethane ug/L 50 48.7 99 78-114 1.2-Dichloropropane ug/L 50 48.1 96 79-126 1.3-Dichloropenae ug/L 50 46.2 92 78-118 1.3-Dichloropenae ug/L 50 51.3 103 82-124 1.3-Dichloropenae ug/L 50 57.3 115 53-3137 2-Butanone (MEK) ug/L 250 205 82 62-140 2-Chlorotoluene ug/L 50 50.4 82 60-143 2-Chlorotoluene ug/L 200 205 82 60-143 2-Chlorotoluene ug/L 200 204 82 60-143 Acetone ug/L 200 177 88 58-139 Benzene ug/L 200 177 88 58-139 Berzene ug/L 50 53.2 106 76-114 Bromochloromethane ug/L 50 53.1	1,2,4-Trimethylbenzene	ug/L	50	46.2	92	79-117	
1.2-Dichlorobenzene ug/L 50 49.7 99 78-114 1.2-Dichloropropane ug/L 50 52.5 105 68-119 1.3.5-Trimethylbenzene ug/L 50 46.2 92 78-118 1.3.5-Trimethylbenzene ug/L 50 51.3 103 87-114 1.3-Dichlorobenzene ug/L 50 51.3 103 82-124 1.4-Dichloropropane ug/L 50 50.8 102 77-114 1.3-Dichlorobenzene ug/L 50 50.8 102 77-114 2-Dichloropropane ug/L 250 246 98 62-140 2-Chorotoluene ug/L 250 205 82 62-143 4-Chorotoluene ug/L 250 204 82 60-143 Actioni ug/L 250 204 82 60-143 Actionin ug/L 50 53.2 106 78-117 Bornotomithine ug/L 50 50.9 102 76-114 Bromotomithine ug/L 50 <t< td=""><td>1,2-Dibromoethane (EDB)</td><td>ug/L</td><td>50</td><td>48.4</td><td>97</td><td>81-119</td><td></td></t<>	1,2-Dibromoethane (EDB)	ug/L	50	48.4	97	81-119	
1.2-Dichloroethane ug/L 50 52.5 105 68-119 1.2-Dichloropopane ug/L 50 48.1 96 79-126 1.3-Dichloropopane ug/L 50 46.2 92 78-118 1.3-Dichloropopane ug/L 50 51.3 103 82-124 1.4-Dichloropopane ug/L 50 57.3 115 53-137 2.2-Dichloropopane ug/L 50 48.2 98 62-140 2Dichloropopane ug/L 50 50.4 101 78-114 2Dichloropopane ug/L 200 205 82 62-143 2-Chiorobluene ug/L 200 205 82 62-143 2-Hexanone ug/L 200 204 82 60-143 Acotone ug/L 200 177 88 58-139 Brancene ug/L 200 177 88 58-139 Brancene ug/L 50 43.4 97 7-122 Bromochloromethane ug/L 50 50.9 10	1,2-Dichlorobenzene	ug/L	50	49.7	99	78-114	
1.2-Dichloropropane ug/L 50 48.1 96 78-126 1.3,5-Trimethylbenzene ug/L 50 61.2 92 78-118 1.3-Dichloropropane ug/L 50 51.3 103 82-124 1.4-Dichloropropane ug/L 50 57.3 115 53-137 2-Dichloropropane ug/L 20 246 98 62-140 2-Dichloropropane ug/L 250 246 98 62-140 2-Chlorobluene ug/L 250 205 82 62-143 4-Chlorobluene ug/L 250 204 82 60-143 Actone ug/L 250 204 82 60-143 Actone ug/L 250 204 82 60-143 Actone ug/L 200 177 88 58-139 Brance ug/L 200 177 88 58-139 Brance ug/L 50 48.4 97 72-121 Bromobinzene ug/L 50 59.0 102 76-114 <td>1,2-Dichloroethane</td> <td>ug/L</td> <td>50</td> <td>52.5</td> <td>105</td> <td>68-119</td> <td></td>	1,2-Dichloroethane	ug/L	50	52.5	105	68-119	
1,3-Dichiorobenzene ug/L 50 46.2 92 78-118 1,3-Dichioropropane ug/L 50 51.7 103 77-114 1,3-Dichioropropane ug/L 50 57.3 115 53-137 2,2-Dichioropropane ug/L 50 57.3 115 53-137 2,2-Dichioropropane ug/L 50 48.2 98 62-140 2-Chioroboluene ug/L 50 50.4 101 78-114 2-Hexanone ug/L 250 205 82 62-143 4-Chiorotoluene ug/L 250 204 82 60-143 Acetone ug/L 200 177 88 58-139 Benzene ug/L 50 50.9 102 76-114 Bromochioromethane ug/L 50 50.9 102 76-114 Bromochioromethane ug/L 50 44.4 97 72-121 Bromochioromethane ug/L 50 57.5 115 65-124 Carbon disulfide ug/L 50 51.2 </td <td>1,2-Dichloropropane</td> <td>ug/L</td> <td>50</td> <td>48.1</td> <td>96</td> <td>79-126</td> <td></td>	1,2-Dichloropropane	ug/L	50	48.1	96	79-126	
1,3-Dichlorobenzene ug/L 50 51.7 103 77-114 1,3-Dichloropropane ug/L 50 51.3 103 82-124 1,4-Dichlorobenzene ug/L 50 57.3 115 53-137 2,2-Dichloropropane ug/L 250 246 98 62-140 2,2-Dichloropropane ug/L 250 242 96 76-120 2-Hexanone ug/L 250 204 82 60-143 4-Chiorobluene ug/L 250 204 82 60-143 Accolein ug/L 200 202 88 44-156 Acrolein ug/L 200 177 88 58-139 Benzene ug/L 50 50.9 102 76-114 Bromochioromethane ug/L 50 44.4 97 71-22 Bromochioromethane ug/L 50 44.4 97 72-121 Bromochioromethane ug/L 50 45.8 110 79-113 Bromochioromethane ug/L 50 55.0	1,3,5-Trimethylbenzene	ug/L	50	46.2	92	78-118	
1,3-Dichloropropane ug/L 50 51.3 103 82-124 1,4-Dichlorobenzene ug/L 50 57.3 115 53.137 2-Bichloropropane ug/L 250 246 98 62-140 2-Chlorotoluene ug/L 250 246 98 62-140 2-Chlorotoluene ug/L 50 82 62-143 4-Chlorotoluene ug/L 50 50.4 101 78-114 4-Methyl-2-pentanone (MIBK) ug/L 250 204 82 60-143 Acetone ug/L 100 802 80 17-188 Acrolein ug/L 200 177 88 58-139 Benzene ug/L 50 53.2 106 78-117 Bromochoromethane ug/L 50 48.4 97 72-121 Bromodichoromethane ug/L 50 48.4 97 72-121 Bromodichoromethane ug/L 50 54.8 110 79-113 Carbon disulfide ug/L 50 54.8 101 <td>1,3-Dichlorobenzene</td> <td>ug/L</td> <td>50</td> <td>51.7</td> <td>103</td> <td>77-114</td> <td></td>	1,3-Dichlorobenzene	ug/L	50	51.7	103	77-114	
1,4-Dichlorobenzene ug/L 50 50.8 102 77-111 2,2-Dichloropropane ug/L 50 57.3 115 53-137 2-Butanone (MEK) ug/L 250 246 98 62-140 2-Chlorotoluene ug/L 50 48.2 96 76-120 2-Hexanone ug/L 50 50.4 101 78-114 4-Chlorotoluene ug/L 250 204 82 60-143 Acctone ug/L 250 204 82 60-143 Acrolein ug/L 200 177 88 58-139 Berzene ug/L 50 50.2 106 76-114 Bromobenzene ug/L 50 47.4 95 70-122 Bromochromethane ug/L 50 48.4 97 72-121 Bromochromethane ug/L 50 48.4 100 78-114 Bromochrom ug/L 50 59.0 118 68-132 Carbon tetrachloride ug/L 50 59.0 118 <	1,3-Dichloropropane	ug/L	50	51.3	103	82-124	
2.2-Dichloropropane ug/L 50 57.3 115 53.137 2-Butanone (MEK) ug/L 250 246 98 62-140 2-Chlorotoluene ug/L 250 205 82 62-143 2-Hexanone ug/L 50 50.4 101 78-114 4-Chiorotoluene ug/L 250 204 82 60-143 Acctone ug/L 250 204 82 60-143 Acctone ug/L 200 177 88 58-139 Benzene ug/L 50 53.2 106 78-117 Bromodichloromethane ug/L 50 47.4 95 70-122 Bromodichloromethane ug/L 50 48.4 97 72-121 Bromodichloromethane ug/L 50 48.4 97 72-121 Bromodichloromethane ug/L 50 59.0 118 68-132 Chlorobenzene ug/L 50 59.0 118 68-132 Chlorobenzene ug/L 50 51.2 102 </td <td>1,4-Dichlorobenzene</td> <td>ug/L</td> <td>50</td> <td>50.8</td> <td>102</td> <td>77-111</td> <td></td>	1,4-Dichlorobenzene	ug/L	50	50.8	102	77-111	
2-Butanone (MEK) ug/L 250 246 98 62-140 2-Chorotoluene ug/L 50 48.2 96 76-120 2-Hexanone ug/L 50 50.4 101 78-114 4-Chlorotoluene ug/L 250 204 82 60-143 Acetone ug/L 250 204 82 60-143 Acetone ug/L 250 204 82 60-143 Acetone ug/L 200 177 88 58-139 Benzene ug/L 50 53.2 106 78-117 Bromochoromethane ug/L 50 47.4 95 70-122 Bromochoromethane ug/L 50 44.1 88 66-117 Bromochoromethane ug/L 50 38.9 78 20-176 Carbon disulfide ug/L 50 57.5 115 65-124 Carbon disulfide ug/L 50 51.2 102 79-113	2,2-Dichloropropane	ug/L	50	57.3	115	53-137	
2-Chlorotoluene ug/L 50 48.2 96 76-120 2-Hexanone ug/L 250 205 82 62-143 4-Chlorotoluene ug/L 50 50.4 101 78-114 4-Methyl-2-pentanone (MIBK) ug/L 250 204 82 60-143 Acctone ug/L 250 200 88 44-156 Acrolerin ug/L 200 177 88 58-139 Benzene ug/L 50 53.2 106 78-117 Bromochloromethane ug/L 50 47.4 95 70-122 Bromodichloromethane ug/L 50 48.4 97 72-121 Bromodichloromethane ug/L 50 48.4 97 72-121 Bromodichloromethane ug/L 50 48.4 97 72-121 Bromodichloromethane ug/L 50 57.5 115 65-124 Carbon disulfide ug/L 50 51.2	2-Butanone (MEK)	ug/L	250	246	98	62-140	
2-Hexanone ug/L 250 205 82 62-143 4-Chlorotoluene ug/L 50 50.4 101 78-114 4-Methyl-2-pentanone (MIBK) ug/L 250 204 82 60-143 Acetone ug/L 250 220 88 44-156 Acrolein ug/L 200 177 88 58-139 Benzene ug/L 50 53.2 106 78-117 Bromobenzene ug/L 50 47.4 95 70-122 Bromodichloromethane ug/L 50 48.4 97 72-121 Bromodichloromethane ug/L 50 48.4 97 72-121 Bromodichloromethane ug/L 50 38.9 78 20-176 Carbon disulfide ug/L 50 57.5 115 66-124 Chloroethane ug/L 50 51.2 102 79-113 Chloroethane ug/L 50 53.1 106	2-Chlorotoluene	ug/L	50	48.2	96	76-120	
4-Chlorotoluene ug/L 50 50.4 101 7-114 4-Metryl-2-pentanone (MIBK) ug/L 250 204 82 60-143 Acetone ug/L 250 220 88 44-156 Acrolein ug/L 1000 802 80 17-189 Acrolein ug/L 200 177 88 58-139 Benzene ug/L 50 53.2 106 78-117 Bromobenzene ug/L 50 44.4 95 70-122 Bromodichloromethane ug/L 50 44.4 97 72-121 Bromodichloromethane ug/L 50 44.4 88 66-117 Bromodichloromethane ug/L 50 38.9 78 20-176 Carbon disulfide ug/L 50 59.0 118 68-132 Chlorobenzene ug/L 50 55.1 15 65-124 Carbon tetrachloride ug/L 50 55.0 70 36-132 Chloroberbane ug/L 50 53.1 106	2-Hexanone	ug/L	250	205	82	62-143	
4-Methyl-2-pentanone (MIBK) ug/L 250 204 82 60-143 Acctone ug/L 250 220 88 44-156 Acrolein ug/L 1000 802 80 17-189 Acrylonitrile ug/L 200 177 88 58-139 Benzene ug/L 50 53.2 106 78-117 Bromobenzene ug/L 50 47.4 95 70-122 Bromodichloromethane ug/L 50 44.1 88 66-117 Bromodichloromethane ug/L 50 44.1 88 66-117 Bromodichloromethane ug/L 50 38.9 78 20-176 Carbon disulfide ug/L 50 59.0 118 68-132 Chlorobenzene ug/L 50 59.0 118 68-132 Chlorobenzene ug/L 50 51.2 102 62-140 Chlorobenzene ug/L 50 51.2 102 62-140 Chlorobenzene ug/L 50 51.2 102<	4-Chlorotoluene	ug/L	50	50.4	101	78-114	
Acetone ug/L 250 220 88 44-156 Acrolein ug/L 1000 802 80 17-189 Acrylonitrile ug/L 50 53.2 106 78-117 Bromobenzene ug/L 50 50.9 102 76-114 Bromochloromethane ug/L 50 47.4 95 70-122 Bromochloromethane ug/L 50 44.1 88 66-117 Bromotifichoromethane ug/L 50 38.9 78 20-176 Carbon tetrachloride ug/L 50 54.8 110 79-113 Chlorobenzene ug/L 50 57.5 115 65-124 Carbon tetrachloride ug/L 50 51.2 102 62-140 Chloroform ug/L 50 53.0 70 36-132 Cis-1,2-Dichloroethene ug/L 50 53.1 106 74-122 Cis-1,3-Dichloropropene ug/L 50 52.8	4-Methyl-2-pentanone (MIBK)	ug/L	250	204	82	60-143	
Acrolein ug/L 1000 802 80 17:189 Acryleinitrile ug/L 200 177 88 58:139 Benzene ug/L 50 53:2 106 78:117 Bromobenzene ug/L 50 50:9 102 76:114 Bromochloromethane ug/L 50 47.4 95 70:122 Bromodichloromethane ug/L 50 48.4 97 72:121 Bromodichloromethane ug/L 50 38.9 78 20:176 Carbon disulfide ug/L 50 57.5 115 65:124 Carbon disulfide ug/L 50 59.0 118 68:132 Chlorobenzene ug/L 50 51.2 102 62:140 Chloroftane ug/L 50 53.0 70 36:132 Chloroftane ug/L 50 53.1 106 74:122 cis-1,3-Dichloropropene ug/L 50 54.8 98 <td>Acetone</td> <td>ug/L</td> <td>250</td> <td>220</td> <td>88</td> <td>44-156</td> <td></td>	Acetone	ug/L	250	220	88	44-156	
Acrylonitrile ug/L 200 177 88 58-139 Benzene ug/L 50 53.2 106 78-117 Bromobenzene ug/L 50 50.9 102 76-114 Bromochloromethane ug/L 50 48.4 97 72-121 Bromodichloromethane ug/L 50 48.4 97 72-121 Bromodichloromethane ug/L 50 48.4 97 72-121 Bromodichloromethane ug/L 50 38.9 78 20-176 Carbon disulfide ug/L 50 57.5 115 65-124 Carbon disulfide ug/L 50 51.2 102 62-140 Chlorobenzene ug/L 50 51.2 102 62-140 Chloroform ug/L 50 53.0 70 36-132 Cis-1,2-Dichloroethene ug/L 50 53.1 106 74-122 cis-1,2-Dichloroethane ug/L 50 52.8 <td>Acrolein</td> <td>ug/L</td> <td>1000</td> <td>802</td> <td>80</td> <td>17-189</td> <td></td>	Acrolein	ug/L	1000	802	80	17-189	
Benzene ug/L 50 53.2 106 78-117 Bromobenzene ug/L 50 50.9 102 76-114 Bromochloromethane ug/L 50 47.4 95 70-122 Bromodichloromethane ug/L 50 48.4 97 72-121 Bromoform ug/L 50 44.1 88 66-117 Bromomethane ug/L 50 38.9 78 20-176 Carbon disulfide ug/L 50 57.5 115 65-124 Carbon tetrachloride ug/L 50 54.8 110 79-113 Chlorobenzene ug/L 50 51.2 102 62-140 Chloroform ug/L 50 51.2 102 79-113 Chloropetnane ug/L 50 53.1 106 74-122 cis-1,2-Dichloroppene ug/L 50 51.2 102 79-126 Dibromomethane ug/L 50 52.8 106	Acrylonitrile	ua/L	200	177	88	58-139	
Bromobenzene ug/L 50 50.9 102 76-114 Bromochloromethane ug/L 50 47.4 95 70-122 Bromodichloromethane ug/L 50 48.4 97 72-121 Bromodichloromethane ug/L 50 48.4 97 72-121 Bromodithloromethane ug/L 50 38.9 78 20-176 Carbon disulfide ug/L 50 57.5 115 65-124 Carbon disulfide ug/L 50 59.0 118 68-132 Chlorobenzene ug/L 50 51.2 102 62-140 Chloroothane ug/L 50 53.0 70 36-132 Cis-1,2-Dichloroethane ug/L 50 53.1 106 74-122 Cis-1,3-Dichloropropene ug/L 50 53.1 106 75-121 Dibromochloromethane ug/L 50 52.8 106 75-123 Dichlorodifluoromethane ug/L 5	Benzene	ug/L	50	53.2	106	78-117	
Bromochloromethane ug/L 50 47.4 95 70-122 Bromodichloromethane ug/L 50 48.4 97 72-121 Bromodichloromethane ug/L 50 44.1 88 66-117 Bromodisulfide ug/L 50 38.9 78 20-176 Carbon disulfide ug/L 50 57.5 115 65-124 Carbon disulfide ug/L 50 59.0 118 68-132 Chlorobenzene ug/L 50 54.8 110 79-113 Chloroform ug/L 50 50.6 101 73-118 Chloroform ug/L 50 53.1 106 74-122 cis-1,2-Dichloroptene ug/L 50 53.1 106 74-122 cis-1,2-Dichloroptene ug/L 50 53.1 106 74-122 Dibromochloromethane ug/L 50 52.8 106 75-123 Dibromochloromethane ug/L 50	Bromobenzene	ua/L	50	50.9	102	76-114	
Bromodichloromethane ug/L 50 48.4 97 72-121 Bromoform ug/L 50 44.1 88 66-117 Bromomethane ug/L 50 38.9 78 20-176 Carbon disulfide ug/L 50 57.5 115 65-124 Carbon tetrachloride ug/L 50 54.8 110 79-113 Chlorobenzene ug/L 50 54.8 110 79-113 Chlorobenzene ug/L 50 51.2 102 62-140 Chlorobenzene ug/L 50 51.2 102 62-140 Chlorobenzene ug/L 50 51.2 102 62-140 Chloroberthane ug/L 50 51.2 102 79-113 Chloroberthene ug/L 50 51.2 102 79-126 Dibromochloromethane ug/L 50 52.8 106 75-123 Dichlorodifluoromethane ug/L 50 56.6	Bromochloromethane	ua/L	50	47.4	95	70-122	
Bromoform ug/L 50 44.1 88 66-117 Bromomethane ug/L 50 38.9 78 20-176 Carbon disulfide ug/L 50 57.5 115 65-124 Carbon tetrachloride ug/L 50 57.5 115 65-124 Chlorobenzene ug/L 50 54.8 110 79-113 Chlorothenzene ug/L 50 51.2 102 62-140 Chloroform ug/L 50 50.6 101 73-118 Chloromethane ug/L 50 53.1 106 74-122 cis-1,2-Dichloroptopene ug/L 50 53.1 106 74-122 cis-1,3-Dichloroptopene ug/L 50 52.8 106 75-123 Dibromochloromethane ug/L 50 66.7 133 27-172 Ethyl methacrylate ug/L 50 56.6 113 80-118 Ibioromethane ug/L 50 56.5	Bromodichloromethane	ug/L	50	48.4	97	72-121	
Bromomethane ug/L 50 38.9 78 20.176 Carbon disulfide ug/L 50 57.5 115 65-124 Carbon tetrachloride ug/L 50 59.0 118 68-132 Chlorobenzene ug/L 50 54.8 110 79-113 Chloroberhane ug/L 50 51.2 102 62-140 Chloroform ug/L 50 50.6 101 73-118 Chloroform ug/L 50 53.1 106 74-122 cis-1,2-Dichloroethene ug/L 50 51.2 102 79-126 Dibromochloromethane ug/L 50 51.2 102 79-126 Dibromochloromethane ug/L 50 66.7 133 27-172 Ethyl methacrylate ug/L 50 56.6 113 80-118 Hexachloro-1,3-butadiene ug/L 50 56.5 113 82-120 Methylene Chloride ug/L 50	Bromoform	ua/L	50	44.1	88	66-117	
Carbon disulfide ug/L 50 57.5 115 65-124 Carbon tetrachloride ug/L 50 59.0 118 68-132 Chlorobenzene ug/L 50 54.8 110 79-113 Chloroethane ug/L 50 51.2 102 62-140 Chloroethane ug/L 50 51.2 102 62-140 Chloroethane ug/L 50 51.2 102 62-140 Chloromethane ug/L 50 51.2 102 62-140 Chloromethane ug/L 50 51.2 102 79-136 Cis-1,2-Dichloroethene ug/L 50 51.2 102 79-126 Dibromochloromethane ug/L 50 52.8 106 75-123 Dibromochloromethane ug/L 50 56.6 113 80-118 Hetxachloro-1,3-butadiene ug/L 50 56.5 113 82-120 Methylenzene (Cumene) ug/L 50	Bromomethane	ug/L	50	38.9	78	20-176	
Carbon tetrachloride ug/L 50 59.0 118 68-132 Chlorobenzene ug/L 50 54.8 110 79-113 Chlorobenzene ug/L 50 51.2 102 62-140 Chlorooftrm ug/L 50 51.2 102 62-140 Chlorooftrm ug/L 50 50.6 101 73-118 Chlorooftrm ug/L 50 53.0 70 36-132 cis-1,2-Dichloroethene ug/L 50 53.1 106 74-122 cis-1,3-Dichloropropene ug/L 50 48.9 98 75-121 Dibromochloromethane ug/L 50 52.8 106 75-123 Dibromochloromethane ug/L 50 66.7 133 27-172 Ethyl methacrylate ug/L 50 56.6 113 80-118 Hexachloro-1,3-butadiene ug/L 50 56.5 113 82-120 Methyl-tert-butyl ether ug/L 50 </td <td>Carbon disulfide</td> <td>ua/L</td> <td>50</td> <td>57.5</td> <td>115</td> <td>65-124</td> <td></td>	Carbon disulfide	ua/L	50	57.5	115	65-124	
Chlorobenzene ug/L 50 54.8 110 79-113 Chloroethane ug/L 50 51.2 102 62-140 Chloroform ug/L 50 50.6 101 73-118 Chloromethane ug/L 50 35.0 70 36-132 cis-1,2-Dichloroethene ug/L 50 53.1 106 74-122 cis-1,3-Dichloropropene ug/L 50 51.2 102 79-126 Dibromochloromethane ug/L 50 52.8 106 75-121 Dibromothane ug/L 50 66.7 133 27-172 Ethyl methacrylate ug/L 50 56.6 113 80-118 Hexachloro-1,3-butadiene ug/L 50 56.5 113 82-120 Methyl-tert-butyl ether ug/L 50 56.5 113 82-120 Methylenzene ug/L 50 56.5 113 82-120 Methyl-tert-butyl ether ug/L 50 53.5 107 72-128 Methylene Chloride ug/L	Carbon tetrachloride	ua/L	50	59.0	118	68-132	
Chloroethane ug/L 50 51.2 102 62.140 Chloroform ug/L 50 50.6 101 73.118 Chloromethane ug/L 50 35.0 70 36.132 cis-1,2-Dichloroethene ug/L 50 53.1 106 74.122 cis-1,3-Dichloropropene ug/L 50 51.2 102 79.126 Dibromochloromethane ug/L 50 52.8 106 75.123 Dichlorodifluoromethane ug/L 50 66.7 133 27.172 Ethyl methacrylate ug/L 50 56.6 113 80-118 Hexachloro-1,3-butadiene ug/L 50 56.6 113 80-118 Isopropylbenzene (Cumene) ug/L 50 56.5 113 82.120 Methyl-tert-butyl ether ug/L 50 53.5 107 72.128 Methylene Chloride ug/L 50 50.3 101 70-121 n-Butylbenzene ug/L 50 50.3 101 70-121 n-Butylbenzene <td< td=""><td>Chlorobenzene</td><td>ua/L</td><td>50</td><td>54.8</td><td>110</td><td>79-113</td><td></td></td<>	Chlorobenzene	ua/L	50	54.8	110	79-113	
Chloroform ug/L 50 50.6 101 73-118 Chloromethane ug/L 50 35.0 70 36-132 cis-1,2-Dichloroethene ug/L 50 53.1 106 74-122 cis-1,3-Dichloropropene ug/L 50 51.2 102 79-126 Dibromochloromethane ug/L 50 52.8 106 75-123 Dibromoethane ug/L 50 66.7 133 27-172 Ethyl methacrylate ug/L 50 56.6 113 80-118 Hexachloro-1,3-butadiene ug/L 50 56.6 113 80-118 Hexachloro-1,3-butadiene ug/L 50 56.5 113 82-120 Methyl-tert-butyl ether ug/L 50 56.5 113 82-120 Methyl-tert-butyl ether ug/L 50 53.5 107 72-128 Methylene Chloride ug/L 50 53.5 107 72-128 Methylenzene ug/L 50 50.3 101 70-121 n-Butylbenzene u	Chloroethane	ua/L	50	51.2	102	62-140	
Chloromethane ug/L 50 35.0 70 36-132 cis-1,2-Dichloroethene ug/L 50 53.1 106 74-122 cis-1,3-Dichloropropene ug/L 50 51.2 102 79-126 Dibromochloromethane ug/L 50 48.9 98 75-121 Dibromomethane ug/L 50 66.7 133 27-172 Ethyl methacrylate ug/L 50 56.6 113 80-118 Hexachloro-1,3-butadiene ug/L 50 56.5 113 80-118 Isopropylbenzene (Cumene) ug/L 50 56.5 113 82-120 Methyl-tert-butyl ether ug/L 50 56.5 113 82-120 Methylene Chloride ug/L 50 56.5 113 82-120 Methylene Chloride ug/L 50 53.5 107 72-128 Methylene Chloride ug/L 50 50.3 101 70-121 n-Butylbenzene ug/L 50 50.3 101 70-121 n-Hexane u	Chloroform	ua/L	50	50.6	101	73-118	
cis-1,2-Dichloroethene ug/L 50 53.1 106 74-122 cis-1,3-Dichloropropene ug/L 50 51.2 102 79-126 Dibromochloromethane ug/L 50 48.9 98 75-121 Dibromomethane ug/L 50 52.8 106 75-123 Dichlorodifluoromethane ug/L 50 66.7 133 27-172 Ethyl methacrylate ug/L 50 56.6 113 80-118 Hexachloro-1,3-butadiene ug/L 50 72.8 146 71-141 L1 Iodomethane ug/L 50 56.5 113 82-120 Methyl-tert-butyl ether ug/L 50 56.5 113 82-120 Methylene Chloride ug/L 50 53.5 107 72-128 Methylene Chloride ug/L 50 53.5 107 72-128 Methylene Chloride ug/L 50 50.3 101 70-121 n-Butylbenzene ug/L 50 54.4 109 58-149 n-Propylbe	Chloromethane	ua/L	50	35.0	70	36-132	
cis-1,3-Dichloropropene ug/L 50 51.2 102 79-126 Dibromochloromethane ug/L 50 48.9 98 75-121 Dibromomethane ug/L 50 52.8 106 75-123 Dibromomethane ug/L 50 66.7 133 27-172 Ethyl methacrylate ug/L 200 178 89 72-134 Ethylbenzene ug/L 50 56.6 113 80-118 Hexachloro-1,3-butadiene ug/L 50 72.8 146 71-141 L1 Iodomethane ug/L 50 56.6 113 80-118 Hexachloro-1,3-butadiene ug/L 100 114 114 10-186 Isopropylbenzene (Cumene) ug/L 50 56.5 113 82-120 Methyl-tert-butyl ether ug/L 50 53.5 107 72-128 Methylene Chloride ug/L 50 50.3 101 70-121 n-Butylbenzene ug/L 50 54.4 109 58-149 n-Hexane	cis-1.2-Dichloroethene	ua/L	50	53.1	106	74-122	
Dibromochloromethane ug/L 50 60 60 75-121 Dibromomethane ug/L 50 52.8 106 75-123 Dichlorodifluoromethane ug/L 50 66.7 133 27-172 Ethyl methacrylate ug/L 200 178 89 72-134 Ethylbenzene ug/L 50 56.6 113 80-118 Hexachloro-1,3-butadiene ug/L 50 72.8 146 71-141 L1 Iodomethane ug/L 100 114 114 10-186 100 114 114 10-186 Isopropylbenzene (Cumene) ug/L 50 56.5 113 82-120 100 114 114 10-186 100 114 114 10-186 100 114 114 10-186 100 114 114 10-186 100 114 114 10-186 100 114 114 10-186 100 100 114 100 114 100 114 100 114 100 114 100 114 1	cis-1.3-Dichloropropene	ua/L	50	51.2	102	79-126	
Dibromomethane ug/L 50 52.8 106 75-123 Dichlorodifluoromethane ug/L 50 66.7 133 27-172 Ethyl methacrylate ug/L 200 178 89 72-134 Ethylbenzene ug/L 50 56.6 113 80-118 Hexachloro-1,3-butadiene ug/L 50 72.8 146 71-141 L1 Iodomethane ug/L 100 114 114 10-186 Isopropylbenzene (Cumene) ug/L 50 56.5 113 82-120 Methyl-tert-butyl ether ug/L 50 56.5 113 82-120 Methylene Chloride ug/L 50 53.5 107 72-128 Methylene Chloride ug/L 50 50.3 101 70-121 n-Butylbenzene ug/L 50 54.4 109 58-149 n-Propylbenzene ug/L 50 54.4 109 58-149 n-Propylbenzene ug/L 50 51.8 104 79-121	Dibromochloromethane	ua/L	50	48.9		75-121	
Dichlorodifluoromethane ug/L 50 66.7 133 27-172 Ethyl methacrylate ug/L 200 178 89 72-134 Ethyl methacrylate ug/L 50 56.6 113 80-118 Hexachloro-1,3-butadiene ug/L 50 72.8 146 71-141 L1 Iodomethane ug/L 100 114 114 10-186 Isopropylbenzene (Cumene) ug/L 50 56.5 113 82-120 Methyl-tert-butyl ether ug/L 50 53.5 107 72-128 Methylene Chloride ug/L 50 50.3 101 70-121 n-Butylbenzene ug/L 50 54.4 109 58-149 n-Propylbenzene ug/L 50 47.7 95 80-122 p-lsopropolytouluene ug/L 50 51.8 104 70-121	Dibromomethane	ua/L	50	52.8	106	75-123	
Ethyl methacrylate ug/L 200 178 89 72-134 Ethyl methacrylate ug/L 50 56.6 113 80-118 Hexachloro-1,3-butadiene ug/L 50 72.8 146 71-141 L1 Iodomethane ug/L 100 114 114 10-186 Isopropylbenzene (Cumene) ug/L 50 56.5 113 82-120 Methyl-tert-butyl ether ug/L 50 53.5 107 72-128 Methylene Chloride ug/L 50 50.3 101 70-121 n-Butylbenzene ug/L 50 54.4 109 58-149 n-Propylbenzene ug/L 50 47.7 95 80-122 p-lsopropyltoluene ug/L 50 51.8 104 79-121	Dichlorodifluoromethane	ua/L	50	66.7	133	27-172	
Ethylbenzene ug/L 50 56.6 113 80-118 Hexachloro-1,3-butadiene ug/L 50 72.8 146 71-141 L1 Iodomethane ug/L 100 114 114 10-186 Isopropylbenzene (Cumene) ug/L 50 56.5 113 82-120 Methyl-tert-butyl ether ug/L 50 53.5 107 72-128 Methylene Chloride ug/L 50 50.3 101 70-121 n-Butylbenzene ug/L 50 54.4 109 58-149 n-Propylbenzene ug/L 50 47.7 95 80-122 p-lsopropyltoluene ug/L 50 51.8 104 79-121	Ethyl methacrylate	ua/L	200	178	89	72-134	
Hexachloro-1,3-butadiene ug/L 50 72.8 146 71-141 L1 Iodomethane ug/L 100 114 114 10-186 Isopropylbenzene (Cumene) ug/L 50 56.5 113 82-120 Methyl-tert-butyl ether ug/L 50 53.5 107 72-128 Methylene Chloride ug/L 50 50.3 101 70-121 n-Butylbenzene ug/L 50 48.6 97 76-123 n-Hexane ug/L 50 54.4 109 58-149 n-Propylbenzene ug/L 50 47.7 95 80-122 p-lsopropyltoluene ug/L 50 51.8 104 79-121	Ethylbenzene	ua/L	50	56.6	113	80-118	
Iodomethane ug/L 100 114 114 10-186 Isopropylbenzene (Cumene) ug/L 50 56.5 113 82-120 Methyl-tert-butyl ether ug/L 50 53.5 107 72-128 Methylene Chloride ug/L 50 50.3 101 70-121 n-Butylbenzene ug/L 50 54.4 109 58-149 n-Propylbenzene ug/L 50 47.7 95 80-122 p-lsopropyltoluene ug/L 50 51.8 104 79-121	Hexachloro-1.3-butadiene	ua/l	50	72.8	146	71-141	_1
Isopropylbenzene (Cumene) ug/L 50 56.5 113 82-120 Methyl-tert-butyl ether ug/L 50 53.5 107 72-128 Methylene Chloride ug/L 50 50.3 101 70-121 n-Butylbenzene ug/L 50 48.6 97 76-123 n-Hexane ug/L 50 54.4 109 58-149 n-Propylbenzene ug/L 50 47.7 95 80-122 p-lsopropyltoluene ug/L 50 51.8 104 79-121	lodomethane	ua/L	100	114	114	10-186	
Methyl-tert-butyl ether ug/L 50 53.5 107 72-128 Methylene Chloride ug/L 50 50.3 101 70-121 n-Butylbenzene ug/L 50 48.6 97 76-123 n-Hexane ug/L 50 54.4 109 58-149 n-Propylbenzene ug/L 50 47.7 95 80-122 p-Isopropyltoluene ug/L 50 51.8 104 79-121	Isopropylbenzene (Cumene)	ua/L	50	56.5	113	82-120	
Methylene Chloride ug/L 50 50.0 101 70-121 n-Butylbenzene ug/L 50 48.6 97 76-123 n-Hexane ug/L 50 54.4 109 58-149 n-Propylbenzene ug/L 50 47.7 95 80-122 p-Isopropyltoluene ug/L 50 51.8 104 79-121	Methyl-tert-butyl ether	ua/l	50	53.5	107	72-128	
n-Butylbenzene ug/L 50 48.6 97 76-123 n-Hexane ug/L 50 54.4 109 58-149 n-Propylbenzene ug/L 50 47.7 95 80-122 p-Isopropyltoluene ug/L 50 51.8 104 79-121	Methylene Chloride	ua/l	50	50.3	101	70-121	
n-Hexane ug/L 50 54.4 109 58-149 n-Propylbenzene ug/L 50 47.7 95 80-122 n-Isopropyltoluene ug/L 50 51.8 104 79-121	n-Butylbenzene	ug/L	50	48.6	97	76-123	
n-Propylbenzene ug/L 50 47.7 95 80-122 n-lsopropyltoluene ug/L 50 51.8 104 79-121	n-Hexane	ug/L	50	54.4	109	58-149	
n-1 $n-1$	n-Propylbenzene	ua/l	50	47.7	.55	80-122	
	p-Isopropyltoluene	ua/l	50	51.8	104	79-121	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:The Butler Co.Pace Project No.:50225929

LABORATORY CONTROL SAMPLE: 2323504

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
sec-Butylbenzene	ug/L	50	50.1	100	78-124	
Styrene	ug/L	50	53.0	106	80-119	
tert-Butylbenzene	ug/L	50	40.4	81	62-102	
Tetrachloroethene	ug/L	50	66.8	134	76-124 L	_1
Toluene	ug/L	50	51.4	103	78-116	
trans-1,2-Dichloroethene	ug/L	50	60.1	120	73-121	
trans-1,3-Dichloropropene	ug/L	50	48.1	96	73-126	
trans-1,4-Dichloro-2-butene	ug/L	200	169	85	42-138	
Trichloroethene	ug/L	50	57.1	114	76-120	
Trichlorofluoromethane	ug/L	50	63.3	127	60-138	
Vinyl acetate	ug/L	200	151	75	29-200	
Vinyl chloride	ug/L	50	49.2	98	70-136	
Xylene (Total)	ug/L	150	165	110	79-119	
4-Bromofluorobenzene (S)	%.			95	85-114	
Dibromofluoromethane (S)	%.			97	80-122	
Toluene-d8 (S)	%.			94	85-114	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2323505					2323506	i						
	F	0005400004	MS Spike	MSD Spike	MC	MCD	MS	MOD	% Boo		Mox	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	% Rec	RPD	RPD	Qual
1.1.1.2-Tetrachloroethane	ua/L	ND	50	50	53.4	56.5	107	113	44-142	6		
1.1.1-Trichloroethane	ua/L	ND	50	50	55.6	58.5	111	117	48-145	5	20	
1,1,2,2-Tetrachloroethane	ug/L	ND	50	50	41.2	44.3	82	89	44-139	7	20	
1,1,2-Trichloroethane	ug/L	ND	50	50	46.6	47.8	93	96	49-140	2	20	
1,1-Dichloroethane	ug/L	ND	50	50	51.1	55.5	102	111	38-142	8	20	
1,1-Dichloroethene	ug/L	ND	50	50	55.9	60.9	112	122	46-148	8	20	
1,1-Dichloropropene	ug/L	ND	50	50	56.5	57.8	113	116	47-142	2	20	
1,2,3-Trichlorobenzene	ug/L	ND	50	50	57.0	58.6	114	117	34-139	3	20	
1,2,3-Trichloropropane	ug/L	ND	50	50	48.4	52.3	97	105	44-140	8	20	
1,2,4-Trichlorobenzene	ug/L	ND	50	50	58.8	59.5	118	119	31-142	1	20	
1,2,4-Trimethylbenzene	ug/L	ND	50	50	43.6	46.1	87	92	39-140	6	20	
1,2-Dibromoethane (EDB)	ug/L	ND	50	50	51.0	54.5	102	109	47-143	7	20	
1,2-Dichlorobenzene	ug/L	ND	50	50	49.7	52.5	99	105	40-135	6	20	
1,2-Dichloroethane	ug/L	ND	50	50	51.0	53.9	102	108	44-138	5	20	
1,2-Dichloropropane	ug/L	ND	50	50	50.7	52.7	101	105	53-142	4	20	
1,3,5-Trimethylbenzene	ug/L	ND	50	50	44.6	46.8	89	94	36-142	5	20	
1,3-Dichlorobenzene	ug/L	ND	50	50	52.0	53.9	104	108	37-136	4	20	
1,3-Dichloropropane	ug/L	ND	50	50	49.9	54.0	100	108	47-145	8	20	
1,4-Dichlorobenzene	ug/L	ND	50	50	49.8	52.7	100	105	38-132	6	20	
2,2-Dichloropropane	ug/L	ND	50	50	54.6	57.6	109	115	19-147	5	20	
2-Butanone (MEK)	ug/L	ND	250	250	208	224	83	90	36-153	7	20	
2-Chlorotoluene	ug/L	ND	50	50	44.3	47.1	89	94	37-143	6	20	
2-Hexanone	ug/L	ND	250	250	191	212	76	85	38-149	10	20	
4-Chlorotoluene	ug/L	ND	50	50	48.2	51.6	96	103	38-137	7	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	The Butler Co.
Pace Project No.:	50225929

MATRIX SPIKE & MATRIX SPI	IKE DUPL	ICATE: 232	3505		2323506							
			MS	MSD								
		50225488004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
4-Methyl-2-pentanone (MIBK)	ug/L	ND	250	250	187	206	75	82	43-145	9	20	
Acetone	ug/L	ND	250	250	199	210	79	84	21-161	5	20	
Acrolein	ug/L	ND	1000	1000	709	756	71	76	17-153	6	20	
Acrylonitrile	ug/L	ND	200	200	164	172	82	86	40-141	5	20	
Benzene	ug/L	ND	50	50	52.8	54.9	106	110	49-140	4	20	
Bromobenzene	ug/L	ND	50	50	49.1	52.3	98	105	39-137	6	20	
Bromochloromethane	ug/L	ND	50	50	45.5	51.1	91	102	50-132	12	20	
Bromodichloromethane	ua/L	ND	50	50	48.2	49.5	96	99	42-139	3	20	
Bromoform	ua/L	ND	50	50	44.5	47.3	89	95	29-135	6	20	
Bromomethane	ua/l	ND	50	50	41.4	45.8	83	92	10-162	10	20	
Carbon disulfide	ua/L	ND	50	50	51.0	54.3	102	109	33-144	6	20	
Carbon tetrachloride	ua/l	ND	50	50	56.8	59.2	114	118	45-148	4	20	
Chlorobenzene	ug/L	ND	50	50	52.4	55.3	105	110	47-135	5	20	
Chloroethane	ug/L	ND	50	50	46.4	45.5	93	91	41-149	2	20	
Chloroform	ug/L		50	50	51 7	53.7	103	107	40-136	4	20	
Chloromethane	ug/L		50	50	32.5	34.1	65	68	17-138	5	20	
cis-1 2-Dichloroethene	ug/L		50	50	55.2	57.6	110	115	46-143	4	20	
cis-1 3-Dichloropropene	ug/L		50	50	49.3	52.0	90	106	44-142	7	20	
Dibromochloromethane	ug/L		50	50	49.5	52.5	08	100	44-14Z	7	20	
Dibromomothano	ug/L		50	50	49.1	52.0	30 07	105	41-141	, 0	20	
Dichlorodifluoromethane	ug/L		50	50	40.3	/0.7	97	001	10-103	9	20	
Ethyl mothachylato	ug/L		200	200	47.0	49.7	95	99	10-195	4	20	
	ug/L		200	200	F2 7	104 547	105	92	40-140	0	20	
Euryidenzene	ug/∟		50	50	52.7 60.0	04.7 66.0	100	109	44-140	4	20	
Hexachioro-1,3-butadiene	ug/L	ND	50	100	08.8	66.3	138	133	27-158	4	20	
lodomethane	ug/L	ND	100	100	116	128	116	128	10-172	10	20	
(Cumene)	ug/L	ND	50	50	52.8	0.0C	106	112	43-148	6	20	
Methyl-tert-butyl ether	ua/l	ND	50	50	53.0	55.2	106	110	38-158	4	20	
Methylene Chloride	ua/l	ND	50	50	45.6	49.6	.00	99	33-140	8	20	
n-Butylbenzene	ug/L	ND	50	50	43.3	44.7	87	89	35-142	3	20	
n-Hexane	ug/L	ND	50	50		54.6	103	109	32-159	6	20	
n-Pronylbenzene	ug/L		50	50	46.2	48.7	02	97	37-145	5	20	
n-lsopropyltoluene	ug/L		50	50	48.7	50.0	92	100	37-143	3	20	
sec-Butylbenzene	ug/L		50	50	40.7	48.0	02	90	40-144	5	20	
Styropo	ug/L		50	50	40.0 50.0	40.0 52.6	102	107	27 1/2	5	20	
tort Butylbonzono	ug/L		50	50	20.9	40.4	102	107	25 114	3	20	
	ug/L		50	50	50.4 61.1	40.1	100	121	11 1/5	4	20	
	ug/L		50	50	40.0	00.0 51.0	122	100	41-140	6	20	
trans 1.2 Disblareathana	ug/∟		50	50	40.Z	51.2	90	102	40-139	5	20	
trans-1,2-Dichloropropono	ug/∟		50	50	30.9 46 F	59.7	02	100	40-140	5	20	
trans-1,3-Dichloro 2 butene	ug/∟	ND	50	00	40.0	30.Z	93	100	37-141	0	20	
	ug/L	ND	200	200	161	1/5	81	8/	10-166	8	20	
	ug/L	ND	50	50	53.1	56.8	106	114	43-147	1	20	
I fichlorofluoromethane	ug/L	ND	50	50	57.8	60.1	116	120	39-154	4	20	
vinyl acetate	ug/L	ND	200	200	138	147	69	73	10-181	6	20	
Vinyl chloride	ug/L	ND	50	50	43.6	47.0	87	94	49-153	8	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:The Butler Co.Pace Project No.:50225929

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2323	505		2323506							
			MS	MSD								
		50225488004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Xylene (Total)	ug/L	ND	150	150	158	165	105	110	44-147	5	20	
4-Bromofluorobenzene (S)	%.						93	95	85-114			
Dibromofluoromethane (S)	%.						96	98	80-122			
Toluene-d8 (S)	%.						92	93	85-114			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: The Butler Co.

Pace Project No.: 50225929

QC Batch:	5035 ⁻	14	Analysis Method:	EPA 8260
QC Batch Method:	EPA 8	3260	Analysis Description:	8260 MSV 5035A Volatile Organics
Associated Lab Same	oles:	50225929014, 50225929016, 50	225929027	

Matrix: Solid

METHOD BLANK: 2323509

Associated Lab Samples: 50225929014, 50225929016, 50225929027

Parameter Units Result Limit Analyzed Qualifiers 1,1,1-2-Tetrachloroethane mg/kg ND 0.0050 05/31/19 00:51 1,1,2-Trichloroethane mg/kg ND 0.0050 05/31/19 00:51 1,1,2-Trichloroethane mg/kg ND 0.0050 05/31/19 00:51 1,1-Dichloroethane mg/kg ND 0.0050 05/31/19 00:51 1,1-Dichloroethane mg/kg ND 0.0050 05/31/19 00:51 1,2-3-Trichloroeptene mg/kg ND 0.0050 05/31/19 00:51 1,2,3-Trichloropropane mg/kg ND 0.0050 05/31/19 00:51 1,2,4-Trichtorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,2,4-Trichtorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,2,4-Trichtorobenzene mg/kg ND 0.0050 05/31/19 0:51 1,2-Dichtoroperpane mg/kg ND 0.0050 05/31/19		Blank		Reporting		
1,1,1,2-Tetrachloroethane mg/kg ND 0.0050 05/31/19 00:51 1,1,1-Trichloroethane mg/kg ND 0.0050 05/31/19 00:51 1,1,2,2-Tetrachloroethane mg/kg ND 0.0050 05/31/19 00:51 1,1-Dichloroethane mg/kg ND 0.0050 05/31/19 00:51 1,1-Dichloroethane mg/kg ND 0.0050 05/31/19 00:51 1,1-Dichloropthane mg/kg ND 0.0050 05/31/19 00:51 1,2-3-Trichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,2-3-Trichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,2-4-Timethylbenzene mg/kg ND 0.0050 05/31/19 00:51 1,2-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,2-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,3-Dichlorobenzene mg/kg ND 0.0050 05/31/19	Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1-Trichloroethane mg/kg ND 0.0050 05/31/19 00:51 1,1,2-Trichloroethane mg/kg ND 0.0050 05/31/19 00:51 1,1-Dichloroethane mg/kg ND 0.0050 05/31/19 00:51 1,1-Dichloroethane mg/kg ND 0.0050 05/31/19 00:51 1,1-Dichloroethane mg/kg ND 0.0050 05/31/19 00:51 1,2.3-Trichloropropane mg/kg ND 0.0050 05/31/19 00:51 1,2.3-Trichloropropane mg/kg ND 0.0050 05/31/19 00:51 1,2.4-Trichloropropane mg/kg ND 0.0050 05/31/19 00:51 1,2-Dichlorobenzene mg/kg ND 0.0050 05/31/19 0:51 1,2-Dichloropenane mg/kg ND 0.0050 05/31/19 0:51 1,2-Dichloropenane mg/kg ND 0.0050 05/31/19 0:51 1,3-Dichloropropane mg/kg ND 0.0050 05/31/19 <t< td=""><td>1,1,1,2-Tetrachloroethane</td><td>mg/kg</td><td>ND</td><td>0.0050</td><td>05/31/19 00:51</td><td></td></t<>	1,1,1,2-Tetrachloroethane	mg/kg	ND	0.0050	05/31/19 00:51	
1,1,2-Tirchloroethane mg/kg ND 0.0050 05/31/19 00:51 1,1-Dichloroethane mg/kg ND 0.0050 05/31/19 00:51 1,1-Dichloroethane mg/kg ND 0.0050 05/31/19 00:51 1,1-Dichloroethene mg/kg ND 0.0050 05/31/19 00:51 1,2-3-Tirchloropene mg/kg ND 0.0050 05/31/19 00:51 1,2-3-Tirchloropene mg/kg ND 0.0050 05/31/19 00:51 1,2-4-Tirchlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,2-Dichloroethane mg/kg ND 0.0050 05/31/19 00:51 1,3-Dichloroethane mg/kg ND 0.0050 05/31/19 00:51 1,3-Dichloro	1,1,1-Trichloroethane	mg/kg	ND	0.0050	05/31/19 00:51	
1,12-Trichloroethane mg/kg ND 0.0050 05/31/19 00:51 1,1-Dichloroethane mg/kg ND 0.0050 05/31/19 00:51 1,1-Dichloropropene mg/kg ND 0.0050 05/31/19 00:51 1,2.3-Trichloroptopene mg/kg ND 0.0050 05/31/19 00:51 1,2.3-Trichloroptopane mg/kg ND 0.0050 05/31/19 00:51 1,2.4-Trichloroptopane mg/kg ND 0.0050 05/31/19 00:51 1,2.4-Trimothylbenzene mg/kg ND 0.0050 05/31/19 00:51 1,2-Dibromothane (EDB) mg/kg ND 0.0050 05/31/19 00:51 1,2-Dichloropethane mg/kg ND 0.0050 05/31/19 00:51 1,2-Dichloroptopane mg/kg ND 0.0050 05/31/19 00:51 1,3-Dichloroptopane mg/kg ND 0.0050 05/31/19 00:51 1,3-Dichloroptopane mg/kg ND 0.0050 05/31/19 00:51 1,3-Dichloroptopane mg/kg ND 0.0050 05/31/19 00:51	1,1,2,2-Tetrachloroethane	mg/kg	ND	0.0050	05/31/19 00:51	
1,1-Dichloroethane mg/kg ND 0.0050 05/31/19 00:51 1,1-Dichloropropene mg/kg ND 0.0050 05/31/19 00:51 1,2-Shrichloropropene mg/kg ND 0.0050 05/31/19 00:51 1,2,3-Trichloropenzene mg/kg ND 0.0050 05/31/19 00:51 1,2,4-Trichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,2,4-Trichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,2-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,2-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 1,2-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 1,2-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 1,3-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 1,3-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 1,4-Dichloropenzene mg/kg ND 0.0050 05/31/19 00:51 <t< td=""><td>1,1,2-Trichloroethane</td><td>mg/kg</td><td>ND</td><td>0.0050</td><td>05/31/19 00:51</td><td></td></t<>	1,1,2-Trichloroethane	mg/kg	ND	0.0050	05/31/19 00:51	
1,1-Dichloropthene mg/kg ND 0.0050 05/31/19 00:51 1,1-Dichloropthene mg/kg ND 0.0050 05/31/19 00:51 1,2.3-Trichloropthene mg/kg ND 0.0050 05/31/19 00:51 1,2.3-Trichloropthene mg/kg ND 0.0050 05/31/19 00:51 1,2.4-Trichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,2.4-Trichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,2-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,2-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,3-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,3-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 1,3-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 1,4-Dichlorobenzene mg/kg ND 0.0050 05/31/19	1,1-Dichloroethane	mg/kg	ND	0.0050	05/31/19 00:51	
1,1-Dichloropropene mg/kg ND 0.0050 05/31/19 00:51 1,2,3-Trichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,2,4-Trichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,2,4-Trichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,2-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,3-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,3-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 1,4-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 2,2-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 2,2-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 <td< td=""><td>1,1-Dichloroethene</td><td>mg/kg</td><td>ND</td><td>0.0050</td><td>05/31/19 00:51</td><td></td></td<>	1,1-Dichloroethene	mg/kg	ND	0.0050	05/31/19 00:51	
1,2,3-Trichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,2,3-Trichloroppane mg/kg ND 0.0050 05/31/19 00:51 1,2,4-Trichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,2-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,3-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,3-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,3-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 1,4-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 2,2-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 2,2-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 2,2-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 <td>1,1-Dichloropropene</td> <td>mg/kg</td> <td>ND</td> <td>0.0050</td> <td>05/31/19 00:51</td> <td></td>	1,1-Dichloropropene	mg/kg	ND	0.0050	05/31/19 00:51	
1.2.3-Trichloropropane mg/kg ND 0.0050 05/31/19 00:51 1.2.4-Trichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1.2Inimethylbenzene mg/kg ND 0.0050 05/31/19 00:51 1.2-Dibromoethane (EDB) mg/kg ND 0.0050 05/31/19 00:51 1.2-Dibromoethane mg/kg ND 0.0050 05/31/19 00:51 1.2-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1.3-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 1.3-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 1.3-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 1.4-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 2.2-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 2.2-Chlorotoluene mg/kg ND 0.0050 05/31/19 00:51 2-Hexanone mg/kg ND 0.010 05/31/19 00:51 2-Hexanone mg/kg ND 0.10 05/31/19 00:51 <t< td=""><td>1,2,3-Trichlorobenzene</td><td>mg/kg</td><td>ND</td><td>0.0050</td><td>05/31/19 00:51</td><td></td></t<>	1,2,3-Trichlorobenzene	mg/kg	ND	0.0050	05/31/19 00:51	
1,2,4-Trichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,2-Dibromoethane (EDB) mg/kg ND 0.0050 05/31/19 00:51 1,2-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,2-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,2-Dichloroptopane mg/kg ND 0.0050 05/31/19 00:51 1,3-Dichloroptopane mg/kg ND 0.0050 05/31/19 00:51 1,4-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 2,2-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 2,2-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 2,2-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 2,-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 <td>1,2,3-Trichloropropane</td> <td>mg/kg</td> <td>ND</td> <td>0.0050</td> <td>05/31/19 00:51</td> <td></td>	1,2,3-Trichloropropane	mg/kg	ND	0.0050	05/31/19 00:51	
1.2.4-Trimethylbenzene mg/kg ND 0.0050 05/31/19 00:51 1.2-Dibromoethane (EDB) mg/kg ND 0.0050 05/31/19 00:51 1.2-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1.2-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1.2-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1.3-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1.3-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1.3-Dichloropopane mg/kg ND 0.0050 05/31/19 00:51 1.4-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 2.2-Dichloropopane mg/kg ND 0.0050 05/31/19 00:51 2.4-Exanone mg/kg ND 0.0050 05/31/19 00:51 2-Hexanone mg/kg ND 0.10 05/31/19 00:51 4-Chlorotoluene mg/kg ND 0.10 05/31/19	1,2,4-Trichlorobenzene	mg/kg	ND	0.0050	05/31/19 00:51	
1,2-Dibromoethane (EDB) mg/kg ND 0.0050 05/31/19 00:51 1,2-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,2-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,2-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 1,3-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,3-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,4-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 2,2-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 2,2-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 2,2-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 2,2-Dichlorobluene mg/kg ND 0.100 05/31/19 00:51 2-Hexanone mg/kg ND 0.100 05/31/19 00:51 4-Methyl-2-pentanone (MIBK) mg/kg ND 0.10 05/31/19 00:51 Acetone mg/kg ND 0.10 05/31/19 00:51 A	1,2,4-Trimethylbenzene	mg/kg	ND	0.0050	05/31/19 00:51	
1,2-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,2-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 1,3-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 1,3-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,3-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,3-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 2,2-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 2,2-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 2,2-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 2,2-Dichlorobuene mg/kg ND 0.0050 05/31/19 00:51 2-Hexanone mg/kg ND 0.0050 05/31/19 00:51 4-Chlorotoluene mg/kg ND 0.0050 05/31/19 00:51 Acetone mg/kg ND 0.10 05/31/19 00:51 Acrylonitrile mg/kg ND 0.0050 05/31/19 00:51 Bromochloromethane </td <td>1,2-Dibromoethane (EDB)</td> <td>mg/kg</td> <td>ND</td> <td>0.0050</td> <td>05/31/19 00:51</td> <td></td>	1,2-Dibromoethane (EDB)	mg/kg	ND	0.0050	05/31/19 00:51	
1,2-Dichloroethane mg/kg ND 0.0050 05/31/19 00:51 1,2-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 1,3,5-Trimethylbenzene mg/kg ND 0.0050 05/31/19 00:51 1,3-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,3-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 1,4-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 2,2-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 2,2-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 2-Rutanone (MEK) mg/kg ND 0.0050 05/31/19 00:51 2-Hexanone mg/kg ND 0.0050 05/31/19 00:51 4-Chlorotoluene mg/kg ND 0.10 05/31/19 00:51 Acetone mg/kg ND 0.10 05/31/19 00:51 Acrolein mg/kg ND 0.0050 05/31/19 00:51 Bromochloromethane mg/kg ND 0.0050 05/31/19 00:51 Bromodichloromethane	1,2-Dichlorobenzene	mg/kg	ND	0.0050	05/31/19 00:51	
1,2-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 1,3-5-Trimethylbenzene mg/kg ND 0.0050 05/31/19 00:51 1,3-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,3-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,4-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 2,2-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 2,2-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 2-Chlorotoluene mg/kg ND 0.0050 05/31/19 00:51 2-Hexanone mg/kg ND 0.10 05/31/19 00:51 4-Chlorotoluene mg/kg ND 0.10 05/31/19 00:51 4-Chlorotoluene mg/kg ND 0.10 05/31/19 00:51 Acerone mg/kg ND 0.10 05/31/19 00:51 Acerolein mg/kg ND 0.100 05/31/19 00:51	1,2-Dichloroethane	mg/kg	ND	0.0050	05/31/19 00:51	
1,3,5-Trimethylbenzene mg/kg ND 0.0050 05/31/19 00:51 1,3-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,3-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 1,4-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 2,2-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 2-Butanone (MEK) mg/kg ND 0.0050 05/31/19 00:51 2-Hexanone mg/kg ND 0.0050 05/31/19 00:51 2-Hexanone mg/kg ND 0.0050 05/31/19 00:51 4-Chlorotoluene mg/kg ND 0.0050 05/31/19 00:51 4-Chlorotoluene mg/kg ND 0.0050 05/31/19 00:51 Accone mg/kg ND 0.10 05/31/19 00:51 Accone mg/kg ND 0.10 05/31/19 00:51 Acrolein mg/kg ND 0.0050 05/31/19 00:51 Br	1,2-Dichloropropane	mg/kg	ND	0.0050	05/31/19 00:51	
1,3-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 1,3-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 1,4-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 2,2-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 2-Butanone (MEK) mg/kg ND 0.025 05/31/19 00:51 2-Chlorotoluene mg/kg ND 0.0050 05/31/19 00:51 2-Hexanone mg/kg ND 0.0050 05/31/19 00:51 4-Chlorotoluene mg/kg ND 0.0050 05/31/19 00:51 4-Chlorotoluene mg/kg ND 0.0050 05/31/19 00:51 4-Chlorotoluene mg/kg ND 0.10 05/31/19 00:51 4-Chlorotoluene mg/kg ND 0.10 05/31/19 00:51 Acrolein mg/kg ND 0.10 05/31/19 00:51 Acrolein<	1,3,5-Trimethylbenzene	mg/kg	ND	0.0050	05/31/19 00:51	
1,3-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 1,4-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 2,2-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 2-Butanone (MEK) mg/kg ND 0.0050 05/31/19 00:51 2-Chlorotoluene mg/kg ND 0.0050 05/31/19 00:51 2-Hexanone mg/kg ND 0.0050 05/31/19 00:51 4-Chlorotoluene mg/kg ND 0.0050 05/31/19 00:51 4-Chlorotoluene mg/kg ND 0.0050 05/31/19 00:51 4-Chlorotoluene mg/kg ND 0.10 05/31/19 00:51 Acctone mg/kg ND 0.10 05/31/19 00:51 Acetone mg/kg ND 0.10 05/31/19 00:51 Bromochloromethane mg/kg ND 0.0050 05/31/19 00:51 Bromochloromethane mg/kg ND 0.0050 05/31/19 00:51	1,3-Dichlorobenzene	mg/kg	ND	0.0050	05/31/19 00:51	
1,4-Dichlorobenzene mg/kg ND 0.0050 05/31/19 00:51 2,2-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 2-Butanone (MEK) mg/kg ND 0.025 05/31/19 00:51 2-Chlorotoluene mg/kg ND 0.0050 05/31/19 00:51 2-Hexanone mg/kg ND 0.0050 05/31/19 00:51 4-Chlorotoluene mg/kg ND 0.0050 05/31/19 00:51 4-Chlorotoluene mg/kg ND 0.0025 05/31/19 00:51 4-Chlorotoluene mg/kg ND 0.025 05/31/19 00:51 4-Chlorotoluene mg/kg ND 0.10 05/31/19 00:51 Acrolein mg/kg ND 0.10 05/31/19 00:51 Acrolein mg/kg ND 0.0050 05/31/19 00:51 Bromobenzene mg/kg ND 0.0050 05/31/19 00:51 Bromochloromethane mg/kg ND 0.0050 05/31/19 00:51 Bro	1,3-Dichloropropane	mg/kg	ND	0.0050	05/31/19 00:51	
2,2-Dichloropropane mg/kg ND 0.0050 05/31/19 00:51 2-Butanone (MEK) mg/kg ND 0.025 05/31/19 00:51 2-Chlorotoluene mg/kg ND 0.0050 05/31/19 00:51 2-Hexanone mg/kg ND 0.10 05/31/19 00:51 4-Chlorotoluene mg/kg ND 0.0050 05/31/19 00:51 4-Chlorotoluene mg/kg ND 0.0050 05/31/19 00:51 4-Methyl-2-pentanone (MIBK) mg/kg ND 0.10 05/31/19 00:51 Acetone mg/kg ND 0.10 05/31/19 00:51 Acetone mg/kg ND 0.10 05/31/19 00:51 Acetone mg/kg ND 0.0050 05/31/19 00:51 Bromobenzene mg/kg ND 0.0050 05/31/19 00:51 Bromochloromethane mg/kg ND 0.0050 05/31/19 00:51 Bromodichloromethane	1,4-Dichlorobenzene	mg/kg	ND	0.0050	05/31/19 00:51	
2-Butanone (MEK) mg/kg ND 0.025 05/31/19 00:51 2-Chlorotoluene mg/kg ND 0.0050 05/31/19 00:51 2-Hexanone mg/kg ND 0.10 05/31/19 00:51 4-Chlorotoluene mg/kg ND 0.0050 05/31/19 00:51 4-Chlorotoluene mg/kg ND 0.025 05/31/19 00:51 4-Methyl-2-pentanone (MIBK) mg/kg ND 0.025 05/31/19 00:51 Acetone mg/kg ND 0.10 05/31/19 00:51 Acetone mg/kg ND 0.10 05/31/19 00:51 Acrolein mg/kg ND 0.10 05/31/19 00:51 Benzene mg/kg ND 0.0050 05/31/19 00:51 Bromobenzene mg/kg ND 0.0050 05/31/19 00:51 Bromochloromethane mg/kg ND 0.0050 05/31/19 00:51 Bromochloromethane mg/kg ND 0.0050 05/31/19 00:51 Bromodichloromethane mg/kg ND 0.0050 <td>2.2-Dichloropropane</td> <td>ma/ka</td> <td>ND</td> <td>0.0050</td> <td>05/31/19 00:51</td> <td></td>	2.2-Dichloropropane	ma/ka	ND	0.0050	05/31/19 00:51	
2-Chlorotoluene mg/kg ND 0.0050 05/31/19 00:51 2-Hexanone mg/kg ND 0.10 05/31/19 00:51 4-Chlorotoluene mg/kg ND 0.0050 05/31/19 00:51 4-Methyl-2-pentanone (MIBK) mg/kg ND 0.025 05/31/19 00:51 Acetone mg/kg ND 0.10 05/31/19 00:51 Acetone mg/kg ND 0.10 05/31/19 00:51 Acrolein mg/kg ND 0.10 05/31/19 00:51 Acrylonitrile mg/kg ND 0.10 05/31/19 00:51 Benzene mg/kg ND 0.0050 05/31/19 00:51 Bromochloromethane mg/kg ND 0.0050 05/31/19 00:51 Bromoform mg/kg ND 0.0050 05/31/19 00:51 Bromoform mg/kg ND 0.0050 05/31/19 00:51 Carbon disulfide mg/kg	2-Butanone (MEK)	ma/ka	ND	0.025	05/31/19 00:51	
2-Hexanone mg/kg ND 0.10 05/31/19 00:51 4-Chlorotoluene mg/kg ND 0.0050 05/31/19 00:51 4-Methyl-2-pentanone (MIBK) mg/kg ND 0.025 05/31/19 00:51 Acetone mg/kg ND 0.10 05/31/19 00:51 Acrolein mg/kg ND 0.10 05/31/19 00:51 Acrylonitrile mg/kg ND 0.10 05/31/19 00:51 Benzene mg/kg ND 0.0050 05/31/19 00:51 Bromobenzene mg/kg ND 0.0050 05/31/19 00:51 Bromochloromethane mg/kg ND 0.0050 05/31/19 00:51 Bromodichloromethane mg/kg ND 0.0050 05/31/19 00:51 Bromodichloromethane mg/kg ND 0.0050 05/31/19 00:51 Bromomethane mg/kg ND 0.0050 05/31/19 00:51 Carbon disulfide mg/kg ND 0.0050 05/31/19 00:51 Chlorobenzene mg/kg ND 0.005	2-Chlorotoluene	mg/kg	ND	0.0050	05/31/19 00:51	
4-Chlorotoluene mg/kg ND 0.0050 05/31/19 00:51 4-Methyl-2-pentanone (MIBK) mg/kg ND 0.025 05/31/19 00:51 Acetone mg/kg ND 0.10 05/31/19 00:51 Acrolein mg/kg ND 0.10 05/31/19 00:51 Acrylonitrile mg/kg ND 0.10 05/31/19 00:51 Benzene mg/kg ND 0.0050 05/31/19 00:51 Bromobenzene mg/kg ND 0.0050 05/31/19 00:51 Bromochloromethane mg/kg ND 0.0050 05/31/19 00:51 Bromodichloromethane mg/kg ND 0.0050 05/31/19 00:51 Bromodichloromethane mg/kg ND 0.0050 05/31/19 00:51 Bromodichloromethane mg/kg ND 0.0050 05/31/19 00:51 Bromodertane mg/kg ND 0.0050 05/31/19 00:51 Carbon disulfide mg/kg ND 0.0050 05/31/19 00:51 Chlorobenzene mg/kg ND 0.0050 05/31/19 00:51 Chlorobenzene mg/kg	2-Hexanone	ma/ka	ND	0.10	05/31/19 00:51	
4-Methyl-2-pentanone (MIBK) mg/kg ND 0.025 05/31/19 00:51 Acetone mg/kg ND 0.10 05/31/19 00:51 Acrolein mg/kg ND 0.10 05/31/19 00:51 Acrolein mg/kg ND 0.10 05/31/19 00:51 Acrylonitrile mg/kg ND 0.10 05/31/19 00:51 Benzene mg/kg ND 0.0050 05/31/19 00:51 Bromobenzene mg/kg ND 0.0050 05/31/19 00:51 Bromochloromethane mg/kg ND 0.0050 05/31/19 00:51 Bromodichloromethane mg/kg ND 0.0050 05/31/19 00:51 Bromodichloromethane mg/kg ND 0.0050 05/31/19 00:51 Bromodichloromethane mg/kg ND 0.0050 05/31/19 00:51 Bromodethane mg/kg ND 0.0050 05/31/19 00:51 Carbon disulfide mg/kg ND 0.0050 05/31/19 00:51 Carbon tetrachloride mg/kg ND 0.0050 05/31/19 00:51 Chlorobenzene mg/kg ND	4-Chlorotoluene	ma/ka	ND	0.0050	05/31/19 00:51	
Acetone mg/kg ND 0.10 05/31/19 00:51 Acrolein mg/kg ND 0.10 05/31/19 00:51 Acrolein mg/kg ND 0.10 05/31/19 00:51 Acrylonitrile mg/kg ND 0.10 05/31/19 00:51 Benzene mg/kg ND 0.0050 05/31/19 00:51 Bromobenzene mg/kg ND 0.0050 05/31/19 00:51 Bromochloromethane mg/kg ND 0.0050 05/31/19 00:51 Bromodichloromethane mg/kg ND 0.0050 05/31/19 00:51 Bromodichloromethane mg/kg ND 0.0050 05/31/19 00:51 Bromodichloromethane mg/kg ND 0.0050 05/31/19 00:51 Bromodethane mg/kg ND 0.0050 05/31/19 00:51 Bromodethane mg/kg ND 0.0050 05/31/19 00:51 Carbon disulfide mg/kg ND 0.0050 05/31/19 00:51 Chlorobenzene mg/kg ND 0.0050	4-Methyl-2-pentanone (MIBK)	ma/ka	ND	0.025	05/31/19 00:51	
Acrolein mg/kg ND 0.10 05/31/19 00:51 Acrylonitrile mg/kg ND 0.10 05/31/19 00:51 Benzene mg/kg ND 0.0050 05/31/19 00:51 Bromobenzene mg/kg ND 0.0050 05/31/19 00:51 Bromochloromethane mg/kg ND 0.0050 05/31/19 00:51 Bromodichloromethane mg/kg ND 0.010 05/31/19 00:51 Bromodichloromethane mg/kg ND 0.010 05/31/19 00:51 Carbon disulfide mg/kg ND 0.0050 05/31/19 00:51 <td< td=""><td>Acetone</td><td>ma/ka</td><td>ND</td><td>0.10</td><td>05/31/19 00:51</td><td></td></td<>	Acetone	ma/ka	ND	0.10	05/31/19 00:51	
Acrylonitrile mg/kg ND 0.10 05/31/19 00:51 Benzene mg/kg ND 0.0050 05/31/19 00:51 Bromobenzene mg/kg ND 0.0050 05/31/19 00:51 Bromochloromethane mg/kg ND 0.0050 05/31/19 00:51 Bromodichloromethane mg/kg ND 0.0050 05/31/19 00:51 Bromodichloromethane mg/kg ND 0.0050 05/31/19 00:51 Bromodichloromethane mg/kg ND 0.0050 05/31/19 00:51 Bromodermethane mg/kg ND 0.0050 05/31/19 00:51 Bromodermethane mg/kg ND 0.0050 05/31/19 00:51 Carbon disulfide mg/kg ND 0.0050 05/31/19 00:51 Carbon tetrachloride mg/kg ND 0.0050 05/31/19 00:51 Chloroethane mg/kg ND 0.0050 05/31/19 00:51 C	Acrolein	mg/kg	ND	0.10	05/31/19 00:51	
Benzene mg/kg ND 0.0050 05/31/19 00:51 Bromobenzene mg/kg ND 0.0050 05/31/19 00:51 Bromochloromethane mg/kg ND 0.0050 05/31/19 00:51 Bromodichloromethane mg/kg ND 0.0050 05/31/19 00:51 Bromodichloromethane mg/kg ND 0.0050 05/31/19 00:51 Bromoform mg/kg ND 0.0050 05/31/19 00:51 Bromotethane mg/kg ND 0.0050 05/31/19 00:51 Bromotethane mg/kg ND 0.0050 05/31/19 00:51 Bromotethane mg/kg ND 0.0050 05/31/19 00:51 Carbon disulfide mg/kg ND 0.0050 05/31/19 00:51 Chlorobenzene mg/kg ND 0.0050 05/31/19 00:51 Chloroform mg/kg ND 0.0050 05/31/19 00:51 Chloromethane	Acrylonitrile	ma/ka	ND	0.10	05/31/19 00:51	
Bromobenzene mg/kg ND 0.0050 05/31/19 00:51 Bromochloromethane mg/kg ND 0.0050 05/31/19 00:51 Bromodichloromethane mg/kg ND 0.0050 05/31/19 00:51 Bromodichloromethane mg/kg ND 0.0050 05/31/19 00:51 Bromoform mg/kg ND 0.0050 05/31/19 00:51 Bromothane mg/kg ND 0.0050 05/31/19 00:51 Bromothane mg/kg ND 0.0050 05/31/19 00:51 Bromothane mg/kg ND 0.010 05/31/19 00:51 Carbon disulfide mg/kg ND 0.0050 05/31/19 00:51 Carbon tetrachloride mg/kg ND 0.0050 05/31/19 00:51 Chlorobenzene mg/kg ND 0.0050 05/31/19 00:51 Chloroform mg/kg ND 0.0050 05/31/19 00:51 Chloromethane	Benzene	ma/ka	ND	0.0050	05/31/19 00:51	
Bromochloromethane mg/kg ND 0.0050 05/31/19 00:51 Bromodichloromethane mg/kg ND 0.0050 05/31/19 00:51 Bromodichloromethane mg/kg ND 0.0050 05/31/19 00:51 Bromoform mg/kg ND 0.0050 05/31/19 00:51 Bromomethane mg/kg ND 0.0050 05/31/19 00:51 Carbon disulfide mg/kg ND 0.010 05/31/19 00:51 Carbon tetrachloride mg/kg ND 0.0050 05/31/19 00:51 Chlorobenzene mg/kg ND 0.0050 05/31/19 00:51 Chloroform mg/kg ND 0.0050 05/31/19 00:51 Chloromethane mg/kg ND 0.0050 05/31/19 00:51 Chloroform mg/kg ND 0.0050 05/31/19 00:51 Chloromethane mg/kg ND 0.0050 05/31/19 00:51 Chloromethane<	Bromobenzene	ma/ka	ND	0.0050	05/31/19 00:51	
Bromodichloromethane mg/kg ND 0.0050 05/31/19 00:51 Bromoform mg/kg ND 0.0050 05/31/19 00:51 Bromomethane mg/kg ND 0.0050 05/31/19 00:51 Bromomethane mg/kg ND 0.0050 05/31/19 00:51 Carbon disulfide mg/kg ND 0.010 05/31/19 00:51 Carbon tetrachloride mg/kg ND 0.0050 05/31/19 00:51 Chlorobenzene mg/kg ND 0.0050 05/31/19 00:51 Chloroform mg/kg ND 0.0050 05/31/19 00:51 Chloromethane mg/kg ND 0.0050 05/31/19 00:51 Chloroform mg/kg ND 0.0050 05/31/19 00:51 Chloromethane mg/kg ND 0.0050 05/31/19 00:51 Chloromethane mg/kg ND 0.0050 05/31/19 00:51 Chloromethane	Bromochloromethane	ma/ka	ND	0.0050	05/31/19 00:51	
Bromoform mg/kg ND 0.0050 05/31/19 00:51 Bromomethane mg/kg ND 0.0050 05/31/19 00:51 Carbon disulfide mg/kg ND 0.010 05/31/19 00:51 Carbon disulfide mg/kg ND 0.010 05/31/19 00:51 Carbon tetrachloride mg/kg ND 0.0050 05/31/19 00:51 Chlorobenzene mg/kg ND 0.0050 05/31/19 00:51 Chloroethane mg/kg ND 0.0050 05/31/19 00:51 Chloroform mg/kg ND 0.0050 05/31/19 00:51 Chloromethane mg/kg ND 0.0050 05/31/19 00:51 Chloromethane mg/kg ND 0.0050 05/31/19 00:51 Chloromethane mg/kg ND 0.0050 05/31/19 00:51	Bromodichloromethane	ma/ka	ND	0.0050	05/31/19 00:51	
Bromomethane mg/kg ND 0.0050 05/31/19 00:51 Carbon disulfide mg/kg ND 0.010 05/31/19 00:51 Carbon tetrachloride mg/kg ND 0.0050 05/31/19 00:51 Chlorobenzene mg/kg ND 0.0050 05/31/19 00:51 Chloroethane mg/kg ND 0.0050 05/31/19 00:51 Chloroform mg/kg ND 0.0050 05/31/19 00:51 Chloromethane mg/kg ND 0.0050 05/31/19 00:51	Bromoform	ma/ka	ND	0.0050	05/31/19 00:51	
Carbon disulfide mg/kg ND 0.010 05/31/19 00:51 Carbon tetrachloride mg/kg ND 0.0050 05/31/19 00:51 Chlorobenzene mg/kg ND 0.0050 05/31/19 00:51	Bromomethane	ma/ka	ND	0.0050	05/31/19 00:51	
Carbon tetrachloride mg/kg ND 0.0050 05/31/19 00:51 Chlorobenzene mg/kg ND 0.0050 05/31/19 00:51 Chlorobenzene mg/kg ND 0.0050 05/31/19 00:51 Chlorobenzene mg/kg ND 0.0050 05/31/19 00:51 Chloroform mg/kg ND 0.0050 05/31/19 00:51 Chloromethane mg/kg ND 0.0050 05/31/19 00:51 Chloromethane mg/kg ND 0.0050 05/31/19 00:51 Chloromethane mg/kg ND 0.0050 05/31/19 00:51	Carbon disulfide	ma/ka	ND	0.010	05/31/19 00:51	
Chlorobenzene mg/kg ND 0.0050 05/31/19 00:51	Carbon tetrachloride	ma/ka	ND	0.0050	05/31/19 00:51	
Chloroethane mg/kg ND 0.0050 05/31/19 00:51 Chloroform mg/kg ND 0.0050 05/31/19 00:51 Chloromethane mg/kg ND 0.0050 05/31/19 00:51 cis-1 2-Dichloroethane mg/kg ND 0.0050 05/31/19 00:51	Chlorobenzene	ma/ka	ND	0.0050	05/31/19 00:51	
Chloroform mg/kg ND 0.0050 05/31/19 00:51 Chloromethane mg/kg ND 0.0050 05/31/19 00:51 cis-1 2-Dichloroethane mg/kg ND 0.0050 05/31/19 00:51	Chloroethane	ma/ka	ND	0.0050	05/31/19 00:51	
Chloromethane mg/kg ND 0.0050 05/31/19 00:51 cis-1 2-Dichloroethane mg/kg ND 0.0050 05/31/19 00:51	Chloroform	ma/ka	ND	0.0050	05/31/19 00:51	
cis-1 2-Dichloroothane ma/kg ND 0.0050 05/21/19.00:51	Chloromethane	ma/ka	ND	0.0050	05/31/19 00:51	
	cis-1.2-Dichloroethene	ma/ka	ND	0.0050	05/31/19 00:51	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	The Butler Co.
Pace Project No.:	50225929

METHOD BLANK: 232350	9	Matrix:	Solid		
Associated Lab Samples:	50225929014, 50225929016, 502	25929027			
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
cis-1,3-Dichloropropene	mg/kg	ND	0.0050	05/31/19 00:51	
Dibromochloromethane	mg/kg	ND	0.0050	05/31/19 00:51	
Dibromomethane	mg/kg	ND	0.0050	05/31/19 00:51	
Dichlorodifluoromethane	mg/kg	ND	0.0050	05/31/19 00:51	
Ethyl methacrylate	mg/kg	ND	0.10	05/31/19 00:51	
Ethylbenzene	mg/kg	ND	0.0050	05/31/19 00:51	
Hexachloro-1,3-butadiene	mg/kg	ND	0.0050	05/31/19 00:51	
Iodomethane	mg/kg	ND	0.10	05/31/19 00:51	
Isopropylbenzene (Cumene)	mg/kg	ND	0.0050	05/31/19 00:51	
Methyl-tert-butyl ether	mg/kg	ND	0.0050	05/31/19 00:51	
Methylene Chloride	mg/kg	ND	0.020	05/31/19 00:51	
n-Butylbenzene	mg/kg	ND	0.0050	05/31/19 00:51	
n-Hexane	mg/kg	ND	0.0050	05/31/19 00:51	
n-Propylbenzene	mg/kg	ND	0.0050	05/31/19 00:51	
p-Isopropyltoluene	mg/kg	ND	0.0050	05/31/19 00:51	
sec-Butylbenzene	mg/kg	ND	0.0050	05/31/19 00:51	
Styrene	mg/kg	ND	0.0050	05/31/19 00:51	
tert-Butylbenzene	mg/kg	ND	0.0050	05/31/19 00:51	
Tetrachloroethene	mg/kg	ND	0.0050	05/31/19 00:51	
Toluene	mg/kg	ND	0.0050	05/31/19 00:51	
trans-1,2-Dichloroethene	mg/kg	ND	0.0050	05/31/19 00:51	
trans-1,3-Dichloropropene	mg/kg	ND	0.0050	05/31/19 00:51	
trans-1,4-Dichloro-2-butene	mg/kg	ND	0.10	05/31/19 00:51	
Trichloroethene	mg/kg	ND	0.0050	05/31/19 00:51	
Trichlorofluoromethane	mg/kg	ND	0.0050	05/31/19 00:51	
Vinyl acetate	mg/kg	ND	0.10	05/31/19 00:51	
Vinyl chloride	mg/kg	ND	0.0050	05/31/19 00:51	
Xylene (Total)	mg/kg	ND	0.010	05/31/19 00:51	
4-Bromofluorobenzene (S)	%.	93	65-119	05/31/19 00:51	
Dibromofluoromethane (S)	%.	107	77-131	05/31/19 00:51	
Toluene-d8 (S)	%.	92	77-127	05/31/19 00:51	

LABORATORY CONTROL SAMPLE: 2323510

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	mg/kg	0.05	0.050	101	81-122	
1,1,1-Trichloroethane	mg/kg	0.05	0.054	108	72-125	
1,1,2,2-Tetrachloroethane	mg/kg	0.05	0.039	77	70-124	
1,1,2-Trichloroethane	mg/kg	0.05	0.044	88	77-122	
1,1-Dichloroethane	mg/kg	0.05	0.049	97	69-116	
1,1-Dichloroethene	mg/kg	0.05	0.051	101	70-127	
1,1-Dichloropropene	mg/kg	0.05	0.047	93	72-122	
1,2,3-Trichlorobenzene	mg/kg	0.05	0.048	95	56-118	
1,2,3-Trichloropropane	mg/kg	0.05	0.046	92	71-124	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:The Butler Co.Pace Project No.:50225929

LABORATORY CONTROL SAMPLE:	2323510					
5		Spike	LCS	LCS	% Rec	o
Parameter	Units	Conc	Result	% Rec	Limits	Qualifiers
1,2,4-Trichlorobenzene	mg/kg	0.05	0.045	89	50-123	
1,2,4-Trimethylbenzene	mg/kg	0.05	0.040	79	69-117	
1,2-Dibromoethane (EDB)	mg/kg	0.05	0.045	90	77-126	
1,2-Dichlorobenzene	mg/kg	0.05	0.044	89	73-115	
1,2-Dichloroethane	mg/kg	0.05	0.049	97	72-120	
1,2-Dichloropropane	mg/kg	0.05	0.045	90	77-125	
1,3,5-Trimethylbenzene	mg/kg	0.05	0.040	80	69-114	
1,3-Dichlorobenzene	mg/kg	0.05	0.044	88	66-115	
1,3-Dichloropropane	mg/kg	0.05	0.048	95	82-122	
1,4-Dichlorobenzene	mg/kg	0.05	0.042	84	66-114	
2,2-Dichloropropane	mg/kg	0.05	0.049	98	60-126	
2-Butanone (MEK)	mg/kg	0.25	0.21	84	57-145	
2-Chlorotoluene	mg/kg	0.05	0.043	85	71-117	
2-Hexanone	mg/kg	0.25	0.18	72	64-127	
4-Chlorotoluene	mg/kg	0.05	0.044	88	67-115	
4-Methyl-2-pentanone (MIBK)	mg/kg	0.25	0.19	74	60-123	
Acetone	mg/kg	0.25	0.20	80	33-174	
Acrolein	mg/kg	1	0.69	69	11-200	
Acrylonitrile	mg/kg	0.2	0.16	79	64-123	
Benzene	mg/kg	0.05	0.047	94	74-119	
Bromobenzene	mg/kg	0.05	0.046	92	73-114	
Bromochloromethane	mg/kg	0.05	0.045	90	70-118	
Bromodichloromethane	mg/kg	0.05	0.045	90	73-120	
Bromoform	mg/kg	0.05	0.042	84	65-118	
Bromomethane	mg/kg	0.05	0.036	72	37-160	
Carbon disulfide	mg/kg	0.05	0.048	97	65-123	
Carbon tetrachloride	mg/kg	0.05	0.052	104	71-125	
Chlorobenzene	mg/kg	0.05	0.048	96	76-113	
Chloroethane	mg/kg	0.05	0.044	88	59-148	
Chloroform	mg/kg	0.05	0.046	92	71-117	
Chloromethane	mg/kg	0.05	0.031	61	49-112	
cis-1,2-Dichloroethene	mg/kg	0.05	0.048	96	70-122	
cis-1,3-Dichloropropene	mg/kg	0.05	0.045	90	75-120	
Dibromochloromethane	mg/kg	0.05	0.045	90	78-121	
Dibromomethane	mg/kg	0.05	0.047	95	75-125	
Dichlorodifluoromethane	mg/kg	0.05	0.046	92	34-163	
Ethyl methacrylate	mg/kg	0.2	0.17	83	63-132	
Ethylbenzene	mg/kg	0.05	0.049	98	73-118	
Hexachloro-1,3-butadiene	mg/kg	0.05	0.060	120	61-121	
lodomethane	mg/kg	0.1	0.10	104	71-143	
Isopropylbenzene (Cumene)	mg/kg	0.05	0.049	99	74-121	
Methyl-tert-butyl ether	mg/kg	0.05	0.050	99	74-131	
Methylene Chloride	mg/kg	0.05	0.048	96	67-128	
n-Butylbenzene	mg/kg	0.05	0.037	74	61-116	
n-Hexane	mg/kg	0.05	0.039	78	59-119	
n-Propylbenzene	mg/kg	0.05	0.041	82	70-115	
p-Isopropyltoluene	mg/kg	0.05	0.043	86	68-117	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: The Butler Co. Pace Project No.: 50225929

LABORATORY CONTROL SAMPLE: 2323510

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
sec-Butylbenzene	mg/kg	0.05	0.043	86	72-117	
Styrene	mg/kg	0.05	0.047	93	75-120	
tert-Butylbenzene	mg/kg	0.05	0.036	71	55-100	
Tetrachloroethene	mg/kg	0.05	0.054	109	70-116	
Toluene	mg/kg	0.05	0.045	90	72-112	
trans-1,2-Dichloroethene	mg/kg	0.05	0.052	105	70-120	
trans-1,3-Dichloropropene	mg/kg	0.05	0.043	86	67-119	
trans-1,4-Dichloro-2-butene	mg/kg	0.2	0.15	74	57-124	
Trichloroethene	mg/kg	0.05	0.047	94	74-120	
Trichlorofluoromethane	mg/kg	0.05	0.050	100	59-139	
Vinyl acetate	mg/kg	0.2	0.13	67	70-134 L	2
Vinyl chloride	mg/kg	0.05	0.041	81	58-133	
Xylene (Total)	mg/kg	0.15	0.14	96	71-119	
4-Bromofluorobenzene (S)	%.			94	65-119	
Dibromofluoromethane (S)	%.			96	77-131	
Toluene-d8 (S)	%.			91	77-127	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	The Bu	utler Co.											
Pace Project No.:	50225	929											
OC Batch:	5026	77		Analy	usis Metho	d. E	PA 8082						
QC Batch Method:	EDA	35/6		Analy	veie Descri	intion: P	2082 CCS I	DCB					
QC Daten Method.		500050000	44 5000500004				002 000 1	CD					
Associated Lab San	npies:	502259290	14, 5022592901	6, 5022592	29027								
METHOD BLANK:	23201	89			Matrix: S	olid							
Associated Lab San	nples:	502259290	14, 5022592901	6, 5022592	29027								
				Blar	nk	Reporting							
Paran	neter		Units	Res	ult	Limit	Analy	/zed	Qualifie	rs			
PCB-1016 (Aroclor	1016)		mg/kg		ND	0.099	05/29/1	9 07:11					
PCB-1221 (Aroclor	1221)		mg/kg		ND	0.099	05/29/1	9 07:11					
PCB-1232 (Aroclor	1232)		mg/kg		ND	0.099	05/29/1	9 07:11					
PCB-1242 (Aroclor	1242)		mg/kg		ND	0.099	9 05/29/1	9 07:11					
PCB-1248 (Aroclor	1248)		mg/kg		ND	0.099	9 05/29/1	9 07:11					
PCB-1254 (Aroclor	1254)		mg/kg		ND	0.099	05/29/1	9 07:11					
PCB-1260 (Aroclor	1260)		mg/kg		ND	0.099	9 05/29/1	9 07:11					
letrachloro-m-xylen	e (S)		%.		72	26-140) 05/29/1	9 07:11					
		SAMPLE	2320190										
	Intol	O/ WIT EE.	2020100	Spike	IC	S	LCS	% R	ec				
Param	neter		Units	Conc.	Re	sult	% Rec	Lim	its	Qualifiers			
PCB-1016 (Aroclor	1016)		mg/kg	0.1	7	0.14	8	3	59-119		_		
PCB-1260 (Aroclor	1260)		mg/kg	0.1	7	0.14	8	6	57-119				
Tetrachloro-m-xylen	e (S)		%.				8)	26-140				
			ICATE: 2220	102		2220404							
MATRIX SPIRE & IV		SPIKE DUPL	LICATE: 2320	I93 MS	MSD	2320194							
			50225929014	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter		Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
PCB-1016 (Aroclor 1	1016)	 mg/kg		0.22	0.21	0.13	.12J	62	59	9 10-159		20	
PCB-1260 (Aroclor 1	1260)	mg/kg	ND	0.22	0.21	0.15	0.15	71	69) 11-131	4	20	
Tetrachloro-m-xylene	e (S)	%.						64	62	2 26-140			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: The Butler Co.

Pace Project No.: 50225929

QC Batch:	503548		Analysis Meth	nod: EF	PA 8082	
QC Batch Method:	EPA 3510		Analysis Desc	cription: 80	82 GCS PCB Mod	
Associated Lab Samp	oles: 50225929028					
METHOD BLANK: 2	2323592		Matrix:	Water		
Associated Lab Samp	oles: 50225929028					
			Blank	Reporting		
Parame	eter	Units	Result	Limit	Analyzed	Qualifiers
PCB-1016 (Aroclor 10)16)	ug/L	ND	0.10	05/31/19 10:58	
PCB-1221 (Aroclor 12	221)	ug/L	ND	0.20	05/31/19 10:58	
PCB-1232 (Aroclor 12	232)	ug/L	ND	0.10	05/31/19 10:58	
PCB-1242 (Aroclor 12	242)	ug/L	ND	0.10	05/31/19 10:58	
PCB-1248 (Aroclor 12	248)	ug/L	ND	0.10	05/31/19 10:58	
PCB-1254 (Aroclor 12	254)	ug/L	ND	0.10	05/31/19 10:58	
PCB-1260 (Aroclor 12	260)	ug/L	ND	0.10	05/31/19 10:58	
Tetrachloro-m-xylene	(S)	%.	69	10-148	05/31/19 10:58	

LABORATORY CONTROL SAMPLE: 2323593

_		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
PCB-1016 (Aroclor 1016)	ug/L	5	4.5	91	45-157	
PCB-1260 (Aroclor 1260)	ug/L	5	4.1	81	42-155	
Tetrachloro-m-xylene (S)	%.			72	10-148	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: The Butler Co.

Pace Project No.: 50225929

QC Batch:	502396	Analysis Method:	EPA 8270 by SIM LVE
QC Batch Method:	EPA 3510	Analysis Description:	8270 Water PAH LV by SIM MSSV
Associated Lab Sam	ples: 50225929028		
METHOD BLANK:	2318495	Matrix: Water	

METHOD BLANK: 2318495

Associated Lab Samples: 50	225929028
----------------------------	-----------

		Blank	Blank Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/L	ND	1.0	05/24/19 15:31	
2-Methylnaphthalene	ug/L	ND	1.0	05/24/19 15:31	
Acenaphthene	ug/L	ND	1.0	05/24/19 15:31	
Acenaphthylene	ug/L	ND	1.0	05/24/19 15:31	
Anthracene	ug/L	ND	0.10	05/24/19 15:31	
Benzo(a)anthracene	ug/L	ND	0.10	05/24/19 15:31	
Benzo(a)pyrene	ug/L	ND	0.10	05/24/19 15:31	
Benzo(b)fluoranthene	ug/L	ND	0.10	05/24/19 15:31	
Benzo(g,h,i)perylene	ug/L	ND	0.10	05/24/19 15:31	
Benzo(k)fluoranthene	ug/L	ND	0.10	05/24/19 15:31	
Chrysene	ug/L	ND	0.50	05/24/19 15:31	
Dibenz(a,h)anthracene	ug/L	ND	0.10	05/24/19 15:31	
Fluoranthene	ug/L	ND	1.0	05/24/19 15:31	
Fluorene	ug/L	ND	1.0	05/24/19 15:31	
Indeno(1,2,3-cd)pyrene	ug/L	ND	0.10	05/24/19 15:31	
Naphthalene	ug/L	ND	1.0	05/24/19 15:31	
Phenanthrene	ug/L	ND	1.0	05/24/19 15:31	
Pyrene	ug/L	ND	1.0	05/24/19 15:31	
2-Fluorobiphenyl (S)	%.	65	10-105	05/24/19 15:31	
p-Terphenyl-d14 (S)	%.	76	10-142	05/24/19 15:31	

LABORATORY CONTROL SAMPLE: 2318496

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/L		7.0	70	15-95	
2-Methylnaphthalene	ug/L	10	6.8	68	15-91	
Acenaphthene	ug/L	10	7.3	73	19-106	
Acenaphthylene	ug/L	10	7.7	77	24-117	
Anthracene	ug/L	10	7.5	75	34-113	
Benzo(a)anthracene	ug/L	10	8.0	80	41-141	
Benzo(a)pyrene	ug/L	10	8.0	80	42-148	
Benzo(b)fluoranthene	ug/L	10	8.6	86	36-157	
Benzo(g,h,i)perylene	ug/L	10	7.0	70	34-145	
Benzo(k)fluoranthene	ug/L	10	8.3	83	40-151	
Chrysene	ug/L	10	7.9	79	44-137	
Dibenz(a,h)anthracene	ug/L	10	7.3	73	34-146	
Fluoranthene	ug/L	10	8.5	85	39-146	
Fluorene	ug/L	10	7.9	79	30-116	
Indeno(1,2,3-cd)pyrene	ug/L	10	7.8	78	37-146	
Naphthalene	ua/L	10	6.9	69	15-96	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: The Butler Co. Pace Project No.: 50225929

LABORATORY CONTROL SAMPLE:	2318496					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Phenanthrene	ug/L	10	7.7	77	37-124	
Pyrene	ug/L	10	7.9	79	43-131	
2-Fluorobiphenyl (S)	%.			69	10-105	
p-Terphenyl-d14 (S)	%.			78	10-142	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	The Butler	Co.

Pace Project No.: 50225929

QC Batch:	502733	Analysis Method:	EPA 8270 by SIM
QC Batch Method:	EPA 3546	Analysis Description:	8270 MSSV PAH by SIM
Associated Lab Same	oles: 50225929014,50225929016,5	0225929027	

Matrix: Solid

METHOD BLANK: 2320346

Associated Lab Samples: 50225929014, 50225929016, 50225929027

_		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	mg/kg	ND	0.0050	05/28/19 16:05	
2-Methylnaphthalene	mg/kg	ND	0.0050	05/28/19 16:05	
Acenaphthene	mg/kg	ND	0.0050	05/28/19 16:05	
Acenaphthylene	mg/kg	ND	0.0050	05/28/19 16:05	
Anthracene	mg/kg	ND	0.0050	05/28/19 16:05	
Benzo(a)anthracene	mg/kg	ND	0.0050	05/28/19 16:05	
Benzo(a)pyrene	mg/kg	ND	0.0050	05/28/19 16:05	
Benzo(b)fluoranthene	mg/kg	ND	0.0050	05/28/19 16:05	
Benzo(g,h,i)perylene	mg/kg	ND	0.0050	05/28/19 16:05	
Benzo(k)fluoranthene	mg/kg	ND	0.0050	05/28/19 16:05	
Chrysene	mg/kg	ND	0.0050	05/28/19 16:05	
Dibenz(a,h)anthracene	mg/kg	ND	0.0050	05/28/19 16:05	
Fluoranthene	mg/kg	ND	0.0050	05/28/19 16:05	
Fluorene	mg/kg	ND	0.0050	05/28/19 16:05	
Indeno(1,2,3-cd)pyrene	mg/kg	ND	0.0050	05/28/19 16:05	
Naphthalene	mg/kg	ND	0.0050	05/28/19 16:05	
Phenanthrene	mg/kg	ND	0.0050	05/28/19 16:05	
Pyrene	mg/kg	ND	0.0050	05/28/19 16:05	
2-Fluorobiphenyl (S)	%.	71	23-107	05/28/19 16:05	
p-Terphenyl-d14 (S)	%.	84	16-117	05/28/19 16:05	

LABORATORY CONTROL SAMPLE: 2320347

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1-Methylnaphthalene	mg/kg	0.33	0.24	73	44-111	
2-Methylnaphthalene	mg/kg	0.33	0.25	75	45-111	
Acenaphthene	mg/kg	0.33	0.27	80	48-109	
Acenaphthylene	mg/kg	0.33	0.27	81	49-108	
Anthracene	mg/kg	0.33	0.27	80	44-104	
Benzo(a)anthracene	mg/kg	0.33	0.31	93	46-122	
Benzo(a)pyrene	mg/kg	0.33	0.27	80	31-156	
Benzo(b)fluoranthene	mg/kg	0.33	0.26	80	29-158	
Benzo(g,h,i)perylene	mg/kg	0.33	0.25	75	35-145	
Benzo(k)fluoranthene	mg/kg	0.33	0.26	79	33-150	
Chrysene	mg/kg	0.33	0.30	92	47-120	
Dibenz(a,h)anthracene	mg/kg	0.33	0.25	74	28-160	
Fluoranthene	mg/kg	0.33	0.30	91	49-121	
Fluorene	mg/kg	0.33	0.28	84	47-116	
Indeno(1,2,3-cd)pyrene	mg/kg	0.33	0.25	76	31-155	
Naphthalene	mg/kg	0.33	0.24	71	47-103	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:The Butler Co.Pace Project No.:50225929

LABORATORY CONTROL SAMPLE: 2320347 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Phenanthrene mg/kg 0.33 0.29 86 50-114 Pyrene mg/kg 0.33 0.30 91 49-114 2-Fluorobiphenyl (S) %. 76 23-107 p-Terphenyl-d14 (S) %. 94 16-117

MATRIX SPIKE & MATRIX	SPIKE DUPLIC	ATE: 2320	457		2320458	3						
			MS	MSD								
	5	0225929016	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1-Methylnaphthalene	mg/kg	ND	0.42	0.42	0.29	0.29	69	69	10-145	1	20	
2-Methylnaphthalene	mg/kg	ND	0.42	0.42	0.29	0.30	70	71	10-135	2	20	
Acenaphthene	mg/kg	ND	0.42	0.42	0.32	0.31	76	73	10-138	3	20	
Acenaphthylene	mg/kg	ND	0.42	0.42	0.31	0.30	73	71	11-133	2	20	
Anthracene	mg/kg	ND	0.42	0.42	0.32	0.32	77	75	10-131	2	20	
Benzo(a)anthracene	mg/kg	ND	0.42	0.42	0.31	0.30	74	71	10-158	3	20	
Benzo(a)pyrene	mg/kg	ND	0.42	0.42	0.26	0.25	62	60	10-174	2	20	
Benzo(b)fluoranthene	mg/kg	ND	0.42	0.42	0.28	0.24	66	56	10-184	15	20	
Benzo(g,h,i)perylene	mg/kg	ND	0.42	0.42	0.24	0.24	58	57	10-170	1	20	
Benzo(k)fluoranthene	mg/kg	ND	0.42	0.42	0.25	0.28	60	67	10-183	12	20	
Chrysene	mg/kg	ND	0.42	0.42	0.34	0.33	80	78	10-147	2	20	
Dibenz(a,h)anthracene	mg/kg	ND	0.42	0.42	0.27	0.27	66	63	10-166	3	20	
Fluoranthene	mg/kg	ND	0.42	0.42	0.30	0.31	73	73	10-158	2	20	
Fluorene	mg/kg	ND	0.42	0.42	0.32	0.32	75	75	10-142	0	20	
Indeno(1,2,3-cd)pyrene	mg/kg	ND	0.42	0.42	0.25	0.25	59	58	11-167	1	20	
Naphthalene	mg/kg	ND	0.42	0.42	0.29	0.30	70	72	13-128	4	20	
Phenanthrene	mg/kg	ND	0.42	0.42	0.29	0.30	69	71	10-164	3	20	
Pyrene	mg/kg	ND	0.42	0.42	0.32	0.32	75	76	10-152	1	20	
2-Fluorobiphenyl (S)	%.						71	70	23-107			
p-Terphenyl-d14 (S)	%.						75	69	16-117			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: Pace Project No.:	The Butl	er Co.								
Pace Project No.:	5022592	29								
QC Batch:	50279 ²	1		Analysis Meth	od:	SM 2540G				
QC Batch Method:	SM 254	40G		Analysis Desc	ription: I	Dry Weight/Pe	rcent N	loisture		
Associated Lab Sar	nples:	5022592900 5022592900 5022592901	1, 5022592900 8, 5022592900 5, 5022592901	2, 50225929003, 50 9, 50225929010, 50 6	225929004, 225929011, 5	50225929005, 50225929012,	50225 50225	929006, 5 929013, 5	50225929007, 50225929014,	
SAMPLE DUPLICA	TE: 232	0500								
				50225763001	Dup			Max		
Paran	neter		Units	Result	Result	RPD		RPD	Qualifiers	1
Percent Moisture			%	18.7	19.	0	2		5	—
SAMPLE DUPLICA	TE: 232	0501								
				50225929004	Dup			Max		
Paran	neter		Units	Result	Result	RPD		RPD	Qualifiers	,
Percent Moisture			%	19.4	18.	3	6		5 R1	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	The Butler Co.							
Pace Project No.:	50225929							
QC Batch:	502847		Analysis Meth	od: S	SM 2540G			
QC Batch Method:	SM 2540G		Analysis Desc	ription: [Dry Weight/Per	cent Moisture		
Associated Lab Sar	mples: 502259 502259	29017, 5022592901 29024, 5022592902	8, 50225929019, 50 5, 50225929026, 50	225929020, 9 225929027	50225929021,	50225929022	, 50225929023,	
SAMPLE DUPLICA	TE: 2320677							
			50225929018	Dup		Max		
Parar	meter	Units	Result	Result	RPD	RPD	Qualifiers	
Percent Moisture		%	16.9	15.8	3	6	5 R1	_
SAMPLE DUPLICA	TE: 2320678							
			50225957001	Dup		Max		
Parar	neter	Units	Result	Result	RPD	RPD	Qualifiers	
Percent Moisture		%	18.0	17.2	2	5	5	-

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

QUALIFIERS

Project: The Butler Co. Pace Project No.: 50225929

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-I Pace Analytical Services - Indianapolis

BATCH QUALIFIERS

Batch: 502396

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: 503548

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

ANALYTE QUALIFIERS

- CL The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low.
- H7 Re-extraction or re-analysis could not be performed within method holding time.
- L1 Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
- L2 Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results for this analyte in associated samples may be biased low.
- M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
- N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.
- R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	The Butler Co.
Pace Project No.:	50225929

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
50225929014	BC-GP7-SB1 (3-4)	EPA 3546	502677	EPA 8082	502765
50225929016	BC-GP8-SB1 (3-4)	EPA 3546	502677	EPA 8082	502765
50225929027	BC-SB-FD3	EPA 3546	502677	EPA 8082	502765
50225929028	BC-EB-SB1	EPA 3510	503548	EPA 8082	503619
50225929001	BC-GP1-SS1 (1-2)	EPA 3050	502185	EPA 6010	502614
50225929002	BC-GP1-SB1 (3-4)	EPA 3050	502185	EPA 6010	502614
50225929003	BC-GP2-SS1 (0.5-1.5)	EPA 3050	502185	EPA 6010	502614
50225929004	BC-GP2-SB1 (3-4)	EPA 3050	502185	EPA 6010	502614
50225929005	BC-GP3-SS1 (1-2)	EPA 3050	502185	EPA 6010	502614
50225929006	BC-GP3-SB1 (3-4)	EPA 3050	502185	EPA 6010	502614
50225929007	BC-GP4-SS1 (1-2)	EPA 3050	502185	EPA 6010	502614
50225929008	BC-GP4-SB1 (3-4)	EPA 3050	502185	EPA 6010	502614
50225929009	BC-GP5-SS1 (2-3)	EPA 3050	502185	EPA 6010	502614
50225929010	BC-GP5-SB1 (3.5-4)	EPA 3050	502185	EPA 6010	502614
50225929011	BC-GP6-SS1 (1-2)	EPA 3050	502185	EPA 6010	502614
50225929012	BC-GP6-SB1 (3-4)	EPA 3050	502185	EPA 6010	502614
50225929013	BC-GP7-SS1 (1-2)	EPA 3050	502185	EPA 6010	502614
50225929014	BC-GP7-SB1 (3-4)	EPA 3050	502185	EPA 6010	502614
50225929015	BC-GP8-SS1 (2-3)	EPA 3050	502185	EPA 6010	502614
50225929016	BC-GP8-SB1 (3-4)	EPA 3050	502185	EPA 6010	502614
50225929017	BC-GP9-SS1 (1-2)	EPA 3050	502185	EPA 6010	502614
50225929018	BC-GP9-SB1 (3-4)	EPA 3050	502186	EPA 6010	502616
50225929019	BC-GP10-SS1 (1-2)	EPA 3050	502185	EPA 6010	502614
50225929020	BC-GP11-SS1 (0.5-1.5)	EPA 3050	502185	EPA 6010	502614
50225929021	BC-GP12-SS1 (1-2)	EPA 3050	502185	EPA 6010	502614
50225929022	BC-GP13-SS1 (1-2)	EPA 3050	502186	EPA 6010	502616
50225929023	BC-GP14-SS1 (0.5-1.5)	EPA 3050	502186	EPA 6010	502616
50225929024	BC-GP15-SS1 (0.5-1)	EPA 3050	502186	EPA 6010	502616
50225929025	BC-SB-FD1	EPA 3050	502186	EPA 6010	502616
50225929026	BC-SB-FD2	EPA 3050	502186	EPA 6010	502616
50225929027	BC-SB-FD3	EPA 3050	502186	EPA 6010	502616
50225929005	BC-GP3-SS1 (1-2)	EPA 3010	506440	EPA 6010	506621
50225929028	BC-EB-SB1	EPA 3010	502382	EPA 6010	502657
50225929028	BC-EB-SB1	EPA 7470	502298	EPA 7470	502698
50225929001	BC-GP1-SS1 (1-2)	EPA 7471	502648	EPA 7471	502986
50225929002	BC-GP1-SB1 (3-4)	EPA 7471	502648	EPA 7471	502986
50225929003	BC-GP2-SS1 (0.5-1.5)	EPA 7471	502648	EPA 7471	502986
50225929004	BC-GP2-SB1 (3-4)	EPA 7471	502648	EPA 7471	502986
50225929005	BC-GP3-SS1 (1-2)	EPA 7471	502648	EPA 7471	502986
50225929006	BC-GP3-SB1 (3-4)	EPA 7471	502648	EPA 7471	502986
50225929007	BC-GP4-SS1 (1-2)	EPA 7471	502648	EPA 7471	502986
50225929008	BC-GP4-SB1 (3-4)	EPA 7471	502648	EPA 7471	502986
50225929009	BC-GP5-SS1 (2-3)	EPA 7471	502648	EPA 7471	502986
50225929010	BC-GP5-SB1 (3.5-4)	EPA 7471	502648	EPA 7471	502986

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	The Butler Co.
Pace Project No.:	50225929

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
50225929011	BC-GP6-SS1 (1-2)	EPA 7471	502648	EPA 7471	502986
50225929012	BC-GP6-SB1 (3-4)	EPA 7471	502648	EPA 7471	502986
50225929013	BC-GP7-SS1 (1-2)	EPA 7471	502648	EPA 7471	502986
50225929014	BC-GP7-SB1 (3-4)	EPA 7471	502648	EPA 7471	502986
50225929015	BC-GP8-SS1 (2-3)	EPA 7471	502648	EPA 7471	502986
50225929016	BC-GP8-SB1 (3-4)	EPA 7471	502648	EPA 7471	502986
50225929017	BC-GP9-SS1 (1-2)	EPA 7471	502648	EPA 7471	502986
50225929018	BC-GP9-SB1 (3-4)	EPA 7471	502650	EPA 7471	502989
50225929019	BC-GP10-SS1 (1-2)	EPA 7471	502648	EPA 7471	502986
50225929020	BC-GP11-SS1 (0.5-1.5)	EPA 7471	502648	EPA 7471	502986
50225929021	BC-GP12-SS1 (1-2)	EPA 7471	502648	EPA 7471	502986
50225929022	BC-GP13-SS1 (1-2)	EPA 7471	502650	EPA 7471	502989
50225929023	BC-GP14-SS1 (0.5-1.5)	EPA 7471	502650	EPA 7471	502989
50225929024	BC-GP15-SS1 (0.5-1)	EPA 7471	502650	EPA 7471	502989
50225929025	BC-SB-FD1	EPA 7471	502650	EPA 7471	502989
50225929026	BC-SB-FD2	EPA 7471	502650	EPA 7471	502989
50225929027	BC-SB-FD3	EPA 7471	502650	EPA 7471	502989
50225929028	BC-EB-SB1	EPA 3510	502396	EPA 8270 by SIM LVE	502505
50225929014	BC-GP7-SB1 (3-4)	EPA 3546	502733	EPA 8270 by SIM	502939
50225929016	BC-GP8-SB1 (3-4)	EPA 3546	502733	EPA 8270 by SIM	502939
50225929027	BC-SB-FD3	EPA 3546	502733	EPA 8270 by SIM	502939
50225929028	BC-EB-SB1	EPA 8260	503512		
50225929029	BC-TB1	EPA 8260	503512		
50225929014	BC-GP7-SB1 (3-4)	EPA 8260	503514		
50225929016	BC-GP8-SB1 (3-4)	EPA 8260	503514		
50225929027	BC-SB-FD3	EPA 8260	503514		
50225929001	BC-GP1-SS1 (1-2)	SM 2540G	502791		
50225929002	BC-GP1-SB1 (3-4)	SM 2540G	502791		
50225929003	BC-GP2-SS1 (0.5-1.5)	SM 2540G	502791		
50225929004	BC-GP2-SB1 (3-4)	SM 2540G	502791		
50225929005	BC-GP3-SS1 (1-2)	SM 2540G	502791		
50225929006	BC-GP3-SB1 (3-4)	SM 2540G	502791		
50225929007	BC-GP4-SS1 (1-2)	SM 2540G	502791		
50225929008	BC-GP4-SB1 (3-4)	SM 2540G	502791		
50225929009	BC-GP5-SS1 (2-3)	SM 2540G	502791		
50225929010	BC-GP5-SB1 (3.5-4)	SM 2540G	502791		
50225929011	BC-GP6-SS1 (1-2)	SM 2540G	502791		
50225929012	BC-GP6-SB1 (3-4)	SM 2540G	502791		
50225929013	BC-GP7-SS1 (1-2)	SM 2540G	502791		
50225929014	BC-GP7-SB1 (3-4)	SM 2540G	502791		
50225929015	BC-GP8-SS1 (2-3)	SM 2540G	502791		
50225929016	BC-GP8-SB1 (3-4)	SM 2540G	502791		
50225929017	BC-GP9-SS1 (1-2)	SM 2540G	502847		
50225929018	BC-GP9-SB1 (3-4)	SM 2540G	502847		

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	The Butler Co.
Pace Project No.:	50225929

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
50225929019	BC-GP10-SS1 (1-2)	SM 2540G	502847		
50225929020	BC-GP11-SS1 (0.5-1.5)	SM 2540G	502847		
50225929021	BC-GP12-SS1 (1-2)	SM 2540G	502847		
50225929022	BC-GP13-SS1 (1-2)	SM 2540G	502847		
50225929023	BC-GP14-SS1 (0.5-1.5)	SM 2540G	502847		
50225929024	BC-GP15-SS1 (0.5-1)	SM 2540G	502847		
50225929025	BC-SB-FD1	SM 2540G	502847		
50225929026	BC-SB-FD2	SM 2540G	502847		
50225929027	BC-SB-FD3	SM 2540G	502847		

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A	lient Information:	Section B	Projec	t Info	mation:					Sect	tion (C	nation														Г	Page			Of	
Company	IWM Consulting	Report To:	N	lark /	Anderson				1	Atte	ntion		Mark	And	lers	n	-			-		-	1				-	1 uge		1	01	
Address	1015 Production Road	Copy To:								Com	pany	Nan	te: S	ame	2		-					-	1									
Fort Way	ne, Indiana 46808	1								Add	ress:																Re	gulatory	Agency	1		
Email To,	manderson@iwmconsult.com	Purchase	Order I	Va						Pace	e Qua	ate R	eferen	ce						_								IDEM -	RCG			
Phone	260-442-3017 Fax	Client Proj	ect ID:	Th	e Butler Co.	19716-	10			Pace	e Pro	ect N	Aanag	91	CI	nris E	Boyl	e								-	S	tate / Lo	cation			
Requested I	Due Date/TAT	Container	Order	Vumbe	er:				_	Pace	e Pro	file #:	_	-	_	-	-	_	_		_	-	1					India	na			
			T	Τ		COLLEC	TED		Π		_	-	Pres	erva	tives	5	-	NIA	N	N	N	N	N	l	a Filte	red (П	-			
	SAMPLE ID Materia One Character per box. Proc.	CODE Water DW WT ater WW P	and an in 1981	S C=COMP)	START/G	RAB	E		CTION												uZ+											
ITEM#	(A-Z, 0-9 / , -) Sol/Sol Sample Ids must be unique Air Other Tasue	S. OL WP AR OT TS	MATDIV CODE (san unlid	SAMPLE TYPE (G=GRAE	DATE	TIME	DATE	TIME	SAMPLE TEMP AT COLLE	# OF CONTAINERS	Unpreserved	H2SO4	HN03 HCI	NaOH	Na2S203	Methanol	TRIZMA	Analyses Test	VOCs (8260)	PAHs (8270SIM)	Total RCRA BMetals+Cu-	PCB's (8082)	MS/MSD							072	259	29
1	BC-GP1-SS1(1-2)		SI	G	5/21/2019			1537		3	3			T	T	1				1	x		T							1	301	
2	BC-GP1-SB1(3-4)		SI	G	5/21/2019			1540		3	3	1		1	1	1	1	1		1	x		1			+	++		1	-	02	
3	BC-GP2-SS1(0 5-1 5)			G	5/21/2019			1623		3	3	1	1	1	1	1	-	1		1	x	1	1			+	11		1	-0	102	
4	BC-GP2 \$81/3.4)			6	5/21/2019		-	1626		9	9	1	+	+	1	1	1			1	x	1	x			+			1		C.U	
5	DC-CP2-CD1(3-4)			0	5/2//2013			1020		3	3	-	+	+	+	+	-	1		-	x		1		-	+	++	++	1	-6	NE	
0			SL	G	5/21/2019			1000		3	3	+	+	+	+	+	-			-	Y	+	-			+		++	+		200	
0	BC-GP3-SB1(3-4)		SL	G	5/21/2019			1600	-	2	-	-+	+	+	+	+	-			-	1°	+	-		-	+	++	+	+		200	
	BC-GP4-SS1(1-2)		SL	G	5/21/2019			1616	-	-	-	+	-	+	+	-	-		-	-	1	-	-		+	+		++	-	- (201	
8	BC-GP4-SB1(3-4)		SL	G	5/21/2019			1620	-	3	3	-	-	+	+	-			-	-	X	-	-	-	-	+		++	-		008	
9	BC-GP5-SS1(2-3)		SL	G	5/21/2019			1547	_	3	3	-	-	1							X					-					009	
10	BC-GP5-SB1(3.5-4)		SL	G	5/21/2019			1550		3	3										X										010	
11	BC-GP6-SS1(1-2)		SL	G	5/21/2019			1709		3	3			1	1						x										011	_
12	BC-GP6-SB1(3-4)		SI	G	5/21/2019		-	1711		3	3			1	1						x		1			T			1		012	-
13	BC CP7 \$\$1/1 2)		-	10	E/21/2010			1650		-	1	1	-	T	1	1					1.	1	1		-	+	++		-	-	212	
	ADDITIONAL COMMENTS		RE	LINAL	ISHED BY / AP	FILIATIO	N	DATE		1	TIME	1	Ċ	7	ACC	#DE	0.81	erg	FFILI	IATI	ON		-	1	DATE	T	TIME	1	SAM	PLEC	ONDITIC	NS
USE RCG			1/100	la	LATAA	160	M	5/29	19	1	40	0	F	A	~	X	L		~	•				5.	11	93	2001	2	1			
TCLP Metals	and Cr VI samples Do Not Run hold for further		T	VM	11	1000		5/22	119	8	25	-	k	-	2	5	2	-	1					ka.	7.16	o	75	1.4	1.	1	~	
instructions	sand of a samples. Be not hall, note to think			VU	<u>vo</u> .			01-5	-	0	30	1	F			7	~	-	2	-				PL	3-17	t	15	1.2	1	1	4	Y
									1		-	1					-	-	-	-	-			1	-	1		1				
						SAMPLE	RNAME	AND SIGN	ITA	RE		-	-				-	-	-		-		-	-		_		-	-		B	
						PRIM	T Name	of SAMPL	ER:			-		-	-	-							-					1	In VIN	Nu lan	lied Cool	act (Y/N)
						SIG	ATURE	of SAMPL	ER:		Co	h	~	p	w	10	- Ci	ARO	LYN	DAT	NDRI TE Si	CK gned	1:		5/2	2/20)19	TEMP IN C	no houlono	In navianav	Custody Sea (Y/N)	Samples Inta

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT All relevant fields must be completed accurately.

ction A quired Cl	ient Information:	Section B Required P	roject	Infor	mation:				s	ection voic	on C te Infe	ormat	tion:	_								_					E	Page	11	1	Of	
mpany	IWM Consulting	Report To:	M	ark /	Anderson				-	Ittent	ion:	Ma	ark /	Ande	erso	n					_	-										
dress:	1015 Production Road	Gepy To.		-						ddre	ec.	ame.	Sa	ime	-				-		-	+	-	-	-		Da	mintor		moou		-
all To:	manderson@iwmconsult.com	Purchase O	rder N	0					P	ace	Quote	Refe	rence	e:		-	-	-	-	-	_	t	-		-	-	TOR	IDEM	- RC	G		
one	260-442-3017 Fax	Client Proje	ct ID:	Th	e Butler Co.	19716-	10		P	ace	Proje	ci Ma	nager	r.	Ch	ris Bo	oyle		_				325				5	tate / 1	oca	tion		
quested (Due Date/TAT:	Container O	rder N	lumbe	er,				P	ace	Profile	#				-	_	_	_	-				_	_	_	_	Indi	iana		_	_
			-	-					-			_	_	_	_		+	21	-	R	eque	sted.	Analy	sis Filte	ered	(YIN)	-	-				
			1		-	COLLEC	TED			+	T	Pr	rese	rvati	ives	-	1		N	N	N	N	N		-	-	+	+	H	-		
	SAMPLE ID	ater DW WT WT	odes to (eii)	C=COMP)	STARTIG	RAB	E	ND	NOIL												u2											
	One Character per box. Preduit (4.2, 0.9 /, -) Gutfeol Sample Ids must be unique Wup Ar Dree Treue	SL OL WF AR GT TS	MATRIX CODE (see valid of	SAMPLE TYPE (G=GRAB	DATE	TIME	DATE	TIME	SAMPLE TEMP AT COLLEC	# OF CONTAINERS	Unpreserved H2SO4	HNO3	HCI	NaDH	Na2S2O3	Methanol	Other	Analyses lest	VOCs (8260)	PAHs (8270SIM)	Tolal RCRA 8Melals+Cu+	PCB's (8082)	MS/MSD						Residual Chlorine (Y/N)	500	259	29
1	BC-GP7-SB1(3-4)		SL	G	5/21/2019			1701	Τ	7	4					2	1	Τ	x	x	x	x									014	
	BC-GP8-SS1(2-3)		SL	G	5/21/2019			1719		3	3										x									_	015	
	BC-GP8-SB1(3-4)		SL	G	5/21/2019			1721		7	4					2	1		x	x	x	x									016	
	BC-GP9-SS1(1-2)		SL	G	5/21/2019			1631		3	3							T			x										017	
	BC-GP9-SB1(3-4)		SL	G	5/21/2019			1637		9	9										x		x								018	
	BC-GP10-SS1(1-2)		SL	G	5/21/2019			1211	T	3	3							T			x										019	
	BC-GP11-SS1(0.5-1.5)		SL	G	5/21/2019			951		3	3	1	1					T	1		x										020	
	BC-GP12-SS1(1-2)		SL	G	5/20/2019			955		3	3		T					T			x									-	021	
	BC-GP13-SS1(1-2)		SL	G	5/20/2019			1710		3	3										x										022	
	BC-GP14-SS1(0.5-1.5)		SL	G	5/20/2019			1207		3	3										x										023	
	BC-GP15-SS1(0.5-1)		SL	G	5/21/2019			1450		3	3							L			x										524	
	BC-SB-FD1	_	SL	G	5/20/2019			NO TIME		3	3										x										025	
	BC-SB-FD2		SL	G	5/21/2019			NO TIME		3	3										x									-	026	
	BC-SB-FD3		SL	G	5/21/2019			NO TIME		4	1					1	2		x	x	x	x								6	527	
	BC-EB-SB1		w	G	5/20/2019			945		8	4	1	3						x	x	x	x									028	
	BC-TB1		w	G	5/21/2019			NO TIME					3	1					x												029	
	ADDITIONAL COMMENTS	1	IRE	una	UNAHED BY / AF	FILIATIO	N	DATE	7	Π	ME	Г	(1	CCE	CE	PAT	APP	ILIA	TIO	N		T	DATE		т	IME			SAMPLE	CONDITIO	DNS
RCG		M	In	T	Unah	15	im	5/22	A	1	40	0	R	é	~	P	5	2		~			3	.22	15	20	on ,	1				
Metals	and Cr VI samples. Do Not Run, hold for further		No	in	1	1		523	19	83	15		L	P	5	-	7	1	2	-	5	-	5	23-1	9	87	30	64	1,1	2 4	V	1
clions				_							_	-			_	_			_	_		_	-					-		1	1	-
				_	_						_	1	_	_	_	_	_	-	_	_	_	_			_	_	_	+	_		5	-
						SAMPLE	RNAME	AND SIGNA	TUR	e	-	-		-		-			_		_	_	-		-		11	_		(NIN)	Coole	
						PR	NT Name	of SAMPLE	R																					8	pei o	
									-		_				_	_	GA	ROL	YNF	EN	DRIC	K	_		_	_			0	uo p	Cen	10
						SIG	WATURE	OF SAMPLE	R:		C	11.		P	12	5			0	ATE	Sig	ned:		5/3	221	201	9	9	N-II	eive	tody ()	
											U	m	d	P	w	-								5/	221	201	9	Tev.	LEW	Reck	Cust	

Pace Analytical Project #: 502	25929		Date/Time and Initials of person examining contents	-19		
Courier: Fed Ex UPS USPS Client		Commercial	Pace Other NOW			
Tracking #:						
Custody Seal on Cooler/Box Present: Yes	🗆 No	•	Seals Intact: Yes No			
Packing Material: Bubble Wrap Bubble	Bags	□ None	Other			
Thermometer: 123456 ABCDEF	Ice Type:	Wet	Blue None I Samples collected today and on ice:	□ Yes	D No	
Cooler Temperature: 1.0 11.4 10.8 11.7			Lice Visible in Sample Containers?	□ Yes	TNO	
(Initial/Corrected) Temp should be above freezing to 6°C			If temp, is Over 6°C or under 0°C, was the PM Notified?			
All discre	pancies v	vill be writt	en out in the comments section below.	100		
	Yes	No		Yes	No	N/A
Are samples from West Virginia?		/	All containers needing acid/base pres. Have been			
USDA Regulated Soils? (ID, NY, WA, OR,CA, NM, TX, OK, AR, LA, TN, AL, MS, NC, SC, GA, FL, or Puerto Rico)		1	container with a septum cap or preserved with HCI. All containers needing preservation are found to be in compliance with EPA recommendation (<2, >9, >12) unless otherwise noted.	/		
Chain of Custody Present:	/		Circle: HNO3 H2SO4 NaOH NaOH/ZnAc			
Chain of Custody Filled Out:	Xies	/	Dissolved Metals field filtered?:			/
Short Hold Time Analysis (<72hr)?: Analysis: てて	1		Headspace Wisconsin Sulfide			1
Time 5035A TC placed in Freezer or Short Holds To La	b:		Residual Chlorine Check (SVOC 625 Pest/PCB 608) Residual Chlorine Check (Total/Amenable/Free Cyanide)	<u>Present</u>	<u>Absent</u>	N/A
Rush TAT Requested:		/	Headspace in VOA Vials (>6mm):		/	
Containers Intact?:	/		Trip Blank Present?:	1		بر الم المنبع
Sample Label (IDs/Dates/Times) Match COC?: Except TCs, which only require sample ID	/		Trip Blank Custody Seals?:	1		and and the
Comments: (DC Unrelinguished						

Sample	Container	Count
--------	-----------	-------

Sample Line		<u>~</u>	-					Proje	ct #	50	225	929	_				Bulk SBS Cit DI		 SI/Wt/NAI Mater/Non- Dus Liquid) 			
1 2 3 4 5	VG9H	AGOU	AG1H	AG1U	AG2U	AG3S	NGFU	SP5T	BP1U	BP2N	BP2S	BP2U	BP3B	BP3N	BP3S	BP3U	R		Matri) (Soil/ Aque	pH <2	pH >9	pH>12
2 3 4 5					1.8		3				E.			19					SL		1.5	
3 4 5							1							-	-							
4 5																		_				
5									1												_	
				-			1															
6							1											-				
7																						
8																			1			
9																						
10																					-	
11			1																			
12	1		i i				V															
13 ontainer Codes	20						3												L			

	G	lass		Plastic / Misc.								
DG9B	40mL Na Bisulfate amber vial	AGOU	100mL unpreserved amber glass	BP1A	1 liter NaOH, Asc Acid plastic	BP3U	250mL unpreserved plastic					
DG9H	40mL HCL amber voa vial	AG1H	1 liter HCL amber glass	BP1N	1 liter HNO3 plastic	BP3Z	250mL NaOH, Zn Ac plastic					
DG9M	40mL MeOH clear vial	AG1S	1 liter H2SO4 amber glass	BP1S	1 liter H2SO4 plastic							
DG9P	40mL TSP amber vial	AG1T	1 liter Na Thiosulfate amber glass	BP1U	1 liter unpreserved plastic	AF	Air Filter					
DG9S	40rnL H2SO4 amber vial	AG1U	1liter unpreserved amber glass	BP1Z	1 liter NaOH, Zn, Ac	C	Air Cassettes					
DG9T	40mL Na Thio amber vial	AG2N	500mL HNO3 amber glass	BP2A	500mL NaOH, Asc Acid plastic	R	Terra core kit					
DG9U	40mL unpreserved amber vial	AG2S	500mL H2SO4 amber glass	BP2N	500mL HNO3 plastic	SP5T	120mL Coliform Na Thiosulfate					
VG9H	40mL HCL clear vial	AG2U	500mL unpreserved amber glass	BP2O	500mL NaOH plastic	U	Summa Can					
VG9T	40mL Na Thio. clear vial	AG3S	250mL H2SO4 glass amber	BP2S	500mL H2SO4 plastic	ZPLC	Ziploc Bag					
VG9U	40mL unpreserved clear vial	AG3U	250mL unpreserved amber glass	BP2U	500mL unpreserved plastic							
VGFX	40mL w/hexane wipe vial	BG1H	1 liter HCL clear glass	BP2Z	500mL NaOH, Zn Ac							
VSG	Headspace septa vial & HCL	BG1S	1 liter H2SO4 clear glass	BP3B	250mL NaOH plastic							
WGKU	8oz unpreserved clear jar	BG1T	1 liter Na Thiosulfate clear glass	BP3N	250mL HNO3 plastic							
WGFU	4oz clear soil jar	BG1U	1 liter unpreserved glass	BP3S	250mL H2SO4 plastic							
JGFU	4oz unpreserved amber wide	BG3H	250mL HCI Clear Glass									
		BG3U	250mL Unpreserved Clear Glass				Page 86 of 1					

- a.t. -

									5	ampl	e Cor	ntaine	er Co	unt								
CLIENT: \WM COC PAGE _ of <u> 2</u> COC ID# Sample Line 责责]			Project # 50225929										SBS E		atrix SI/Mt/NAL toil/Mater/Non- queous Liquid)							
Item	0>	AGOU	AG1H	AG1U	AG2U	AG3S	WGFU	SP51	BP1U	BP2N	BP2S	BP20	BP3B	BP3N	BP3S	BP30	R	1 1	≥ © ∢	pH <2	pH >9	pH>12
1					1	-	3		1					- 41			3		SL		515	
2							3					1 = 1		-								
3							3										3	_				
4							3		1													
5							9			-												
6					1		3			-												
7					İ		-															i a cues
8		L			-					-												
9		-	1												1							_
10	1		1					-											-			-
11					1																1	
12		-	1				V												V			

Container Codes

	G	lass	;	Plastic / Misc.								
DG9B	40mL Na Bisulfate amber vial	AGOU	100mL unpreserved amber glass	BP1A	1 liter NaOH, Asc Acid plastic	BP3U	250mL unpreserved plastic					
DG9H	40mL HCL amber voa vial	AG1H	1 liter HCL amber glass	BP1N	1 liter HNO3 plastic	BP3Z	250mL NaOH, Zn Ac plastic					
DG9M	40mL MeOH clear vial	AG1S	1 liter H2SO4 amber glass	BP1S	1 liter H2SO4 plastic							
DG9P	40mL TSP amber vial	AG1T	1 liter Na Thiosulfate amber glass	BP1U	1 liter unpreserved plastic	AF	Air Filter					
DG9S	40rnL H2SO4 amber vial	AG1U	1liter unpreserved amber glass	BP1Z	1 liter NaOH, Zn, Ac	C	Air Cassettes					
DG9T	40mL Na Thio amber vial	AG2N	500mL HNO3 amber glass	BP2A	500mL NaOH, Asc Acid plastic	R	Terra core kit					
DG9U	40mL unpreserved amber vial	AG2S	500mL H2SO4 amber glass	BP2N	500mL HNO3 plastic	SP5T	120mL Coliform Na Thiosulfate					
VG9H	40mL HCL clear vial	AG2U	500mL unpreserved amber glass	BP2O	500mL NaOH plastic	U	Summa Can					
VG9T	40mL Na Thio. clear vial	AG3S	250mL H2SO4 glass amber	BP2S	500mL H2SO4 plastic	ZPLC	Ziploc Bag					
VG9U	40mL unpreserved clear vial	AG3U	250mL unpreserved amber glass	BP2U	500mL unpreserved plastic							
VGFX	40mL w/hexane wipe vial	BG1H	1 liter HCL clear glass	BP2Z	500mL NaOH, Zn Ac							
VSG	Headspace septa vial & HCL	BG1S	1 liter H2SO4 clear glass	BP3B	250mL NaOH plastic							
WGKU	8oz unpreserved clear jar	BG1T	1 liter Na Thiosulfate clear glass	BP3N	250mL HNO3 plastic							
WGFU	4oz clear soil jar	BG1U	1 liter unpreserved glass	BP3S	250mL H2SO4 plastic							
JGFU	4oz unpreserved amber wide	BG3H	250mL HCI Clear Glass									
		BG3U	250mL Unpreserved Clear Glass	2			Page 87 of 102					

.IEN	τ:	WM	1		1					S	ample	e Coi	ntaine	er Co	unt					: 50	225	929	9	
C PA C ID# mple Item	GE	2 HEDN	Z AGOU	AG1H	AG1U	AG2U	AG3S	WGFU	Proje SP5T	ct #	50 BP2N	225 BP2S	929 BP2U	BP3B	BP3N	BP3S	BP3U	R ROLK SBS	5022592	9	Matrix SI/ (Soil/Wate Aqueous	pH <2	pH >9	pH>1
1	13							3							ce.						SL		140	1
2	14							1										3			SL	1		
3	15	3	4												1						WT	~		I
4	16	3	[wT			Î
5			I													1								
6															_	1					 		_	£
7																					- -		-	· · · · ·
8																 			1)))			
9				1				1								1					1			1
10					1											1					· 	;		í T
11																ļ								1
12																						1		

	G	lass		Plastic / Misc.									
DG9B	40mL Na Bisulfate amber vial	AGOU	100mL unpreserved amber glass	BP1A	1 liter NaOH, Asc Acid plastic	BP3U	250mL unpreserved plastic						
DG9H	40mL HCL amber voa vial	AG1H	1 liter HCL amber glass	BP1N	1 liter HNO3 plastic	BP3Z	250mL NaOH, Zn Ac plastic						
DG9M	40mL MeOH clear vial	AG1S	1 liter H2SO4 amber glass	BP1S	1 liter H2SO4 plastic								
DG9P	40mL TSP amber vial	AG1T	1 liter Na Thiosulfate amber glass	BP1U	1 liter unpreserved plastic	AF	Air Filter						
DG9S	40mL H2SO4 amber vial	AG1U	1liter unpreserved amber glass	BP1Z	1 liter NaOH, Zn, Ac	C	Air Cassettes						
DG9T	40mL Na Thio amber vial	AG2N	500mL HNO3 amber glass	BP2A	500mL NaOH, Asc Acid plastic	R	Terra core kit						
DG9U	40mL unpreserved amber vial	AG2S	500mL H2SO4 amber glass	BP2N	500mL HNO3 plastic	SP5T	120mL Coliform Na Thiosulfate						
VG9H	40mL HCL clear vial	AG2U	500mL unpreserved amber glass	BP2O	500mL NaOH plastic	U	Summa Can						
VG9T	40mL Na Thio. clear vial	AG3S	250mL H2SO4 glass amber	BP2S	500mL H2SO4 plastic	ZPLC	Ziploc Bag						
VG9U	40mL unpreserved clear vial	AG3U	250mL unpreserved amber glass	BP2U	500mL unpreserved plastic								
VGFX	40mL w/hexane wipe vial	BG1H	1 liter HCL clear glass	BP2Z	500mL NaOH, Zn Ac								
VSG	Headspace septa vial & HCL	BG1S	1 liter H2SO4 clear glass	BP3B	250mL NaOH plastic								
WGKU	8oz unpreserved clear jar	BG1T	1 liter Na Thiosulfate clear glass	BP3N	250mL HNO3 plastic								
WGFU	4oz clear soil jar	BG1U	1 liter unpreserved glass	BP3S	250mL H2SO4 plastic								
JGFU	4oz unpreserved amber wide	BG3H	250mL HCI Clear Glass										
		BG3U	250mL Unpreserved Clear Glass				Page 88 of 1						

e 24

ANALYTICAL REPORT July 08, 2019

Pace Analytical - Indianapolis, IN

Sample Delivery Group:	L1108665
Samples Received:	06/13/2019
Project Number:	50225929
Description:	The Butler Co.
Site:	012
Report To:	Chris Boyle
	7726 Moller Rd.
	Indianapolis, IN 46268

² Tc ³ Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al	¹ Cp
³ Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al	² Tc
⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al	³ Ss
⁵Sr ⁶ Qc ⁷ Gl ⁸ Al	⁴ Cn
⁶ Qc ⁷ Gl ⁸ Al	⁵Sr
⁷ GI ⁸ AI	⁶ Qc
⁸ Al	⁷ Gl
	⁸ Al
°Sc	⁹ Sc

Entire Report Reviewed By: Warray F. McLain

Nancy McLain Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling constructed by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

ACCOUNT: Pace Analytical - Indianapolis, IN

PROJECT: 50225929

SDG: L1108665

DATE/TIME: 07/08/19 09:33 Page 89 of 102 PAGE: 1 of 14

TABLE OF CONTENTS

*
Cp
² Tc
³ Ss
4

² Tc
³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ Al
⁹ Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
BC-GP6-SB1 (3-4) L1108665-01	5
BC-GP8-SS1 (2-3) L1108665-02	6
BC-GP9-SS1 (1-2) L1108665-03	7
Qc: Quality Control Summary	8
Total Solids by Method 2540 G-2011	8
Wet Chemistry by Method 7199	10
GI: Glossary of Terms	11
Al: Accreditations & Locations	12
Sc: Sample Chain of Custody	13

SDG: L1108665 DATE/TIME: 07/08/19 09:33 Page 90 of 102 PAGE: 2 of 14

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Tc

Ss

Ċn

Sr

Qc

GI

ΆI

Sc

			Collected by	Collected date/time	Received da	te/time
BC-GP6-SB1 (3-4) L1108665-01 Solid				05/21/19 17:11	06/13/19 08:	45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1296276	1	06/14/19 16:31	06/14/19 16:41	KDW	Mt. Juliet, TN
Wet Chemistry by Method 7199	WG1297128	1	06/17/19 13:23	06/18/19 12:24	LEB	Mt. Juliet, TN
BC-GP8-SS1 (2-3) L1108665-02 Solid			Collected by	Collected date/time 05/21/19 17:19	Received da 06/13/19 08:-	te/time 45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1296276	1	06/14/19 16:31	06/14/19 16:41	KDW	Mt. Juliet, TN
Wet Chemistry by Method 7199	WG1297128	1	06/17/19 13:23	06/18/19 12:37	LEB	Mt. Juliet, TN
BC-GP9-SS1 (1-2) L1108665-03 Solid			Collected by	Collected date/time 05/21/19 16:31	Received da 06/13/19 08:-	te/time 45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1296277	1	06/14/19 16:17	06/14/19 16:26	KDW	Mt. Juliet, TN
Wet Chemistry by Method 7199	WG1297128	1	06/17/19 13:23	06/18/19 12:42	LEB	Mt. Juliet, TN

SDG: L1108665 DATE/TIME: 07/08/19 09:33

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Nanay F. McLain

Nancy McLain Project Manager

SDG: L1108665 DATE/TIME: 07/08/19 09:33 Page 92 of 102 PAGE: 4 of 14

SAMPLE RESULTS - 01 L1108665

Qc

Gl

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	C
Analyte	%			date / time		2
Total Solids	60.2		1	06/14/2019 16:41	WG1296276	Tc

Wet Chemistry by Method 7199

Wet Chemistry by	Method 719	9						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Hexavalent Chromium	U		0.423	1.66	1	06/18/2019 12:24	WG1297128	CII

SAMPLE RESULTS - 02 L1108665

Qc

Gl

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Cr
Analyte	%			date / time		2
Total Solids	96.8		1	06/14/2019 16:41	WG1296276	Tc

Wet Chemistry by Method 7199

Wet Chemistry by	Method 7199	9						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Hexavalent Chromium	U		0.263	1.03	1	06/18/2019 12:37	WG1297128	CII

SDG: L1108665

DATE/TIME: 07/08/19 09:33 Page 94 of 102 PAGE: 6 of 14

SAMPLE RESULTS - 03 L1108665

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	C
Analyte	%			date / time		2
Total Solids	79.5		1	06/14/2019 16:26	WG1296277	¯Тс

Wet Chemistry by Method 7199

Wet Chemistry by N	Method 7199							³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Hexavalent Chromium	0.600	J	0.321	1.26	1	06/18/2019 12:42	WG1297128	CII

SDG: L1108665

DATE/TIME: 07/08/19 09:33 Page 95 of 102 PAGE: 7 of 14

WG1296276

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Тс

Ss

Cn

Sr

[°]Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3421553-1 06/1	4/19 16:41			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

L1108663-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1108663-01 06/14/19 16:41 • (DUP) R3421553-3 06/14/19 16:41						
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	89.5	89.3	1	0.208		10

Laboratory Control Sample (LCS)

(LCS) R3421553-2 06/14/19 16:41						
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	%	%	%	%		
Total Solids	50.0	50.0	100	85.0-115		

SDG: L1108665 DATE/TIME: 07/08/19 09:33 Page 96 of 102 PAGE: 8 of 14

WG1296277

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Тс

Ss

Cn

Sr

[°]Qc

Gl

Â

Sc

Method Blank (MB)

(MB) R3421550-1 06	/14/19 16:26			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

L1108688-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1108688-01 06/14/19 16:26 • (DUP) R3421550-3 06/14/19 16:26							
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	%	%		%		%	
Total Solids	79.4	82.2	1	3.39		10	

Laboratory Control Sample (LCS)

(LCS) R3421550-2 06/14	/19 16:26				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1108665 DATE/TIME: 07/08/19 09:33

Page 97 of 102 PAGE: 9 of 14

WG1297128

Wet Chemistry by Method 7199

QUALITY CONTROL SUMMARY

Ср

Τс

Ss

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3422032-1 06/18	3/19 12:07			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Hexavalent Chromium	U		0.255	1.00

L1108665-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1108665-01 06/18/19 12:24 • (DUP) R3422032-3 06/18/19 12:32							
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	mg/kg	mg/kg		%		%	
Hexavalent Chromium	U	0.000	1	0.000		20	

Laboratory Control Sample (LCS)

(LCS) R3422032-2 06/18/19 12:15						
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		
Hexavalent Chromium	10.0	9.81	98.1	80.0-120		

L1108665-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1108665-03 06/18/19 12:42 • (MS) R3422032-4 06/18/19 12:47 • (MSD) R3422032-5 06/18/19 12:52												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Hexavalent Chromium	25.1	0.600	22.7	22.2	87.9	85.8	1	75.0-125			2.29	20

L1108665-03 Original Sample (OS) • Matrix Spike (MS)

(OS) L1108665-03 06/18/19 12:42 • (MS) R3422032-6 06/18/19 12:58								
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MS Rec.	Dilution	Rec. Limits	MS Qualifier	
Analyte	mg/kg	mg/kg	mg/kg	%		%		
Hexavalent Chromium	1070	0.600	819	76.7	50	75.0-125		

				Page 98 of 102
ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
Pace Analytical - Indianapolis, IN	50225929	L1108665	07/08/19 09:33	10 of 14

GLOSSARY OF TERMS

*

Τс

Ss

Cn

Sr

*Q*c

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description
Quanter	

The identification of the analyte is acceptable; the reported value is an estimate.

PROJECT: 50225929

SDG: L1108665 DATE/TIME: 07/08/19 09:33 Page 99 of 102 PAGE: 11 of 14
ACCREDITATIONS & LOCATIONS

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebr
Alaska	17-026	Neva
Arizona	AZ0612	New
Arkansas	88-0469	New
California	2932	New
Colorado	TN00003	New
Connecticut	PH-0197	Nort
Florida	E87487	Nort
Georgia	NELAP	Nort
Georgia ¹	923	Nort
ldaho	TN00003	Ohio
Illinois	200008	Okla
Indiana	C-TN-01	Oreg
lowa	364	Penr
Kansas	E-10277	Rhoo
Kentucky ¹⁶	90010	Sout
Kentucky ²	16	Sout
Louisiana	AI30792	Tenr
Louisiana ¹	LA180010	Texa
Maine	TN0002	Теха
Maryland	324	Utah
Massachusetts	M-TN003	Vern
Michigan	9958	Virgi
Minnesota	047-999-395	Was
Mississippi	TN00003	West
Missouri	340	Wisc
Montana	CERT0086	Wyo

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey–NELAP	TN002
New Mexico 1	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio–VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee ¹⁴	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace Analytical - Indianapolis, IN

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

50225929

L1108665

07/08/19 09:33

														D05	9
Chain of Custody -		1.16.16.16.00			-	-					- 1000 - 110		-)	1	
Samples were sent directly to the Subcontracting Laboratory.							State Of Origin: IN					Pace Analytical "			
Workorder: 50225929 Work	order Na	ame: The But	er Co.				Owne	r Receiv	red Da	te: 5/2	3/2019	Resul	ts Reque	ested B	: 6/20/2019
Report To		Subcontra	ct To								Requeste	d Analysi	;		
Chris Boyle Pace Analytical Indianapolis 7726 Moller Road Indianapolis, IN 46268 Phone (317)228-3100		Pace Natio Mt Juliet, T	nal N		Pi	reserv	ved Cont	ainers	199 hexachrome						61108665
Item Sample ID	Sample Type	Collect Date/Time	Lab ID	Matrix	Unpreserved				2						LAB USE ONLY
1 BC-GP6-SS1 (3-4)	PS	5/21/2019 17:11	50225929012	Solid	1				X						-01
2 BC-GP8-SS1 (2-3)	PS	5/21/2019 17:19	50225929015	Solid	1	- 1			X						-01
3 BC-GP9-SS1 (1-2)	PS	5/21/2019 16:31	50225929017	Solid	1				X						-03
4															
5						1									
							20.75					C	omments		
Infransters Released By 1 Jucan Marpha 2 3	<u> </u>	Date/Time		m		6	13 10	845							0F
Cooler Temperature on Receipt	3.8+.2	°C Cus	tody Seal	or N)	T	Rece	ived on	Ice (or N		s	amples	Intact	or N

***In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document.

This chain of custody is considered complete as is since this information is available in the owner laboratory. 4.0

ASBF

RAD SCREEN: <0.5 mR/hr

Pace Analytical National Center for Testing & Innovation Cooler Receipt Form									
SDG#:		408685							
Temperature:	4.0								
NP	Yes	No							
1	-								
	1								
	1								
	1								
	1. 化、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	Same State							
	er for Testing & Innov ipt Form SDG#: Temperature: NP	er for Testing & Innovation ipt Form SDG#: Temperature: 4.0 NP Yes / / / / / / / / / / / / /							

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

June 25, 2019

Mr. Mark Anderson IWM Consulting Group LLC 1015 Production Drive Fort Wayne, IN 46808

RE: Project: The Butler Co. Pace Project No.: 50228450

Dear Mr. Anderson:

Enclosed are the analytical results for sample(s) received by the laboratory on June 20, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Clingtellagle

Chris Boyle chris.boyle@pacelabs.com (317)228-3100 Project Manager

Enclosures

cc: Ms. Pauline Lemay, IWM Consulting Group, LLC

CERTIFICATIONS

Project:The Butler Co.Pace Project No.:50228450

Indiana Certification IDs

7726 Moller Road, Indianapolis, IN 46268 Illinois Certification #: 200074 Indiana Certification #: C-49-06 Kansas/NELAP Certification #: E-10177 Kentucky UST Certification #: 80226 Kentucky WW Certification #: 98019 Michigan Department of Environmental Quality, Laboratory #9050 Ohio VAP Certification #: CL0065 Oklahoma Certification #: 2018-101 Texas Certification #: T104704355 West Virginia Certification #: 330 Wisconsin Certification #: 999788130 USDA Soil Permit #: P330-16-00257

SAMPLE SUMMARY

Project:The Butler Co.Pace Project No.:50228450

Lab ID	Sample ID	Matrix	Date Collected	Date Received
50228450001	BC-GP3-N5 (1-2)	Solid	06/18/19 12:06	06/20/19 08:30
50228450002	BC-GP3-E10 (1-2)	Solid	06/18/19 14:11	06/20/19 08:30
50228450003	BC-GP3-W5 (1-2)	Solid	06/18/19 13:16	06/20/19 08:30
50228450004	BC-GP3-S10 (1-2)	Solid	06/18/19 16:20	06/20/19 08:30
50228450005	BC-GP16-N5 (1-2)	Solid	06/18/19 14:11	06/20/19 08:30
50228450006	BC-GP16-E10 (1-2)	Solid	06/18/19 15:51	06/20/19 08:30
50228450007	BC-GP16-W5 (1-2)	Solid	06/18/19 15:06	06/20/19 08:30
50228450008	BC-GP16-S10 (1-2)	Solid	06/18/19 15:41	06/20/19 08:30
50228450009	BC-SB-FD4	Solid	06/18/19 08:00	06/20/19 08:30

SAMPLE ANALYTE COUNT

Project:The Butler Co.Pace Project No.:50228450

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
50228450001	BC-GP3-N5 (1-2)	EPA 6010	RAM	1	PASI-I
		SM 2540G	RM1	1	PASI-I
50228450002	BC-GP3-E10 (1-2)	EPA 6010	RAM	1	PASI-I
		SM 2540G	RM1	1	PASI-I
50228450003	BC-GP3-W5 (1-2)	EPA 6010	RAM	1	PASI-I
		SM 2540G	RM1	1	PASI-I
50228450004	BC-GP3-S10 (1-2)	EPA 6010	RAM	1	PASI-I
		SM 2540G	RM1	1	PASI-I
50228450005	BC-GP16-N5 (1-2)	EPA 6010	RAM	1	PASI-I
		SM 2540G	RM1	1	PASI-I
50228450006	BC-GP16-E10 (1-2)	EPA 6010	RAM	1	PASI-I
		SM 2540G	RM1	1	PASI-I
50228450007	BC-GP16-W5 (1-2)	EPA 6010	RAM	1	PASI-I
		SM 2540G	RM1	1	PASI-I
50228450008	BC-GP16-S10 (1-2)	EPA 6010	RAM	1	PASI-I
		SM 2540G	RM1	1	PASI-I
50228450009	BC-SB-FD4	EPA 6010	RAM	1	PASI-I
		SM 2540G	RM1	1	PASI-I

SUMMARY OF DETECTION

Project: The Butler Co.

Pace Project No.: 50228450

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
50228450001	BC-GP3-N5 (1-2)					
EPA 6010	Lead	51.7	mg/kg	1.1	06/24/19 13:53	
SM 2540G	Percent Moisture	15.8	%	0.10	06/20/19 11:16	
50228450002	BC-GP3-E10 (1-2)					
EPA 6010	Lead	75.6	mg/kg	1.2	06/24/19 13:55	
SM 2540G	Percent Moisture	19.0	%	0.10	06/20/19 11:16	
50228450003	BC-GP3-W5 (1-2)					
EPA 6010	Lead	307	mg/kg	1.0	06/24/19 13:58	
SM 2540G	Percent Moisture	8.4	%	0.10	06/20/19 11:16	
50228450004	BC-GP3-S10 (1-2)					
EPA 6010	Lead	660	mg/kg	1.1	06/24/19 14:09	
SM 2540G	Percent Moisture	16.9	%	0.10	06/20/19 11:17	
50228450005	BC-GP16-N5 (1-2)					
EPA 6010	Lead	49.2	mg/kg	1.2	06/24/19 14:16	
SM 2540G	Percent Moisture	24.5	%	0.10	06/20/19 11:17	
50228450006	BC-GP16-E10 (1-2)					
EPA 6010	Lead	4470	mg/kg	1.2	06/24/19 14:18	
SM 2540G	Percent Moisture	23.0	%	0.10	06/20/19 11:17	
50228450007	BC-GP16-W5 (1-2)					
EPA 6010	Lead	964	mg/kg	1.2	06/24/19 14:21	
SM 2540G	Percent Moisture	22.3	%	0.10	06/20/19 11:18	
50228450008	BC-GP16-S10 (1-2)					
EPA 6010	Lead	135	mg/kg	1.3	06/24/19 14:23	
SM 2540G	Percent Moisture	24.1	%	0.10	06/20/19 11:19	
50228450009	BC-SB-FD4					
EPA 6010	Lead	228	mg/kg	1.1	06/24/19 14:25	
SM 2540G	Percent Moisture	15.5	%	0.10	06/21/19 10:58	

Project: The Butler Co.

Pace Project No.: 50228450

Sample: BC-GP3-N5 (1-2)	Lab ID: 502	2 28450001 C	Collected: 06/18/1	9 12:06	8 Received: 06	/20/19 08:30 N	latrix: Solid		
Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.									
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
6010 MET ICP	Analytical Met	thod: EPA 6010	Preparation Meth	nod: EP	A 3050				
Lead	51.7	mg/kg	1.1	1	06/21/19 13:10	06/24/19 13:53	7439-92-1		
Percent Moisture	Analytical Met	thod: SM 25400	3						
Percent Moisture	15.8	%	0.10	1		06/20/19 11:16			

Project: The Butler Co.

Pace Project No.: 50228450

Sample: BC-GP3-E10 (1-2)	Lab ID: 5022	28450002	Collected: 06/18/1	9 14:1′	1 Received: 06	/20/19 08:30	Aatrix: Solid		
Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.									
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
6010 MET ICP	Analytical Meth	od: EPA 6010	0 Preparation Meth	nod: EF	PA 3050				
Lead	75.6	mg/kg	1.2	1	06/21/19 13:10	06/24/19 13:55	7439-92-1		
Percent Moisture	Analytical Meth	od: SM 2540	G						
Percent Moisture	19.0	%	0.10	1		06/20/19 11:16			

Project: The Butler Co.

Pace Project No.: 50228450

Sample: BC-GP3-W5 (1-2)	Lab ID: 502	28450003 C	Collected: 06/18/1	9 13:16	6 Received: 06	/20/19 08:30 N	latrix: Solid		
Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.									
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
6010 MET ICP	Analytical Met	hod: EPA 6010	Preparation Meth	nod: EP	A 3050				
Lead	307	mg/kg	1.0	1	06/21/19 13:10	06/24/19 13:58	7439-92-1		
Percent Moisture	Analytical Met	hod: SM 2540G	3						
Percent Moisture	8.4	%	0.10	1		06/20/19 11:16			

Project: The Butler Co.

Pace Project No.: 50228450

Sample: BC-GP3-S10 (1-2)	Lab ID: 502	28450004	Collected: 06/18/1	9 16:20	Received: 06	/20/19 08:30	Aatrix: Solid			
Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.										
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
6010 MET ICP	Analytical Met	hod: EPA 6010) Preparation Met	nod: EP	PA 3050	-				
Lead	660	mg/kg	1.1	1	06/21/19 13:10	06/24/19 14:09	7439-92-1			
Percent Moisture	Analytical Mether	hod: SM 2540	G							
Percent Moisture	16.9	%	0.10	1		06/20/19 11:17				

Project: The Butler Co.

Pace Project No.: 50228450

Sample: BC-GP16-N5 (1-2)	Lab ID: 5022	28450005	Collected: 06/18/1	9 14:1 [,]	1 Received: 06	/20/19 08:30 N	Aatrix: Solid	
Results reported on a "dry weight" ba	asis and are adj	usted for pe	rcent moisture, sa	mple s	size and any dilut	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	od: EPA 601	0 Preparation Met	nod: EF	PA 3050			
Lead	49.2	mg/kg	1.2	1	06/21/19 13:10	06/24/19 14:16	7439-92-1	
Percent Moisture	Analytical Meth	od: SM 2540	G					
Percent Moisture	24.5	%	0.10	1		06/20/19 11:17		

Project: The Butler Co.

Pace Project No.: 50228450

Sample: BC-GP16-E10 (1-2)	Lab ID: 502	2 28450006 C	Collected: 06/18/1	9 15:5 [,]	1 Received: 06	/20/19 08:30 N	latrix: Solid	
Results reported on a "dry weight" ba	sis and are ad	ljusted for perc	cent moisture, sa	mple s	size and any dilut	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Met	thod: EPA 6010	Preparation Meth	nod: EF	PA 3050			
Lead	4470	mg/kg	1.2	1	06/21/19 13:10	06/24/19 14:18	7439-92-1	
Percent Moisture	Analytical Met	thod: SM 2540G	3					
Percent Moisture	23.0	%	0.10	1		06/20/19 11:17		

Project: The Butler Co.

Pace Project No.: 50228450

Sample: BC-GP16-W5 (1-2)	Lab ID: 502	28450007	Collected: 06/18/1	9 15:06	6 Received: 06	/20/19 08:30 N	latrix: Solid	
Results reported on a "dry weight" ba	sis and are adj	usted for per	cent moisture, sa	mple s	ize and any dilut	ions.		
Parameters	Results	esults Units R		Report Limit DF		Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 6010	Preparation Met	nod: EP	PA 3050			
Lead	964	mg/kg	1.2	1	06/21/19 13:10	06/24/19 14:21	7439-92-1	
Percent Moisture	Analytical Meth	od: SM 25400	G					
Percent Moisture	22.3	%	0.10	1		06/20/19 11:18		

Project: The Butler Co.

Pace Project No.: 50228450

Sample: BC-GP16-S10 (1-2)	Lab ID: 502	28450008	Collected: 06/18/1	9 15:4 [′]	1 Received: 06	/20/19 08:30 N	latrix: Solid	
Results reported on a "dry weight" ba	asis and are adj	usted for per	cent moisture, sa	mple s	ize and any dilut	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Meth	nod: EPA 6010	Preparation Met	nod: EF	PA 3050			
Lead	135	mg/kg	1.3	1	06/21/19 13:10	06/24/19 14:23	7439-92-1	
Percent Moisture	Analytical Meth	nod: SM 2540	G					
Percent Moisture	24.1	%	0.10	1		06/20/19 11:19		

Project: The Butler Co.

Pace Project No.: 50228450

Sample: BC-SB-FD4	Lab ID: 50	0228450009 C	Collected: 06/18/1	9 08:00	Received: 06	/20/19 08:30	Aatrix: Solid	
Results reported on a "dry weight" ba	sis and are a	djusted for perc	cent moisture, sa	mple s	ize and any dilut	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP	Analytical Me	ethod: EPA 6010	Preparation Meth	nod: EP	A 3050	-	_	
Lead	228	mg/kg	1.1	1	06/21/19 13:10	06/24/19 14:25	7439-92-1	
Percent Moisture	Analytical Me	ethod: SM 25400	3					
Percent Moisture	15.5	%	0.10	1		06/21/19 10:58		

QUALITY CONTROL DATA

Project:	The Bu	tler Co.											
Pace Project No.:	502284	150											
QC Batch:	50760)7		Anal	ysis Metho	d:	EPA 6010						
QC Batch Method:	EPA 3	3050		Anal	ysis Descr	iption:	6010 MET						
Associated Lab Sar	mples:	502284500 502284500	01, 5022845000 08, 5022845000	2, 5022845 9	50003, 502	28450004,	, 502284500	05, 502284	150006, 502	228450007	7,		
METHOD BLANK:	234242	24			Matrix: S	olid							
Associated Lab Sar	mples:	502284500 502284500	01, 5022845000 08, 5022845000	2, 5022845 9	50003, 502	28450004,	, 502284500	05, 502284	150006, 502	228450007	7,		
				Bla	nk	Reporting							
Parar	neter		Units	Res	ult	Limit	Anal	yzed	Qualifier	S			
Lead			mg/kg		ND	1	.0 06/24/1	9 13:07					
LABORATORY CO	NTROLS	SAMPLE:	2342425										
				Spike	LC	CS	LCS	% R	ec				
Parar	neter		Units	Conc.	Re	sult	% Rec	Limi	ts (Qualifiers			
Lead			mg/kg	Ę	50	45.2	9	٤ O	30-120				
MATRIX SPIKE & N	/ATRIX \$	SPIKE DUPI	ICATE: 2342	426		234242	7						
				MS	MSD					_			
			50228450003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	. .
Paramete	r	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Lead		mg/kg	307	52.9	47.1	294	315	-25	16	75-125	7	20	M3

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project:	The Butler Co.							
Pace Project No.:	50228450							
QC Batch:	507525		Analysis Meth	od:	SM 2540G			
QC Batch Method:	SM 2540G		Analysis Desc	ription:	Dry Weight/Perce	ent Moisture		
Associated Lab Sar	nples: 502284500 502284500	01, 5022845000 08	02, 50228450003, 50	228450004,	50228450005, 5	0228450006,	50228450007,	
SAMPLE DUPLICA	TE: 2341954							
			50228364001	Dup		Max		
Parar	neter	Units	Result	Result	RPD	RPD	Qualifiers	
Percent Moisture		%	8.8	8.	8	1	5 H3	
SAMPLE DUPLICA	TE: 2341955							
			50228450003	Dup		Max		
Parar	neter	Units	Result	Result	RPD	RPD	Qualifiers	
Percent Moisture		%	8.4	6.	5 2	6	5 R1	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA

Project:	The Butler Co.							
Pace Project No.:	50228450							
QC Batch:	507767		Analysis Meth	iod:	SM 2540G			
QC Batch Method:	SM 2540G		Analysis Desc	cription:	Dry Weight/Perce	ent Moisture		
Associated Lab Sar	sociated Lab Samples: 50228450009							
SAMPLE DUPLICA	TE: 2343215							
			50228527004	Dup		Max		
Parar	neter	Units	Result	Result	RPD	RPD	Qualifiers	
Percent Moisture		%	15.3	15.	0 2	2	5 H3	
SAMPLE DUPLICA	TE: 2343216							
			50228298017	Dup		Max		
Parar	neter	Units	Result	Result	RPD	RPD	Qualifiers	
Percent Moisture		%	32.3	32.	3 ()	5	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: The Butler Co. Pace Project No.: 50228450

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-I Pace Analytical Services - Indianapolis

ANALYTE QUALIFIERS

- H3 Sample was received or analysis requested beyond the recognized method holding time.
- M3 Matrix spike recovery was outside laboratory control limits due to matrix interferences.
- R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	The Butler Co.
Pace Project No.:	50228450

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
50228450001	BC-GP3-N5 (1-2)	EPA 3050	507607	EPA 6010	507978
50228450002	BC-GP3-E10 (1-2)	EPA 3050	507607	EPA 6010	507978
50228450003	BC-GP3-W5 (1-2)	EPA 3050	507607	EPA 6010	507978
50228450004	BC-GP3-S10 (1-2)	EPA 3050	507607	EPA 6010	507978
50228450005	BC-GP16-N5 (1-2)	EPA 3050	507607	EPA 6010	507978
50228450006	BC-GP16-E10 (1-2)	EPA 3050	507607	EPA 6010	507978
50228450007	BC-GP16-W5 (1-2)	EPA 3050	507607	EPA 6010	507978
50228450008	BC-GP16-S10 (1-2)	EPA 3050	507607	EPA 6010	507978
50228450009	BC-SB-FD4	EPA 3050	507607	EPA 6010	507978
50228450001	BC-GP3-N5 (1-2)	SM 2540G	507525		
50228450002	BC-GP3-E10 (1-2)	SM 2540G	507525		
50228450003	BC-GP3-W5 (1-2)	SM 2540G	507525		
50228450004	BC-GP3-S10 (1-2)	SM 2540G	507525		
50228450005	BC-GP16-N5 (1-2)	SM 2540G	507525		
50228450006	BC-GP16-E10 (1-2)	SM 2540G	507525		
50228450007	BC-GP16-W5 (1-2)	SM 2540G	507525		
50228450008	BC-GP16-S10 (1-2)	SM 2540G	507525		
50228450009	BC-SB-FD4	SM 2540G	507767		

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A Required Client Information:	Section B Required Proje	ect Info	rmation:				S	ection	C	ion:										-	Page		1	of	1	
Company:	Report To: N	lack	And	erton			At	ttention	:													2	202	140	(
Address:	Copy To:	ur k	Ano	TOOM			C	ompany	y Name	¢.						-	RE	GULA	ATORY	AGEN	CY					
The land the state	-	-	_			_	A	ddress:				_	-	-	-	-	Г	NPD	DES	□ GR	ROUND WATER DRINKING WATER					
Email To:	Purchase Orde	r No.:	10 -	1 -10			Pa	ace Quo	te	-	-	-		-		-	-	LIST	-	E RCI	RA		-	OTHER		
manderson elumconsult.com	Project Name:		19-11	6-10	_		Re	eference ace Proje	ect	_		-		_			1	031		i no		T	-	OTTIEN	-	
260 442 3017	Delet Name.	BUH	ler				M	anager:	10.#				_	_		_	_ 5	Ite Loc	cation		N	-				
Requested Due Date/TAT:	Project Numbe	19	-716-1	0			Pa	ace Pron	ne #:	_	_	_	_	_	_	_		\$7	ATE:		14	_		-		
		_					_								Rec	ueste	d Ana	alysis	Filter	ed (Y/N)	_				
Section D Matrix C Required Client Information MATRIX /	codes (La codes	(JWb)		COLL	ECTED				P	reser	vative	es		N IA			1	145		-		- Mar	-11	12	_	
Drinking Water Water Waste Water Product Soil/Solid	er DW WW P SL SL	GRAB C=CC	COMPI	DSITE RT	COMPO END/GF	SITE 2AB ETIO		s						+								(N/A)				
SAMPLE ID Oil Wipe (A-Z, 0-9 / ,-) Air Sample IDs MUST BE UNIQUE Tissue Other	T ST	SAMPLE TYPE (G=	DATE	TIME	DATE	LIME SAMPLE TEMP AT C		# OF CONTAINER	H2SO4	HCI HCI	NaOH Na.S.O.	Methanol	Other	I Analysis Test	Total Pb	Activity						Residual Chlorine	So	2284 Project	SO No./ Lab I.D.	
1 BC-GP3-N5(1-2)	SI	- 6			6/18/19	1206	Ţ	22					П		1									001		
2 BC-GP3-EIO(1-2)	1	T	di 👘	1.1.1	11	1411	T	2 2				7/10		n.	1			15	3 문	de y-		2.14	1	001		
3 BC-GP3-W5(1-2)				1.00		1316	Τ	66					Π		11									003		
4 BC-683-510(1-2)			1	1000	14 1.4	1620		2 2	2		1.	10		1	1	1/1	12.01	100	11.01	1.0		20	-	004	6	
5 BC-GPIG-N5(1-2)			200	1.0	1.24	1411	1	22	2	T II.	/150	Ú. T			1	100	0.02	1.1			-	-		000	5	
5 BL-GPIG-EID (1-2)		П				1551		2 2	2						1									00	2	
7 BC-GP16-W5(1-2)			11.00	10.00	101	1506		22		16	200				1		4					1010		007	7	
8 BC-GP16-510 (1-2)						1541	1	22	2			n'n'	10		1				n) nie		1.5	26.0		00	3	
9 BC-SB-FD4	4	V			V	-	ŀ	22	-						1									00	9	
10					1000	2.000		1		11	M								121		1	1				
11																1-1										
12			-	11																						
ADDITIONAL COMMENTS	R	ELINQ	UISHED BY	/ AFFILIAT	NON	DATE		TIM	E		A	CCEF	PTED	BY/	AFFIL	IATION	1	D	ATE	TIME			SAMP	LE CONDI	TIONS	
Use RCG Guidelines	CAM	R	-/IWM		_	6119/19		4:10	PC	é	feo	~	7	Ba	N	up	1	6/1	19/19	4:10	9		-	1. C. S.		
	A	/en	N	_		6-20-19		830	-	k	E	\geq	25	2	>	-	-	62	0-19	830)	0.6	4	Y	Y	
				SAMPL		ND SIGNATU	RE																ç	er	act	
OF	RIGINAL			OPANIT LA	PRINT Nar	ne of SAMPLE	R:	C	arol	n	R	end	dri	CK						-	- 1	D° ni qu	eived o e (Y/N)	ustody ed Cool (Y/N)	oles Inte (Y/N)	
					SIGNATU	RE of SAMPLE	R:		ch	~1	5			1	DAT (MM	E Signe	ed '):	6/1	9/19			Ten	Reo	Page	20 of 22	

*Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

F-ALL-Q-020rev.07, 15-May-2007

Pace Analytical Project #: 5022	8450		Date/Time and Initials of person examining contents: KS (6-20-1	9 90	00	
Courier: Fed Ex UPS USPS Client		Commercial	Pace POther Now			
Tracking #:						
Custody Seal on Cooler/Box Present: K	□ No		Seals Intact: ZYes DNo			
Packing Material: Bubble Wrap Bubble	e Baos	□ None	Other Zieles			
Thermometer: 1234564 BCDEE	Ice Type	- Wet	Blue None I Samples collected today and on ice:	T Yes		
	ice type.	E Wet			CT No	
Unitial/Compared Trans about the about foresting to 6%	-		It temp is Quer 6% or under 0% use the DM Netified?	U Yes		
(Initial/Corrected) Temp should be above freezing to 6 C	, 		If temp, is Over 6°C or under 0°C, was the PM Notified ?.	res	L NO	> N/A
All discr	epancies v	VIII be writt	en out in the comments section below.	Ver	Ne	1
	Yes	NO		Tes	NO	NIA
Are samples from West Virginia?			All containers needing acid/base pres. Have been	1	1.00	
USDA Regulated Soils? (ID. NY, WA, OR.CA, NM, TX.			Checked 2 exceptions: VOA, coliform, LLHg, 0&G, and any container with a septum cap or preserved with HCl.			
OK, AR, LA, TN, AL, MS, NC, SC, GA, FL, or Puerto Rico)		/	All containers needing preservation are found to be in compliance with EPA recommendation (<2, >9, >12) unless otherwise noted.			1
Chain of Custody Present:	/	1	Circle: HNO3 H2SO4 NaOH NaOH/ZnAc	1	1.	
Chain of Custody Filled Out:		1	Dissolved Metals field filtered?			1
Short Hold Time Analysis (<72hr)?: Analysis:			Headspace Wisconsin Sulfide			1
Time 5035A TC placed in Freezer or Short Holds To L	ab:		Residual Chlorine Check (SVOC 625 Pest/PCB 608)	Present	Absent	N/A
Rush TAT Requested:		1,	Headspace in VOA Vials (>6mm):			1/
Containers Intact?:	1	-	Trip Blank Present?:		/	100
Sample Label (IDs/Dates/Times) Match COC?: Except TCs, which only require sample ID	1		Trip Blank Custody Seals?:		1	
Comments: Oo Unulinguished						
F-IN-Q-290-rev 17,25Sep2018					Page 2	1 of 22

CLIENT:	IWM	١							S	ampl	e Cor	ntaine	er Co	unt			BS		# : {			150		
COC PAGE _	202	407						Proje	ct #	50	2284	50	_				× L				SIA ate us l			
Sample Line	H69H	AGOU	AG1H	AG1U	AG2U	AG3S	WGFU	SP5T	BP1U	BP2N	BP2S	BP2U	BP3B	BP3N	BP3S	BP3U	R				Matrix (Soil/W	pH <2	pH >9	pH>12
1	T				(2			1		1		1.00	i n		-	_			CSV,			
2	1					1	2			1					1				1		R)			
3				Ì		1	6			1														
4							2				100													
5							1										1					_		
6					1					1				1	1	-			1	1				
7		í		ĺ	1					-		1		1			1	í						
8				1	1									1				1	1		1	-		
9		1		1			V	1	1										1			-		
10												1			-		1		1		1	-		
11		1	1	ŧ					1					1										
12				1		I				1		1	1	-	-	-	-				1	155		

Container Codes

	G	lass		Plastic / Misc.							
DG9B	40mL Na Bisulfate amber vial	AGOU	100mL unpreserved amber glass	BP1A	1 liter NaOH, Asc Acid plastic	BP3U	250mL unpreserved plastic				
DG9H	40mL HCL amber voa vial	AG1H	1 liter HCL amber glass	BP1N	1 liter HNO3 plastic	BP3Z	250mL NaOH, Zri Ac plastic				
DG9M	40mL MeOH clear vial	AG1S	1 liter H2SO4 amber glass	BP1S	1 liter H2SO4 plastic						
DG9P	40mL TSP amber vial	AG1T	1 liter Na Thiosulfate amber glass	BP1U	1 liter unpreserved plastic	AF	Air Filter				
DG9S	40rnL H2SO4 amber vial	AG1U	1liter unpreserved amber glass	BP1Z	1 liter NaOH, Zn, Ac	C	Air Cassettes				
DG9T	40mL Na Thio amber vial	AG2N	500mL HNO3 amber glass	BP2A	500mL NaOH, Asc Acid plastic	R	Terra core kit				
DG9U	40mL unpreserved amber vial	AG2S	500mL H2SO4 amber glass	BP2N	500mL HNO3 plastic	SP5T	120mL Coliform Na Thiosulfate				
VG9H	40mL HCL clear vial	AG2U	500mL unpreserved amber glass	BP2O	500mL NaOH plastic	U	Summa Can				
VG9T	40mL Na Thio. clear vial	AG3S	250mL H2SO4 glass amber	BP2S	500mL H2SO4 plastic	ZPLC	Ziploc Bag				
VG9U	40mL unpreserved clear vial	AG3U	250mL unpreserved amber glass	BP2U	500mL unpreserved plastic						
VGFX	40mL w/hexane wipe vial	BG1H	1 liter HCL clear glass	BP2Z	500mL NaOH, Zn Ac						
VSG	Headspace septa vial & HCL	BG1S	1 liter H2SO4 clear glass	BP3B	250mL NaOH plastic						
WGKU	8oz unpreserved clear jar	BG1T	1 liter Na Thiosulfate clear glass	BP3N	250mL HNO3 plastic						
WGFU	4oz clear soil jar	BG1U	1 liter unpreserved glass	BP3S	250mL H2SO4 plastic	-					
JGFU	4oz unpreserved amber wide	BG3H	250mL HCI Clear Glass				Page 22 of 22				
		BG3U	250mL Unpreserved Clear Glass								

www.pacelabs.com

Report Prepared for:

Mark Anderson IWM Consulting Group, LLC. 1015 Production Road Fort Wayne IN 46808

REPORT OF LABORATORY ANALYSIS FOR PFAAs

Report Prepared Date: June 17, 2019

Pace Analytical Services, LLC. 1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

Report Information:

Pace Project #: 10476199 Sample Receipt Date: 05/23/2019 Client Project #: The Butler Co. 19716-10 Client Sub PO #: N/A State Cert #: 2926.01

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PFAA Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Kirsten Hogberg, your Pace Project Manager.

This report has been reviewed by:

June 17, 2019 Kirsten Hogberg, Project Manager (612) 607-6407 (612) 607-6444 (fax) kirsten.hogberg@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of PaceAnalytical Services, Inc.

The results relate only to the samples included in this report.

DISCUSSION

This report presents the results from the analyses performed on eight samples and one duplicate submitted by a representative of IWM Consulting. The samples were analyzed for twenty-one perfluorinated compounds using a modified version of USEPA Method 537 Rev. 1.1. Reporting limits were set to the quantitation limits.

As per Pace SOP, the water and soil samples in this batch were analyzed separately.

For soils:

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. The results show the blank was free of the target perfluorinated compounds at the reporting limits. This indicates that the sample processing procedures did not significantly contribute to the analyte content determined for the sample material.

Laboratory spike samples were also prepared with the sample batch using clean reference matrix that had been fortified with native standards. The recovery results were within the method limits. The RPDs (relative percent differences) between one designated spike and its duplicate were within the method limits. These spikes indicate that extraction performed as expected.

Recoveries for isotopically-labeled surrogate standards in the sample extracts were within the target ranges specified in the method except sample 10476199002. The 10476199002 samples had recoveries for the surrogate labeled 13C2-PFDA that was lower than the method limit (flagged "Fail") by 1%. Where surrogates failed, the sample results could be biased in the same direction.

In the preliminary report, Sample 3 showed a failed D3-MeFOSAA Internal standard, elevated versus the CCV, but passing against the Ical. A dilution was performed on this sample to mitigate the effect of matrix, and this sample is now passing all standard criteria.

Results for selected analytes were taken from secondary dilutions of the sample extracts in order to reduce the impact of matrix effects. The affected values were flagged "D" on the results tables.

One of the Continuing Calibration Verifications (CCVs) had higher than expected recoveries for PFBA and PFPeA. Another Continuing Calibration Verifications (CCVs) had higher than expected recoveries for PFOA. However, the sample that uses the first

DISCUSSION

CCV had non-detect recoveries for those two analytes. The sample that uses the second failing CCV was a dilution from which the failing analyte was not reported. Pace does not usually report CCV results in these reports.

For the waters:

A laboratory method blank was prepared and analyzed with the sample batch as part of our routine quality control procedures. With the exception of the target surrogate d5-EtFOSAA, the results show the blank was free of the target perfluorinated compounds at the reporting limits. Where surrogates failed, the sample results could be biased in the same direction.

Laboratory spike samples were also prepared with the sample batch using clean reference matrix that had been fortified with native standards. The recovery results were within the method limits with the exception of PFUdA, N-EtFOSAA, PFDS, PFDoA, PFTrDA, PFTeDA, PFHxDA, and PFODA in LCSD-70779 (flagged "R"). The RPDs (relative percent differences) between one designated spike and its duplicate were within the method limits with the exception of PFUdA, N-EtFOSAA, PFDS, PFDoA, PFTrDA, PFTeDA, PFHxDA, and PFODA due to low recoveries in LCSD-70779. This indicates the possibility of a similar loss to the analytes in the water samples. The Alternate Laboratory Control Spike passed all criteria.

It should be noted that Pace Analytical has not yet completed the certification process for all analytes in this method. Therefore, the results have been marked "N2" as qualified. Results for the low level spikes that were below the calibration range were flagged "J".

_

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612- 607-6444

Minnesota Laboratory Certifications

Authority	Certificate #	Authority	Certificate #
A2LA	2926.01	Minnesota - Pet	1240
Alabama	40770	Mississippi	MN00064
Alaska - DW	MN00064	Missouri - DW	10100
Alaska - UST	17-009	Montana	CERT0092
Arizona	AZ0014	Nebraska	NE-OS-18-06
Arkansas - DW	MN00064	Nevada	MN00064
Arkansas - WW	88-0680	New Hampshire	2081
CNMI Saipan	MP0003	New Jersey (NE	MN002
California	2929	New York	11647
Colorado	MN00064	North Carolina	27700
Connecticut	PH-0256	North Carolina -	27700
EPA Region 8+	via MN 027-053	North Carolina -	530
Florida (NELAP	E87605	North Dakota	R-036
Georgia	959	Ohio - DW	41244
Guam	17-001r	Ohio - VAP	CL101
Hawaii	MN00064	Oklahoma	9507
Idaho	MN00064	Oregon - Primar	MN300001
Illinois	200011	Oregon - Secon	MN200001
Indiana	C-MN-01	Pennsylvania	68-00563
lowa	368	Puerto Rico	MN00064
Kansas	E-10167	South Carolina	74003
Kentucky - DW	90062	South Dakota	NA
Kentucky - WW	90062	Tennessee	TN02818
Louisiana - DE	03086	Texas	T104704192
Louisiana - DW	MN00064	Utah (NELAP)	MN00064
Maine	MN00064	Virginia	460163
Maryland	322	Washington	C486
Massachusetts	M-MN064	West Virginia -	382
Michigan	9909	West Virginia -	9952C
Minnesota	027-053-137	Wisconsin	999407970
Minnesota - De	via MN 027-053	Wyoming - UST	2926.01

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Report No.....10476199_PFAA_R1_DFR

Appendix A

Sample Management

|--|

<u>po</u>	Section A			ŕ			관광관관				Sect	tion	с															Г					
÷	Required C	Ciient Information:	Required Pro	ject	Infor	mation:					invo	ice l	nform	atio	n:								_						Pag	je :	_1	Ot	1
Æ	Company:	IWM Consulting	Report To:	Ma	rk Ai	nderson					Atter	ntion	n: [Mar	<u>k</u> Ar	derso	<u>n</u>						_										
:YP	Address:	1015 Production Road	Сору То:								Com	ipan)	y Nam	e: ;	Sam	ie	-							34.5	19.11	Carow W	Second	ಂಡಕ					en da en da
: [Fort Way	ne, Indiana 46808				· · · · · · · · · · · · · · · · · · ·					Addr	ress:		-loro					i.				159	-94-5	i i de la de	Al Clark	1.000		UDC'		G	<u>ar en la presión da c</u>	22 A 10 A 10 A 10 A
	Email To:	manderson@iwmconsult.com	Purchase Ord	er N	0.	Dudles Co	40748 4	^			Pace	o Dro	niect k	lana	nce.	<u> </u>	nrie F	Zovia	<u>, h</u>	1	No	λL	ion i	60	<i>a</i>	in the second	2:52	2.12.3	state	/ Locat	unio del	(Section of the	
A	Phone:		Client Project)D:	Ine	Butter Co.	19/10-1	U			Pace	e Pro	ofile #		gor.	Z	5/04	12	<u>-/-</u>		710	<u> </u>	1	C	7	- A49 5 KIA	1.0 - 5 61 -	, wang menjang kan	ir	diana			
1	Requested	Due Date/TAT:	Container Ord	ern	umbe	si ,		-			1 40		4100 H.	-					1	-1. A.	Re	dues	ted A	nalv	sis Fl	Iterec	I (Y/	N)					
5										T		-	-									-		T				ΓT					
Q				(Na)	Ē									Dre		otivo	-		N											N.5			調査院
μ		MATRIX	CODE	as to	Ω̈́.		COLLECT			E I			T T	T		auvea	<u> </u>	—		<u>, 1</u>		-+-		-	+	-			+		19960/ <i></i>	and a first strange of the set of the	<u> </u>
5		Drinking W Water	ater Dwv WT	ð	Ö					5			1	ľ									Í										
J	1	Waste Wa Product	ter WW P	alid	RAI I					E.	L				ľ		1		st											R			
4		SAMPLE ID SolVSolid	SL	see	ĕ	START/G	RAB	E	ND	Ŭ	ន្ល								Ţe											<u>e</u>			
1	l l	One Character per box. Wipe	WP	ц Ш	u u		_			1₹	NEF								6S											le le			
지		(A-Z, 0-9 / , -) Air Other	AR OT	8	۲Ł					ĮĘ.	NTA	١.				2	5		ly9	Ξ													
ľ	#	Sample ids must be unique Tissue	TS	ž	빌				ļ .	님	õ	rese	8	8	1	ΞW	Ē	N S	VIIa	53										sidu			
ď				ATF	WY	DATE	TIME			MA	ЧО Н	5	12	ž	힢	Na Na Na Na	Ĕ			ΡĂ		ļ								æ			
과	-			~			111412	DATE	() ()	+	1	1			-	-	+	<u> </u>		X									Т			M	
4	<u>1</u>	BC-GP10-SS1 (1'-2')		SL.	G	5/21/2019	12:1 <u>1</u>			╀	1		┥┤	\neg	\neg	-		+		x				+					+			40-	
	2	BC-GP11-SS1_(0.5'-1.5')		SL	G	5/21/2019	9:51			+	$\frac{1}{1}$		+				+	┝		x		-+-	╉	+	+-	┢		╞┼	╈			ws	
	3	BC-GP12-SS1 (1'-2')		SL.	G	5/20/2019	9;55			╉┈	1	1	╉┤				+	┼╌		x		\neg			+-	+			+			w4	, ,
ŀ	4	BC-GP13-SS1 (1'-2')		SL	G	5/20/2019	17:10			+	1	1	+ +					┢	1	X			+	1	+-		l			1		NU 1	-
_	5	BC-GP14-SS1 (0.5'-1.5')		SL.	G	5/20/2019	12:07		-	-	+		+			_	┝	┢		x	┝╌╢	+	+	-	┼─	+			-			616	
	6	BC-SB-FD1		SL	G	5/20/2019	·				÷	⊢	┟─┧	-	-		-	<u>.</u>				-		+	╉			┥╺	-		· · ·		<u></u>
	7	BC-FRB1		wī	G	5/20/2019	17:20		<u> </u>		1		+	_	\dashv	-+-		1		Ê			+	+			+		+	-	<u> </u>		s X
	8	BC-FRB2		WT	G	5/21/2019	9:47				+	-				-	┢	+-1		Ĥ				+	╋	-	-	┢─┟╴	╋				<i>.</i>
	9		·		-					+-	-	-								-		-	· -	╉	+		+	┼┼	╋	-			
	10	· · · · · · · · · · · · · · · · · · ·			_		 			╋	-	┢	+				+	┢		┣			-+-	-+-	+-	+	-		-+-			<u> </u>	
	11	· · · · · · · · · · · · · · · · · · ·		_			ļ		-		-							┢	-	┣	<u> </u>		+	+	┼─		-	┢─┼	+	-			
	12									4-	-	-	-			-	_			⊢		-+	_		╋			┢┼	┿	-	· · · ·		
	13						1	<u> </u>											_	•	1. S. S. J. J.	C.who:		1997 (1. S.	State	1000	Vitažno n	11	-3 <i>6</i> , 7	0,0,8,2%	1	<u>ya nin karansia r</u>	er aginare
		ADDITIONAL COMMENTS		RE	iyoy	VISHED BY / AI	FFILIATIO	N Constant	DA	TE		TIM				ACC	EPT	ED B	Y/A	FFIL	IATIO)N	ة (ئايى م	変換する	DA	TE		TIME			SAMPLE	CONDITION	1 3
-		<u>a na servician dala dala servician dala dala dala dala serviciana dala dala dala dala dala dala dala d</u>	<u> </u>	e.	ΫŢ		Mas	μA	17	7 h	9	14	00			15	- 1	20	1					1	123	19	19	140	Ĵ٢	2.7	IY	14	14
	USE RCG	· · · · · · · · · · · · · · · · · · ·	_I V[\sim	1Ľ	por ,	IXW		110	<u>- </u>	╡	2				, ,	<u> </u>		<u> </u>	<u>v</u> _				ť		<u> </u>	+		+		<u> </u>	-	
	BC-FRB1:	analyze only if detections in 05/20/2019 samples.							Ľ	-					_									_			+		+		<u> </u>	- 	
									ľ														<u> </u>										<u> </u>
_	BC-FRB2:	analyze only if detections in 05/21/2019 samples.		-					+		1																		Τ				
والع							SAMPI			GNA'	L	ŚŚ				a ter is		12		et will		Č.	St. H		6							aled (gt
ge							PR	INT Name	e of SAM	PLER	ाहर्षे र:			823.7Å	0463	y sei sei	deller-	009C	gi en la	: 37.722)		7892 Ber	ne na		<u>1949</u> 42	41.00 B	·	auga (* = 41)		С Е	o pc	A Se	l int
ი																			Ca	rolyn	Pend	drick						_	4	ΨÞ	Seive	oler oler	age 2
Q							SIG	NATURE	E of SAM	PLEF	č :			C	Λ	~ V	5				DAT	⊨ Sig	nea:	51	77	-119	•			ШЩ.	Ret	ວີວິ	<u>S</u> S
$\overline{\mathbf{N}}$							I				_				7		-			•													
ത്															•																		

	1	Sampla	Docum	ent Nam	e: eccint Form	Docum	ent Revised: 09May20:	.9
	Pace Analytical"	Jampie C	Docur	ment No.			ssuing Authority:	
			F-MN-L	-213-rev.	28	Pace N	linnesota Quality Offic	;e
Sample C Upon R	ondition leceipt	·		Pro	oject #:	10#:1	047619	9
Courier:						I: KNH Tent tum	Due Date:	06/14/19
Tracking	Number: 4934 3732	ee ⊡co ∕072	n mmercia U	al See Exc	eption			
Custody	Seal on Cooler/Box Present?		Sea	Is Intact	P 🛛 Yes 🗌]No Biolog	ical Tissue Frozen?	Yes No 🕅 N/A
Packing 1	Material: 💭 Bubble Wrap 🗌 Bubble	Bags	None	Oth	er:	<u>*</u>	Temp Blank?	Yes No
Thermom	eter: ☐ T1(0461)	59)	Type of k	ce: .E]Wet □Biue	None	Dry Melted	
Note: Each	n West Virginia Sample must have temp	aken (no tei	np blani	KS}	2 6	00	Aurona Causa da A	
Temp should	t be above freezing to 6°C Looler Temp	Read w/tem	ip blank:	:	<u> </u>	°C	(no temp blank on	iy):
Correction	Factor: <u><u><u></u><u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u></u>	cted w/tem	p blank :	: <u></u>	12, [vc	°C	172/101+
USDA Reg Did sample ID, LA. MS,	ulated Soil: ([] N/A, water sample/Other: soriginate in a quarantine zone within the U NC, NM, NY, OK, OR, SC, TN, TX or VA (chec If Yes to either question, fill out	United States: k maps)? [t a Regulate d	AL, AR, (Yes Soil Ch	CA, FL, GA	Date/Initials Did samples Hawaii and F -MN-Q-338) and	of Person Exam originate from a f Puerto Rico}? d include with S	ining Contents: oreign source (internatio UYesNo CUR/COC paperwork	$\frac{725}{4}$
· · · · · · · · · · · · · · · · · · ·							COMMENTS:	
Chain of Cu	stody Present and Filled Out?	V Yes	∐ No		1.		- The	
Chain of Cu	stody Relinguished?	Yes	<u>No</u>		2.			
Sampler Na	me and/or Signature on COC?	Yes Ves		□n/A	3.			
Samples Arr					S. Fecal Col		tal Coliform/E coli 🔲 BOD	/cBOD Hex Chrome
	lime Analysis (<72 nr)r		¥1N0		Turbidity	Nitrate Nitri	te Orthophos Other	
Rush Turn A	Around Time Requested?	Yes			6.			
Sufficient Vo					7.			
Correct Con	tainers Used?				8.		-	
Containers i	ntact?	Yes			9.	. <u> </u>		
Field Filtere	d Volume Received for Dissolved Tests?	□Yes	⊡No		10. Is sedime	ent visible in the	dissolved container?	Yes No
ls sufficient	information available to reconcile the samp	ies _/			11. If no, write	ID/ Date/Time on	Container Below:	See Exception
to the COC?		Z Yes	No			·		
Matrix:	Vater VSoil 10il 10ther	n L ivee			12. Sample #			
checked?	is needing acid/base preservation have bee	'' ∐Yes		۸/۸⊑ر	12. Janipie #	_	_	
All containe compliance (HNO2 H-SC	rs needing preservation are found to be in with EPA recommendation? M. <2pH. NaOH >9 Sulfide, NaOH>12 Cyanic	∏Yes	□No		NaC	он 🗌 ни	O₃ ∐H₂SO₄	Zinc Acetate
(······································	· _/	— .	—	Positive for Res	s. 🔲 Yes		See Exception
Exceptions:	VOA, Coliform, TOC/DOC Oil and Grease,	⊿Yes	<u> </u>		Chlorine?		pH Paper Lot#	
DRO/8015 (water) and bloking race				Res. Chiorine	0-6 KOII	0-6 Strip	0-14 Strip
				~	13.			See Exception
Headspace i	n VOA Vials (greater than 6mm)?	Yes	No No		14			
Trip Blank P	ustody Seals Present?	Yes			Pace Trip	Blank Lot # (if pu	urchased):	
	LIENT NOTIFICATION/RESOLUTION			_ :	· · · · ·	Field	Data Required?	Yes No
Person Co	ntacted:			<u> </u>	Date/Time:	· ·		· • • • • • • • • • • • • • • • • • • •
Comments	Resolution:							
	roloct Manager Poview / A Affe At	Hrafo	N			to 5/23/2010		
Note: When hold, incorrec	ever there is a discrepancy affecting North Caro ct preservative, out of temp, incorrect contained	olina complian ers).	ce sample	es, a copy	of this form will be	e sent to the Nort	h Carolina DEHNR Certifi	cation Office (i.e out of
						tabeled by	12	
						capeled by:		

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612-607-6444

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- I = Interferencepresent
- J = Estimated value
- L = Suppressive interference, analyte may be biased low
- Nn = Value obtained from additional analysis
- P = PCDEInterference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X = %DExceeds limits
- Y = Calculated using average of daily RFs
- * = SeeDiscussion

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10476199_PFAA_R1_DFR

Appendix B

Sample Analysis Summary

Pace Analytical Services, LLC

1700 Elm Street, Suite 200 Minneapolis, MN 55414 (612) 607-1700

Method 537 (Modified)

Sample Analysis Summary

Client's Sample ID Lab Sample ID Filename Matrix Collected Received	BC-GP10-SS1 (1'-2') 10476199001 B190605B_037 Soil 05/21/2019 05/23/2019		Date Ex Total Ar % Moist Dry Wei Starting Ending (Method	tracted nount Extr ture ight Extrac CCal CCal Blank File	05/24/20 racted 2.01 g N/A cted 2.01 g B19060 B19060 ename B19060	019 5B_027 5B_038 5B_033	
Compound	Concentration (ug/Kg)	PQL (ug/Kg)	MDL (ug/Kg)	Dilution	Analyzed	CAS No.	Qual.
PFBS	ND	0.22	0.030	1	06/05/201919:48	375-73-5	N2
PFHxA	ND	0.25	0.036	1	06/05/201919:48	307-24-4	N2
PFHpA	ND	0.25	0.038	1	06/05/201919:48	375-85-9	N2
PFHxS	ND	0.23	0.039	1	06/05/201919:48	355-46-4	N2
PFOA	0.61	0.25	0.040	1	06/05/201919:48	335-67-1	N2
PFNA	ND	0.25	0.058	1	06/05/201919:48	375-95-1	N2
PFOS	ND	0.24	0.027	1	06/05/201919:48	1763-23-1	N2
PFDA	ND	0.25	0.037	1	06/05/201919:48	335-76-2	N2
PFUdA	ND	0.25	0.048	1	06/05/201919:48	2058-94-8	N2
N-MeFOSAA	ND	0.50	0.10	1	06/05/201919:48	2355-31-9	N2
N-EtFOSAA	ND	0.50	0.073	1	06/05/201919:48	2991-50-6	N2
PFDoA	ND	0.25	0.034	1	06/05/201919:48	307-55-1	N2
PFTrDA	ND	0.25	0.041	1	06/05/201919:48	72629-94-8	N2
PFTeDA	ND	0.25	0.085	1	06/05/201919:48	376-06-7	N2
PFPrOPrA	ND	0.50	0.16	1	06/05/201919:48	13252-13-6	N2
PFBA	ND	0.25	0.086	1	06/05/201919:48	375-22-4	N2
PFPeA	ND	0.25	0.026	1	06/05/201919:48	2706-90-3	N2
PFDS	ND	0.24	0.028	1	06/05/201919:48	335-77-3	N2
NaDONA	ND	0.50	0.24	1	06/05/201919:48	958445-44-8	N2
PFHxDA	ND	0.25	0.067	1	06/05/201919:48	67905-19-5	N2
PFODA	ND	0.25	0.076	1	06/05/201919:48	16517-11-6	N2

Surrogate Standards

SS Compound	Spiked	Found	%Recovery	Limits	Pass/Fail	
13C2_PFHxA	2.0	1.9	96	70 - 130	Pass	
13C2_PFDA	2.0	1.6	80	70 - 130	Pass	
d5-EtFOSAA	8.0	7.7	96	70 - 130	Pass	

Internal Standards

IS Compound	Area	Ical Limits	CCV Limits	Pass/Fail
13C3_PFPrOPrA	417041	175772 - 527315	249700 - 499400	Pass
13C2_PFOA	545313	241388 - 724164	324051 - 648102	Pass
13C4_PFOS	862022	370672 - 1112015	531100 - 1062200	Pass
d3-MeFOSAA	927325	330534 - 991601	498824 - 997648	Pass

50-150% of Ical area

70-140% of the preceding CCV area N2 = The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

Report No.....10476199_PFAA_R1_DFR

Pace Analytical Services, LLC

1700 Elm Street, Suite 200 Minneapolis, MN 55414 (612) 607-1700

Method 537 (Modified)

Sample Analysis Summary

Client's Sample ID Lab Sample ID Filename Matrix Collected Received	BC-GP10-SS1 (1'-2') 10476199001-DUP B190605B_044 Soil 05/21/2019 05/23/2019		Date Ex Total Ar % Moist Dry We Starting Ending (Method	tracted mount Extr ture ight Extrac CCal CCal Blank File	05/24/2 racted 2.18 g N/A cted 2.18 g B1906 B1906 ename B1906	2019 05B_038 05B_060 05B_033	
Compound	Concentration (ug/Kg)	PQL (ug/Kg)	MDL (ug/Kg)	Dilution	Analyzed	CAS No.	Qual.
PFBS	ND	0.20	0.027	1	06/05/201921:10	375-73-5	N2
PFHxA	ND	0.23	0.033	1	06/05/201921:10	307-24-4	N2
PFHpA	ND	0.23	0.035	1	06/05/201921:10	375-85-9	N2
PFHxS	ND	0.22	0.036	1	06/05/201921:10	355-46-4	N2
PFOA	0.58	0.23	0.037	1	06/05/201921:10	335-67-1	N2
PFNA	ND	0.23	0.053	1	06/05/201921:10	375-95-1	N2
PFOS	ND	0.22	0.025	1	06/05/201921:10	1763-23-1	N2
PFDA	ND	0.23	0.034	1	06/05/201921:10	335-76-2	N2
PFUdA	ND	0.23	0.044	1	06/05/201921:10	2058-94-8	N2
N-MeFOSAA	ND	0.46	0.094	1	06/05/201921:10	2355-31-9	N2
N-EtFOSAA	ND	0.46	0.067	1	06/05/201921:10	2991-50-6	N2
PFDoA	ND	0.23	0.031	1	06/05/201921:10	307-55-1	N2
PFTrDA	ND	0.23	0.038	1	06/05/201921:10	72629-94-8	N2
PFTeDA	ND	0.23	0.079	1	06/05/201921:10	376-06-7	N2
PFPrOPrA	ND	0.46	0.14	1	06/05/201921:10	13252-13-6	N2
PFBA	ND	0.23	0.079	1	06/05/201921:10	375-22-4	N2
PFPeA	ND	0.23	0.024	1	06/05/201921:10	2706-90-3	N2
PFDS	ND	0.22	0.026	1	06/05/201921:10	335-77-3	N2
NaDONA	ND	0.46	0.22	1	06/05/201921:10	958445-44-8	N2
PFHxDA	ND	0.23	0.062	1	06/05/201921:10	67905-19-5	N2
PFODA	ND	0.23	0.070	1	06/05/201921:10	16517-11-6	N2

Surrogate Standards

SS Compound	Spiked	Found	%Recovery	Limits	Pass/Fail	
13C2_PFHxA	2.0	1.8	91	70 - 130	Pass	
13C2_PFDA	2.0	1.7	86	70 - 130	Pass	
d5-EtFOSAA	8.0	8.2	103	70 - 130	Pass	

Internal Standards

IS Compound	Area	Ical Limits	CCV Limits	Pass/Fail
13C3_PFPrOPrA	333682	175772 - 527315	232551 - 465103	Pass
13C2_PFOA	565529	241388 - 724164	320413 - 640826	Pass
13C4_PFOS	846711	370672 - 1112015	549921 - 1099841	Pass
d3-MeFOSAA	872333	330534 - 991601	472454 - 944909	Pass

50-150% of Ical area

70-140% of the preceding CCV area N2 = The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

Report No.....10476199_PFAA_R1_DFR

1700 Elm Street, Suite 200 Minneapolis, MN 55414 (612) 607-1700

Method 537 (Modified)

Sample Analysis Summary

BC-GP11-SS1 (0.5'-1.5') 10476199002 B190606B_011 Soil 05/21/2019 05/23/2019		Date Ex Total Ar % Moist Dry We Starting Ending (Method	tracted nount Extr ture ight Extrac CCal CCal Blank File	05/24/20 racted 2.15 g N/A 2.15 g B19060 B19060 bname B19060	019 6B_002 6B_013 5B_033	
Concentration (ug/Kg)	PQL (ug/Kg)	MDL (ug/Kg)	Dilution	Analyzed	CAS No.	Qual.
ND	0.20	0.028	1	06/06/201918:19	375-73-5	N2
ND	0.23	0.033	1	06/06/201918:19	307-24-4	N2
ND	0.23	0.036	1	06/06/201918:19	375-85-9	N2
ND	0.22	0.036	1	06/06/201918:19	355-46-4	N2
ND	0.23	0.037	1	06/06/201918:19	335-67-1	N2
ND	0.23	0.054	1	06/06/201918:19	375-95-1	N2
0.54	0.22	0.026	1	06/06/201918:19	1763-23-1	N2
ND	0.23	0.035	1	06/06/201918:19	335-76-2	N2
ND	0.23	0.044	1	06/06/201918:19	2058-94-8	N2
ND	0.46	0.095	1	06/06/201918:19	2355-31-9	N2
ND	0.46	0.068	1	06/06/201918:19	2991-50-6	N2
ND	0.23	0.031	1	06/06/201918:19	307-55-1	N2
ND	0.23	0.039	1	06/06/201918:19	72629-94-8	N2
ND	0.23	0.080	1	06/06/201918:19	376-06-7	N2
ND	0.46	0.15	1	06/06/201918:19	13252-13-6	N2
ND	0.23	0.080	1	06/06/201918:19	375-22-4	N2
ND	0.23	0.025	1	06/06/201918:19	2706-90-3	N2
ND	0.22	0.026	1	06/06/201918:19	335-77-3	N2
ND	0.46	0.22	1	06/06/201918:19	958445-44-8	N2
ND	0.23	0.063	1	06/06/201918:19	67905-19-5	N2
ND	0.23	0.070	1	06/06/201918:19	16517-11-6	N2
	BC-GP11-SS1 (0.5'-1.5') 10476199002 B190606B_011 Soil 05/21/2019 05/23/2019 Concentration (ug/Kg) ND ND ND ND ND ND ND ND ND ND ND ND ND	BC-GP11-SS1 (0.5'-1.5') 10476199002 B190606B_0111 Soil 05/21/2019 05/23/2019PQL (ug/Kg)Concentration (ug/Kg)PQL (ug/Kg)ND0.20ND0.23ND <td< td=""><td>BC-GP11-SS1 (0.5'-1.5') Total Ar Total Ar % Moist B190606B_011 Soil Dry We Soil Starting O5/21/2019 Concentration (ug/Kg) PQL (ug/Kg) MDL (ug/Kg) ND 0.20 0.028 ND 0.23 0.033 ND 0.23 0.036 ND 0.23 0.036 ND 0.23 0.036 ND 0.23 0.036 ND 0.23 0.037 ND 0.23 0.036 ND 0.23 0.036 ND 0.23 0.036 ND 0.23 0.037 ND 0.23 0.035 ND 0.23 0.035 ND 0.23 0.035 ND 0.23 0.031 ND 0.23 0.031 ND 0.23 0.031 ND 0.23 0.031 ND 0.23 0.030 ND 0.23 0.026 ND<!--</td--><td>BC-GP11-SS1 (0.5'-1.5') Date Extracted 10476199002 Total Amount Extracted B190606B_011 Dry Weight Extracted Soil Starting CCal 05/23/2019 MDL (ug/Kg) PQL ND 0.20 ND 0.23 ND 0.23<!--</td--><td>Date Extracted 05/24/2/ Total Amount Extracted 05/24/2/ 2.15 g BC-GP11-SS1 (0.5'-1.5') Total Amount Extracted 2.15 g B190606B_011 Dry Weight Extracted 2.15 g Soil Starting CCal B19060 Ending CCal B19060 B19060 05/21/2019 MDL (ug/Kg) MDL (ug/Kg) Dilution Analyzed ND 0.20 0.028 1 06/06/201918:19 ND 0.23 0.033 1 06/06/201918:19 ND 0.23 0.036 1 06/06/201918:19 ND 0.23 0.037 1 06/06/201918:19 ND 0.23 0.037 1 06/06/201918:19 ND 0.23 0.037 1 06/06/201918:19 ND 0.23 0.035 1 06/06/201918:19 <td< td=""><td>Date Extracted 05/24/2019 BC-GP11-SS1 (0.5'-1.5) Total Amount Extracted 2.15 g 10476199002 % Moisture N/A B190606B_011 Dry Weight Extracted 2.15 g Soil Starting CCal B190606B_002 05/21/2019 Ending CCal B190606B_013 Mothed Blank Filename B190606B_013 05/23/2019 Mothed Blank Filename B190605B_023 Concentration (ug/Kg) PQL (ug/Kg) Dilution Analyzed CAS No. ND 0.20 0.028 1 06/06/201918:19 375-73-5 ND 0.23 0.033 1 06/06/201918:19 375-73-5 ND 0.23 0.036 1 06/06/201918:19 375-78-5 ND 0.23 0.037 1 06/06/201918:19 375-78-5 ND 0.23 0.037 1 06/06/201918:19 335-76-2 ND 0.23 0.035 1 06/06/201918:19 335-76-2 ND 0.23 0.035</td></td<></td></td></td></td<>	BC-GP11-SS1 (0.5'-1.5') Total Ar Total Ar % Moist B190606B_011 Soil Dry We Soil Starting O5/21/2019 Concentration (ug/Kg) PQL (ug/Kg) MDL (ug/Kg) ND 0.20 0.028 ND 0.23 0.033 ND 0.23 0.036 ND 0.23 0.036 ND 0.23 0.036 ND 0.23 0.036 ND 0.23 0.037 ND 0.23 0.036 ND 0.23 0.036 ND 0.23 0.036 ND 0.23 0.037 ND 0.23 0.035 ND 0.23 0.035 ND 0.23 0.035 ND 0.23 0.031 ND 0.23 0.031 ND 0.23 0.031 ND 0.23 0.031 ND 0.23 0.030 ND 0.23 0.026 ND </td <td>BC-GP11-SS1 (0.5'-1.5') Date Extracted 10476199002 Total Amount Extracted B190606B_011 Dry Weight Extracted Soil Starting CCal 05/23/2019 MDL (ug/Kg) PQL ND 0.20 ND 0.23 ND 0.23<!--</td--><td>Date Extracted 05/24/2/ Total Amount Extracted 05/24/2/ 2.15 g BC-GP11-SS1 (0.5'-1.5') Total Amount Extracted 2.15 g B190606B_011 Dry Weight Extracted 2.15 g Soil Starting CCal B19060 Ending CCal B19060 B19060 05/21/2019 MDL (ug/Kg) MDL (ug/Kg) Dilution Analyzed ND 0.20 0.028 1 06/06/201918:19 ND 0.23 0.033 1 06/06/201918:19 ND 0.23 0.036 1 06/06/201918:19 ND 0.23 0.037 1 06/06/201918:19 ND 0.23 0.037 1 06/06/201918:19 ND 0.23 0.037 1 06/06/201918:19 ND 0.23 0.035 1 06/06/201918:19 <td< td=""><td>Date Extracted 05/24/2019 BC-GP11-SS1 (0.5'-1.5) Total Amount Extracted 2.15 g 10476199002 % Moisture N/A B190606B_011 Dry Weight Extracted 2.15 g Soil Starting CCal B190606B_002 05/21/2019 Ending CCal B190606B_013 Mothed Blank Filename B190606B_013 05/23/2019 Mothed Blank Filename B190605B_023 Concentration (ug/Kg) PQL (ug/Kg) Dilution Analyzed CAS No. ND 0.20 0.028 1 06/06/201918:19 375-73-5 ND 0.23 0.033 1 06/06/201918:19 375-73-5 ND 0.23 0.036 1 06/06/201918:19 375-78-5 ND 0.23 0.037 1 06/06/201918:19 375-78-5 ND 0.23 0.037 1 06/06/201918:19 335-76-2 ND 0.23 0.035 1 06/06/201918:19 335-76-2 ND 0.23 0.035</td></td<></td></td>	BC-GP11-SS1 (0.5'-1.5') Date Extracted 10476199002 Total Amount Extracted B190606B_011 Dry Weight Extracted Soil Starting CCal 05/23/2019 MDL (ug/Kg) PQL ND 0.20 ND 0.23 ND 0.23 </td <td>Date Extracted 05/24/2/ Total Amount Extracted 05/24/2/ 2.15 g BC-GP11-SS1 (0.5'-1.5') Total Amount Extracted 2.15 g B190606B_011 Dry Weight Extracted 2.15 g Soil Starting CCal B19060 Ending CCal B19060 B19060 05/21/2019 MDL (ug/Kg) MDL (ug/Kg) Dilution Analyzed ND 0.20 0.028 1 06/06/201918:19 ND 0.23 0.033 1 06/06/201918:19 ND 0.23 0.036 1 06/06/201918:19 ND 0.23 0.037 1 06/06/201918:19 ND 0.23 0.037 1 06/06/201918:19 ND 0.23 0.037 1 06/06/201918:19 ND 0.23 0.035 1 06/06/201918:19 <td< td=""><td>Date Extracted 05/24/2019 BC-GP11-SS1 (0.5'-1.5) Total Amount Extracted 2.15 g 10476199002 % Moisture N/A B190606B_011 Dry Weight Extracted 2.15 g Soil Starting CCal B190606B_002 05/21/2019 Ending CCal B190606B_013 Mothed Blank Filename B190606B_013 05/23/2019 Mothed Blank Filename B190605B_023 Concentration (ug/Kg) PQL (ug/Kg) Dilution Analyzed CAS No. ND 0.20 0.028 1 06/06/201918:19 375-73-5 ND 0.23 0.033 1 06/06/201918:19 375-73-5 ND 0.23 0.036 1 06/06/201918:19 375-78-5 ND 0.23 0.037 1 06/06/201918:19 375-78-5 ND 0.23 0.037 1 06/06/201918:19 335-76-2 ND 0.23 0.035 1 06/06/201918:19 335-76-2 ND 0.23 0.035</td></td<></td>	Date Extracted 05/24/2/ Total Amount Extracted 05/24/2/ 2.15 g BC-GP11-SS1 (0.5'-1.5') Total Amount Extracted 2.15 g B190606B_011 Dry Weight Extracted 2.15 g Soil Starting CCal B19060 Ending CCal B19060 B19060 05/21/2019 MDL (ug/Kg) MDL (ug/Kg) Dilution Analyzed ND 0.20 0.028 1 06/06/201918:19 ND 0.23 0.033 1 06/06/201918:19 ND 0.23 0.036 1 06/06/201918:19 ND 0.23 0.037 1 06/06/201918:19 ND 0.23 0.037 1 06/06/201918:19 ND 0.23 0.037 1 06/06/201918:19 ND 0.23 0.035 1 06/06/201918:19 <td< td=""><td>Date Extracted 05/24/2019 BC-GP11-SS1 (0.5'-1.5) Total Amount Extracted 2.15 g 10476199002 % Moisture N/A B190606B_011 Dry Weight Extracted 2.15 g Soil Starting CCal B190606B_002 05/21/2019 Ending CCal B190606B_013 Mothed Blank Filename B190606B_013 05/23/2019 Mothed Blank Filename B190605B_023 Concentration (ug/Kg) PQL (ug/Kg) Dilution Analyzed CAS No. ND 0.20 0.028 1 06/06/201918:19 375-73-5 ND 0.23 0.033 1 06/06/201918:19 375-73-5 ND 0.23 0.036 1 06/06/201918:19 375-78-5 ND 0.23 0.037 1 06/06/201918:19 375-78-5 ND 0.23 0.037 1 06/06/201918:19 335-76-2 ND 0.23 0.035 1 06/06/201918:19 335-76-2 ND 0.23 0.035</td></td<>	Date Extracted 05/24/2019 BC-GP11-SS1 (0.5'-1.5) Total Amount Extracted 2.15 g 10476199002 % Moisture N/A B190606B_011 Dry Weight Extracted 2.15 g Soil Starting CCal B190606B_002 05/21/2019 Ending CCal B190606B_013 Mothed Blank Filename B190606B_013 05/23/2019 Mothed Blank Filename B190605B_023 Concentration (ug/Kg) PQL (ug/Kg) Dilution Analyzed CAS No. ND 0.20 0.028 1 06/06/201918:19 375-73-5 ND 0.23 0.033 1 06/06/201918:19 375-73-5 ND 0.23 0.036 1 06/06/201918:19 375-78-5 ND 0.23 0.037 1 06/06/201918:19 375-78-5 ND 0.23 0.037 1 06/06/201918:19 335-76-2 ND 0.23 0.035 1 06/06/201918:19 335-76-2 ND 0.23 0.035

Surrogate Standards

SS Compound	Spiked	Found	%Recovery	Limits	Pass/Fail	
13C2_PFHxA	2.0	1.8	88	70 - 130	Pass	
13C2_PFDA	2.0	1.4	69	70 - 130	Fail	
d5-EtFOSAA	8.0	7.4	93	70 - 130	Pass	

Internal Standards

IS Compound	Area	Ical Limits	CCV Limits	Pass/Fail
	044400		000005 400504	Dava
13C3_PFPrOPrA	314462	1/5//2 - 52/315	233295 - 466591	Pass
13C2_PFOA	489552	241388 - 724164	333003 - 666005	Pass
13C4_PFOS	751818	370672 - 1112015	488421 - 976841	Pass
d3-MeFOSAA	915961	330534 - 991601	470690 - 941381	Pass

50-150% of Ical area

70-140% of the preceding CCV area N2 = The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

1700 Elm Street, Suite 200 Minneapolis, MN 55414 (612) 607-1700

Method 537 (Modified)

Sample Analysis Summary

BC-GP12-SS1 (1'-2') 10476199003 B190605B_040 Soil 05/20/2019 05/23/2019		Date Ex Total Ar % Moist Dry Wei Starting Ending (Method	tracted nount Extr ght Extrac CCal CCal Blank File	05/24/2 racted 2.13 g N/A 2.13 g B19060 B19060 ename B19060	019 05B_038 05B_060 05B_033	
Concentration (ug/Kg)	PQL (ug/Kg)	MDL (ug/Kg)	Dilution	Analyzed	CAS No.	Qual.
ND	0.21	0.028	1	06/05/201920:23	375-73-5	N2
ND	0.23	0.034	1	06/05/201920:23	307-24-4	N2
ND	0.23	0.036	1	06/05/201920:23	375-85-9	N2
ND	0.22	0.037	1	06/05/201920:23	355-46-4	N2
ND	0.23	0.037	1	06/05/201920:23	335-67-1	N2
ND	0.23	0.054	1	06/05/201920:23	375-95-1	N2
ND	0.23	0.026	1	06/05/201920:23	1763-23-1	N2
ND	0.23	0.035	1	06/05/201920:23	335-76-2	N2
ND D	470	90	2	06/14/201910:58	2058-94-8	N2
ND D	940	190	2	06/14/201910:58	2355-31-9	N2
ND D	940	140	2	06/14/201910:58	2991-50-6	N2
ND D	470	63	2	06/14/201910:58	307-55-1	N2
ND D	470	78	2	06/14/201910:58	72629-94-8	N2
ND D	470	160	2	06/14/201910:58	376-06-7	N2
ND	0.47	0.15	1	06/05/201920:23	13252-13-6	N2
ND	0.23	0.081	1	06/05/201920:23	375-22-4	N2
ND	0.23	0.025	1	06/05/201920:23	2706-90-3	N2
ND D	450	52	2	06/14/201910:58	335-77-3	N2
ND	0.47	0.22	1	06/05/201920:23	958445-44-8	N2
ND D	470	130	2	06/14/201910:58	67905-19-5	N2
ND D	470	140	2	06/14/201910:58	16517-11-6	N2
	BC-GP12-SS1 (1'-2') 10476199003 B190605B_040 Soii 05/20/2019 05/23/2019 Concentration (ug/Kg) ND ND ND ND ND ND ND ND ND ND ND ND ND	BC-GP12-SS1 (1'-2') 10476199003 B190605B_040 Soil 05/20/2019 05/23/2019 PQL (ug/Kg) Concentration (ug/Kg) PQL (ug/Kg) ND 0.21 ND 0.23 ND 0.470 ND 0.470 ND 0.470 ND 0.23 ND 0.23 ND 0.470 ND 0.23 ND 0.23 ND 0.470 ND 0.23 ND 0.470 ND 0.470 ND 0.470 ND 0.470 ND 0.470	BC-GP12-SS1 (1'-2') Total Ar Total Ar Moist B190605B_040 Soil Dry Wei Soil Starting Ending 0 05/20/2019 PQL (ug/Kg) MDL (ug/Kg) Concentration (ug/Kg) PQL (ug/Kg) MDL (ug/Kg) ND 0.21 0.028 ND 0.23 0.034 ND 0.23 0.036 ND 0.23 0.037 ND 0.23 0.036 ND 0.23 0.036 ND 0.23 0.037 ND 0.23 0.036 ND 0.23 0.035 ND 0.23 0.035 ND 0.23 0.026 ND 0.23 0.035 ND 0 470 90 ND 0 470 63 ND 0 470 78 ND 0 470 160 ND 0 23 0.025 ND 0 470 130	BC-GP12-SS1 (1'-2') 10476199003 B190605B_040 Soil Date Extracted Total Amount Extr % Moisture Dry Weight Extract Starting CCal Concentration (ug/Kg) PQL (ug/Kg) MDL (ug/Kg) Dilution ND 0.21 0.028 1 ND 0.23 0.034 1 ND 0.23 0.034 1 ND 0.23 0.036 1 ND 0.23 0.036 1 ND 0.23 0.037 1 ND 0.23 0.035 1 ND 0.23 0.054 1 ND 0.23 0.035 1 ND 0.23 0.035 1 ND 0.23 0.035 1 ND 0.470 90 2 ND 470 63 2 ND 0.470 78 2 ND 0.470 78 2 ND 0.470 160 2 ND 0.470 52 2	Date Extracted 05/24/2 BC-GP12-SS1 (1'-2') Total Amount Extracted 2.13 g 10476199003 % Moisture N/A B190605B_040 Dry Weight Extracted 2.13 g Soil Dry Weight Extracted 2.13 g Soil Starting CCal B19060 05/20/2019 Ending CCal B19060 05/23/2019 MDL MDL ND 0.21 0.028 1 ND 0.23 0.034 1 06/05/201920:23 ND 0.23 0.036 1 06/05/201920:23 ND 0.23 0.036 1 06/05/201920:23 ND 0.23 0.037 1 06/05/201920:23 ND 0.23 0.035 1 06/05/201920:23 ND 0.23 0.035 1 06/05/201920:23 ND 0.23 0.035 1 06/05/201920:23 ND 0.23 0.026 1 06/05/201920:23 ND 0.470 <	Date Extracted 05/24/2019 BC-GP12-SS1 (1'-2') Total Amount Extracted 2.13 g 10476199003 % Moisture N/A B190605B_040 Dry Weight Extracted 2.13 g Soil Starting CCal B190605B_060 05/20/2019 Ending CCal B190605B_060 05/23/2019 MDL (ug/Kg) Dilution Analyzed CAS No. ND 0.21 0.028 1 06/05/201920:23 375-73-5 ND 0.23 0.034 1 06/05/201920:23 375-73-5 ND 0.23 0.036 1 06/05/201920:23 375-73-5 ND 0.23 0.036 1 06/05/201920:23 375-73-5 ND 0.23 0.037 1 06/05/201920:23 375-

Surrogate Standards

SS Compound	Spiked	Found	%Recovery	Limits	Pass/Fail	
13C2_PFHxA	2.0	1.8	92	70 - 130	Pass	
13C2_PFDA	2.0	1.7	84	70 - 130	Pass	
d5-EtFOSAA	8.0	9.5	119	70 - 130	Pass	

Internal Standards

IS Compound	Area	Ical Limits	CCV Limits	Pass/Fail
	242524	475770 507045	000554 405400	Daaa
	343531	1/5//2 - 52/315	232551 - 465103	Pass
13C2_PFOA	575408	241388 - 724164	320413 - 640826	Pass
13C4_PFOS	883602	370672 - 1112015	549921 - 1099841	Pass
d3-MeFOSAA	297987	160461 - 481384	222573 - 445145	Pass

50-150% of Ical area

70-140% of the preceding CCV area N2 = The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

1700 Elm Street, Suite 200 Minneapolis, MN 55414 (612) 607-1700

Method 537 (Modified)

Sample Analysis Summary

Client's Sample ID Lab Sample ID Filename Matrix Collected Received	BC-GP13-SS1 (1'-2') 10476199004 B190605B_041 Soil 05/20/2019 05/23/2019		Date Ex Total Ar % Moist Dry Wei Starting Ending (Method	tracted nount Extr ture ight Extrac CCal CCal Blank File	05/24/2 racted 2.09 g N/A cted 2.09 g B19060 B19060 ename B19060	019 5B_038 5B_060 5B_033		
Compound	Concentration (ug/Kg)	PQL (ug/Kg)	MDL (ug/Kg)	Dilution	Analyzed	CAS No.	Qual.	
PFBS	ND	0.21	0.028	1	06/05/201920:35	375-73-5	N2	
PFHxA	ND	0.24	0.034	1	06/05/201920:35	307-24-4	N2	
PFHpA	ND	0.24	0.037	1	06/05/201920:35	375-85-9	N2	
PFHxS	ND	0.22	0.038	1	06/05/201920:35	355-46-4	N2	
PFOA	ND	0.24	0.038	1	06/05/201920:35	335-67-1	N2	
PFNA	ND	0.24	0.055	1	06/05/201920:35	375-95-1	N2	
PFOS	0.46	0.23	0.026	1	06/05/201920:35	1763-23-1	N2	
PFDA	ND	0.24	0.036	1	06/05/201920:35	335-76-2	N2	
PFUdA	ND D	0.48	0.092	2	06/11/201920:56	2058-94-8	N2	
N-MeFOSAA	ND D	0.96	0.19	2	06/11/201920:56	2355-31-9	N2	
N-EtFOSAA	ND D	0.96	0.14	2	06/11/201920:56	2991-50-6	N2	
PFDoA	ND D	0.48	0.065	2	06/11/201920:56	307-55-1	N2	
PFTrDA	ND D	0.48	0.080	2	06/11/201920:56	72629-94-8	N2	
PFTeDA	ND D	0.48	0.16	2	06/11/201920:56	376-06-7	N2	
PFPrOPrA	ND	0.48	0.15	1	06/05/201920:35	13252-13-6	N2	
PFBA	ND	0.24	0.082	1	06/05/201920:35	375-22-4	N2	
PFPeA	ND	0.24	0.025	1	06/05/201920:35	2706-90-3	N2	
PFDS	ND D	0.46	0.053	2	06/11/201920:56	335-77-3	N2	
NaDONA	ND	0.48	0.23	1	06/05/201920:35	958445-44-8	N2	
PFHxDA	ND D	0.48	0.13	2	06/11/201920:56	67905-19-5	N2	
PFODA	ND D	0.48	0.15	2	06/11/201920:56	16517-11-6	N2	

Surrogate Standards

SS Compound	Spiked	Found	%Recovery	Limits	Pass/Fail	
13C2_PFHxA	2.0	1.8	89	70 - 130	Pass	
13C2_PFDA	2.0	1.5	73	70 - 130	Pass	
d5-EtFOSAA	8.0	7.2	90	70 - 130	Pass	

Internal Standards

IS Compound	Area	Ical Limits	CCV Limits	Pass/Fail
	252407		000554 405400	Deee
	352427	1/5//2 - 52/315	232551 - 465103	Pass
13C2_PFOA	551285	241388 - 724164	320413 - 640826	Pass
13C4_PFOS	836864	370672 - 1112015	549921 - 1099841	Pass
d3-MeFOSAA	475480	189935 - 569806	318037 - 636074	Pass

50-150% of Ical area

70-140% of the preceding CCV area N2 = The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

1700 Elm Street, Suite 200 Minneapolis, MN 55414 (612) 607-1700

Method 537 (Modified)

Sample Analysis Summary

BC-GP14-SS1 (0.5'-1.5') 10476199005 B190605B_042 Soil 05/20/2019 05/23/2019		Date Ex Total Ar % Moist Dry Wei Starting Ending (Method	tracted nount Extr ture ight Extrac CCal CCal Blank File	racted 05/24/20 2.10 g N/A 2.10 g B19060 B19060 ename B19060	019 5B_038 5B_060 5B_033	
Concentration (ug/Kg)	PQL (ug/Kg)	MDL (ug/Kg)	Dilution	Analyzed	CAS No.	Qual.
ND	0.21	0.028	1	06/05/201920:47	375-73-5	N2
ND	0.24	0.034	1	06/05/201920:47	307-24-4	N2
ND	0.24	0.037	1	06/05/201920:47	375-85-9	N2
ND	0.22	0.037	1	06/05/201920:47	355-46-4	N2
ND	0.24	0.038	1	06/05/201920:47	335-67-1	N2
ND	0.24	0.055	1	06/05/201920:47	375-95-1	N2
ND	0.23	0.026	1	06/05/201920:47	1763-23-1	N2
ND	0.24	0.036	1	06/05/201920:47	335-76-2	N2
ND D	0.48	0.091	2	06/10/201913:17	2058-94-8	N2
ND D	0.95	0.19	2	06/10/201913:17	2355-31-9	N2
ND D	0.95	0.14	2	06/10/201913:17	2991-50-6	N2
ND D	0.48	0.064	2	06/10/201913:17	307-55-1	N2
ND D	0.48	0.079	2	06/10/201913:17	72629-94-8	N2
ND D	0.48	0.16	2	06/10/201913:17	376-06-7	N2
ND	0.48	0.15	1	06/05/201920:47	13252-13-6	N2
ND	0.24	0.082	1	06/05/201920:47	375-22-4	N2
ND	0.24	0.025	1	06/05/201920:47	2706-90-3	N2
ND D	0.46	0.053	2	06/10/201913:17	335-77-3	N2
ND	0.48	0.23	1	06/05/201920:47	958445-44-8	N2
ND D	0.48	0.13	2	06/10/201913:17	67905-19-5	N2
ND D	0.48	0.14	2	06/10/201913:17	16517-11-6	N2
	BC-GP14-SS1 (0.5'-1.5') 10476199005 B190605B_042 Soil 05/20/2019 05/23/2019 Concentration (ug/Kg) ND ND ND ND ND ND ND ND ND ND ND ND ND	BC-GP14-SS1 (0.5'-1.5') ND PQL 10476199005 05/20/2019 05/23/2019 Soil 05/23/2019 PQL (ug/Kg) ND 0.21 ND 0.24 ND 0.24 ND 0.22 ND 0.24 ND 0.24 ND 0 0.48 ND ND D 0.48 ND ND D 0.48 ND 0.24 ND D 0.48 ND 0.48 ND D<	BC-GP14-SS1 (0.5'-1.5') Total Ar Total Ar % Moist B190605B_042 Soil Dry We Soil Starting O5/20/2019 Dry We Starting O5/23/2019 Concentration (ug/Kg) PQL (ug/Kg) MDL (ug/Kg) ND 0.21 0.028 ND 0.24 0.037 ND 0.24 0.037 ND 0.24 0.038 ND 0.24 0.038 ND 0.24 0.036 ND 0.48 0.014 ND 0.48 0.026 ND 0.48 0.079 ND 0.48 0.079 ND 0.48 0.14 ND 0.48 0.15 ND 0.48 0.14 ND 0.48 0.13<	BC-GP14-SS1 (0.5'-1.5') Date Extracted 10476199005 Total Amount Extracted B190605B_042 Dry Weight Extracted Soil Starting CCal 05/23/2019 Ending CCal 05/23/2019 MDL (ug/Kg) Dilution ND 0.21 0.028 1 ND 0.24 0.034 1 ND 0.22 0.037 1 ND 0.24 0.038 1 ND 0.24 0.038 1 ND 0.24 0.036 1 ND 0.48 0.091 2 ND 0 0.48 0.064 2 ND 0 0.48 0.16 2 ND 0	Date Extracted 05/24/21 BC-GP14-SS1 (0.5'-1.5') Total Amount Extracted 2.10 g 10476199005 % Moisture N/A B190605B_042 Dry Weight Extracted 2.10 g Soil Starting CCal B19060 05/20/2019 Ending CCal B19060 05/23/2019 MDL MDL B19060 Concentration (ug/Kg) PQL MDL B19060 ND 0.21 0.028 1 06/05/201920:47 ND 0.24 0.034 1 06/05/201920:47 ND 0.24 0.037 1 06/05/201920:47 ND 0.24 0.038 1 06/05/201920:47 ND 0.24 0.038 1 06/05/201920:47 ND 0.24 0.036 1 06/05/201	Date Extracted 05/24/2019 BC-GP14-SS1 (0.5'-1.5') Total Amount Extracted 2.10 g B190605B_042 Dry Weight Extracted 2.10 g Soil Starting CCal B190605B_038 05/20/2019 Starting CCal B190605B_060 05/23/2019 Molt B190605B_033 Concentration (ug/Kg) PQL (ug/Kg) MD Analyzed CAS No. ND 0.21 0.028 1 06/05/201920:47 375-73-5 ND 0.24 0.034 1 06/05/201920:47 375-73-5 ND 0.22 0.037 1 06/05/201920:47 375-67-1 ND 0.24 0.038 1 06/05/201920:47 375-67-1 ND 0.24 0.036 1 06/05/201920:47 375-67-1 ND 0.24 0.036 1 06/05/201920:47 375-73-5 ND 0.24 0.036 1 06/05/201920:47 375-76-2 ND 0.24 0.036 1 06/05/201920:47

Surrogate Standards

SS Compound	Spiked	Found	%Recovery	Limits	Pass/Fail	
13C2_PFHxA	2.0	1.5	76	70 - 130	Pass	
13C2_PFDA	2.0	1.5	74	70 - 130	Pass	
d5-EtFOSAA	8.0	7.4	92	70 - 130	Pass	

Internal Standards

IS Compound	Area	Ical Limits	CCV Limits	Pass/Fail
				_
13C3_PFPrOPrA	281284	175772 - 527315	232551 - 465103	Pass
13C2_PFOA	568965	241388 - 724164	320413 - 640826	Pass
13C4_PFOS	860053	370672 - 1112015	549921 - 1099841	Pass
d3-MeFOSAA	451524	189935 - 569806	273552 - 547105	Pass

50-150% of Ical area

70-140% of the preceding CCV area N2 = The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

1700 Elm Street, Suite 200 Minneapolis, MN 55414 (612) 607-1700

Method 537 (Modified)

Sample Analysis Summary

Client's Sample ID Lab Sample ID Filename Matrix Collected Received	Date Ex's Sample IDBC-SB-FD1Total Aample ID10476199006% MoisimeB190605B_043Dry WeiccSoilStartingcSoilStartingcted05/20/2019Endingved05/23/2019Method		tracted nount Extra ight Extra CCal CCal Blank File	05/24/2 racted 2.18 g N/A cted 2.18 g B19060 B19060 ename B19060	2019 05B_038 05B_060 05B_033		
Compound	Concentration (ug/Kg)	PQL (ug/Kg)	MDL (ug/Kg)	Dilution	Analyzed	CAS No.	Qual.
PFBS	ND	0.20	0.027	1	06/05/201920:59	375-73-5	N2
PFHxA	ND	0.23	0.033	1	06/05/201920:59	307-24-4	N2
PFHpA	ND	0.23	0.035	1	06/05/201920:59	375-85-9	N2
PFHxS	ND	0.22	0.036	1	06/05/201920:59	355-46-4	N2
PFOA	ND	0.23	0.037	1	06/05/201920:59	335-67-1	N2
PFNA	ND	0.23	0.053	1	06/05/201920:59	375-95-1	N2
PFOS	ND	0.22	0.025	1	06/05/201920:59	1763-23-1	N2
PFDA	ND	0.23	0.034	1	06/05/201920:59	335-76-2	N2
PFUdA	ND D	0.46	0.088	2	06/10/201913:05	2058-94-8	N2
N-MeFOSAA	ND D	0.92	0.19	2	06/10/201913:05	2355-31-9	N2
N-EtFOSAA	ND D	0.92	0.13	2	06/10/201913:05	2991-50-6	N2
PFDoA	ND D	0.46	0.062	2	06/10/201913:05	307-55-1	N2
PFTrDA	ND D	0.46	0.077	2	06/10/201913:05	72629-94-8	N2
PFTeDA	ND D	0.46	0.16	2	06/10/201913:05	376-06-7	N2
PFPrOPrA	ND	0.46	0.15	1	06/05/201920:59	13252-13-6	N2
PFBA	ND	0.23	0.079	1	06/05/201920:59	375-22-4	N2
PFPeA	ND	0.23	0.024	1	06/05/201920:59	2706-90-3	N2
PFDS	ND D	0.44	0.051	2	06/10/201913:05	335-77-3	N2
NaDONA	ND	0.46	0.22	1	06/05/201920:59	958445-44-8	N2
PFHxDA	ND D	0.46	0.12	2	06/10/201913:05	67905-19-5	N2
PFODA	ND D	0.46	0.14	2	06/10/201913:05	16517-11-6	N2

Surrogate Standards

SS Compound	Spiked	Found	%Recovery	Limits	Pass/Fail	
13C2_PFHxA	2.0	1.7	87	70 - 130	Pass	
13C2_PFDA	2.0	1.6	79	70 - 130	Pass	
d5-EtFOSAA	8.0	8.1	101	70 - 130	Pass	

Internal Standards

IS Compound	Area	Ical Limits	CCV Limits	Pass/Fail
13C3_PFPrOPrA	309884	175772 - 527315	232551 - 465103	Pass
13C2_PFOA	567303	241388 - 724164	320413 - 640826	Pass
13C4_PFOS	889251	370672 - 1112015	549921 - 1099841	Pass
d3-MeFOSAA	439234	189935 - 569806	273552 - 547105	Pass

50-150% of Ical area

70-140% of the preceding CCV area N2 = The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

1700 Elm Street, Suite 200 Minneapolis, MN 55414 (612) 607-1700

Method 537 (Modified)

Sample Analysis Summary

Client's Sample IDBC-FRB1Lab Sample ID10476199007FilenameB190530B_010MatrixWaterCollected05/20/2019Received05/23/2019			Date Ex Total Ar ICAL ID Starting Ending Method	tracted nount Ext CCal CCal Blank File	05/27/20 racted 271 mL 190530/ B190530 B190530 B190530 B190600	05/27/2019 271 mL 190530A02 B190530B_004 B190530B_017 B190606B_015		
Compound	Concentration (ng/L)	PQL (ng/L)	MDL (ng/L)	Dilution	Analyzed	CAS No.	Qual.	
PFBS	ND	1.6	0.24	1	05/30/201915:43	375-73-5	N2	
PFHxA	ND	1.8	0.25	1	05/30/201915:43	307-24-4	N2	
PFHpA	ND	1.8	0.57	1	05/30/201915:43	375-85-9	N2	
PFHxS	ND	1.7	0.59	1	05/30/201915:43	355-46-4	N2	
PFOA	ND	1.8	0.41	1	05/30/201915:43	335-67-1	N2	
PFNA	ND	1.8	0.47	1	05/30/201915:43	375-95-1	N2	
PFOS	ND	1.8	0.57	1	05/30/201915:43	1763-23-1	N2	
PFDA	ND	1.8	0.45	1	05/30/201915:43	335-76-2	N2	
PFUdA	ND	1.8	0.43	1	05/30/201915:43	2058-94-8	N2	
N-MeFOSAA	ND	3.7	1.2	1	05/30/201915:43	2355-31-9	N2	
N-EtFOSAA	ND	3.7	1.0	1	05/30/201915:43	2991-50-6	N2	
PFDoA	ND	1.8	0.36	1	05/30/201915:43	307-55-1	N2	
PFTrDA	ND	1.8	0.34	1	05/30/201915:43	72629-94-8	N2	
PFTeDA	ND	1.8	0.32	1	05/30/201915:43	376-06-7	N2	
PFPrOPrA	ND	3.7	0.66	1	05/30/201915:43	13252-13-6	N2	
PFBA	ND	1.8	0.67	1	05/30/201915:43	375-22-4	N2	
PFPeA	ND	1.8	0.36	1	05/30/201915:43	2706-90-3	N2	
PFDS	ND	1.8	0.34	1	05/30/201915:43	335-77-3	N2	
NaDONA	ND	3.7	0.59	1	05/30/201915:43	958445-44-8	N2	
PFHxDA	ND	1.8	0.39	1	05/30/201915:43	67905-19-5	N2	
PFODA	ND	1.8	0.66	1	05/30/201915:43	16517-11-6	N2	

Surrogate Standards

SS Compound	Spiked	Found	%Recovery	Limits	Pass/Fail	
13C2_PFHxA	2.0	1.9	93	70 - 130	Pass	
13C2_PFDA	2.0	1.9	96	70 - 130	Pass	
d5-EtFOSAA	8.0	3.8	48	70 - 130	Fail	

Internal Standards

IS Compound	Area Ical Limits		CCV Limits	Pass/Fail
	004004	404000 400704	470007 045700	Dava
13C3_PEPrOPrA	231881	134260 - 402781	172867 - 345733	Pass
13C2_PFOA	457455	225330 - 675989	303311 - 606622	Pass
13C4_PFOS	610994	301397 - 904191	421516 - 843031	Pass
d3-MeFOSAA	356256	182697 - 548090	244139 - 488277	Pass

50-150% of Ical area

70-140% of the preceding CCV area

N2 = The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

1700 Elm Street, Suite 200 Minneapolis, MN 55414 (612) 607-1700

Method 537 (Modified)

Sample Analysis Summary

Client's Sample ID Lab Sample ID Filename Matrix Collected Received	BC-FRB2 10476199008 B190530B_011 Water 05/21/2019 05/23/2019		Date Ex Total Ar ICAL ID Starting Ending (Method	tracted nount Extr CCal CCal Blank File	05/27/20 racted 270 mL 190530/ B190530 B190530 B190530 B190600	019 002 0B_004 0B_017 6B_015	
Compound	Concentration (ng/L)	PQL (ng/L)	MDL (ng/L)	Dilution	Analyzed	CAS No.	Qual.
PFBS	ND	1.6	0.25	1	05/30/201915:54	375-73-5	N2
PFHxA	ND	1.9	0.25	1	05/30/201915:54	307-24-4	N2
PFHpA	ND	1.9	0.58	1	05/30/201915:54	375-85-9	N2
PFHxS	ND	1.7	0.60	1	05/30/201915:54	355-46-4	N2
PFOA	ND	1.9	0.41	1	05/30/201915:54	335-67-1	N2
PFNA	ND	1.9	0.47	1	05/30/201915:54	375-95-1	N2
PFOS	ND	1.8	0.58	1	05/30/201915:54	1763-23-1	N2
PFDA	ND	1.9	0.45	1	05/30/201915:54	335-76-2	N2
PFUdA	ND	1.9	0.43	1	05/30/201915:54	2058-94-8	N2
N-MeFOSAA	ND	3.7	1.2	1	05/30/201915:54	2355-31-9	N2
N-EtFOSAA	ND	3.7	1.0	1	05/30/201915:54	2991-50-6	N2
PFDoA	ND	1.9	0.36	1	05/30/201915:54	307-55-1	N2
PFTrDA	ND	1.9	0.34	1	05/30/201915:54	72629-94-8	N2
PFTeDA	ND	1.9	0.33	1	05/30/201915:54	376-06-7	N2
PFPrOPrA	ND	3.7	0.67	1	05/30/201915:54	13252-13-6	N2
PFBA	ND	1.9	0.68	1	05/30/201915:54	375-22-4	N2
PFPeA	ND	1.9	0.36	1	05/30/201915:54	2706-90-3	N2
PFDS	ND	1.8	0.34	1	05/30/201915:54	335-77-3	N2
NaDONA	ND	3.7	0.59	1	05/30/201915:54	958445-44-8	N2
PFHxDA	ND	1.9	0.39	1	05/30/201915:54	67905-19-5	N2
PFODA	ND	1.9	0.66	1	05/30/201915:54	16517-11-6	N2

Surrogate Standards

SS Compound	Spiked	Found	%Recovery	Limits	Pass/Fail	
13C2_PFHxA	2.0	1.9	94	70 - 130	Pass	
13C2_PFDA	2.0	2.0	102	70 - 130	Pass	
d5-EtFOSAA	8.0	5.6	70	70 - 130	Pass	

Internal Standards

IS Compound	Area	Ical Limits	CCV Limits	Pass/Fail
	220726	124260 402701	170067 046700	Dooo
$13C3_PEPIOPIA$	230730 472414	134200 - 402701 225330 - 675989	303311 - 606622	Pass
13C4 PFOS	597742	301397 - 904191	421516 - 843031	Pass
d3-MeFOSAA	360225	182697 - 548090	244139 - 488277	Pass

50-150% of Ical area

70-140% of the preceding CCV area

N2 = The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

Pace Analytical®

1700 Elm Street, Suite 200 Minneapolis, MN 55414 (612) 607-1700

Method 537 (Modified) Blank Analysis Summary

Lab Sample ID Filename Matrix	BLANK-70772 B190605B_033 Soil		Date Ex Total Ar % Moist Dry Wei Starting Ending (tracted mount Ext ture ight Extra CCal CCal	05/24/2 racted 2.18 g N/A cted 2.18 g B19060 B19060	05/24/2019 2.18 g N/A 2.18 g B190605B_027 B190605B_038	
Compound	Concentration (ug/Kg)	PQL (ug/Kg)	MDL (ug/Kg)	Dilution	Analyzed	CAS No.	Qual.
PFBS	ND	0.20	0.027	1	06/05/201919:01	375-73-5	N2
PFHxA	ND	0.23	0.033	1	06/05/201919:01	307-24-4	N2
PFHpA	ND	0.23	0.035	1	06/05/201919:01	375-85-9	N2
PFHxS	ND	0.22	0.036	1	06/05/201919:01	355-46-4	N2
PFOA	ND	0.23	0.037	1	06/05/201919:01	335-67-1	N2
PFNA	ND	0.23	0.053	1	06/05/201919:01	375-95-1	N2
PFOS	ND	0.22	0.025	1	06/05/201919:01	1763-23-1	N2
PFDA	ND	0.23	0.034	1	06/05/201919:01	335-76-2	N2
PFUdA	ND	0.23	0.044	1	06/05/201919:01	2058-94-8	N2
N-MeFOSAA	ND	0.46	0.093	1	06/05/201919:01	2355-31-9	N2
N-EtFOSAA	ND	0.46	0.067	1	06/05/201919:01	2991-50-6	N2
PFDoA	ND	0.23	0.031	1	06/05/201919:01	307-55-1	N2
PFTrDA	ND	0.23	0.038	1	06/05/201919:01	72629-94-8	N2
PFTeDA	ND	0.23	0.079	1	06/05/201919:01	376-06-7	N2
PFPrOPrA	ND	0.46	0.14	1	06/05/201919:01	13252-13-6	N2
PFBA	ND	0.23	0.079	1	06/05/201919:01	375-22-4	N2
PFPeA	ND	0.23	0.024	1	06/05/201919:01	2706-90-3	N2
PFDS	ND	0.22	0.025	1	06/05/201919:01	335-77-3	N2
NaDONA	ND	0.46	0.22	1	06/05/201919:01	958445-44-8	N2
PFHxDA	ND	0.23	0.062	1	06/05/201919:01	67905-19-5	N2
PFODA	ND	0.23	0.070	1	06/05/201919:01	16517-11-6	N2
Surrogate Standards	;						
SS Compound	Spiked	Found	%Recovery	L	_imits F	Pass/Fail	
13C2_PFHxA	2.0	1.9	93	7	0 - 130	Pass	
13C2_PFDA	2.0	1.6	81	7	0 - 130	Pass	
d5-EtFOSAA	8.0	6.4	80	7	0 - 130	Pass	
Internal Standards							
IS Compound	Area	Ical Li	mits		CCV Limits	Pass	s/Fail
	307/36	175770	527315		2/9700 - /00/00	Do	
1303_F1 F10F1A 1302 DEAA	531450	2/1222	72/16/		273100 - 433400		100
1302_FT UA	J+0000 7770/0	270670 4	1112015		531100 - 1060200		100
1304_FF03	11104U 951110	320524	001601		1002200		100
US-IVIEF USAA	004410	330334 -	331001		490024 - 99/040	Pa Pa	155

50-150% of Ical area

70-140% of the preceding CCV area

N2 = The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

1700 Elm Street, Suite 200 Minneapolis, MN 55414 (612) 607-1700

Method 537 (Modified) Blank Analysis Summary

Lab Sample ID Filename Matrix Date Extracted	BLANK-70776 B190606B_015 Water 05/27/2019	Total Ar ICAL ID Starting Ending (nount Extr CCal CCal	racted 259 mL 190605A B190606 B190606	259 mL 190605A02 B190606B_013 B190606B_024		
Compound	Concentration (ng/L)	PQL (ng/L)	MDL (ng/L)	Dilution	Analyzed	CAS No.	Qual.
PFBS	ND	1.7	0.26	1	06/06/201919:06	375-73-5	N2
PFHxA	ND	1.9	0.26	1	06/06/201919:06	307-24-4	N2
PFHpA	ND	1.9	0.60	1	06/06/201919:06	375-85-9	N2
PFHxS	ND	1.8	0.62	1	06/06/201919:06	355-46-4	N2
PFOA	ND	1.9	0.43	1	06/06/201919:06	335-67-1	N2
PFNA	ND	1.9	0.49	1	06/06/201919:06	375-95-1	N2
PFOS	ND	1.9	0.60	1	06/06/201919:06	1763-23-1	N2
PFDA	ND	1.9	0.47	1	06/06/201919:06	335-76-2	N2
PFUdA	ND	1.9	0.45	1	06/06/201919:06	2058-94-8	N2
N-MeFOSAA	ND	3.9	1.2	1	06/06/201919:06	2355-31-9	N2
N-EtFOSAA	ND	3.9	1.1	1	06/06/201919:06	2991-50-6	N2
PFDoA	ND	1.9	0.38	1	06/06/201919:06	307-55-1	N2
PFTrDA	ND	1.9	0.36	1	06/06/201919:06	72629-94-8	N2
PFTeDA	ND	1.9	0.34	1	06/06/201919:06	376-06-7	N2
PFPrOPrA	ND	3.9	0.69	1	06/06/201919:06	13252-13-6	N2
PFBA	ND	1.9	0.70	1	06/06/201919:06	375-22-4	N2
PFPeA	ND	1.9	0.38	1	06/06/201919:06	2706-90-3	N2
PFDS	ND	1.9	0.36	1	06/06/201919:06	335-77-3	N2
NaDONA	ND	3.9	0.62	1	06/06/201919:06	958445-44-8	N2
PFHxDA	ND	1.9	0.41	1	06/06/201919:06	67905-19-5	N2

Surrogate Standards

SS Compound	Spiked	Found	%Recovery	Limits	Pass/Fail	
13C2_PFHxA	2.0	1.9	96	70 - 130	Pass	
13C2_PFDA	2.0	1.5	75	70 - 130	Pass	
d5-EtFOSAA	8.0	3.6	45	70 - 130	Fail	

Internal Standards

IS Compound	Area	Ical Limits	CCV Limits	Pass/Fail
13C3_PFPrOPrA	381128	175772 - 527315	250184 - 500368	Pass
13C2_PFOA	492087	241388 - 724164	337803 - 675606	Pass
13C4_PFOS	833624	370672 - 1112015	514279 - 1028557	Pass
d3-MeFOSAA	816731	330534 - 991601	564037 - 1128075	Pass

50-150% of Ical area

70-140% of the preceding CCV area

N2 = The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

Method 537 (Modified) Laboratory Control Sample (LCS)

LCS Lab Sample ID	LCS-70773
LCS Filename	B190605B_034
Total Amount Extracted	2.08g
ICAL ID	190605A02
Start CCal Filename	B190605B_027
End CCal Filename	B190605B_038
Method Blank Filename	B190605B_033

MatrixSoilDilution1Extracted05/24/2019Analyzed06/05/2019 19:13Injected ByWM

Compound	Spiked (ug/Kg)	Recovered (ug/Kg)	Recovery %	Limits	
PFBA	0.24	0.28	116	50.0 - 150.0	
PFPeA	0.24	0.22 J	91	50.0 - 150.0	
PFBS	0.21	0.19 J	91	50.0 - 150.0	
PFHxA	0.24	0.23 J	93	50.0 - 150.0	
PFPrOPrA	0.48	0.42 J	87	50.0 - 150.0	
PFHpA	0.24	0.24	101	50.0 - 150.0	
NaDÔNA	0.48	0.58	120	50.0 - 150.0	
PFHxS	0.23	0.22 J	97	50.0 - 150.0	
PFOA	0.24	0.25	103	50.0 - 150.0	
PFNA	0.24	0.23 J	95	50.0 - 150.0	
PFOS	0.23	0.23 J	98	50.0 - 150.0	
PFDA	0.24	0.20 J	81	50.0 - 150.0	
PFUdA	0.24	0.18 J	76	50.0 - 150.0	
N-MeFOSAA	0.48	0.35 J	73	50.0 - 150.0	
N-EtFOSAA	0.48	0.38 J	79	50.0 - 150.0	
PFDS	0.23	0.17 J	74	50.0 - 150.0	
PFDoA	0.24	0.19 J	79	50.0 - 150.0	
PFTrDA	0.24	0.17 J	72	50.0 - 150.0	
PFTeDA	0.24	0.16 J	66	50.0 - 150.0	
PFHxDA	0.24	0.15 J	64	50.0 - 150.0	
PFODA	0.24	0.14 J	57	50.0 - 150.0	

Surrogate Standards

SS Compound	Spiked	Found	%Recovery	Limits	Pass/Fail
13C2_PFHxA	2.0	1.8	88	70 - 130	Pass
13C2_PFDA	2.0	1.5	76	70 - 130	Pass
d5-EtFOSAA	8.0	6.6	82	70 - 130	Pass

Internal Standards

IS Compound	Area	Ical Limits	CCV Limits	Pass/Fail
13C3_PFPrOPrA	369045	175772 - 527315	249700 - 499400	Pass
13C2_PFOA	537400	241388 - 724164	324051 - 648102	Pass
13C4_PFOS	856339	370672 - 1112015	531100 - 1062200	Pass
d3-MeFOSAA	892720	330534 - 991601	498824 - 997648	Pass

50-150% of Ical area

Method 537 (Modified) Laboratory Control Sample (LCS)

LCS Lab Sample ID	LCS-70774
LCS Filename	B190605B_035
Total Amount Extracted	2.07g
ICAL ID	190605A02
Start CCal Filename	B190605B_027
End CCal Filename	B190605B_038
Method Blank Filename	B190605B_033

MatrixSoilDilution1Extracted05/24/2019Analyzed06/05/2019 19:24Injected ByWM

Compound	Spiked (ug/Kg)	Recovered (ug/Kg)	Recovery %	Limits	
PFBA	2.4	2.4	101	70.0 - 130.0	
PFPeA	2.4	2.5	102	70.0 - 130.0	
PFBS	2.1	2.2	103	70.0 - 130.0	
PFHxA	2.4	2.5	103	70.0 - 130.0	
PFPrOPrA	4.8	4.6	96	70.0 - 130.0	
PFHpA	2.4	2.7	113	70.0 - 130.0	
NaDONA	4.8	6.1	127	70.0 - 130.0	
PFHxS	2.3	2.4	106	70.0 - 130.0	
PFOA	2.4	2.9	120	70.0 - 130.0	
PFNA	2.4	2.5	103	70.0 - 130.0	
PFOS	2.3	2.4	104	70.0 - 130.0	
PFDA	2.4	2.2	89	70.0 - 130.0	
PFUdA	2.4	2.3	95	70.0 - 130.0	
N-MeFOSAA	4.8	4.4	92	70.0 - 130.0	
N-EtFOSAA	4.8	4.3	89	70.0 - 130.0	
PFDS	2.3	2.2	94	70.0 - 130.0	
PFDoA	2.4	2.2	89	70.0 - 130.0	
PFTrDA	2.4	2.2	90	70.0 - 130.0	
PFTeDA	2.4	2.0	83	70.0 - 130.0	
PFHxDA	2.4	1.9	81	70.0 - 130.0	
PFODA	2.4	1.8	75	70.0 - 130.0	
Surrogate Standards					

SS Compound	Spiked	Found	%Recovery	Limits	Pass/Fail	
13C2_PFHxA	2.0	1.8	92	70 - 130	Pass	
13C2_PFDA	2.0	1.6	79	70 - 130	Pass	
d5-EtFOSAA	8.0	6.0	75	70 - 130	Pass	

Internal Standards

IS Compound	Area	Ical Limits	CCV Limits	Pass/Fail
13C3_PFPrOPrA	401559	175772 - 527315	249700 - 499400	Pass
13C2_PFOA	560155	241388 - 724164	324051 - 648102	Pass
13C4_PFOS	907071	370672 - 1112015	531100 - 1062200	Pass
d3-MeFOSAA	889936	330534 - 991601	498824 - 997648	Pass

50-150% of Ical area

Method 537 (Modified) Laboratory Control Sample (LCS)

LCS Lab Sample ID	LCS-70777
LCS Filename	B190606B_016
Total Amount Extracted	253mL
ICAL ID	190605A02
Start CCal Filename	B190606B_013
End CCal Filename	B190606B_024
Method Blank Filename	B190606B_015

MatrixWaterDilution1Extracted05/27/2019Analyzed06/06/2019 19:17Injected ByWM

Compound	Spiked (ng/L)	Recovered (ng/L)	Recovery %	Limits	
PFBA	2.0	2.2	110	50.0 - 150.0	
PFPeA	2.0	1.8 J	92	50.0 - 150.0	
PFBS	1.7	1.4 J	83	50.0 - 150.0	
PFHxA	2.0	1.8 J	91	50.0 - 150.0	
PFPrOPrA	3.9	3.3 J	84	50.0 - 150.0	
PFHpA	2.0	2.0 J	99	50.0 - 150.0	
NaDÓNA	3.9	4.1	103	50.0 - 150.0	
PFHxS	1.9	1.7 J	92	50.0 - 150.0	
PFOA	2.0	1.9 J	94	50.0 - 150.0	
PFNA	2.0	2.0	100	50.0 - 150.0	
PFOS	1.9	1.9 J	98	50.0 - 150.0	
PFDA	2.0	1.7 J	84	50.0 - 150.0	
PFUdA	2.0	1.9 J	95	50.0 - 150.0	
N-MeFOSAA	3.9	3.5 J	88	50.0 - 150.0	
N-EtFOSAA	3.9	3.8 J	96	50.0 - 150.0	
PFDS	1.9	1.5 J	80	50.0 - 150.0	
PFDoA	2.0	1.7 J	86	50.0 - 150.0	
PFTrDA	2.0	1.6 J	81	50.0 - 150.0	
PFTeDA	2.0	1.5 J	77	50.0 - 150.0	
PFHxDA	2.0	1.4 J	73	50.0 - 150.0	
PFODA	2.0	1.3 J	66	50.0 - 150.0	

Surrogate Standards

SS Compound	Spiked	Found	%Recovery	Limits	Pass/Fail
13C2_PFHxA	2.0	1.7	86	70 - 130	Pass
13C2_PFDA	2.0	1.7	85	70 - 130	Pass
d5-EtFOSAA	8.0	7.9	99	70 - 130	Pass

Internal Standards

IS Compound	Area	Ical Limits	CCV Limits	Pass/Fail
13C3_PFPrOPrA	411628	175772 - 527315	250184 - 500368	Pass
13C2_PFOA	557945	241388 - 724164	337803 - 675606	Pass
13C4_PFOS	817350	370672 - 1112015	514279 - 1028557	Pass
d3-MeFOSAA	811537	330534 - 991601	564037 - 1128075	Pass

50-150% of Ical area

Method 537 (Modified) Laboratory Control Sample (LCS)

LCS Lab Sample ID	LCS-70778
LCS Filename	B190606B_017
Total Amount Extracted	255mL
ICAL ID	190605A02
Start CCal Filename	B190606B_013
End CCal Filename	B190606B_024
Method Blank Filename	B190606B_01

7 3 4 5

Matrix Water Dilution 1 Extracted 05/27/2019 Analyzed 06/06/2019 19:29 Injected By WM

Compound	Spiked (ng/L)	Recovered (ng/L)	Recovery %	Limits	
PFBA	20	20	102	70.0 - 130.0	
PFPeA	20	20	102	70.0 - 130.0	
PFBS	17	17	100	70.0 - 130.0	
PFHxA	20	21	105	70.0 - 130.0	
PFPrOPrA	39	38	96	70.0 - 130.0	
PFHpA	20	23	115	70.0 - 130.0	
NaDONA	39	48	122	70.0 - 130.0	
PFHxS	18	19	103	70.0 - 130.0	
PFOA	20	23	118	70.0 - 130.0	
PFNA	20	23	116	70.0 - 130.0	
PFOS	19	22	115	70.0 - 130.0	
PFDA	20	19	97	70.0 - 130.0	
PFUdA	20	20	100	70.0 - 130.0	
N-MeFOSAA	39	42	106	70.0 - 130.0	
N-EtFOSAA	39	40	102	70.0 - 130.0	
PFDS	19	17	92	70.0 - 130.0	
PFDoA	20	19	97	70.0 - 130.0	
PFTrDA	20	18	94	70.0 - 130.0	
PFTeDA	20	17	89	70.0 - 130.0	
PFHxDA	20	17	87	70.0 - 130.0	
PFODA	20	16	80	70.0 - 130.0	

Surrogate Standards

SS Compound	Spiked	Found	%Recovery	Limits	Pass/Fail	
13C2_PFHxA	2.0	1.8	89	70 - 130	Pass	
13C2_PFDA	2.0	1.7	84	70 - 130	Pass	
d5-EtFOSAA	8.0	7.1	89	70 - 130	Pass	

Internal Standards

IS Compound	Area	Ical Limits	CCV Limits	Pass/Fail
13C3_PFPrOPrA	396114	175772 - 527315	250184 - 500368	Pass
13C2_PFOA	561250	241388 - 724164	337803 - 675606	Pass
13C4_PFOS	818121	370672 - 1112015	514279 - 1028557	Pass
d3-MeFOSAA	863455	330534 - 991601	564037 - 1128075	Pass

50-150% of Ical area

Method 537 (Modified) Laboratory Control Sample Duplicate (LCSD)

LCSD Lab Sample ID LCSD Filename Total Amount Extracted ICAL ID Start CCal Filename End CCal Filename Method Blank Filename	LCSD-70775 B190605B_036 2.08g 190605A02 B190605B_027 B190605B_036 B190605B_036	5 7 3 3		LCS Filename Matrix Dilution Extracted Analyzed Injected By	B190605B_(Soil 1 05/24/2019 06/05/2019 WM	035 19:36	
Compound	Spiked I (ug/Kg)	Recovered (ug/Kg)	Recovery %	Recove	ry	RPD %	
PFBA PFPeA PFBS PFHxA PFPrOPrA PFHpA NaDONA PFHxS PFOA PFNA PFOS PFDA PFDA PFDA PFDA PFDA N-MeFOSAA N-EtFOSAA PFDS PFDoA PFTDA PFTeDA PFTeDA PFTeDA PFTeDA PFTDA PFTODA	2.4 2.4 2.1 2.4 4.8 2.4 4.8 2.3 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4	2.5 2.6 2.2 2.6 4.1 2.8 5.9 2.5 2.7 2.7 2.5 2.0 2.2 4.5 4.7 2.0 2.1 2.1 1.9 1.8	103 106 104 108 85 117 122 111 113 111 108 85 92 94 98 87 86 87 80 77 75	70.0 - 130 70.0 - 130	D.0 D.0 D.0 D.0 D.0 D.0 D.0 D.0 D.0 D.0	1 4 1 5 12 3 4 4 6 8 4 5 3 2 9 7 3 4 4 4 0	
Surrogate Standards	Onited	F			Lingita		
	Spiked	Fou	na %Rec	covery		Pass/Fail	
13C2_PFHXA	2.0	1	./ 8	54	70 - 130	Pass	
13C2_PFDA	2.0	1	.7 8	35	70 - 130	Pass	
d5-EtFOSAA	8.0	6	6.5 8	31	70 - 130	Pass	
Internal Standards							
IS Compound	Area	lo	cal Limits		CCV Lin	nits	Pass/Fail

15 Compound	Alea			1 833/1 81
13C3 PFPrOPrA	429650	175772 - 527315	249700 - 499400	Pass
13C2_PFOA	553961	241388 - 724164	324051 - 648102	Pass
13C4_PFOS	863892	370672 - 1112015	531100 - 1062200	Pass
d3-MeFOSAA	923221	330534 - 991601	498824 - 997648	Pass

50-150% of Ical area

Method 537 (Modified) Laboratory Control Sample Duplicate (LCSD)

LCSD Lab Sample ID LCSD Filename Total Amount Extracted ICAL ID Start CCal Filename End CCal Filename Method Blank Filename	LCSD-70779 B190606B_018 252mL 190605A02 B190606B_013 B190606B_024 B190606B_015		LC Ma Dil Ex Ar Inj	S Filename atrix ution tracted alyzed ected By	B190606B_017 Water 1 05/27/2019 06/06/2019 19:4 WM	11	
Compound	Spiked R (ng/L)	(ng/L)	Recovery %	Recover Limits	у	RPD %	
PFBA PFPeA PFBS PFHxA PFPrOPrA PFHpA NaDONA PFHxS PFOA PFNA PFOS PFDA PFUdA N-MeFOSAA N-EtFOSAA PFDS PFDoA PFDOA PFTrDA PFTeDA PFTeDA PFHxDA PFODA	20 20 17 20 40 20 40 19 20 20 20 40 40 40 40 19 20 20 20 20 20 20 20 20 20 20 20	20 20 19 22 35 20 48 20 23 21 19 80 R R R R R R R R R R R R R R R R R R	$ \begin{array}{r} 101 \\ 102 \\ 107 \\ 110 \\ 87 \\ 103 \\ 121 \\ 108 \\ 116 \\ 108 \\ 101 \\ 98 \\ 69 \\ 79 \\ 60 \\ 42 \\ 37 \\ 21 \\ 14 \\ 32 \\ 55 \\ \end{array} $	70.0 - 130 70.0 - 130	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	1 1 8 6 9 10 1 6 0 6 12 2 35 28 50 73 89 125 145 92 36	
Surrogate Standards							
SS Compound	Spiked	Found	%Recov	ery	Limits	Pass/Fail	
13C2_PFHxA	2.0	1.8	89	7	70 - 130	Pass	
13C2_PFDA	2.0	1.8	91	7	70 - 130	Pass	
d5-EtFOSAA	8.0	4.3	54	7	70 - 130	Fail	
Internal Standards							
IS Compound	Area	Ical	Limits		CCV Limits		Pass/Fail
13C3_PFPrOPrA 13C2_PFOA 13C4_PFOS d3-MeFOSAA	385531 533036 850323 732735	175772 241388 370672 330534	2 - 527315 3 - 724164 - 1112015 4 - 991601		250184 - 50030 337803 - 67560 514279 - 10285 564037 - 11280	58 06 557 075	Pass Pass Pass Pass

50-150% of Ical area

APPENDIX L

LABORATORY ANALYTICAL REPORTS – GROUNDWATER

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

June 03, 2019

Mr. Mark Anderson IWM Consulting Group LLC 1015 Production Drive Fort Wayne, IN 46808

RE: Project: The Butler Co. Pace Project No.: 50226102

Dear Mr. Anderson:

Enclosed are the analytical results for sample(s) received by the laboratory on May 24, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Clingtellagle

Chris Boyle chris.boyle@pacelabs.com (317)228-3100 Project Manager

Enclosures

cc: Ms. Pauline Lemay, IWM Consulting Group, LLC

CERTIFICATIONS

Project:The Butler Co.Pace Project No.:50226102

Indiana Certification IDs

7726 Moller Road, Indianapolis, IN 46268 Illinois Certification #: 200074 Indiana Certification #: C-49-06 Kansas/NELAP Certification #: E-10177 Kentucky UST Certification #: 80226 Kentucky WW Certification #: 98019 Michigan Department of Environmental Quality, Laboratory #9050 Ohio VAP Certification #: CL0065 Oklahoma Certification #: 2018-101 Texas Certification #: T104704355 West Virginia Certification #: 330 Wisconsin Certification #: 999788130 USDA Soil Permit #: P330-16-00257

SAMPLE SUMMARY

Project:The Butler Co.Pace Project No.:50226102

Lab ID	Sample ID	Matrix	Date Collected	Date Received
50226102001	BC-GP10-GW1	Water	05/22/19 16:35	05/24/19 08:45
50226102002	BC-GP11-GW1	Water	05/22/19 14:41	05/24/19 08:45
50226102003	BC-GP12-GW1	Water	05/22/19 10:40	05/24/19 08:45
50226102004	BC-GP13-GW1	Water	05/22/19 13:03	05/24/19 08:45
50226102005	BC-GP14-GW1	Water	05/22/19 11:44	05/24/19 08:45
50226102006	BC-GP15-GW1	Water	05/22/19 18:08	05/24/19 08:45
50226102007	BC-GPGW-FD1	Water	05/22/19 08:00	05/24/19 08:45
50226102008	BC-EB-GW1	Water	05/22/19 11:20	05/24/19 08:45
50226102009	BC-TB1	Water	05/22/19 08:00	05/24/19 08:45

SAMPLE ANALYTE COUNT

Project:The Butler Co.Pace Project No.:50226102

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
50226102001	BC-GP10-GW1	EPA 8082	KAV	8	PASI-I
		EPA 6010	RAM	9	PASI-I
		EPA 6010	JPK	9	PASI-I
		EPA 7470	LBT	1	PASI-I
		EPA 7470	ILP	1	PASI-I
		EPA 8270 by SIM LVE	GRM	20	PASI-I
		EPA 8260	CAP	72	PASI-I
50226102002	BC-GP11-GW1	EPA 8082	KAV	8	PASI-I
		EPA 6010	RAM	9	PASI-I
		EPA 6010	JPK	9	PASI-I
		EPA 7470	LBT	1	PASI-I
		EPA 7470	ILP	1	PASI-I
		EPA 8270 by SIM LVE	GRM	20	PASI-I
		EPA 8260	CAP	72	PASI-I
50226102003	BC-GP12-GW1	EPA 8082	KAV	8	PASI-I
		EPA 6010	RAM	9	PASI-I
		EPA 6010	JPK	9	PASI-I
		EPA 7470	LBT	1	PASI-I
		EPA 7470	ILP	1	PASI-I
		EPA 8270 by SIM LVE	GRM	20	PASI-I
		EPA 8260	CAP	72	PASI-I
50226102004	BC-GP13-GW1	EPA 8082	KAV	8	PASI-I
		EPA 6010	RAM	9	PASI-I
		EPA 6010	JPK	9	PASI-I
		EPA 7470	LBT	1	PASI-I
		EPA 7470	ILP	1	PASI-I
		EPA 8270 by SIM LVE	GRM	20	PASI-I
		EPA 8260	CAP	72	PASI-I
50226102005	BC-GP14-GW1	EPA 8082	KAV	8	PASI-I
		EPA 6010	RAM	9	PASI-I
		EPA 6010	JPK	9	PASI-I
		EPA 7470	LBT	1	PASI-I
		EPA 7470	ILP	1	PASI-I
		EPA 8270 by SIM LVE	GRM	20	PASI-I
		EPA 8260	CAP	72	PASI-I
50226102006	BC-GP15-GW1	EPA 8082	KAV	8	PASI-I
		EPA 6010	RAM	9	PASI-I

The Butler Co.

Project:

SAMPLE ANALYTE COUNT

Lab IDSample IDMethodAnalystsPASI-IEPA 8270 by SIM LVEGRMGRMGRGRGRGRGRGRGRGRGRGRGRFASI-IEPA 8270 by SIM LVEGRMGRGRGRGRFASI-IFASI-IFASI-IFASI-IFASI-IFASI-IFASI-IEPA 8270 by SIM LVEGRMGRGRGRGRFASI-I	Pace Project No	o.: 50226102				
EPA 6010 JPK 9 PASI-I EPA 7470 LBT 1 PASI-I EPA 7470 ILP 1 PASI-I EPA 7470 ILP 1 PASI-I EPA 7470 ILP 1 PASI-I EPA 8270 by SIM LVE GRM 20 PASI-I EPA 8260 CAP 72 PASI-I EPA 8082 KAV 8 PASI-I EPA 6010 RAM 9 PASI-I EPA 6010 JPK 9 PASI-I EPA 6010 JPK 9 PASI-I EPA 7470 LBT 1 PASI-I EPA 7470 LBT 1 PASI-I EPA 7470 LBT 1 PASI-I EPA 8270 by SIM LVE GRM 20 PASI-I EPA 8270 by SIM LVE GRM 20 PASI-I EPA 8260 CAP 72 PASI-I EPA 8260 CAP 72 PASI-I	Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
EPA 7470 LBT 1 PASI-I EPA 7470 ILP 1 PASI-I EPA 8270 by SIM LVE GRM 20 PASI-I EPA 8260 CAP 72 PASI-I 50226102007 BC-GPGW-FD1 EPA 8082 KAV 8 PASI-I EPA 6010 RAM 9 PASI-I EPA 6010 RAM 9 PASI-I EPA 6010 RAM 9 PASI-I EPA 6010 LBT 1 PASI-I EPA 7470 LBT 1 PASI-I EPA 7470 LBT 1 PASI-I EPA 82270 by SIM LVE GRM 20 PASI-I EPA 82270 by SIM LVE GRM 20 PASI-I EPA 8260 CAP 72 PASI-I <			EPA 6010	JPK	9	PASI-I
EPA 7470 ILP 1 PASI-I EPA 8270 by SIM LVE GRM 20 PASI-I EPA 8260 CAP 72 PASI-I 50226102007 BC-GPGW-FD1 EPA 8082 KAV 8 PASI-I EPA 6010 RAM 9 PASI-I EPA 6010 JPK 9 PASI-I EPA 6010 JPK 9 PASI-I EPA 6010 JPK 9 PASI-I EPA 7470 LBT 1 PASI-I EPA 7470 ILP 1 PASI-I EPA 8270 by SIM LVE GRM 20 PASI-I EPA 8260 CAP 72 PASI-I EPA 8260 CAP 72 PASI-I			EPA 7470	LBT	1	PASI-I
EPA 8270 by SIM LVE GRM 20 PASI-I 50226102007 BC-GPGW-FD1 EPA 8082 KAV 8 PASI-I 50226102007 BC-GPGW-FD1 EPA 8082 KAV 8 PASI-I EPA 6010 RAM 9 PASI-I EPA 6010 JPK 9 PASI-I EPA 6010 JPK 9 PASI-I EPA 7470 LBT 1 PASI-I EPA 8270 by SIM LVE GRM 20 PASI-I EPA 8270 by SIM LVE GRM 20 PASI-I EPA 8270 by SIM LVE GRM 20 PASI-I EPA 8260 CAP 72 PASI-I			EPA 7470	ILP	1	PASI-I
EPA 8260 CAP 72 PASI-I 50226102007 BC-GPGW-FD1 EPA 8082 KAV 8 PASI-I EPA 6010 RAM 9 PASI-I EPA 6010 JPK 9 PASI-I EPA 6010 JPK 9 PASI-I EPA 7470 LBT 1 PASI-I EPA 7470 ILP 1 PASI-I EPA 8270 by SIM LVE GRM 20 PASI-I EPA 8260 CAP 72 PASI-I			EPA 8270 by SIM LVE	GRM	20	PASI-I
50226102007 BC-GPGW-FD1 EPA 8082 KAV 8 PASI-I EPA 6010 RAM 9 PASI-I EPA 6010 JPK 9 PASI-I EPA 6010 JPK 9 PASI-I EPA 7470 LBT 1 PASI-I EPA 7470 ILP 1 PASI-I EPA 8270 by SIM LVE GRM 20 PASI-I EPA 8260 CAP 72 PASI-I			EPA 8260	CAP	72	PASI-I
EPA 6010 RAM 9 PASI-I EPA 6010 JPK 9 PASI-I EPA 7470 LBT 1 PASI-I EPA 7470 ILP 1 PASI-I EPA 7470 ILP 1 PASI-I EPA 8270 by SIM LVE GRM 20 PASI-I EPA 8260 CAP 72 PASI-I	50226102007	BC-GPGW-FD1	EPA 8082	KAV	8	PASI-I
EPA 6010 JPK 9 PASI-I EPA 7470 LBT 1 PASI-I EPA 7470 ILP 1 PASI-I EPA 7470 ILP 1 PASI-I EPA 8270 by SIM LVE GRM 20 PASI-I EPA 8260 CAP 72 PASI-I			EPA 6010	RAM	9	PASI-I
EPA 7470 LBT 1 PASI-I EPA 7470 ILP 1 PASI-I EPA 8270 by SIM LVE GRM 20 PASI-I EPA 8260 CAP 72 PASI-I			EPA 6010	JPK	9	PASI-I
EPA 7470 ILP 1 PASI-I EPA 8270 by SIM LVE GRM 20 PASI-I EPA 8260 CAP 72 PASI-I			EPA 7470	LBT	1	PASI-I
EPA 8270 by SIM LVE GRM 20 PASI-I EPA 8260 CAP 72 PASI-I			EPA 7470	ILP	1	PASI-I
EPA 8260 CAP 72 PASI-I			EPA 8270 by SIM LVE	GRM	20	PASI-I
			EPA 8260	CAP	72	PASI-I
50226102008 BC-EB-GW1 EPA 8082 KAV 8 PASI-I	50226102008	BC-EB-GW1	EPA 8082	KAV	8	PASI-I
EPA 6010 RAM 9 PASI-I			EPA 6010	RAM	9	PASI-I
EPA 7470 LBT 1 PASI-I			EPA 7470	LBT	1	PASI-I
EPA 8270 by SIM LVE GRM 20 PASI-I			EPA 8270 by SIM LVE	GRM	20	PASI-I
EPA 8260 CAP 72 PASI-I			EPA 8260	CAP	72	PASI-I
50226102009 BC-TB1 EPA 8260 CAP 72 PASI-I	50226102009	BC-TB1	EPA 8260	CAP	72	PASI-I

SUMMARY OF DETECTION

Project: The Butler Co.

Pace Project No.: 50226102

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
50226102001	BC-GP10-GW1					
EPA 6010	Barium	117	ug/L	10.0	06/03/19 08:42	
EPA 6010	Chromium	17.4	ug/L	10.0	06/03/19 08:42	
EPA 6010	Copper	14.5	ug/L	10.0	06/03/19 08:42	
EPA 6010	Zinc	27.6	ug/L	20.0	06/03/19 08:42	
EPA 6010	Barium, Dissolved	72.0	ug/L	10.0	05/29/19 02:42	
50226102002	BC-GP11-GW1					
EPA 6010	Barium	134	ug/L	10.0	06/03/19 08:45	
EPA 6010	Zinc	56.1	ug/L	20.0	06/03/19 08:45	
EPA 6010	Barium, Dissolved	115	ug/L	10.0	05/29/19 02:49	
EPA 6010	Zinc, Dissolved	24.4	ug/L	20.0	05/29/19 02:49	
50226102003	BC-GP12-GW1					
EPA 6010	Barium	121	ug/L	10.0	06/03/19 08:47	
EPA 6010	Barium, Dissolved	114	ug/L	10.0	05/29/19 02:51	
50226102004	BC-GP13-GW1					
EPA 6010	Barium	136	ug/L	10.0	06/03/19 08:49	
EPA 6010	Cadmium	3.9	ug/L	2.0	06/03/19 08:49	
EPA 6010	Copper	35.0	ug/L	10.0	06/03/19 08:49	
EPA 6010	Zinc	1610	ug/L	20.0	06/03/19 08:49	
EPA 6010	Barium, Dissolved	140	ug/L	10.0	05/29/19 02:54	
EPA 6010	Cadmium, Dissolved	3.8	ug/L	2.0	05/29/19 02:54	
EPA 6010	Zinc, Dissolved	1570	ug/L	20.0	05/29/19 02:54	
50226102005	BC-GP14-GW1					
EPA 6010	Barium	158	ug/L	10.0	06/03/19 08:51	
EPA 6010	Chromium	10.9	ug/L	10.0	06/03/19 08:51	
EPA 6010	Copper	12.6	ug/L	10.0	06/03/19 08:51	
EPA 6010	Zinc	22.3	ug/L	20.0	06/03/19 08:51	
EPA 6010	Barium, Dissolved	123	ug/L	10.0	05/29/19 02:56	
50226102006	BC-GP15-GW1					
EPA 6010	Barium	150	ug/L	10.0	06/03/19 08:54	
EPA 6010	Barium, Dissolved	131	ug/L	10.0	05/29/19 02:59	
50226102007	BC-GPGW-FD1					
EPA 6010	Barium	133	ug/L	10.0	06/03/19 09:09	
EPA 6010	Copper	10.2	ug/L	10.0	06/03/19 09:09	
EPA 6010	Zinc	54.4	ug/L	20.0	06/03/19 09:09	
EPA 6010	Barium, Dissolved	116	ug/L	10.0	05/29/19 03:10	
EPA 6010	Zinc, Dissolved	22.8	ug/L	20.0	05/29/19 03:10	

Project: The Butler Co.

Pace Project No.: 50226102

Sample: BC-GP10-GW1	Lab ID: 5022	6102001	Collected: 05/22/1	9 16:35	6 Received: 05	/24/19 08:45 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB RV Waters	Analytical Meth	od: EPA 80	082 Preparation Meth	od: EP	A 3510			
PCB-1016 (Aroclor 1016)	ND	ug/L	0.10	1	06/01/19 11:47	06/03/19 02:29	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ug/L	0.20	1	06/01/19 11:47	06/03/19 02:29	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	ug/L	0.10	1	06/01/19 11:47	06/03/19 02:29	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	ug/L	0.10	1	06/01/19 11:47	06/03/19 02:29	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	ug/L	0.10	1	06/01/19 11:47	06/03/19 02:29	12672-29-6	
PCB-1254 (Aroclor 1254)	ND	ug/L	0.10	1	06/01/19 11:47	06/03/19 02:29	11097-69-1	
PCB-1260 (Aroclor 1260)	ND	ug/L	0.10	1	06/01/19 11:47	06/03/19 02:29	11096-82-5	
Surrogates								
Tetrachloro-m-xylene (S)	49	%.	10-148	1	06/01/19 11:47	06/03/19 02:29	877-09-8	
6010 MET ICP	Analytical Meth	od: EPA 60	010 Preparation Meth	od: EP	A 3010			
Arsenic	ND	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:42	7440-38-2	
Barium	117	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:42	7440-39-3	
Cadmium	ND	ug/L	2.0	1	06/01/19 09:40	06/03/19 08:42	7440-43-9	
Chromium	17.4	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:42	7440-47-3	
Copper	14.5	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:42	7440-50-8	
Lead	ND	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:42	7439-92-1	
Selenium	ND	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:42	7782-49-2	
Silver	ND	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:42	7440-22-4	
Zinc	27.6	ug/L	20.0	1	06/01/19 09:40	06/03/19 08:42	7440-66-6	
6010 MET ICP, Dissolved	Analytical Meth	od: EPA 60	010 Preparation Meth	od: EP	A 3010			
Arsenic, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:42	7440-38-2	
Barium, Dissolved	72.0	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:42	7440-39-3	
Cadmium, Dissolved	ND	ug/L	2.0	1	05/28/19 06:02	05/29/19 02:42	7440-43-9	
Chromium, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:42	7440-47-3	
Copper, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:42	7440-50-8	
Lead, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:42	7439-92-1	
Selenium, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:42	7782-49-2	
Silver, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:42	7440-22-4	
Zinc, Dissolved	ND	ug/L	20.0	1	05/28/19 06:02	05/29/19 02:42	7440-66-6	
7470 Mercury	Analytical Meth	od: EPA 74	170 Preparation Meth	od: EP	A 7470			
Mercury	ND	ug/L	2.0	1	05/26/19 20:13	05/28/19 00:17	7439-97-6	
7470 Mercury, Dissolved	Analytical Meth	od: EPA 74	170 Preparation Meth	od: EP	A 7470			
Mercury, Dissolved	ND	ug/L	2.0	1	05/30/19 21:24	05/31/19 08:36	7439-97-6	
8270 MSSV PAHLV	Analytical Meth	od: EPA 82	270 by SIM LVE Prep	aration	Method: EPA 357	10		
Acenaphthene	ND	ug/L	1.0	1	05/28/19 09:26	05/28/19 15:21	83-32-9	1d
Acenaphthylene	ND	ug/L	1.0	1	05/28/19 09:26	05/28/19 15:21	208-96-8	1d
Anthracene	ND	ug/L	0.10	1	05/28/19 09:26	05/28/19 15:21	120-12-7	1d
Benzo(a)anthracene	ND	ug/L	0.10	1	05/28/19 09:26	05/28/19 15:21	56-55-3	1d
Benzo(a)pyrene	ND	ug/L	0.10	1	05/28/19 09:26	05/28/19 15:21	50-32-8	1d
Benzo(b)fluoranthene	ND	ug/L	0.10	1	05/28/19 09:26	05/28/19 15:21	205-99-2	1d
Benzo(g,h,i)perylene	ND	ug/L	0.10	1	05/28/19 09:26	05/28/19 15:21	191-24-2	1d

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: The Butler Co.

Pace Project No.: 50226102

Sample: BC-GP10-GW1	Lab ID: 502	26102001	Collected: 05/22/1	9 16:35	Received: 05	/24/19 08:45 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV PAHLV	Analytical Meth	nod: EPA 82	270 by SIM LVE Prep	paration	Method: EPA 35	10		
Benzo(k)fluoranthene	ND	ug/L	0.10	1	05/28/19 09:26	05/28/19 15:21	207-08-9	1d
Chrysene	ND	ug/L	0.50	1	05/28/19 09:26	05/28/19 15:21	218-01-9	1d
Dibenz(a,h)anthracene	ND	ug/L	0.10	1	05/28/19 09:26	05/28/19 15:21	53-70-3	1d
Fluoranthene	ND	ug/L	1.0	1	05/28/19 09:26	05/28/19 15:21	206-44-0	1d
Fluorene	ND	ug/L	1.0	1	05/28/19 09:26	05/28/19 15:21	86-73-7	1d
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.10	1	05/28/19 09:26	05/28/19 15:21	193-39-5	1d
1-Methylnaphthalene	ND	ug/L	1.0	1	05/28/19 09:26	05/28/19 15:21	90-12-0	1d,N2
2-Methylnaphthalene	ND	ug/L	1.0	1	05/28/19 09:26	05/28/19 15:21	91-57-6	1d
Naphthalene	ND	ug/L	1.0	1	05/28/19 09:26	05/28/19 15:21	91-20-3	1d
Phenanthrene	ND	ug/L	1.0	1	05/28/19 09:26	05/28/19 15:21	85-01-8	1d
Pyrene Surrogates	ND	ug/L	1.0	1	05/28/19 09:26	05/28/19 15:21	129-00-0	1d
2-Eluorobinhenvl (S)	74	%	10-105	1	05/28/19 09 26	05/28/19 15:21	321-60-8	
p-Terphenyl-d14 (S)	108	%.	10-142	1	05/28/19 09:26	05/28/19 15:21	1718-51-0	
8260/5030 MSV	Analytical Meth	nod: EPA 82	260					
Acetone	ND	ug/L	100	1		05/30/19 23:12	67-64-1	
Acrolein	ND	ug/L	50.0	1		05/30/19 23:12	107-02-8	
Acrylonitrile	ND	ug/L	100	1		05/30/19 23:12	107-13-1	
Benzene	ND	ug/L	5.0	1		05/30/19 23:12	71-43-2	
Bromobenzene	ND	ug/L	5.0	1		05/30/19 23:12	108-86-1	
Bromochloromethane	ND	uq/L	5.0	1		05/30/19 23:12	74-97-5	
Bromodichloromethane	ND	ug/L	5.0	1		05/30/19 23:12	75-27-4	
Bromoform	ND	uq/L	5.0	1		05/30/19 23:12	75-25-2	
Bromomethane	ND	ug/L	5.0	1		05/30/19 23:12	74-83-9	
2-Butanone (MEK)	ND	ug/L	25.0	1		05/30/19 23:12	78-93-3	
n-Butylbenzene	ND	ug/L	5.0	1		05/30/19 23:12	104-51-8	
sec-Butylbenzene	ND	ug/L	5.0	1		05/30/19 23:12	135-98-8	
tert-Butylbenzene	ND	ug/L	5.0	1		05/30/19 23:12	98-06-6	
Carbon disulfide	ND	ug/L	10.0	1		05/30/19 23:12	75-15-0	
Carbon tetrachloride	ND	ug/L	5.0	1		05/30/19 23:12	56-23-5	
Chlorobenzene	ND	ug/L	5.0	1		05/30/19 23:12	108-90-7	
Chloroethane	ND	ug/L	5.0	1		05/30/19 23:12	75-00-3	
Chloroform	ND	ug/L	5.0	1		05/30/19 23:12	67-66-3	
Chloromethane	ND	ug/L	5.0	1		05/30/19 23:12	74-87-3	
2-Chlorotoluene	ND	ug/L	5.0	1		05/30/19 23:12	95-49-8	
4-Chlorotoluene	ND	ug/L	5.0	1		05/30/19 23:12	106-43-4	
Dibromochloromethane	ND	ug/L	5.0	1		05/30/19 23:12	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	1		05/30/19 23:12	106-93-4	
Dibromomethane	ND	ug/L	5.0	1		05/30/19 23:12	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	1		05/30/19 23:12	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	1		05/30/19 23:12	541-73-1	
1,4-Dichlorobenzene	ND	ua/L	5.0	1		05/30/19 23:12	106-46-7	
trans-1,4-Dichloro-2-butene	ND	ug/L	100	1		05/30/19 23:12	110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	1		05/30/19 23:12	75-71-8	
1,1-Dichloroethane	ND	ug/L	5.0	1		05/30/19 23:12	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	1		05/30/19 23:12	107-06-2	

Project: The Butler Co.

Pace Project No.: 50226102

Sample: BC-GP10-GW1	Lab ID: 502	26102001	Collected: 05/22/1	9 16:35	Received: 05/2	4/19 08:45 N	Matrix: Water <u>CAS No.</u> Qua 12 75-35-4 12 156-59-2 12 156-60-5 12 78-87-5 12 142-28-9 12 594-20-7 L1 12 563-58-6 12 10061-01-5 12 10061-02-6 12 100-41-4 12 97-63-2 12 87-68-3			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual		
8260/5030 MSV	Analytical Meth	nod: EPA 82	260							
1,1-Dichloroethene	ND	ug/L	5.0	1	(5/30/19 23:12	75-35-4			
cis-1,2-Dichloroethene	ND	ug/L	5.0	1	(5/30/19 23:12	156-59-2			
trans-1,2-Dichloroethene	ND	ug/L	5.0	1	(5/30/19 23:12	156-60-5			
1,2-Dichloropropane	ND	ug/L	5.0	1	(5/30/19 23:12	78-87-5			
1,3-Dichloropropane	ND	ug/L	5.0	1	(5/30/19 23:12	142-28-9			
2,2-Dichloropropane	ND	ug/L	5.0	1	(5/30/19 23:12	594-20-7	L1		
1,1-Dichloropropene	ND	ug/L	5.0	1	(5/30/19 23:12	563-58-6			
cis-1,3-Dichloropropene	ND	ug/L	5.0	1	(5/30/19 23:12	10061-01-5			
trans-1,3-Dichloropropene	ND	ug/L	5.0	1	(5/30/19 23:12	10061-02-6			
Ethylbenzene	ND	ug/L	5.0	1	(5/30/19 23:12	100-41-4			
Ethyl methacrylate	ND	ug/L	100	1	(5/30/19 23:12	97-63-2			
Hexachloro-1,3-butadiene	ND	ug/L	5.0	1	(5/30/19 23:12	87-68-3			
n-Hexane	ND	uq/L	5.0	1	(5/30/19 23:12	110-54-3	L1		
2-Hexanone	ND	ua/L	25.0	1	(5/30/19 23:12	591-78-6			
lodomethane	ND	ua/L	10.0	1	(5/30/19 23:12	74-88-4			
Isopropylbenzene (Cumene)	ND	ua/L	5.0	1	(5/30/19 23:12	98-82-8			
p-lsopropyltoluene	ND	ua/L	5.0	1	(5/30/19 23:12	99-87-6			
Methylene Chloride	ND	ua/L	5.0	1	(5/30/19 23:12	75-09-2			
4-Methyl-2-pentanone (MIBK)	ND	ua/L	25.0	1	()5/30/19 23:12	108-10-1			
Methyl-tert-butyl ether	ND	ua/L	4.0	1	()5/30/19 23:12	1634-04-4			
n-Propylbenzene	ND	ua/l	5.0	1	(5/30/19 23:12	103-65-1			
Styrene	ND	ua/L	5.0	1	(5/30/19 23:12	100-42-5			
1.1.1.2-Tetrachloroethane	ND	ua/L	5.0	1	()5/30/19 23:12	630-20-6			
1,1,2,2-Tetrachloroethane	ND	ua/l	5.0	1	(5/30/19 23:12	79-34-5			
Tetrachloroethene	ND	ua/l	5.0	1	(5/30/19 23:12	127-18-4			
Toluene	ND	ua/l	5.0	1	(5/30/19 23 12	108-88-3			
1 2 3-Trichlorobenzene	ND	ug/L	5.0	1	(5/30/19 23:12	87-61-6			
1 2 4-Trichlorobenzene	ND	ua/l	5.0	1	(5/30/19 23 12	120-82-1			
1 1 1-Trichloroethane	ND	ua/l	5.0	1	(5/30/19 23 12	71-55-6			
1 1 2-Trichloroethane	ND	ug/L	5.0	1	(5/30/19 23:12	79-00-5			
Trichloroethene	ND	ug/L	5.0	1	(5/30/19 23.12	79-01-6			
Trichlorofluoromethane	ND	ug/L	5.0	1	()5/30/19 23·12	75-69-4			
1 2 3-Trichloropropage	ND	ug/L	5.0	1	(5/30/19 23.12	96-18-4			
1 2 4-Trimethylbenzene		ug/L	5.0	1	()5/30/19 23·12	95-63-6			
1 3 5-Trimethylbenzene	ND	ug/L	5.0	1	(5/30/19 23.12	108-67-8			
Vinyl acetate	ND	ug/L	50.0	1	(5/30/19 23.12	108-05-4			
Vinyl chloride	ND	ug/L	2.0	1	(5/30/19 23·12	75-01-4			
Xylene (Total)		ua/l	2.0 10.0	1	() (5/30/10 23.12	1330-20-7			
Surrogates		uy/L	10.0		(0,00,13 20.12	1000-20-7			
Dibromofluoromethane (S)	101	%	80-122	1	ſ	5/30/19 23.12	1868-53-7			
4-Bromofluorobenzene (S)	99	%.	85-114	1	(5/30/19 23:12	460-00-4			
Toluene-d8 (S)	101	%.	85-114	1	(5/30/19 23:12	2037-26-5			

Project: The Butler Co.

Pace Project No.: 50226102

Sample: BC-GP11-GW1	Lab ID: 50226102002 Collected: 05/22/19 14:41 Received: 05/24/19 08:45 Matrix: Water							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB RV Waters	Analytical Meth	od: EPA 80	082 Preparation Meth	nod: EP/	A 3510			
PCB-1016 (Aroclor 1016)	ND	ug/L	0.10	1	06/01/19 11:47	06/03/19 02:43	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ug/L	0.20	1	06/01/19 11:47	06/03/19 02:43	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	ug/L	0.10	1	06/01/19 11:47	06/03/19 02:43	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	ug/L	0.10	1	06/01/19 11:47	06/03/19 02:43	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	ug/L	0.10	1	06/01/19 11:47	06/03/19 02:43	12672-29-6	
PCB-1254 (Aroclor 1254)	ND	ug/L	0.10	1	06/01/19 11:47	06/03/19 02:43	11097-69-1	
PCB-1260 (Aroclor 1260)	ND	ug/L	0.10	1	06/01/19 11:47	06/03/19 02:43	11096-82-5	
Tetrachloro-m-xylene (S)	62	%.	10-148	1	06/01/19 11:47	06/03/19 02:43	877-09-8	
6010 MET ICP	Analytical Meth	od: EPA 60	010 Preparation Meth	nod: EP/	A 3010			
Arsenic	ND	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:45	7440-38-2	
Barium	134	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:45	7440-39-3	
Cadmium	ND	ug/L	2.0	1	06/01/19 09:40	06/03/19 08:45	7440-43-9	
Chromium	ND	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:45	7440-47-3	
Copper	ND	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:45	7440-50-8	
Lead	ND	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:45	7439-92-1	
Selenium	ND	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:45	7782-49-2	
Silver	ND	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:45	7440-22-4	
Zinc	56.1	ug/L	20.0	1	06/01/19 09:40	06/03/19 08:45	7440-66-6	
6010 MET ICP, Dissolved	Analytical Meth	od: EPA 60	010 Preparation Meth	nod: EP/	A 3010			
Arsenic, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:49	7440-38-2	
Barium, Dissolved	115	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:49	7440-39-3	
Cadmium, Dissolved	ND	ug/L	2.0	1	05/28/19 06:02	05/29/19 02:49	7440-43-9	
Chromium, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:49	7440-47-3	
Copper, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:49	7440-50-8	
Lead, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:49	7439-92-1	
Selenium, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:49	7782-49-2	
Silver, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:49	7440-22-4	
Zinc, Dissolved	24.4	ug/L	20.0	1	05/28/19 06:02	05/29/19 02:49	7440-66-6	
7470 Mercury	Analytical Meth	od: EPA 74	470 Preparation Meth	nod: EP/	A 7470			
Mercury	ND	ug/L	2.0	1	05/26/19 20:13	05/28/19 00:19	7439-97-6	
7470 Mercury, Dissolved	Analytical Meth	od: EPA 74	470 Preparation Meth	nod: EP/	A 7470			
Mercury, Dissolved	ND	ug/L	2.0	1	05/30/19 21:24	05/31/19 08:38	7439-97-6	
8270 MSSV PAHLV	Analytical Meth	od: EPA 82	270 by SIM LVE Prep	paration	Method: EPA 35	10		
Acenaphthene	ND	ug/L	1.0	1	05/28/19 09:26	05/28/19 15:33	83-32-9	1d
Acenaphthylene	ND	ug/L	1.0	1	05/28/19 09:26	05/28/19 15:33	208-96-8	1d
Anthracene	ND	ug/L	0.10	1	05/28/19 09:26	05/28/19 15:33	120-12-7	1d
Benzo(a)anthracene	ND	ug/L	0.10	1	05/28/19 09:26	05/28/19 15:33	56-55-3	1d
Benzo(a)pyrene	ND	ug/L	0.10	1	05/28/19 09:26	05/28/19 15:33	50-32-8	1d
Benzo(b)fluoranthene	ND	ug/L	0.10	1	05/28/19 09:26	05/28/19 15:33	205-99-2	1d
Benzo(g,h,i)perylene	ND	ug/L	0.10	1	05/28/19 09:26	05/28/19 15:33	191-24-2	1d

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: The Butler Co.

Pace Project No.: 50226102

Sample: BC-GP11-GW1	Lab ID: 50226102002 Collected: 05/22/19 14:41 Received: 05/24/19 08:45 Matrix: Water							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV PAHLV	Analytical Meth	nod: EPA 82	270 by SIM LVE Prep	aration	Method: EPA 35	10		
Benzo(k)fluoranthene	ND	ug/L	0.10	1	05/28/19 09:26	05/28/19 15:33	207-08-9	1d
Chrysene	ND	ug/L	0.50	1	05/28/19 09:26	05/28/19 15:33	218-01-9	1d
Dibenz(a,h)anthracene	ND	ug/L	0.10	1	05/28/19 09:26	05/28/19 15:33	53-70-3	1d
Fluoranthene	ND	ug/L	1.0	1	05/28/19 09:26	05/28/19 15:33	206-44-0	1d
Fluorene	ND	ug/L	1.0	1	05/28/19 09:26	05/28/19 15:33	86-73-7	1d
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.10	1	05/28/19 09:26	05/28/19 15:33	193-39-5	1d
1-Methylnaphthalene	ND	ug/L	1.0	1	05/28/19 09:26	05/28/19 15:33	90-12-0	1d,N2
2-Methylnaphthalene	ND	ug/L	1.0	1	05/28/19 09:26	05/28/19 15:33	91-57-6	1d
Naphthalene	ND	ug/L	1.0	1	05/28/19 09:26	05/28/19 15:33	91-20-3	1d
Phenanthrene	ND	ug/L	1.0	1	05/28/19 09:26	05/28/19 15:33	85-01-8	1d
Pyrene Surrogates	ND	ug/L	1.0	1	05/28/19 09:26	05/28/19 15:33	129-00-0	1d
2-Fluorobiphenyl (S)	75	%.	10-105	1	05/28/19 09:26	05/28/19 15:33	321-60-8	
p-Terphenyl-d14 (S)	79	%.	10-142	1	05/28/19 09:26	05/28/19 15:33	1718-51-0	
8260/5030 MSV	Analytical Meth	nod: EPA 82	260					
Acetone	ND	ug/L	100	1		05/31/19 02:13	67-64-1	
Acrolein	ND	ug/L	50.0	1		05/31/19 02:13	107-02-8	
Acrylonitrile	ND	ug/L	100	1		05/31/19 02:13	107-13-1	
Benzene	ND	ug/L	5.0	1		05/31/19 02:13	71-43-2	
Bromobenzene	ND	ug/L	5.0	1		05/31/19 02:13	108-86-1	L1
Bromochloromethane	ND	ug/L	5.0	1		05/31/19 02:13	74-97-5	
Bromodichloromethane	ND	ug/L	5.0	1		05/31/19 02:13	75-27-4	
Bromoform	ND	ug/L	5.0	1		05/31/19 02:13	75-25-2	
Bromomethane	ND	ug/L	5.0	1		05/31/19 02:13	74-83-9	
2-Butanone (MEK)	ND	ug/L	25.0	1		05/31/19 02:13	78-93-3	
n-Butylbenzene	ND	ug/L	5.0	1		05/31/19 02:13	104-51-8	
sec-Butylbenzene	ND	ug/L	5.0	1		05/31/19 02:13	135-98-8	
tert-Butylbenzene	ND	ug/L	5.0	1		05/31/19 02:13	98-06-6	
Carbon disulfide	ND	ug/L	10.0	1		05/31/19 02:13	75-15-0	
Carbon tetrachloride	ND	ug/L	5.0	1		05/31/19 02:13	56-23-5	
Chlorobenzene	ND	ug/L	5.0	1		05/31/19 02:13	108-90-7	
Chloroethane	ND	ug/L	5.0	1		05/31/19 02:13	75-00-3	
Chloroform	ND	ug/L	5.0	1		05/31/19 02:13	67-66-3	
Chloromethane	ND	ug/L	5.0	1		05/31/19 02:13	74-87-3	
2-Chlorotoluene	ND	ug/L	5.0	1		05/31/19 02:13	95-49-8	
4-Chlorotoluene	ND	ug/L	5.0	1		05/31/19 02:13	106-43-4	
Dibromochloromethane	ND	ug/L	5.0	1		05/31/19 02:13	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	1		05/31/19 02:13	106-93-4	
Dibromomethane	ND	ug/L	5.0	1		05/31/19 02:13	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	1		05/31/19 02:13	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	1		05/31/19 02:13	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	1		05/31/19 02:13	106-46-7	
trans-1,4-Dichloro-2-butene	ND	ug/L	100	1		05/31/19 02:13	110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	1		05/31/19 02:13	75-71-8	
1,1-Dichloroethane	ND	ug/L	5.0	1		05/31/19 02:13	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	1		05/31/19 02:13	107-06-2	

Project: The Butler Co.

Pace Project No.: 50226102

Sample: BC-GP11-GW1	Lab ID: 502	26102002	Collected: 05/22/1	9 14:41	Received: 0	5/24/19 08:45 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260/5030 MSV	Analytical Meth	nod: EPA 82	260					
1,1-Dichloroethene	ND	ug/L	5.0	1		05/31/19 02:13	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	5.0	1		05/31/19 02:13	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	1		05/31/19 02:13	156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	1		05/31/19 02:13	78-87-5	
1,3-Dichloropropane	ND	ug/L	5.0	1		05/31/19 02:13	142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	1		05/31/19 02:13	594-20-7	
1,1-Dichloropropene	ND	ug/L	5.0	1		05/31/19 02:13	563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	1		05/31/19 02:13	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	5.0	1		05/31/19 02:13	10061-02-6	
Ethylbenzene	ND	ug/L	5.0	1		05/31/19 02:13	100-41-4	
Ethyl methacrylate	ND	ug/L	100	1		05/31/19 02:13	97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	1		05/31/19 02:13	87-68-3	
n-Hexane	ND	ug/L	5.0	1		05/31/19 02:13	110-54-3	
2-Hexanone	ND	ug/L	25.0	1		05/31/19 02:13	591-78-6	
lodomethane	ND	ug/L	10.0	1		05/31/19 02:13	74-88-4	
Isopropylbenzene (Cumene)	ND	uq/L	5.0	1		05/31/19 02:13	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	1		05/31/19 02:13	99-87-6	
Methylene Chloride	ND	uq/L	5.0	1		05/31/19 02:13	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	uq/L	25.0	1		05/31/19 02:13	108-10-1	
Methyl-tert-butyl ether	ND	ua/L	4.0	1		05/31/19 02:13	1634-04-4	
n-Propylbenzene	ND	ua/L	5.0	1		05/31/19 02:13	103-65-1	
Styrene	ND	ua/L	5.0	1		05/31/19 02:13	100-42-5	
1.1.1.2-Tetrachloroethane	ND	ua/L	5.0	1		05/31/19 02:13	630-20-6	
1.1.2.2-Tetrachloroethane	ND	ua/L	5.0	1		05/31/19 02:13	79-34-5	
Tetrachloroethene	ND	ua/L	5.0	1		05/31/19 02:13	127-18-4	
Toluene	ND	ua/L	5.0	1		05/31/19 02:13	108-88-3	
1.2.3-Trichlorobenzene	ND	ua/L	5.0	1		05/31/19 02:13	87-61-6	
1.2.4-Trichlorobenzene	ND	ua/L	5.0	1		05/31/19 02:13	120-82-1	
1.1.1-Trichloroethane	ND	ua/L	5.0	1		05/31/19 02:13	71-55-6	
1.1.2-Trichloroethane	ND	ua/L	5.0	1		05/31/19 02:13	79-00-5	
Trichloroethene	ND	ua/L	5.0	1		05/31/19 02:13	79-01-6	
Trichlorofluoromethane	ND	ua/L	5.0	1		05/31/19 02:13	75-69-4	
1.2.3-Trichloropropane	ND	ua/L	5.0	1		05/31/19 02:13	96-18-4	
1.2.4-Trimethylbenzene	ND	ua/L	5.0	1		05/31/19 02:13	95-63-6	
1.3.5-Trimethylbenzene	ND	ua/l	5.0	1		05/31/19 02:13	108-67-8	
Vinvl acetate	ND	ua/l	50.0	1		05/31/19 02:13	108-05-4	
Vinyl chloride	ND	ua/L	2.0	1		05/31/19 02:13	75-01-4	
Xvlene (Total)	ND	ua/L	10.0	1		05/31/19 02:13	1330-20-7	
Surrogates		- y -		-				
Dibromofluoromethane (S)	104	%.	80-122	1		05/31/19 02:13	1868-53-7	
4-Bromofluorobenzene (S)	99	%.	85-114	1		05/31/19 02:13	460-00-4	
Toluene-d8 (S)	99	%.	85-114	1		05/31/19 02:13	2037-26-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: The Butler Co.

Pace Project No.: 50226102

Sample: BC-GP12-GW1	Lab ID: 5022	6102003	Collected: 05/22/1	9 10:40	Received: 05	/24/19 08:45 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB RV Waters	Analytical Meth	od: EPA 80	082 Preparation Meth	od: EP	A 3510			
PCB-1016 (Aroclor 1016)	ND	ug/L	0.10	1	06/01/19 11:47	06/03/19 02:57	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ug/L	0.20	1	06/01/19 11:47	06/03/19 02:57	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	ug/L	0.10	1	06/01/19 11:47	06/03/19 02:57	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	ug/L	0.10	1	06/01/19 11:47	06/03/19 02:57	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	ug/L	0.10	1	06/01/19 11:47	06/03/19 02:57	12672-29-6	
PCB-1254 (Aroclor 1254)	ND	ug/L	0.10	1	06/01/19 11:47	06/03/19 02:57	11097-69-1	
PCB-1260 (Aroclor 1260)	ND	ug/L	0.10	1	06/01/19 11:47	06/03/19 02:57	11096-82-5	
Surrogates		-						
Tetrachloro-m-xylene (S)	48	%.	10-148	1	06/01/19 11:47	06/03/19 02:57	877-09-8	
6010 MET ICP	Analytical Meth	od: EPA 60	010 Preparation Meth	od: EP	A 3010			
Arsenic	ND	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:47	7440-38-2	
Barium	121	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:47	7440-39-3	
Cadmium	ND	ug/L	2.0	1	06/01/19 09:40	06/03/19 08:47	7440-43-9	
Chromium	ND	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:47	7440-47-3	
Copper	ND	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:47	7440-50-8	
Lead	ND	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:47	7439-92-1	
Selenium	ND	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:47	7782-49-2	
Silver	ND	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:47	7440-22-4	
Zinc	ND	ug/L	20.0	1	06/01/19 09:40	06/03/19 08:47	7440-66-6	
6010 MET ICP, Dissolved	Analytical Meth	od: EPA 60	010 Preparation Meth	od: EP	A 3010			
Arsenic, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:51	7440-38-2	
Barium, Dissolved	114	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:51	7440-39-3	
Cadmium, Dissolved	ND	ug/L	2.0	1	05/28/19 06:02	05/29/19 02:51	7440-43-9	
Chromium, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:51	7440-47-3	
Copper, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:51	7440-50-8	
Lead, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:51	7439-92-1	
Selenium, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:51	7782-49-2	
Silver, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:51	7440-22-4	
Zinc, Dissolved	ND	ug/L	20.0	1	05/28/19 06:02	05/29/19 02:51	7440-66-6	
7470 Mercury	Analytical Meth	od: EPA 74	170 Preparation Meth	od: EP	A 7470			
Mercury	ND	ug/L	2.0	1	05/26/19 20:13	05/28/19 00:21	7439-97-6	
7470 Mercury, Dissolved	Analytical Meth	od: EPA 74	170 Preparation Meth	od: EP	A 7470			
Mercury, Dissolved	ND	ug/L	2.0	1	05/30/19 21:24	05/31/19 08:41	7439-97-6	
8270 MSSV PAHLV	Analytical Meth	od: EPA 82	270 by SIM LVE Prep	aration	Method: EPA 357	10		
Acenaphthene	ND	ug/L	1.0	1	05/28/19 09:26	05/28/19 15:44	83-32-9	1d
Acenaphthylene	ND	ug/L	1.0	1	05/28/19 09:26	05/28/19 15:44	208-96-8	1d
Anthracene	ND	ug/L	0.10	1	05/28/19 09:26	05/28/19 15:44	120-12-7	1d
Benzo(a)anthracene	ND	ug/L	0.10	1	05/28/19 09:26	05/28/19 15:44	56-55-3	1d
Benzo(a)pyrene	ND	ug/L	0.10	1	05/28/19 09:26	05/28/19 15:44	50-32-8	1d
Benzo(b)fluoranthene	ND	ug/L	0.10	1	05/28/19 09:26	05/28/19 15:44	205-99-2	1d
Benzo(g,h,i)perylene	ND	ug/L	0.10	1	05/28/19 09:26	05/28/19 15:44	191-24-2	1d

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: The Butler Co.

Pace Project No.: 50226102

Sample: BC-GP12-GW1	Lab ID: 5022	Lab ID: 50226102003 Collected: 05/22/19 10:40 Received: 05/24/19 08:45 Matrix: Water						
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV PAHLV	Analytical Meth	od: EPA 82	270 by SIM LVE Prep	paration	Method: EPA 35	10		
Benzo(k)fluoranthene	ND	ug/L	0.10	1	05/28/19 09:26	05/28/19 15:44	207-08-9	1d
Chrysene	ND	ug/L	0.50	1	05/28/19 09:26	05/28/19 15:44	218-01-9	1d
Dibenz(a,h)anthracene	ND	ug/L	0.10	1	05/28/19 09:26	05/28/19 15:44	53-70-3	1d
Fluoranthene	ND	ug/L	1.0	1	05/28/19 09:26	05/28/19 15:44	206-44-0	1d
Fluorene	ND	ug/L	1.0	1	05/28/19 09:26	05/28/19 15:44	86-73-7	1d
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.10	1	05/28/19 09:26	05/28/19 15:44	193-39-5	1d
1-Methylnaphthalene	ND	ug/L	1.0	1	05/28/19 09:26	05/28/19 15:44	90-12-0	1d,N2
2-Methylnaphthalene	ND	ug/L	1.0	1	05/28/19 09:26	05/28/19 15:44	91-57-6	1d
Naphthalene	ND	ug/L	1.0	1	05/28/19 09:26	05/28/19 15:44	91-20-3	1d
Phenanthrene	ND	ug/L	1.0	1	05/28/19 09:26	05/28/19 15:44	85-01-8	1d
Pyrene Surrogates	ND	ug/L	1.0	1	05/28/19 09:26	05/28/19 15:44	129-00-0	1d
2-Fluorobiphenvl (S)	72	%.	10-105	1	05/28/19 09:26	05/28/19 15:44	321-60-8	
p-Terphenyl-d14 (S)	76	%.	10-142	1	05/28/19 09:26	05/28/19 15:44	1718-51-0	
8260/5030 MSV	Analytical Meth	od: EPA 82	260					
Acetone	ND	ug/L	100	1		05/31/19 02:45	67-64-1	
Acrolein	ND	ug/L	50.0	1		05/31/19 02:45	107-02-8	
Acrylonitrile	ND	ug/L	100	1		05/31/19 02:45	107-13-1	
Benzene	ND	ug/L	5.0	1		05/31/19 02:45	71-43-2	
Bromobenzene	ND	ug/L	5.0	1		05/31/19 02:45	108-86-1	L1
Bromochloromethane	ND	ug/L	5.0	1		05/31/19 02:45	74-97-5	
Bromodichloromethane	ND	ug/L	5.0	1		05/31/19 02:45	75-27-4	
Bromoform	ND	ug/L	5.0	1		05/31/19 02:45	75-25-2	
Bromomethane	ND	ug/L	5.0	1		05/31/19 02:45	74-83-9	
2-Butanone (MEK)	ND	ug/L	25.0	1		05/31/19 02:45	78-93-3	
n-Butylbenzene	ND	ug/L	5.0	1		05/31/19 02:45	104-51-8	
sec-Butylbenzene	ND	ug/L	5.0	1		05/31/19 02:45	135-98-8	
tert-Butylbenzene	ND	ug/L	5.0	1		05/31/19 02:45	98-06-6	
Carbon disulfide	ND	ug/L	10.0	1		05/31/19 02:45	75-15-0	
Carbon tetrachloride	ND	ug/L	5.0	1		05/31/19 02:45	56-23-5	
Chlorobenzene	ND	ug/L	5.0	1		05/31/19 02:45	108-90-7	
Chloroethane	ND	ug/L	5.0	1		05/31/19 02:45	75-00-3	
Chloroform	ND	ug/L	5.0	1		05/31/19 02:45	67-66-3	
Chloromethane	ND	ug/L	5.0	1		05/31/19 02:45	74-87-3	
2-Chlorotoluene	ND	ug/L	5.0	1		05/31/19 02:45	95-49-8	
4-Chlorotoluene	ND	ug/L	5.0	1		05/31/19 02:45	106-43-4	
Dibromochloromethane	ND	ug/L	5.0	1		05/31/19 02:45	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	1		05/31/19 02:45	106-93-4	
Dibromomethane	ND	ug/L	5.0	1		05/31/19 02:45	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	1		05/31/19 02:45	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	1		05/31/19 02:45	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	1		05/31/19 02:45	106-46-7	
trans-1,4-Dichloro-2-butene	ND	ug/L	100	1		05/31/19 02:45	110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	1		05/31/19 02:45	75-71-8	
1,1-Dichloroethane	ND	ug/L	5.0	1		05/31/19 02:45	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	1		05/31/19 02:45	107-06-2	

Project: The Butler Co.

Pace Project No.: 50226102

Sample: BC-GP12-GW1	Lab ID: 502	26102003	Collected: 05/22/1	9 10:40	Received: 0	5/24/19 08:45 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260/5030 MSV	Analytical Meth	nod: EPA 82	260					
1,1-Dichloroethene	ND	ug/L	5.0	1		05/31/19 02:45	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	5.0	1		05/31/19 02:45	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	1		05/31/19 02:45	156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	1		05/31/19 02:45	78-87-5	
1,3-Dichloropropane	ND	ug/L	5.0	1		05/31/19 02:45	142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	1		05/31/19 02:45	594-20-7	
1,1-Dichloropropene	ND	ug/L	5.0	1		05/31/19 02:45	563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	1		05/31/19 02:45	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	5.0	1		05/31/19 02:45	10061-02-6	
Ethylbenzene	ND	ug/L	5.0	1		05/31/19 02:45	100-41-4	
Ethyl methacrylate	ND	ug/L	100	1		05/31/19 02:45	97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	1		05/31/19 02:45	87-68-3	
n-Hexane	ND	ug/L	5.0	1		05/31/19 02:45	110-54-3	
2-Hexanone	ND	ug/L	25.0	1		05/31/19 02:45	591-78-6	
lodomethane	ND	ug/L	10.0	1		05/31/19 02:45	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	1		05/31/19 02:45	98-82-8	
p-lsopropyltoluene	ND	ug/L	5.0	1		05/31/19 02:45	99-87-6	
Methylene Chloride	ND	ug/L	5.0	1		05/31/19 02:45	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	1		05/31/19 02:45	108-10-1	
Methyl-tert-butyl ether	ND	ua/L	4.0	1		05/31/19 02:45	1634-04-4	
n-Propylbenzene	ND	ua/L	5.0	1		05/31/19 02:45	103-65-1	
Styrene	ND	ua/L	5.0	1		05/31/19 02:45	100-42-5	
1.1.1.2-Tetrachloroethane	ND	ua/L	5.0	1		05/31/19 02:45	630-20-6	
1.1.2.2-Tetrachloroethane	ND	ua/L	5.0	1		05/31/19 02:45	79-34-5	
Tetrachloroethene	ND	ua/L	5.0	1		05/31/19 02:45	127-18-4	
Toluene	ND	ua/L	5.0	1		05/31/19 02:45	108-88-3	
1.2.3-Trichlorobenzene	ND	ua/L	5.0	1		05/31/19 02:45	87-61-6	
1.2.4-Trichlorobenzene	ND	ua/L	5.0	1		05/31/19 02:45	120-82-1	
1.1.1-Trichloroethane	ND	ua/L	5.0	1		05/31/19 02:45	71-55-6	
1.1.2-Trichloroethane	ND	ua/L	5.0	1		05/31/19 02:45	79-00-5	
Trichloroethene	ND	ua/l	5.0	1		05/31/19 02:45	79-01-6	
Trichlorofluoromethane	ND	ua/L	5.0	1		05/31/19 02:45	75-69-4	
1.2.3-Trichloropropane	ND	ua/L	5.0	1		05/31/19 02:45	96-18-4	
1.2.4-Trimethylbenzene	ND	ua/L	5.0	1		05/31/19 02:45	95-63-6	
1.3.5-Trimethylbenzene	ND	ua/l	5.0	1		05/31/19 02:45	108-67-8	
Vinyl acetate	ND	ua/l	50.0	1		05/31/19 02:45	108-05-4	
Vinvl chloride	ND	ua/L	2.0	1		05/31/19 02:45	75-01-4	
Xvlene (Total)	ND	ua/l	10.0	1		05/31/19 02:45	1330-20-7	
Surrogates		~-y/ _	10.0			20,01,10 02.10		
Dibromofluoromethane (S)	103	%.	80-122	1		05/31/19 02:45	1868-53-7	
4-Bromofluorobenzene (S)	100	%.	85-114	1		05/31/19 02:45	460-00-4	
Toluene-d8 (S)	98	%.	85-114	1		05/31/19 02:45	2037-26-5	

Project: The Butler Co.

Pace Project No.: 50226102

Sample: BC-GP13-GW1	Lab ID: 5022	6102004	Collected: 05/22/1	9 13:03	8 Received: 05	/24/19 08:45 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB RV Waters	Analytical Meth	od: EPA 80	082 Preparation Meth	nod: EP	A 3510			
PCB-1016 (Aroclor 1016)	ND	ug/L	0.10	1	06/01/19 11:47	06/03/19 03:12	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ug/L	0.20	1	06/01/19 11:47	06/03/19 03:12	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	ug/L	0.10	1	06/01/19 11:47	06/03/19 03:12	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	ug/L	0.10	1	06/01/19 11:47	06/03/19 03:12	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	ug/L	0.10	1	06/01/19 11:47	06/03/19 03:12	12672-29-6	
PCB-1254 (Aroclor 1254)	ND	ug/L	0.10	1	06/01/19 11:47	06/03/19 03:12	11097-69-1	
PCB-1260 (Aroclor 1260) <i>Surrogates</i>	ND	ug/L	0.10	1	06/01/19 11:47	06/03/19 03:12	11096-82-5	
Tetrachloro-m-xylene (S)	45	%.	10-148	1	06/01/19 11:47	06/03/19 03:12	877-09-8	
6010 MET ICP	Analytical Meth	od: EPA 60	010 Preparation Meth	nod: EP	A 3010			
Arsenic	ND	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:49	7440-38-2	
Barium	136	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:49	7440-39-3	
Cadmium	3.9	ug/L	2.0	1	06/01/19 09:40	06/03/19 08:49	7440-43-9	
Chromium	ND	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:49	7440-47-3	
Copper	35.0	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:49	7440-50-8	
Lead	ND	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:49	7439-92-1	
Selenium	ND	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:49	7782-49-2	
Silver	ND	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:49	7440-22-4	
Zinc	1610	ug/L	20.0	1	06/01/19 09:40	06/03/19 08:49	7440-66-6	
6010 MET ICP, Dissolved	Analytical Meth	od: EPA 60	010 Preparation Meth	nod: EP	A 3010			
Arsenic, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:54	7440-38-2	
Barium, Dissolved	140	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:54	7440-39-3	
Cadmium, Dissolved	3.8	ug/L	2.0	1	05/28/19 06:02	05/29/19 02:54	7440-43-9	
Chromium, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:54	7440-47-3	
Copper, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:54	7440-50-8	
Lead, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:54	7439-92-1	
Selenium, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:54	7782-49-2	
Silver, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:54	7440-22-4	
Zinc, Dissolved	1570	ug/L	20.0	1	05/28/19 06:02	05/29/19 02:54	7440-66-6	
7470 Mercury	Analytical Meth	od: EPA 74	170 Preparation Meth	nod: EP	A 7470			
Mercury	ND	ug/L	2.0	1	05/26/19 20:13	05/28/19 00:23	7439-97-6	
7470 Mercury, Dissolved	Analytical Meth	od: EPA 74	170 Preparation Meth	nod: EP	A 7470			
Mercury, Dissolved	ND	ug/L	2.0	1	05/30/19 21:24	05/31/19 08:43	7439-97-6	
8270 MSSV PAHLV	Analytical Meth	od: EPA 82	270 by SIM LVE Prep	paration	Method: EPA 35	10		
Acenaphthene	ND	ug/L	1.0	1	05/28/19 09:26	05/28/19 15:55	83-32-9	1d
Acenaphthylene	ND	ug/L	1.0	1	05/28/19 09:26	05/28/19 15:55	208-96-8	1d
Anthracene	ND	ug/L	0.10	1	05/28/19 09:26	05/28/19 15:55	120-12-7	1d
Benzo(a)anthracene	ND	ug/L	0.10	1	05/28/19 09:26	05/28/19 15:55	56-55-3	1d
Benzo(a)pyrene	ND	ug/L	0.10	1	05/28/19 09:26	05/28/19 15:55	50-32-8	1d
Benzo(b)fluoranthene	ND	ug/L	0.10	1	05/28/19 09:26	05/28/19 15:55	205-99-2	1d
Benzo(g,h,i)perylene	ND	ug/L	0.10	1	05/28/19 09:26	05/28/19 15:55	191-24-2	1d

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: The Butler Co.

Pace Project No.: 50226102

Sample: BC-GP13-GW1	Lab ID: 50226102004 Collected: 05/22/19 13:03 Received: 05/24/19 08:45 Matrix: Water							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV PAHLV	Analytical Meth	nod: EPA 82	270 by SIM LVE Prep	paration	Method: EPA 35	10		
Benzo(k)fluoranthene	ND	ug/L	0.10	1	05/28/19 09:26	05/28/19 15:55	207-08-9	1d
Chrysene	ND	ug/L	0.50	1	05/28/19 09:26	05/28/19 15:55	218-01-9	1d
Dibenz(a,h)anthracene	ND	ug/L	0.10	1	05/28/19 09:26	05/28/19 15:55	53-70-3	1d
Fluoranthene	ND	ug/L	1.0	1	05/28/19 09:26	05/28/19 15:55	206-44-0	1d
Fluorene	ND	ug/L	1.0	1	05/28/19 09:26	05/28/19 15:55	86-73-7	1d
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.10	1	05/28/19 09:26	05/28/19 15:55	193-39-5	1d
1-Methylnaphthalene	ND	ug/L	1.0	1	05/28/19 09:26	05/28/19 15:55	90-12-0	1d,N2
2-Methylnaphthalene	ND	ug/L	1.0	1	05/28/19 09:26	05/28/19 15:55	91-57-6	1d
Naphthalene	ND	ug/L	1.0	1	05/28/19 09:26	05/28/19 15:55	91-20-3	1d
Phenanthrene	ND	ug/L	1.0	1	05/28/19 09:26	05/28/19 15:55	85-01-8	1d
Pyrene Surrogates	ND	ug/L	1.0	1	05/28/19 09:26	05/28/19 15:55	129-00-0	1d
2-Fluorobiphenyl (S)	60	%.	10-105	1	05/28/19 09:26	05/28/19 15:55	321-60-8	
p-Terphenyl-d14 (S)	74	%.	10-142	1	05/28/19 09:26	05/28/19 15:55	1718-51-0	
8260/5030 MSV	Analytical Meth	nod: EPA 82	260					
Acetone	ND	ug/L	100	1		05/31/19 03:18	67-64-1	
Acrolein	ND	ug/L	50.0	1		05/31/19 03:18	107-02-8	
Acrylonitrile	ND	ug/L	100	1		05/31/19 03:18	107-13-1	
Benzene	ND	ug/L	5.0	1		05/31/19 03:18	71-43-2	
Bromobenzene	ND	ug/L	5.0	1		05/31/19 03:18	108-86-1	L1
Bromochloromethane	ND	ug/L	5.0	1		05/31/19 03:18	74-97-5	
Bromodichloromethane	ND	ug/L	5.0	1		05/31/19 03:18	75-27-4	
Bromoform	ND	ug/L	5.0	1		05/31/19 03:18	75-25-2	
Bromomethane	ND	ug/L	5.0	1		05/31/19 03:18	74-83-9	
2-Butanone (MEK)	ND	ug/L	25.0	1		05/31/19 03:18	78-93-3	
n-Butylbenzene	ND	ug/L	5.0	1		05/31/19 03:18	104-51-8	
sec-Butylbenzene	ND	ug/L	5.0	1		05/31/19 03:18	135-98-8	
tert-Butylbenzene	ND	ug/L	5.0	1		05/31/19 03:18	98-06-6	
Carbon disulfide	ND	ug/L	10.0	1		05/31/19 03:18	75-15-0	
Carbon tetrachloride	ND	ug/L	5.0	1		05/31/19 03:18	56-23-5	
Chlorobenzene	ND	ug/L	5.0	1		05/31/19 03:18	108-90-7	
Chloroethane	ND	ug/L	5.0	1		05/31/19 03:18	75-00-3	
Chloroform	ND	ug/L	5.0	1		05/31/19 03:18	67-66-3	
Chloromethane	ND	ug/L	5.0	1		05/31/19 03:18	74-87-3	
2-Chlorotoluene	ND	ug/L	5.0	1		05/31/19 03:18	95-49-8	
4-Chlorotoluene	ND	ug/L	5.0	1		05/31/19 03:18	106-43-4	
Dibromochloromethane	ND	ug/L	5.0	1		05/31/19 03:18	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	1		05/31/19 03:18	106-93-4	
Dibromomethane	ND	ug/L	5.0	1		05/31/19 03:18	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	1		05/31/19 03:18	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	1		05/31/19 03:18	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	1		05/31/19 03:18	106-46-7	
trans-1,4-Dichloro-2-butene	ND	ug/L	100	1		05/31/19 03:18	110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	1		05/31/19 03:18	75-71-8	
1,1-Dichloroethane	ND	ug/L	5.0	1		05/31/19 03:18	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	1		05/31/19 03:18	107-06-2	

Project: The Butler Co.

Pace Project No.: 50226102

Sample: BC-GP13-GW1	Lab ID: 502	26102004	Collected: 05/22/1	9 13:03	Received: 05/24/19 08:45	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qual
8260/5030 MSV	Analytical Meth	nod: EPA 82	260				
1,1-Dichloroethene	ND	ug/L	5.0	1	05/31/19 03:1	8 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	5.0	1	05/31/19 03:1	8 156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	1	05/31/19 03:1	8 156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	1	05/31/19 03:1	8 78-87-5	
1,3-Dichloropropane	ND	ug/L	5.0	1	05/31/19 03:1	8 142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	1	05/31/19 03:1	8 594-20-7	
1,1-Dichloropropene	ND	ug/L	5.0	1	05/31/19 03:1	8 563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	1	05/31/19 03:1	8 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	5.0	1	05/31/19 03:1	8 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	1	05/31/19 03:1	8 100-41-4	
Ethyl methacrylate	ND	ug/L	100	1	05/31/19 03:1	8 97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	1	05/31/19 03:1	8 87-68-3	
n-Hexane	ND	ug/L	5.0	1	05/31/19 03:1	8 110-54-3	
2-Hexanone	ND	ug/L	25.0	1	05/31/19 03:1	8 591-78-6	
lodomethane	ND	ug/L	10.0	1	05/31/19 03:1	8 74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	1	05/31/19 03:1	8 98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	1	05/31/19 03:1	8 99-87-6	
Methylene Chloride	ND	ug/L	5.0	1	05/31/19 03:1	8 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	1	05/31/19 03:1	8 108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	1	05/31/19 03:1	8 1634-04-4	
n-Propylbenzene	ND	ug/L	5.0	1	05/31/19 03:1	8 103-65-1	
Styrene	ND	ug/L	5.0	1	05/31/19 03:1	8 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	1	05/31/19 03:1	8 630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	1	05/31/19 03:1	8 79-34-5	
Tetrachloroethene	ND	ug/L	5.0	1	05/31/19 03:1	8 127-18-4	
Toluene	ND	ug/L	5.0	1	05/31/19 03:1	8 108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	1	05/31/19 03:1	8 87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	1	05/31/19 03:1	8 120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	1	05/31/19 03:1	8 71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	1	05/31/19 03:1	8 79-00-5	
Trichloroethene	ND	ug/L	5.0	1	05/31/19 03:1	8 79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	1	05/31/19 03:1	8 75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	1	05/31/19 03:1	8 96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	1	05/31/19 03:1	8 95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	1	05/31/19 03:1	8 108-67-8	
Vinyl acetate	ND	ug/L	50.0	1	05/31/19 03:1	8 108-05-4	
Vinyl chloride	ND	ug/L	2.0	1	05/31/19 03:1	8 75-01-4	
Xylene (Total)	ND	ug/L	10.0	1	05/31/19 03:1	8 1330-20-7	
Surrogates		0					
Dibromofluoromethane (S)	104	%.	80-122	1	05/31/19 03:1	8 1868-53-7	
4-Bromofluorobenzene (S)	99	%.	85-114	1	05/31/19 03:1	8 460-00-4	
Toluene-d8 (S)	98	%.	85-114	1	05/31/19 03:1	8 2037-26-5	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: The Butler Co.

Pace Project No.: 50226102

Sample: BC-GP14-GW1	Lab ID: 50226102005 Collected: 05/22/19 11:44 Received: 05/24/19 08:45 Matrix: Wa						latrix: Water	er
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB RV Waters	Analytical Meth	od: EPA 80	082 Preparation Met	hod: EP	A 3510			
PCB-1016 (Aroclor 1016)	ND	ug/L	0.10	1	06/01/19 11:47	06/03/19 03:26	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ug/L	0.20	1	06/01/19 11:47	06/03/19 03:26	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	ug/L	0.10	1	06/01/19 11:47	06/03/19 03:26	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	ug/L	0.10	1	06/01/19 11:47	06/03/19 03:26	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	ug/L	0.10	1	06/01/19 11:47	06/03/19 03:26	12672-29-6	
PCB-1254 (Aroclor 1254)	ND	ug/L	0.10	1	06/01/19 11:47	06/03/19 03:26	11097-69-1	
PCB-1260 (Aroclor 1260)	ND	ug/L	0.10	1	06/01/19 11:47	06/03/19 03:26	11096-82-5	
Surrogates		•						
Tetrachloro-m-xylene (S)	59	%.	10-148	1	06/01/19 11:47	06/03/19 03:26	877-09-8	
6010 MET ICP	Analytical Meth	od: EPA 60	010 Preparation Met	hod: EP	A 3010			
Arsenic	ND	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:51	7440-38-2	
Barium	158	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:51	7440-39-3	
Cadmium	ND	ug/L	2.0	1	06/01/19 09:40	06/03/19 08:51	7440-43-9	
Chromium	10.9	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:51	7440-47-3	
Copper	12.6	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:51	7440-50-8	
Lead	ND	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:51	7439-92-1	
Selenium	ND	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:51	7782-49-2	
Silver	ND	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:51	7440-22-4	
Zinc	22.3	ug/L	20.0	1	06/01/19 09:40	06/03/19 08:51	7440-66-6	
6010 MET ICP, Dissolved	Analytical Meth	od: EPA 60	010 Preparation Met	hod: EP	A 3010			
Arsenic, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:56	7440-38-2	
Barium, Dissolved	123	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:56	7440-39-3	
Cadmium, Dissolved	ND	ug/L	2.0	1	05/28/19 06:02	05/29/19 02:56	7440-43-9	
Chromium, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:56	7440-47-3	
Copper, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:56	7440-50-8	
Lead, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:56	7439-92-1	
Selenium, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:56	7782-49-2	
Silver, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:56	7440-22-4	
Zinc, Dissolved	ND	ug/L	20.0	1	05/28/19 06:02	05/29/19 02:56	7440-66-6	
7470 Mercury	Analytical Meth	od: EPA 74	470 Preparation Met	hod: EP	A 7470			
Mercury	ND	ug/L	2.0	1	05/26/19 20:13	05/28/19 00:26	7439-97-6	
7470 Mercury, Dissolved	Analytical Meth	od: EPA 74	470 Preparation Met	hod: EP	A 7470			
Mercury, Dissolved	ND	ug/L	2.0	1	05/30/19 21:24	05/31/19 08:46	7439-97-6	
8270 MSSV PAHLV	Analytical Meth	od: EPA 82	270 by SIM LVE Pre	paration	Method: EPA 35	10		
Acenaphthene	ND	ug/L	1.0	1	05/29/19 09:17	05/30/19 23:11	83-32-9	
Acenaphthylene	ND	ug/L	1.0	1	05/29/19 09:17	05/30/19 23:11	208-96-8	
Anthracene	ND	ug/L	0.10	1	05/29/19 09:17	05/30/19 23:11	120-12-7	
Benzo(a)anthracene	ND	ug/L	0.10	1	05/29/19 09:17	05/30/19 23:11	56-55-3	
Benzo(a)pyrene	ND	ug/L	0.10	1	05/29/19 09:17	05/30/19 23:11	50-32-8	
Benzo(b)fluoranthene	ND	ug/L	0.10	1	05/29/19 09:17	05/30/19 23:11	205-99-2	
Benzo(g,h,i)perylene	ND	ug/L	0.10	1	05/29/19 09:17	05/30/19 23:11	191-24-2	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: The Butler Co.

Pace Project No.: 50226102

Sample: BC-GP14-GW1 Parameters	Lab ID: 50226102005		Collected: 05/22/19 11:44		Received: 05/24/19 08:45 Matrix: Water						
	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual			
8270 MSSV PAHLV	Analytical Method: EPA 8270 by SIM LVE Preparation Method: EPA 3510										
Benzo(k)fluoranthene	ND	ug/L	0.10	1	05/29/19 09:17	05/30/19 23:11	207-08-9				
Chrysene	ND	ug/L	0.50	1	05/29/19 09:17	05/30/19 23:11	218-01-9				
Dibenz(a,h)anthracene	ND	ug/L	0.10	1	05/29/19 09:17	05/30/19 23:11	53-70-3				
Fluoranthene	ND	ug/L	1.0	1	05/29/19 09:17	05/30/19 23:11	206-44-0				
Fluorene	ND	ug/L	1.0	1	05/29/19 09:17	05/30/19 23:11	86-73-7				
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.10	1	05/29/19 09:17	05/30/19 23:11	193-39-5				
1-Methylnaphthalene	ND	ug/L	1.0	1	05/29/19 09:17	05/30/19 23:11	90-12-0	N2			
2-Methylnaphthalene	ND	ug/L	1.0	1	05/29/19 09:17	05/30/19 23:11	91-57-6				
Naphthalene	ND	ug/L	1.0	1	05/29/19 09:17	05/30/19 23:11	91-20-3				
Phenanthrene	ND	ug/L	1.0	1	05/29/19 09:17	05/30/19 23:11	85-01-8				
Pyrene <i>Surrogates</i>	ND	ug/L	1.0	1	05/29/19 09:17	05/30/19 23:11	129-00-0				
2-Fluorobiphenyl (S)	71	%.	10-105	1	05/29/19 09:17	05/30/19 23:11	321-60-8				
p-Terphenyl-d14 (S)	69	%.	10-142	1	05/29/19 09:17	05/30/19 23:11	1718-51-0				
8260/5030 MSV	Analytical Meth	od: EPA 82	260								
Acetone	ND	ug/L	100	1		05/31/19 03:51	67-64-1				
Acrolein	ND	ug/L	50.0	1		05/31/19 03:51	107-02-8				
Acrylonitrile	ND	ug/L	100	1		05/31/19 03:51	107-13-1				
Benzene	ND	ug/L	5.0	1		05/31/19 03:51	71-43-2				
Bromobenzene	ND	ug/L	5.0	1		05/31/19 03:51	108-86-1	L1			
Bromochloromethane	ND	ug/L	5.0	1		05/31/19 03:51	74-97-5				
Bromodichloromethane	ND	ug/L	5.0	1		05/31/19 03:51	75-27-4				
Bromoform	ND	ug/L	5.0	1		05/31/19 03:51	75-25-2				
Bromomethane	ND	ug/L	5.0	1		05/31/19 03:51	74-83-9				
2-Butanone (MEK)	ND	ug/L	25.0	1		05/31/19 03:51	78-93-3				
n-Butylbenzene	ND	ug/L	5.0	1		05/31/19 03:51	104-51-8				
sec-Butylbenzene	ND	ug/L	5.0	1		05/31/19 03:51	135-98-8				
tert-Butylbenzene	ND	ug/L	5.0	1		05/31/19 03:51	98-06-6				
Carbon disulfide	ND	ug/L	10.0	1		05/31/19 03:51	75-15-0				
Carbon tetrachloride	ND	ug/L	5.0	1		05/31/19 03:51	56-23-5				
Chlorobenzene	ND	ug/L	5.0	1		05/31/19 03:51	108-90-7				
Chloroethane	ND	ug/L	5.0	1		05/31/19 03:51	75-00-3				
Chloroform	ND	ug/L	5.0	1		05/31/19 03:51	67-66-3				
Chloromethane	ND	ug/L	5.0	1		05/31/19 03:51	74-87-3				
2-Chlorotoluene	ND	ug/L	5.0	1		05/31/19 03:51	95-49-8				
4-Chlorotoluene	ND	ug/L	5.0	1		05/31/19 03:51	106-43-4				
Dibromochloromethane	ND	ug/L	5.0	1		05/31/19 03:51	124-48-1				
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	1		05/31/19 03:51	106-93-4				
Dibromomethane	ND	ug/L	5.0	1		05/31/19 03:51	74-95-3				
1,2-Dichlorobenzene	ND	ug/L	5.0	1		05/31/19 03:51	95-50-1				
1,3-Dichlorobenzene	ND	ug/L	5.0	1		05/31/19 03:51	541-73-1				
1,4-Dichlorobenzene	ND	ug/L	5.0	1		05/31/19 03:51	106-46-7				
trans-1,4-Dichloro-2-butene	ND	ua/L	100	1		05/31/19 03:51	110-57-6				
Dichlorodifluoromethane	ND	ug/L	5.0	1		05/31/19 03:51	75-71-8				
1,1-Dichloroethane	ND	ug/L	5.0	1		05/31/19 03:51	75-34-3				
1,2-Dichloroethane	ND	ug/L	5.0	1		05/31/19 03:51	107-06-2				

Project: The Butler Co.

Pace Project No.: 50226102

Sample: BC-GP14-GW1	Lab ID: 50226102005		Collected: 05/22/1	Collected: 05/22/19 11:44		Received: 05/24/19 08:45 Mat		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260/5030 MSV	Analytical Meth	nod: EPA 82	260					
1,1-Dichloroethene	ND	ug/L	5.0	1		05/31/19 03:51	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	5.0	1		05/31/19 03:51	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	1		05/31/19 03:51	156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	1		05/31/19 03:51	78-87-5	
1,3-Dichloropropane	ND	ug/L	5.0	1		05/31/19 03:51	142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	1		05/31/19 03:51	594-20-7	
1,1-Dichloropropene	ND	ug/L	5.0	1		05/31/19 03:51	563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	1		05/31/19 03:51	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	5.0	1		05/31/19 03:51	10061-02-6	
Ethylbenzene	ND	ug/L	5.0	1		05/31/19 03:51	100-41-4	
Ethyl methacrylate	ND	ug/L	100	1		05/31/19 03:51	97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	1		05/31/19 03:51	87-68-3	
n-Hexane	ND	ug/L	5.0	1		05/31/19 03:51	110-54-3	
2-Hexanone	ND	ug/L	25.0	1		05/31/19 03:51	591-78-6	
lodomethane	ND	ug/L	10.0	1		05/31/19 03:51	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	1		05/31/19 03:51	98-82-8	
p-Isopropyltoluene	ND	ug/L	5.0	1		05/31/19 03:51	99-87-6	
Methylene Chloride	ND	ug/L	5.0	1		05/31/19 03:51	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	1		05/31/19 03:51	108-10-1	
Methyl-tert-butyl ether	ND	ua/L	4.0	1		05/31/19 03:51	1634-04-4	
n-Propylbenzene	ND	ua/L	5.0	1		05/31/19 03:51	103-65-1	
Styrene	ND	ua/L	5.0	1		05/31/19 03:51	100-42-5	
1.1.2-Tetrachloroethane	ND	ua/L	5.0	1		05/31/19 03:51	630-20-6	
1.1.2.2-Tetrachloroethane	ND	ua/L	5.0	1		05/31/19 03:51	79-34-5	
Tetrachloroethene	ND	ua/L	5.0	1		05/31/19 03:51	127-18-4	
Toluene	ND	ua/L	5.0	1		05/31/19 03:51	108-88-3	
1.2.3-Trichlorobenzene	ND	ua/L	5.0	1		05/31/19 03:51	87-61-6	
1.2.4-Trichlorobenzene	ND	ua/L	5.0	1		05/31/19 03:51	120-82-1	
1.1.1-Trichloroethane	ND	ua/L	5.0	1		05/31/19 03:51	71-55-6	
1.1.2-Trichloroethane	ND	ua/L	5.0	1		05/31/19 03:51	79-00-5	
Trichloroethene	ND	ua/L	5.0	1		05/31/19 03:51	79-01-6	
Trichlorofluoromethane	ND	ua/L	5.0	1		05/31/19 03:51	75-69-4	
1.2.3-Trichloropropane	ND	ua/L	5.0	1		05/31/19 03:51	96-18-4	
1.2.4-Trimethylbenzene	ND	ua/L	5.0	1		05/31/19 03:51	95-63-6	
1.3.5-Trimethylbenzene	ND	ua/L	5.0	1		05/31/19 03:51	108-67-8	
Vinvl acetate	ND	ua/L	50.0	1		05/31/19 03:51	108-05-4	
Vinvl chloride	ND	ua/L	2.0	1		05/31/19 03:51	75-01-4	
Xvlene (Total)	ND	ua/L	10.0	1		05/31/19 03:51	1330-20-7	
Surrogates		3 / -		-				
Dibromofluoromethane (S)	104	%.	80-122	1		05/31/19 03:51	1868-53-7	
4-Bromofluorobenzene (S)	99	%.	85-114	1		05/31/19 03:51	460-00-4	
Toluene-d8 (S)	98	%.	85-114	1		05/31/19 03:51	2037-26-5	

Project: The Butler Co.

Pace Project No.: 50226102

Sample: BC-GP15-GW1	Lab ID: 5022	Lab ID: 50226102006 Collected: 05/22/19 18:08 Received: 05/24/19 08:45 Matrix: Water						
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB RV Waters	Analytical Meth	od: EPA 80	082 Preparation Met	hod: EP	A 3510			
PCB-1016 (Aroclor 1016)	ND	ug/L	0.10	1	06/02/19 10:12	06/02/19 22:12	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ug/L	0.20	1	06/02/19 10:12	06/02/19 22:12	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	ug/L	0.10	1	06/02/19 10:12	06/02/19 22:12	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	ug/L	0.10	1	06/02/19 10:12	06/02/19 22:12	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	ug/L	0.10	1	06/02/19 10:12	06/02/19 22:12	12672-29-6	
PCB-1254 (Aroclor 1254)	ND	ug/L	0.10	1	06/02/19 10:12	06/02/19 22:12	11097-69-1	
PCB-1260 (Aroclor 1260)	ND	ug/L	0.10	1	06/02/19 10:12	06/02/19 22:12	11096-82-5	
Surrogates		-						
Tetrachloro-m-xylene (S)	67	%.	10-148	1	06/02/19 10:12	06/02/19 22:12	877-09-8	
6010 MET ICP	Analytical Meth	od: EPA 60	010 Preparation Met	hod: EP	A 3010			
Arsenic	ND	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:54	7440-38-2	
Barium	150	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:54	7440-39-3	
Cadmium	ND	ug/L	2.0	1	06/01/19 09:40	06/03/19 08:54	7440-43-9	
Chromium	ND	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:54	7440-47-3	
Copper	ND	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:54	7440-50-8	
Lead	ND	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:54	7439-92-1	
Selenium	ND	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:54	7782-49-2	
Silver	ND	ug/L	10.0	1	06/01/19 09:40	06/03/19 08:54	7440-22-4	
Zinc	ND	ug/L	20.0	1	06/01/19 09:40	06/03/19 08:54	7440-66-6	
6010 MET ICP, Dissolved	Analytical Meth	od: EPA 60	010 Preparation Met	hod: EP	A 3010			
Arsenic, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:59	7440-38-2	
Barium, Dissolved	131	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:59	7440-39-3	
Cadmium, Dissolved	ND	ug/L	2.0	1	05/28/19 06:02	05/29/19 02:59	7440-43-9	
Chromium, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:59	7440-47-3	
Copper, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:59	7440-50-8	
Lead, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:59	7439-92-1	
Selenium, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:59	7782-49-2	
Silver, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 02:59	7440-22-4	
Zinc, Dissolved	ND	ug/L	20.0	1	05/28/19 06:02	05/29/19 02:59	7440-66-6	
7470 Mercury	Analytical Meth	od: EPA 74	470 Preparation Met	hod: EP	A 7470			
Mercury	ND	ug/L	2.0	1	05/26/19 20:13	05/28/19 00:28	7439-97-6	
7470 Mercury, Dissolved	Analytical Meth	od: EPA 74	470 Preparation Met	hod: EP	A 7470			
Mercury, Dissolved	ND	ug/L	2.0	1	05/30/19 21:24	05/31/19 08:48	7439-97-6	
8270 MSSV PAHLV	Analytical Meth	od: EPA 82	270 by SIM LVE Prep	paration	Method: EPA 35	10		
Acenaphthene	ND	ug/L	1.0	1	05/29/19 09:17	05/30/19 23:20	83-32-9	
Acenaphthylene	ND	ug/L	1.0	1	05/29/19 09:17	05/30/19 23:20	208-96-8	
Anthracene	ND	ug/L	0.10	1	05/29/19 09:17	05/30/19 23:20	120-12-7	
Benzo(a)anthracene	ND	ug/L	0.10	1	05/29/19 09:17	05/30/19 23:20	56-55-3	
Benzo(a)pyrene	ND	ug/L	0.10	1	05/29/19 09:17	05/30/19 23:20	50-32-8	
Benzo(b)fluoranthene	ND	ug/L	0.10	1	05/29/19 09:17	05/30/19 23:20	205-99-2	
Benzo(g,h,i)perylene	ND	ug/L	0.10	1	05/29/19 09:17	05/30/19 23:20	191-24-2	

REPORT OF LABORATORY ANALYSIS

Project: The Butler Co.

Pace Project No.: 50226102

Sample: BC-GP15-GW1	Lab ID: 50226102006 Collected: 05/22/19 18:08 Received: 05/24/19 08:45 Matrix: Wa						latrix: Water	er	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
8270 MSSV PAHLV	Analytical Meth	nod: EPA 82	270 by SIM LVE Prep	aration	Method: EPA 35	10			
Benzo(k)fluoranthene	ND	ug/L	0.10	1	05/29/19 09:17	05/30/19 23:20	207-08-9		
Chrysene	ND	ug/L	0.50	1	05/29/19 09:17	05/30/19 23:20	218-01-9		
Dibenz(a,h)anthracene	ND	ug/L	0.10	1	05/29/19 09:17	05/30/19 23:20	53-70-3		
Fluoranthene	ND	ug/L	1.0	1	05/29/19 09:17	05/30/19 23:20	206-44-0		
Fluorene	ND	ug/L	1.0	1	05/29/19 09:17	05/30/19 23:20	86-73-7		
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.10	1	05/29/19 09:17	05/30/19 23:20	193-39-5		
1-Methylnaphthalene	ND	ug/L	1.0	1	05/29/19 09:17	05/30/19 23:20	90-12-0	N2	
2-Methylnaphthalene	ND	ug/L	1.0	1	05/29/19 09:17	05/30/19 23:20	91-57-6		
Naphthalene	ND	ug/L	1.0	1	05/29/19 09:17	05/30/19 23:20	91-20-3		
Phenanthrene	ND	ug/L	1.0	1	05/29/19 09:17	05/30/19 23:20	85-01-8		
Pyrene Surrogates	ND	ug/L	1.0	1	05/29/19 09:17	05/30/19 23:20	129-00-0		
2-Fluorobiphenyl (S)	72	%.	10-105	1	05/29/19 09:17	05/30/19 23:20	321-60-8		
p-Terphenyl-d14 (S)	80	%.	10-142	1	05/29/19 09:17	05/30/19 23:20	1718-51-0		
8260/5030 MSV	Analytical Meth	nod: EPA 82	260						
Acetone	ND	ug/L	100	1		05/31/19 04:24	67-64-1		
Acrolein	ND	ug/L	50.0	1		05/31/19 04:24	107-02-8		
Acrylonitrile	ND	ug/L	100	1		05/31/19 04:24	107-13-1		
Benzene	ND	ug/L	5.0	1		05/31/19 04:24	71-43-2		
Bromobenzene	ND	ug/L	5.0	1		05/31/19 04:24	108-86-1	L1	
Bromochloromethane	ND	ug/L	5.0	1		05/31/19 04:24	74-97-5		
Bromodichloromethane	ND	ug/L	5.0	1		05/31/19 04:24	75-27-4		
Bromoform	ND	ug/L	5.0	1		05/31/19 04:24	75-25-2		
Bromomethane	ND	ug/L	5.0	1		05/31/19 04:24	74-83-9		
2-Butanone (MEK)	ND	ug/L	25.0	1		05/31/19 04:24	78-93-3		
n-Butylbenzene	ND	ug/L	5.0	1		05/31/19 04:24	104-51-8		
sec-Butylbenzene	ND	ug/L	5.0	1		05/31/19 04:24	135-98-8		
tert-Butylbenzene	ND	ug/L	5.0	1		05/31/19 04:24	98-06-6		
Carbon disulfide	ND	ug/L	10.0	1		05/31/19 04:24	75-15-0		
Carbon tetrachloride	ND	ug/L	5.0	1		05/31/19 04:24	56-23-5		
Chlorobenzene	ND	ug/L	5.0	1		05/31/19 04:24	108-90-7		
Chloroethane	ND	ug/L	5.0	1		05/31/19 04:24	75-00-3		
Chloroform	ND	ug/L	5.0	1		05/31/19 04:24	67-66-3		
Chloromethane	ND	ug/L	5.0	1		05/31/19 04:24	74-87-3		
2-Chlorotoluene	ND	ug/L	5.0	1		05/31/19 04:24	95-49-8		
4-Chlorotoluene	ND	ug/L	5.0	1		05/31/19 04:24	106-43-4		
Dibromochloromethane	ND	ug/L	5.0	1		05/31/19 04:24	124-48-1		
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	1		05/31/19 04:24	106-93-4		
Dibromomethane	ND	ug/L	5.0	1		05/31/19 04:24	74-95-3		
1,2-Dichlorobenzene	ND	ug/L	5.0	1		05/31/19 04:24	95-50-1		
1,3-Dichlorobenzene	ND	ug/L	5.0	1		05/31/19 04:24	541-73-1		
1,4-Dichlorobenzene	ND	ug/L	5.0	1		05/31/19 04:24	106-46-7		
trans-1,4-Dichloro-2-butene	ND	ug/L	100	1		05/31/19 04:24	110-57-6		
Dichlorodifluoromethane	ND	ug/L	5.0	1		05/31/19 04:24	75-71-8		
1,1-Dichloroethane	ND	ug/L	5.0	1		05/31/19 04:24	75-34-3		
1,2-Dichloroethane	ND	ug/L	5.0	1		05/31/19 04:24	107-06-2		

Project: The Butler Co.

Pace Project No.: 50226102

Sample: BC-GP15-GW1	Lab ID: 502	26102006	Collected: 05/22/1	9 18:08	Received: 05/24/19 08:45 Matrix: Water			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260/5030 MSV	Analytical Meth	nod: EPA 82	260					
1,1-Dichloroethene	ND	ug/L	5.0	1		05/31/19 04:24	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	5.0	1		05/31/19 04:24	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	1		05/31/19 04:24	156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	1		05/31/19 04:24	78-87-5	
1,3-Dichloropropane	ND	ug/L	5.0	1		05/31/19 04:24	142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	1		05/31/19 04:24	594-20-7	
1,1-Dichloropropene	ND	ug/L	5.0	1		05/31/19 04:24	563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	1		05/31/19 04:24	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	5.0	1		05/31/19 04:24	10061-02-6	
Ethylbenzene	ND	ug/L	5.0	1		05/31/19 04:24	100-41-4	
Ethyl methacrylate	ND	ug/L	100	1		05/31/19 04:24	97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	1		05/31/19 04:24	87-68-3	
n-Hexane	ND	ug/L	5.0	1		05/31/19 04:24	110-54-3	
2-Hexanone	ND	ug/L	25.0	1		05/31/19 04:24	591-78-6	
lodomethane	ND	ug/L	10.0	1		05/31/19 04:24	74-88-4	R1
Isopropylbenzene (Cumene)	ND	ug/L	5.0	1		05/31/19 04:24	98-82-8	
p-lsopropyltoluene	ND	ug/L	5.0	1		05/31/19 04:24	99-87-6	
Methylene Chloride	ND	ug/L	5.0	1		05/31/19 04:24	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ua/L	25.0	1		05/31/19 04:24	108-10-1	
Methyl-tert-butyl ether	ND	ua/L	4.0	1		05/31/19 04:24	1634-04-4	
n-Propylbenzene	ND	ua/L	5.0	1		05/31/19 04:24	103-65-1	
Styrene	ND	ua/L	5.0	1		05/31/19 04:24	100-42-5	
1.1.1.2-Tetrachloroethane	ND	ua/L	5.0	1		05/31/19 04:24	630-20-6	
1.1.2.2-Tetrachloroethane	ND	ua/L	5.0	1		05/31/19 04:24	79-34-5	
Tetrachloroethene	ND	ua/l	5.0	1		05/31/19 04:24	127-18-4	
Toluene	ND	ua/l	5.0	1		05/31/19 04:24	108-88-3	
1.2.3-Trichlorobenzene	ND	ua/l	5.0	1		05/31/19 04:24	87-61-6	
1.2.4-Trichlorobenzene	ND	ua/l	5.0	1		05/31/19 04:24	120-82-1	
1.1.1-Trichloroethane	ND	ua/l	5.0	1		05/31/19 04:24	71-55-6	
1.1.2-Trichloroethane	ND	ua/l	5.0	1		05/31/19 04:24	79-00-5	
Trichloroethene	ND	ua/l	5.0	1		05/31/19 04 24	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	1		05/31/19 04:24	75-69-4	
1.2.3-Trichloropropane	ND	ua/l	5.0	1		05/31/19 04:24	96-18-4	
1 2 4-Trimethylbenzene	ND	ug/L	5.0	1		05/31/19 04:24	95-63-6	
1 3 5-Trimethylbenzene	ND	ug/L	5.0	1		05/31/19 04:24	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1		05/31/19 04:24	108-05-4	
Vinyl chloride	ND	ug/L	2.0	1		05/31/19 04:24	75-01-4	
Xylene (Total)		ug/L	10.0	1		05/31/19 04.24	1330-20-7	
Surrogates		ug/L	10.0			55/01/10 04.24	1000 20-1	
Dibromofluoromethane (S)	104	%	80-122	1		05/31/19 04:24	1868-53-7	
4-Bromofluorobenzene (S)	97	%.	85-114	1		05/31/19 04:24	460-00-4	
Toluene-d8 (S)	100	%.	85-114	1		05/31/19 04:24	2037-26-5	

REPORT OF LABORATORY ANALYSIS

Project: The Butler Co.

Pace Project No.: 50226102

Sample: BC-GPGW-FD1	Lab ID: 502	Lab ID: 50226102007 Collected: 05/22/19 08:00 Received: 05/24/19 08:45 Matrix: Water						
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB RV Waters	Analytical Me	thod: EPA 80	82 Preparation Metho	od: EP	A 3510			
PCB-1016 (Aroclor 1016)	ND	ug/L	0.10	1	06/01/19 11:47	06/03/19 03:40	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ug/L	0.20	1	06/01/19 11:47	06/03/19 03:40	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	ug/L	0.10	1	06/01/19 11:47	06/03/19 03:40	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	ug/L	0.10	1	06/01/19 11:47	06/03/19 03:40	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	ug/L	0.10	1	06/01/19 11:47	06/03/19 03:40	12672-29-6	
PCB-1254 (Aroclor 1254)	ND	ug/L	0.10	1	06/01/19 11:47	06/03/19 03:40	11097-69-1	
PCB-1260 (Aroclor 1260)	ND	ug/L	0.10	1	06/01/19 11:47	06/03/19 03:40	11096-82-5	
Surrogates		-						
Tetrachloro-m-xylene (S)	64	%.	10-148	1	06/01/19 11:47	06/03/19 03:40	877-09-8	
6010 MET ICP	Analytical Me	thod: EPA 60	010 Preparation Metho	od: EP	A 3010			
Arsenic	ND	ug/L	10.0	1	06/01/19 09:40	06/03/19 09:09	7440-38-2	
Barium	133	ug/L	10.0	1	06/01/19 09:40	06/03/19 09:09	7440-39-3	
Cadmium	ND	ug/L	2.0	1	06/01/19 09:40	06/03/19 09:09	7440-43-9	
Chromium	ND	ug/L	10.0	1	06/01/19 09:40	06/03/19 09:09	7440-47-3	
Copper	10.2	ug/L	10.0	1	06/01/19 09:40	06/03/19 09:09	7440-50-8	
Lead	ND	ug/L	10.0	1	06/01/19 09:40	06/03/19 09:09	7439-92-1	
Selenium	ND	ug/L	10.0	1	06/01/19 09:40	06/03/19 09:09	7782-49-2	
Silver	ND	ug/L	10.0	1	06/01/19 09:40	06/03/19 09:09	7440-22-4	
Zinc	54.4	ug/L	20.0	1	06/01/19 09:40	06/03/19 09:09	7440-66-6	
6010 MET ICP, Dissolved	Analytical Me	thod: EPA 60	010 Preparation Metho	od: EP	A 3010			
Arsenic, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 03:10	7440-38-2	
Barium, Dissolved	116	ug/L	10.0	1	05/28/19 06:02	05/29/19 03:10	7440-39-3	
Cadmium, Dissolved	ND	ug/L	2.0	1	05/28/19 06:02	05/29/19 03:10	7440-43-9	
Chromium, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 03:10	7440-47-3	
Copper, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 03:10	7440-50-8	
Lead, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 03:10	7439-92-1	
Selenium, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 03:10	7782-49-2	
Silver, Dissolved	ND	ug/L	10.0	1	05/28/19 06:02	05/29/19 03:10	7440-22-4	
Zinc, Dissolved	22.8	ug/L	20.0	1	05/28/19 06:02	05/29/19 03:10	7440-66-6	
7470 Mercury	Analytical Me	thod: EPA 74	70 Preparation Metho	od: EP	A 7470			
Mercury	ND	ug/L	2.0	1	05/26/19 20:13	05/28/19 00:34	7439-97-6	
7470 Mercury, Dissolved	Analytical Me	thod: EPA 74	70 Preparation Metho	od: EP	A 7470			
Mercury, Dissolved	ND	ug/L	2.0	1	05/30/19 21:24	05/31/19 09:00	7439-97-6	
8270 MSSV PAHLV	Analytical Me	thod: EPA 82	270 by SIM LVE Prepa	aration	Method: EPA 357	10		
Acenaphthene	ND	ug/L	1.0	1	05/29/19 09:17	05/30/19 23:49	83-32-9	
Acenaphthylene	ND	ug/L	1.0	1	05/29/19 09:17	05/30/19 23:49	208-96-8	
Anthracene	ND	ug/L	0.10	1	05/29/19 09:17	05/30/19 23:49	120-12-7	
Benzo(a)anthracene	ND	ug/L	0.10	1	05/29/19 09:17	05/30/19 23:49	56-55-3	
Benzo(a)pyrene	ND	ug/L	0.10	1	05/29/19 09:17	05/30/19 23:49	50-32-8	
Benzo(b)fluoranthene	ND	ug/L	0.10	1	05/29/19 09:17	05/30/19 23:49	205-99-2	
Benzo(g,h,i)perylene	ND	ug/L	0.10	1	05/29/19 09:17	05/30/19 23:49	191-24-2	

REPORT OF LABORATORY ANALYSIS

Project: The Butler Co.

Pace Project No.: 50226102

Sample: BC-GPGW-FD1	Lab ID: 50226102007		Collected: 05/22/19 08:00		Received: 05	Received: 05/24/19 08:45 Matrix: Wate		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV PAHLV	Analytical Meth	od: EPA 82	270 by SIM LVE Prep	aration	Method: EPA 35	10		
Benzo(k)fluoranthene	ND	ug/L	0.10	1	05/29/19 09:17	05/30/19 23:49	207-08-9	
Chrysene	ND	ug/L	0.50	1	05/29/19 09:17	05/30/19 23:49	218-01-9	
Dibenz(a,h)anthracene	ND	ug/L	0.10	1	05/29/19 09:17	05/30/19 23:49	53-70-3	
Fluoranthene	ND	ug/L	1.0	1	05/29/19 09:17	05/30/19 23:49	206-44-0	
Fluorene	ND	ug/L	1.0	1	05/29/19 09:17	05/30/19 23:49	86-73-7	
Indeno(1,2,3-cd)pyrene	ND	ug/L	0.10	1	05/29/19 09:17	05/30/19 23:49	193-39-5	
1-Methylnaphthalene	ND	ug/L	1.0	1	05/29/19 09:17	05/30/19 23:49	90-12-0	N2
2-Methylnaphthalene	ND	ug/L	1.0	1	05/29/19 09:17	05/30/19 23:49	91-57-6	
Naphthalene	ND	ug/L	1.0	1	05/29/19 09:17	05/30/19 23:49	91-20-3	
Phenanthrene	ND	ug/L	1.0	1	05/29/19 09:17	05/30/19 23:49	85-01-8	
Pyrene <i>Surrogates</i>	ND	ug/L	1.0	1	05/29/19 09:17	05/30/19 23:49	129-00-0	
2-Fluorobiphenyl (S)	73	%.	10-105	1	05/29/19 09:17	05/30/19 23:49	321-60-8	
p-Terphenyl-d14 (S)	73	%.	10-142	1	05/29/19 09:17	05/30/19 23:49	1718-51-0	
8260/5030 MSV	Analytical Meth	od: EPA 82	260					
Acetone	ND	ug/L	100	1		05/31/19 04:57	67-64-1	
Acrolein	ND	ug/L	50.0	1		05/31/19 04:57	107-02-8	
Acrylonitrile	ND	ug/L	100	1		05/31/19 04:57	107-13-1	
Benzene	ND	ug/L	5.0	1		05/31/19 04:57	71-43-2	
Bromobenzene	ND	ug/L	5.0	1		05/31/19 04:57	108-86-1	L1
Bromochloromethane	ND	ug/L	5.0	1		05/31/19 04:57	74-97-5	
Bromodichloromethane	ND	ua/L	5.0	1		05/31/19 04:57	75-27-4	
Bromoform	ND	ug/L	5.0	1		05/31/19 04:57	75-25-2	
Bromomethane	ND	ug/L	5.0	1		05/31/19 04:57	74-83-9	
2-Butanone (MEK)	ND	ug/L	25.0	1		05/31/19 04:57	78-93-3	
n-Butylbenzene	ND	ug/L	5.0	1		05/31/19 04:57	104-51-8	
sec-Butvlbenzene	ND	ua/L	5.0	1		05/31/19 04:57	135-98-8	
tert-Butylbenzene	ND	ug/L	5.0	1		05/31/19 04:57	98-06-6	
Carbon disulfide	ND	ug/L	10.0	1		05/31/19 04:57	75-15-0	
Carbon tetrachloride	ND	ug/L	5.0	1		05/31/19 04:57	56-23-5	
Chlorobenzene	ND	ug/L	5.0	1		05/31/19 04:57	108-90-7	
Chloroethane	ND	ug/L	5.0	1		05/31/19 04:57	75-00-3	
Chloroform	ND	ug/L	5.0	1		05/31/19 04:57	67-66-3	
Chloromethane	ND	ug/L	5.0	1		05/31/19 04:57	74-87-3	
2-Chlorotoluene	ND	ug/L	5.0	1		05/31/19 04:57	95-49-8	
4-Chlorotoluene	ND	ug/L	5.0	1		05/31/19 04:57	106-43-4	
Dibromochloromethane	ND	ug/L	5.0	1		05/31/19 04:57	124-48-1	
1.2-Dibromoethane (EDB)	ND	ua/L	5.0	1		05/31/19 04:57	106-93-4	
Dibromomethane	ND	ua/L	5.0	1		05/31/19 04:57	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	1		05/31/19 04:57	95-50-1	
1,3-Dichlorobenzene	ND	ua/L	5.0	1		05/31/19 04:57	541-73-1	
1,4-Dichlorobenzene	ND	ua/L	5.0	1		05/31/19 04:57	106-46-7	
trans-1.4-Dichloro-2-butene	ND	ua/L	100	1		05/31/19 04:57	110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	1		05/31/19 04:57	75-71-8	
1,1-Dichloroethane	ND	ua/L	5.0	1		05/31/19 04:57	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	1		05/31/19 04:57	107-06-2	

Project: The Butler Co.

Pace Project No.: 50226102

Sample: BC-GPGW-FD1	Lab ID: 50226102007		Collected: 05/22/1	Collected: 05/22/19 08:00		Received: 05/24/19 08:45 Matrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260/5030 MSV	Analytical Meth	nod: EPA 82	260					
1,1-Dichloroethene	ND	ug/L	5.0	1		05/31/19 04:57	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	5.0	1		05/31/19 04:57	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	1		05/31/19 04:57	156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	1		05/31/19 04:57	78-87-5	
1,3-Dichloropropane	ND	ug/L	5.0	1		05/31/19 04:57	142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	1		05/31/19 04:57	594-20-7	
1,1-Dichloropropene	ND	ug/L	5.0	1		05/31/19 04:57	563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	1		05/31/19 04:57	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	5.0	1		05/31/19 04:57	10061-02-6	
Ethylbenzene	ND	ug/L	5.0	1		05/31/19 04:57	100-41-4	
Ethyl methacrylate	ND	ug/L	100	1		05/31/19 04:57	97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	1		05/31/19 04:57	87-68-3	
n-Hexane	ND	ug/L	5.0	1		05/31/19 04:57	110-54-3	
2-Hexanone	ND	ua/L	25.0	1		05/31/19 04:57	591-78-6	
lodomethane	ND	ua/L	10.0	1		05/31/19 04:57	74-88-4	
Isopropylbenzene (Cumene)	ND	ua/L	5.0	1		05/31/19 04:57	98-82-8	
p-lsopropyltoluene	ND	ua/L	5.0	1		05/31/19 04:57	99-87-6	
Methylene Chloride	ND	ua/L	5.0	1		05/31/19 04:57	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ua/l	25.0	1		05/31/19 04:57	108-10-1	
Methyl-tert-butyl ether	ND	ua/L	4.0	1		05/31/19 04:57	1634-04-4	
n-Propylbenzene	ND	ua/l	5.0	1		05/31/19 04:57	103-65-1	
Styrene	ND	ua/l	5.0	1		05/31/19 04:57	100-42-5	
1.1.1.2-Tetrachloroethane	ND	ua/l	5.0	1		05/31/19 04:57	630-20-6	
1 1 2 2-Tetrachloroethane	ND	ua/l	5.0	1		05/31/19 04:57	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	1		05/31/19 04:57	127-18-4	
Toluene	ND	ug/L	5.0	1		05/31/19 04:57	108-88-3	
1 2 3-Trichlorobenzene	ND	ug/L	5.0	1		05/31/19 04:57	87-61-6	
1 2 4-Trichlorobenzene	ND	ug/L	5.0	1		05/31/19 04:57	120-82-1	
1 1 1-Trichloroethane	ND	ug/L	5.0	1		05/31/19 04:57	71-55-6	
1 1 2-Trichloroethane	ND	ug/L	5.0	1		05/31/19 04:57	79-00-5	
Trichloroethene		ug/L	5.0	1		05/31/19 04:57	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	1		05/31/19 04:57	75-69-4	
1 2 3-Trichloropropane	ND	ug/L	5.0	1		05/31/19 04:57	96-18-4	
1 2 4-Trimethylbenzene		ug/L	5.0	1		05/31/19 04:57	95-63-6	
1 3 5-Trimethylbenzene		ug/L	5.0	1		05/31/19 04:57	108-67-8	
Vinyl acetate		ug/L	50.0	1		05/31/19 04:57	108-05-4	
Vinyl chloride	ND	ug/L	2.0	1		05/31/19 04:57	75-01-4	
Xylene (Total)		ug/L	10.0	1		05/31/19 04:57	1330-20-7	
Surrogates		uy/L	10.0			00/01/10 04.07	1000-20-1	
Dibromofluoromethane (S)	103	%	80-122	1		05/31/19 04.57	1868-53-7	
4-Bromofluorobenzene (S)	99	%.	85-114	1		05/31/19 04:57	460-00-4	
Toluene-d8 (S)	100	%.	85-114	1		05/31/19 04:57	2037-26-5	

REPORT OF LABORATORY ANALYSIS

Project: The Butler Co.

Pace Project No.: 50226102

Sample: BC-EB-GW1	Lab ID: 5022	26102008	Collected:	05/22/1	9 11:20	Received: 05	/24/19 08:45 N	latrix: Water	
Parameters	Results	Units	Repor	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB RV Waters	Analytical Meth	od: EPA 80	082 Prepara	tion Meth	nod: EPA	3510			
PCB-1016 (Aroclor 1016)	ND	ug/L		0.10	1	06/01/19 11:47	06/03/19 03:54	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	ug/L		0.20	1	06/01/19 11:47	06/03/19 03:54	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	ug/L		0.10	1	06/01/19 11:47	06/03/19 03:54	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	ug/L		0.10	1	06/01/19 11:47	06/03/19 03:54	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	ug/L		0.10	1	06/01/19 11:47	06/03/19 03:54	12672-29-6	
PCB-1254 (Aroclor 1254)	ND	ug/L		0.10	1	06/01/19 11:47	06/03/19 03:54	11097-69-1	
PCB-1260 (Aroclor 1260) Surrogates	ND	ug/L		0.10	1	06/01/19 11:47	06/03/19 03:54	11096-82-5	
Tetrachloro-m-xylene (S)	49	%.		10-148	1	06/01/19 11:47	06/03/19 03:54	877-09-8	
6010 MET ICP	Analytical Meth	od: EPA 60	010 Prepara	tion Meth	nod: EPA	3010			
Arsenic	ND	ug/L		10.0	1	06/01/19 09:40	06/03/19 09:11	7440-38-2	
Barium	ND	ug/L		10.0	1	06/01/19 09:40	06/03/19 09:11	7440-39-3	
Cadmium	ND	ug/L		2.0	1	06/01/19 09:40	06/03/19 09:11	7440-43-9	
Chromium	ND	ug/L		10.0	1	06/01/19 09:40	06/03/19 09:11	7440-47-3	
Copper	ND	ug/L		10.0	1	06/01/19 09:40	06/03/19 09:11	7440-50-8	
Lead	ND	ug/L		10.0	1	06/01/19 09:40	06/03/19 09:11	7439-92-1	
Selenium	ND	ug/L		10.0	1	06/01/19 09:40	06/03/19 09:11	7782-49-2	
Silver	ND	ug/L		10.0	1	06/01/19 09:40	06/03/19 09:11	7440-22-4	
Zinc	ND	ug/L		20.0	1	06/01/19 09:40	06/03/19 09:11	7440-66-6	
7470 Mercury	Analytical Meth	od: EPA 74	470 Prepara	tion Meth	nod: EPA	A 7470			
Mercury	ND	ug/L		2.0	1	05/26/19 20:13	05/28/19 00:36	7439-97-6	
8270 MSSV PAHLV	Analytical Meth	od: EPA 82	270 by SIM L	VE Prep	paration	Method: EPA 35	10		
Acenaphthene	ND	ug/L		1.0	1	05/29/19 09:17	05/30/19 23:59	83-32-9	
Acenaphthylene	ND	ug/L		1.0	1	05/29/19 09:17	05/30/19 23:59	208-96-8	
Anthracene	ND	ug/L		0.10	1	05/29/19 09:17	05/30/19 23:59	120-12-7	
Benzo(a)anthracene	ND	ug/L		0.10	1	05/29/19 09:17	05/30/19 23:59	56-55-3	
Benzo(a)pyrene	ND	ug/L		0.10	1	05/29/19 09:17	05/30/19 23:59	50-32-8	
Benzo(b)fluoranthene	ND	ug/L		0.10	1	05/29/19 09:17	05/30/19 23:59	205-99-2	
Benzo(g,h,i)perylene	ND	ug/L		0.10	1	05/29/19 09:17	05/30/19 23:59	191-24-2	
Benzo(k)fluoranthene	ND	ug/L		0.10	1	05/29/19 09:17	05/30/19 23:59	207-08-9	
Chrysene	ND	ug/L		0.50	1	05/29/19 09:17	05/30/19 23:59	218-01-9	
Dibenz(a,h)anthracene	ND	ug/L		0.10	1	05/29/19 09:17	05/30/19 23:59	53-70-3	
Fluoranthene	ND	ug/L		1.0	1	05/29/19 09:17	05/30/19 23:59	206-44-0	
Fluorene	ND	ug/L		1.0	1	05/29/19 09:17	05/30/19 23:59	86-73-7	
Indeno(1,2,3-cd)pyrene	ND	ug/L		0.10	1	05/29/19 09:17	05/30/19 23:59	193-39-5	
1-Methylnaphthalene	ND	ug/L		1.0	1	05/29/19 09:17	05/30/19 23:59	90-12-0	N2
2-Methylnaphthalene	ND	ug/L		1.0	1	05/29/19 09:17	05/30/19 23:59	91-57-6	
Naphthalene	ND	ug/L		1.0	1	05/29/19 09:17	05/30/19 23:59	91-20-3	
Phenanthrene	ND	ug/L		1.0	1	05/29/19 09:17	05/30/19 23:59	85-01-8	
Pyrene	ND	ug/L		1.0	1	05/29/19 09:17	05/30/19 23:59	129-00-0	
Surrogates		<i>c i</i>		40.40-		05/00/40 00 :=	05/00/40 00 =-		
2-Fluorobiphenyl (S)	59	%.		10-105	1	05/29/19 09:17	05/30/19 23:59	321-60-8	
p-Terphenyl-d14 (S)	77	%.		10-142	1	05/29/19 09:17	05/30/19 23:59	1718-51-0	

Project: The Butler Co.

Pace Project No.: 50226102

Sample: BC-EB-GW1	Lab ID: 50226102008		Collected: 05/22/	9 11:20	Received: 05/24/19 08:45 Matrix: Water			r
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260/5030 MSV	Analytical Meth	nod: EPA 82	260					
Acetone	ND	ug/L	100	1	0	5/31/19 05:30	67-64-1	
Acrolein	ND	ug/L	50.0	1	0	5/31/19 05:30	107-02-8	
Acrylonitrile	ND	ug/L	100	1	0	5/31/19 05:30	107-13-1	
Benzene	ND	ug/L	5.0	1	0	5/31/19 05:30	71-43-2	
Bromobenzene	ND	ug/L	5.0	1	0	5/31/19 05:30	108-86-1	L1
Bromochloromethane	ND	ug/L	5.0	1	0	5/31/19 05:30	74-97-5	
Bromodichloromethane	ND	ug/L	5.0	1	0	5/31/19 05:30	75-27-4	
Bromoform	ND	ug/L	5.0	1	0	5/31/19 05:30	75-25-2	
Bromomethane	ND	ug/L	5.0	1	0	5/31/19 05:30	74-83-9	
2-Butanone (MEK)	ND	ug/L	25.0	1	0	5/31/19 05:30	78-93-3	
n-Butylbenzene	ND	ug/L	5.0	1	0	5/31/19 05:30	104-51-8	
sec-Butylbenzene	ND	ug/L	5.0	1	0	5/31/19 05:30	135-98-8	
tert-Butylbenzene	ND	ug/L	5.0	1	0	5/31/19 05:30	98-06-6	
Carbon disulfide	ND	ug/L	10.0	1	0	5/31/19 05:30	75-15-0	
Carbon tetrachloride	ND	ug/L	5.0	1	0	5/31/19 05:30	56-23-5	
Chlorobenzene	ND	ug/L	5.0	1	0	5/31/19 05:30	108-90-7	
Chloroethane	ND	ug/L	5.0	1	0	5/31/19 05:30	75-00-3	
Chloroform	ND	ug/L	5.0	1	0	5/31/19 05:30	67-66-3	
Chloromethane	ND	ug/L	5.0	1	0	5/31/19 05:30	74-87-3	
2-Chlorotoluene	ND	uq/L	5.0	1	0	5/31/19 05:30	95-49-8	
4-Chlorotoluene	ND	ug/L	5.0	1	0	5/31/19 05:30	106-43-4	
Dibromochloromethane	ND	ug/L	5.0	1	0	5/31/19 05:30	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L	5.0	1	0	5/31/19 05:30	106-93-4	
Dibromomethane	ND	ug/L	5.0	1	0	5/31/19 05:30	74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	1	0	5/31/19 05:30	95-50-1	
1,3-Dichlorobenzene	ND	ug/L	5.0	1	0	5/31/19 05:30	541-73-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	1	0	5/31/19 05:30	106-46-7	
trans-1,4-Dichloro-2-butene	ND	ug/L	100	1	0	5/31/19 05:30	110-57-6	
Dichlorodifluoromethane	ND	ug/L	5.0	1	0	5/31/19 05:30	75-71-8	
1,1-Dichloroethane	ND	ug/L	5.0	1	0	5/31/19 05:30	75-34-3	
1,2-Dichloroethane	ND	ug/L	5.0	1	0	5/31/19 05:30	107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	1	0	5/31/19 05:30	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	5.0	1	0	5/31/19 05:30	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	1	0	5/31/19 05:30	156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	1	0	5/31/19 05:30	78-87-5	
1,3-Dichloropropane	ND	ug/L	5.0	1	0	5/31/19 05:30	142-28-9	
2,2-Dichloropropane	ND	ug/L	5.0	1	0	5/31/19 05:30	594-20-7	
1,1-Dichloropropene	ND	ug/L	5.0	1	0	5/31/19 05:30	563-58-6	
cis-1,3-Dichloropropene	ND	ug/L	5.0	1	0	5/31/19 05:30	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	5.0	1	0	5/31/19 05:30	10061-02-6	
Ethylbenzene	ND	ug/L	5.0	1	0	5/31/19 05:30	100-41-4	
Ethyl methacrylate	ND	ug/L	100	1	0	5/31/19 05:30	97-63-2	
Hexachloro-1,3-butadiene	ND	ug/L	5.0	1	0	5/31/19 05:30	87-68-3	
n-Hexane	ND	ug/L	5.0	1	0	5/31/19 05:30	110-54-3	
2-Hexanone	ND	ua/L	25.0	1	0	5/31/19 05:30	591-78-6	
lodomethane	ND	ug/L	10.0	1	0	5/31/19 05:30	74-88-4	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	1	0	5/31/19 05:30	98-82-8	

Project: The Butler Co.

Pace Project No.: 50226102

Sample: BC-EB-GW1	Lab ID: 50226102008		Collected: 05/22/1	Collected: 05/22/19 11:20		Received: 05/24/19 08:45 Matrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260/5030 MSV	Analytical Mether	nod: EPA 82	260					
p-Isopropyltoluene	ND	ug/L	5.0	1		05/31/19 05:30	99-87-6	
Methylene Chloride	ND	ug/L	5.0	1		05/31/19 05:30	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	1		05/31/19 05:30	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	1		05/31/19 05:30	1634-04-4	
n-Propylbenzene	ND	ug/L	5.0	1		05/31/19 05:30	103-65-1	
Styrene	ND	ug/L	5.0	1		05/31/19 05:30	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	1		05/31/19 05:30	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	1		05/31/19 05:30	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	1		05/31/19 05:30	127-18-4	
Toluene	ND	ug/L	5.0	1		05/31/19 05:30	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	1		05/31/19 05:30	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	1		05/31/19 05:30	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	1		05/31/19 05:30	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	1		05/31/19 05:30	79-00-5	
Trichloroethene	ND	ug/L	5.0	1		05/31/19 05:30	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	1		05/31/19 05:30	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	1		05/31/19 05:30	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	1		05/31/19 05:30	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	1		05/31/19 05:30	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1		05/31/19 05:30	108-05-4	
Vinvl chloride	ND	ua/L	2.0	1		05/31/19 05:30	75-01-4	
Xylene (Total)	ND	ug/L	10.0	1		05/31/19 05:30	1330-20-7	
Surrogates		0						
Dibromofluoromethane (S)	105	%.	80-122	1		05/31/19 05:30	1868-53-7	
4-Bromofluorobenzene (S)	99	%.	85-114	1		05/31/19 05:30	460-00-4	
Toluene-d8 (S)	99	%.	85-114	1		05/31/19 05:30	2037-26-5	

Project: The Butler Co.

Pace Project No.: 50226102

Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual 26205030 MSV Analytical Method: EPA 8260 -	Sample: BC-TB1	Lab ID: 502	Lab ID: 50226102009		9 08:00	Received: 05/24/19 08:45	Matrix: Water	/ater	
SecOso MSV Analytical Method: EPA 8260 Actonia ND ug/L 100 1 0531/19 06:03 107-12-8 Acrolarin ND ug/L 50.0 1 0531/19 06:03 107-12-8 Banzane ND ug/L 50.0 1 0531/19 06:03 107-13-1 Banzane ND ug/L 50.0 1 0531/19 06:03 108-86-1 L1 Bromochicomethane ND ug/L 50.0 1 0531/19 06:03 76-37-4 Bromochicomethane ND ug/L 50.0 1 0531/19 06:03 76-47-3 Caton trantofini	Parameters	Results	Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qual	
Acebane ND ug/L 100 1 653/119 06:03 7674-1 Acrolein ND ug/L 50.0 1 053/119 06:03 107-02-8 Benzene ND ug/L 50.0 1 053/119 06:03 107-13-1 Benzene ND ug/L 50.0 1 053/119 06:03 108-86-1 L1 Bromochizomethane ND ug/L 50.0 1 053/119 06:03 75-27-4 Bromochizomethane ND ug/L 50.0 1 053/119 06:03 74-37-3 Bromochizomethane ND ug/L 50.0 1 053/119 06:03 74-37-3 Bromochizomethane ND ug/L 50.0 1 053/119 06:03 74-37-3 Structure ND ug/L 50.0 1 053/119 06:03 75-52-2 Bromochizomethane ND ug/L 50.0 1 053/119 06:03 75-50-2 Caton transhorizomethane ND ug/L 50.0 1	8260/5030 MSV	Analytical Met	hod: EPA 82	260					
Acrolantim ND upL 50.0 1 063(1/19 06:03 107-02-8 Banzene ND ugL 5.0 1 063(1/19 06:03 71-43-2 Bronnobenzene ND ugL 5.0 1 063(1/19 06:03 74-97-5 Bronnochicoromethane ND ugL 5.0 1 063(1/19 06:03 75-27-4 Bronnochicoromethane ND ugL 5.0 1 063(1/19 06:03 74-87-5 Bronnochicoromethane ND ugL 5.0 1 063(1/19 06:03 74-83-9 Secturybenzene ND ugL 5.0 1 063(1/19 06:03 104-51-8 Secturybenzene ND ugL 5.0 1 063(1/19 06:03 164-51-8 Carbon disulfide ND ugL 5.0 1 063(1/19 06:03 56-23-5 Carbon disulfide ND ugL 5.0 1 063(1/19 06:03 75-0-3 Carbon disulfide ND ugL 5.0 1 063(1	Acetone	ND	ug/L	100	1	05/31/19 06:0	3 67-64-1		
Acrylonithic ND ug/L 100 1 063(1/19 06:33 107-13-1 Bromochenzene ND ug/L 5.0 1 063(1/19 06:33 167-83-1 Bromochinormethane ND ug/L 5.0 1 053(1/19 06:33 74-87-5 Bromochinormethane ND ug/L 5.0 1 053(1/19 06:33 74-87-5 Bromochinormethane ND ug/L 5.0 1 053(1/19 06:33 75-25-2 Stromonethane ND ug/L 5.0 1 053(1/19 06:33 78-83-9 2-Sutanone (MEK) ND ug/L 5.0 1 053(1/19 06:33 135-98-8 2-Sutanone (MEK) ND ug/L 5.0 1 053(1/19 06:33 75-16-6 Carbon disulide ND ug/L 5.0 1 053(1/19 06:33 75-16-6 Carbon disulide ND ug/L 5.0 1 053(1/19 06:33 75-16-6 Carbon disulide ND ug/L 5.0 1	Acrolein	ND	ug/L	50.0	1	05/31/19 06:0	3 107-02-8		
Benzene ND ug/L 5.0 1 063(1/19 06:33 71-43-2 Bromochoromethane ND ug/L 5.0 1 063(1/19 06:33 74-97-5 Bromochoromethane ND ug/L 5.0 1 063(1/19 06:33 74-97-5 Bromochoromethane ND ug/L 5.0 1 063(1/19 06:33 74-93-3 Bromomethane ND ug/L 5.0 1 063(1/19 06:33 74-83-9 Bromomethane ND ug/L 5.0 1 063(1/19 06:33 74-83-9 Bromomethane ND ug/L 5.0 1 063(1/19 06:33 74-83-9 Bromochorzene ND ug/L 5.0 1 063(1/19 06:33 74-93-3 Carbon disulfide ND ug/L 5.0 1 063(1/19 06:33 75-0-3 Carbon disulfide ND ug/L 5.0 1 063(1/19 06:33 75-0-3 Carbon disulfide ND ug/L 5.0 1 063(1/19 0	Acrylonitrile	ND	ug/L	100	1	05/31/19 06:0	3 107-13-1		
Bromochoromethane ND ug/L 5.0 1 05/31/19 00:3 7-8-7-5 Bromochoromethane ND ug/L 5.0 1 05/31/19 00:3 75-27-2 Bromochoromethane ND ug/L 5.0 1 05/31/19 00:3 75-27-2 Bromochorom ND ug/L 5.0 1 05/31/19 00:3 75-27-2 Stromochorom ND ug/L 5.0 1 05/31/19 00:3 15-88-3 Stromochorom ND ug/L 5.0 1 05/31/19 00:3 35-88-3 Stromochorom ND ug/L 5.0 1 05/31/19 00:3 35-88-3 Stromochorom ND ug/L 5.0 1 05/31/19 00:3 75-16-3 Carbon tetrachioride ND ug/L 5.0 1 05/31/19 00:3 75-16-3 Chioroberzene ND ug/L 5.0 1 05/31/19 00:3 76-8-3 Chioroberzene ND ug/L 5.0 1 05/31/19 00:3	Benzene	ND	ug/L	5.0	1	05/31/19 06:0	3 71-43-2		
Bromochioromethane ND ug/L 5.0 1 05/31/19 06:3 7-27-3 Bromochioromethane ND ug/L 5.0 1 05/31/19 06:3 75-25-2 Bromochioromethane ND ug/L 5.0 1 05/31/19 06:3 35-98-8 Sec-Burylbenzene ND ug/L 5.0 1 05/31/19 06:3 75-15-0 Carbon tetrachioride ND ug/L 5.0 1 05/31/19 06:3 75-0-3 Chioroberzene ND ug/L 5.0 1 05/31/19 06:3 75-0-3 Chioroberzene ND ug/L 5.0 1 05/31/19 06:3 76-0-3 Chioroberzene ND ug/L 5.0 1	Bromobenzene	ND	ug/L	5.0	1	05/31/19 06:0	3 108-86-1	L1	
Bromodichioromethane ND ug/L 5.0 1 05/31/19 06:03 75-27-4 Bromodram ND ug/L 5.0 1 05/31/19 06:03 75-82-52 Bromomethane ND ug/L 5.0 1 05/31/19 06:03 75-83-3 Semomethane ND ug/L 5.0 1 05/31/19 06:03 15-98-3 Setup/benzene ND ug/L 5.0 1 05/31/19 06:03 15-98-3 Carbon disulfide ND ug/L 5.0 1 05/31/19 06:03 75-15-0 Carbon tetrachloride ND ug/L 5.0 1 05/31/19 06:03 75-15-0 Carbon disulfide ND ug/L 5.0 1 05/31/19 06:03 75-0-3 Carbon disulfide ND ug/L 5.0 1 05/31/19 06:03 76-0-3 Carbon disulfide ND ug/L 5.0 1 05/31/19 06:03 76-0-3 Carbon disulfide ND ug/L 5.0 1	Bromochloromethane	ND	ug/L	5.0	1	05/31/19 06:0	3 74-97-5		
Bromorem ND ug/L 5.0 1 06/31/19 06:03 74-83-9 Bromomethane ND ug/L 5.0 1 05/31/19 06:03 74-83-9 Bromomethane ND ug/L 5.0 1 05/31/19 06:03 78-83-3 or-But/benzene ND ug/L 5.0 1 05/31/19 06:03 78-83-3 sc-But/benzene ND ug/L 5.0 1 05/31/19 06:03 78-0-0 Carbon disulfiel ND ug/L 5.0 1 05/31/19 06:03 78-0-0 Carbon disulfiel ND ug/L 5.0 1 05/31/19 06:03 78-0-3 Chiorobtrane ND ug/L 5.0 1 05/31/19 06:03 78-0-3 Chiorobtrane ND ug/L 5.0 1 05/31/19 06:03 78-0-3 Chiorobtrane ND ug/L 5.0 1 05/31/19 06:03 78-8-3 Chiorobtrane ND ug/L 5.0 1 05/31/19 06:03 <	Bromodichloromethane	ND	ug/L	5.0	1	05/31/19 06:0	3 75-27-4		
Bromomethane ND ug/L 5.0 1 06/31/19 06:03 748-39- 2-Butanone (MEK) ND ug/L 5.0 1 06/31/19 06:03 78-93-3 a-Butybenzene ND ug/L 5.0 1 06/31/19 06:03 78-93-3 sec-Butybenzene ND ug/L 5.0 1 06/31/19 06:03 78-93-3 Carbon disulifie ND ug/L 5.0 1 06/31/19 06:03 78-93-3 Chioroberzene ND ug/L 5.0 1 06/31/19 06:03 78-07-3 Chioroberzene ND ug/L 5.0 1 06/31/19 06:03 78-97-3 Chioroberzene ND ug/L 5.0 1 06/31/19 06:0	Bromoform	ND	ug/L	5.0	1	05/31/19 06:0	3 75-25-2		
2-Butanone (MEK) ND ug/L 25.0 1 05/31/19 06:03 78-93-3 n-Butylbenzene ND ug/L 5.0 1 05/31/19 06:03 160-03 13-98-8 tert-Butylbenzene ND ug/L 5.0 1 05/31/19 06:03 58-8 carbon disulfide ND ug/L 5.0 1 05/31/19 06:03 56-6 Carbon disulfide ND ug/L 5.0 1 05/31/19 06:03 56-23-5 Chiorobenzene ND ug/L 5.0 1 05/31/19 06:03 76-6-3 Chiorobenzene ND ug/L 5.0 1 05/31/19 06:03 76-6-3 Chiorobenzene ND ug/L 5.0 1 05/31/19 06:03 76-43-4 Dibromochromethane ND ug/L 5.0 1 05/31/19 06:03 74-48-1 1,2-Dichorobenzene ND ug/L 5.0 1 05/31/19 06:03 75-6-1 Dibromochromethane ND ug/L 5.0	Bromomethane	ND	ug/L	5.0	1	05/31/19 06:0	3 74-83-9		
n-Butybenzene ND ug/L 5.0 1 05/31/19.06:03 14-51-8 sec-Butylbenzene ND ug/L 5.0 1 05/31/19.06:03 15-98-8 LerButylbenzene ND ug/L 5.0 1 05/31/19.06:03 98-06-6 Carbon tetracholride ND ug/L 5.0 1 05/31/19.06:03 75-15-0 Carbon tetracholride ND ug/L 5.0 1 05/31/19.06:03 75-0-3 Chiorobenzene ND ug/L 5.0 1 05/31/19.06:03 75-0-3 Chiorobentane ND ug/L 5.0 1 05/31/19.06:03 75-0-3 Chiorobentane ND ug/L 5.0 1 05/31/19.06:03 74-87-3 2-Chiorobluene ND ug/L 5.0 1 05/31/19.06:03 16-43-4 Dibromochloromethane ND ug/L 5.0 1 05/31/19.06:03 16-43-4 J-2-Dichorobenzene ND ug/L 5.0 1	2-Butanone (MEK)	ND	ug/L	25.0	1	05/31/19 06:0	3 78-93-3		
sec-Eurybenzene ND ug/L 5.0 1 053/1/19 06:03 35-98-8 tent-Butybenzene ND ug/L 5.0 1 05/31/19 06:03 98-06-6 Carbon disulfide ND ug/L 5.0 1 05/31/19 06:03 76-15-0 Carbon disulfide ND ug/L 5.0 1 05/31/19 06:03 76-90-3 Chlorobetnane ND ug/L 5.0 1 05/31/19 06:03 75-00-3 Chlorobetnane ND ug/L 5.0 1 05/31/19 06:03 76-63 Chlororothane ND ug/L 5.0 1 05/31/19 06:03 76-47-3 2-Chlorotoluene ND ug/L 5.0 1 05/31/19 06:03 16-43-4 Dibromochhane (EDB) ND ug/L 5.0 1 05/31/19 06:03 16-93-4 Dibromochhane (EDB) ND ug/L 5.0 1 05/31/19 06:03 16-46-7 1,2-Dichlorobenzene ND ug/L 5.0 1	n-Butylbenzene	ND	ug/L	5.0	1	05/31/19 06:0	3 104-51-8		
tert-Builybenzene ND ug/L 5.0 1 05/31/19 06:03 98-06-6 Carbon tistufide ND ug/L 10.0 1 05/31/19 06:03 75-15-0 Carbon tetrachoride ND ug/L 5.0 1 05/31/19 06:03 75-06-3 Chiorobenzene ND ug/L 5.0 1 05/31/19 06:03 75-06-3 Chiorobentane ND ug/L 5.0 1 05/31/19 06:03 76-66-3 Chiorobentane ND ug/L 5.0 1 05/31/19 06:03 76-49-3 2-Chiorobluene ND ug/L 5.0 1 05/31/19 06:03 76-49-3 4-Chiorobluene ND ug/L 5.0 1 05/31/19 06:03 76-49-3 1_2-Dioromochlane (EDB) ND ug/L 5.0 1 05/31/19 06:03 76-49-3 1_2-Diorhorobenzene ND ug/L 5.0 1 05/31/19 06:03 76-14 1_2-Diohorobenzene ND ug/L 5.0 1 <td>sec-Butylbenzene</td> <td>ND</td> <td>ug/L</td> <td>5.0</td> <td>1</td> <td>05/31/19 06:0</td> <td>3 135-98-8</td> <td></td>	sec-Butylbenzene	ND	ug/L	5.0	1	05/31/19 06:0	3 135-98-8		
Carbon disulfide ND ug/L 10.0 1 05/31/19 06:03 75-15-0 Carbon tetrachloride ND ug/L 5.0 1 05/31/19 06:03 75-0-3 Chlorobenzene ND ug/L 5.0 1 05/31/19 06:03 75-0-3 Chlorobentane ND ug/L 5.0 1 05/31/19 06:03 75-6-3 Chloromethane ND ug/L 5.0 1 05/31/19 06:03 95-49-8 2-Chlorotoluene ND ug/L 5.0 1 05/31/19 06:03 16-43-4 Dibromochtoromethane ND ug/L 5.0 1 05/31/19 06:03 16-43-4 Dibromochtoromethane ND ug/L 5.0 1 05/31/19 06:03 16-93-4 1_2-Dichlorobenzene ND ug/L 5.0 1 05/31/19 06:03 74-95-3 1_2-Dichlorobenzene ND ug/L 5.0 1 05/31/19 06:03 75-71-8 1_3-Dichlorobenzene ND ug/L 5.0 <	tert-Butylbenzene	ND	ug/L	5.0	1	05/31/19 06:0	3 98-06-6		
Carbon tetrachloride ND ug/L 5.0 1 05/31/19 06:03 56-23-5 Chlorobenzene ND ug/L 5.0 1 05/31/19 06:03 75-00-3 Chlorothane ND ug/L 5.0 1 05/31/19 06:03 67-66-3 Chlorothane ND ug/L 5.0 1 05/31/19 06:03 95-49-8 Chlorothuene ND ug/L 5.0 1 05/31/19 06:03 95-49-8 2-Chlorotoluene ND ug/L 5.0 1 05/31/19 06:03 106-43-4 Dibromochloromethane ND ug/L 5.0 1 05/31/19 06:03 124-48-1 1.2-Dichlorobenzene ND ug/L 5.0 1 05/31/19 06:03 124-48-1 1.2-Dichlorobenzene ND ug/L 5.0 1 05/31/19 06:03 16-43-4 1.2-Dichlorobenzene ND ug/L 5.0 1 05/31/19 06:03 16-43-1 1.3-Dichlorobenzene ND ug/L 5.0 1	Carbon disulfide	ND	ug/L	10.0	1	05/31/19 06:0	3 75-15-0		
Chlorobenzene ND ug/L 5.0 1 05/31/19 06:03 108-90-7 Chloroterhane ND ug/L 5.0 1 05/31/19 06:03 75-00-3 Chlorotoluene ND ug/L 5.0 1 05/31/19 06:03 74-87-3 2-Chlorotoluene ND ug/L 5.0 1 05/31/19 06:03 74-87-3 2-Chlorotoluene ND ug/L 5.0 1 05/31/19 06:03 106-43-4 Dibromochloromethane ND ug/L 5.0 1 05/31/19 06:03 124-48-1 1/2-Dibromoethane (EDB) ND ug/L 5.0 1 05/31/19 06:03 74-95-3 1/2-Dichlorobenzene ND ug/L 5.0 1 05/31/19 06:03 74-95-3 1/2-Dichlorobenzene ND ug/L 5.0 1 05/31/19 06:03 75-97-3 1/2-Dichlorobenzene ND ug/L 5.0 1 05/31/19 06:03 76-87-3 1/2-Dichloroethane ND ug/L 5.0	Carbon tetrachloride	ND	ug/L	5.0	1	05/31/19 06:0	3 56-23-5		
Chloroethane ND ug/L 5.0 1 05/31/19 06:03 75-00-3 Chloroothane ND ug/L 5.0 1 05/31/19 06:03 76-63-3 Chloroothane ND ug/L 5.0 1 05/31/19 06:03 76-8-3 2-Chlorotoluene ND ug/L 5.0 1 05/31/19 06:03 16-43-4 Dibromochloromethane ND ug/L 5.0 1 05/31/19 06:03 16-93-4 L2-Dibromoethane (EDB) ND ug/L 5.0 1 05/31/19 06:03 16-93-4 J.2-Dichorobenzene ND ug/L 5.0 1 05/31/19 06:03 16-93-4 J.3-Dichorobenzene ND ug/L 5.0 1 05/31/19 06:03 16-93-4 J.4-Dichorobenzene ND ug/L 5.0 1 05/31/19 06:03 16-46-7 trans-1,4-Dichoroe2-butene ND ug/L 5.0 1 05/31/19 06:03 75-74-8 1,1-Dichoroethane ND ug/L 5.0	Chlorobenzene	ND	ua/L	5.0	1	05/31/19 06:0	3 108-90-7		
Chloroform ND ug/L 5.0 1 05/31/19 06:03 67-66-3 Chloromethane ND ug/L 5.0 1 05/31/19 06:03 95-48-3 2-Chlorotoluene ND ug/L 5.0 1 05/31/19 06:03 95-48-3 4-Chlorotoluene ND ug/L 5.0 1 05/31/19 06:03 106-43.4 Dibromochloromethane ND ug/L 5.0 1 05/31/19 06:03 106-43.4 Dibromochlane (EDB) ND ug/L 5.0 1 05/31/19 06:03 74-95-3 1,2-Dibrobotenzene ND ug/L 5.0 1 05/31/19 06:03 56-0-1 1,3-Dichorobenzene ND ug/L 5.0 1 05/31/19 06:03 106-46-7 trans-1,4-Dichloro-2-butene ND ug/L 5.0 1 05/31/19 06:03 75-34-3 1,2-Dichloroethane ND ug/L 5.0 1 05/31/19 06:03 75-34-3 1,2-Dichloroethane ND ug/L 5.0	Chloroethane	ND	ug/L	5.0	1	05/31/19 06:0	3 75-00-3		
Chloromethane ND ug/L 5.0 1 05/31/19 06:03 74-87-3 2-Chlorotoluene ND ug/L 5.0 1 05/31/19 06:03 95-49-8 4-Chlorotoluene ND ug/L 5.0 1 05/31/19 06:03 106-43-4 Dibromochlaromethane ND ug/L 5.0 1 05/31/19 06:03 106-93-4 Dibromochlaromethane ND ug/L 5.0 1 05/31/19 06:03 74-95-3 1,2-Dichlorobenzene ND ug/L 5.0 1 05/31/19 06:03 95-50-1 1,2-Dichlorobenzene ND ug/L 5.0 1 05/31/19 06:03 95-50-1 1,2-Dichlorobenzene ND ug/L 5.0 1 05/31/19 06:03 106-67-7 1,1-Dichloroethane ND ug/L 5.0 1 05/31/19 06:03 75-74-8 1,1-Dichloroethane ND ug/L 5.0 1 05/31/19 06:03 75-34-3 1,2-Dichloroethane ND ug/L 5.0 <td>Chloroform</td> <td>ND</td> <td>ug/L</td> <td>5.0</td> <td>1</td> <td>05/31/19 06:0</td> <td>3 67-66-3</td> <td></td>	Chloroform	ND	ug/L	5.0	1	05/31/19 06:0	3 67-66-3		
2-Chlorotoluene ND ug/L 5.0 1 05/31/19 06:03 95-49-8 4-Chlorotoluene ND ug/L 5.0 1 05/31/19 06:03 106-43-4 Dibromochloromethane ND ug/L 5.0 1 05/31/19 06:03 124-48-1 1.2-Dibromoethane (EDB) ND ug/L 5.0 1 05/31/19 06:03 74-95-3 1.2-Dibromoethane ND ug/L 5.0 1 05/31/19 06:03 74-95-3 1.2-Dichorobenzene ND ug/L 5.0 1 05/31/19 06:03 106-46-7 1.3-Dichtorobenzene ND ug/L 5.0 1 05/31/19 06:03 10-57-6 Dichorotifluoromethane ND ug/L 5.0 1 05/31/19 06:03 75-34-3 1.4-Dichloroethane ND ug/L 5.0 1 05/31/19 06:03 75-34-3 1.2-Dichloroethane ND ug/L 5.0 1 05/31/19 06:03 166-60-5 1.2-Dichloroethane ND ug/L	Chloromethane	ND	ug/L	5.0	1	05/31/19 06:0	3 74-87-3		
4-Chlorotoluene ND ug/L 5.0 1 05/31/19 06:03 106-43-4 Dibromochloromethane ND ug/L 5.0 1 05/31/19 06:03 124-48-1 1,2-Dibromoethane (EDB) ND ug/L 5.0 1 05/31/19 06:03 124-48-1 1,2-Dibromoethane ND ug/L 5.0 1 05/31/19 06:03 166-43-4 1,2-Dibromoethane ND ug/L 5.0 1 05/31/19 06:03 166-43-4 1,3-Dichlorobenzene ND ug/L 5.0 1 05/31/19 06:03 541-73-1 1,4-Dichlorobenzene ND ug/L 5.0 1 05/31/19 06:03 166-45-7 trans-1,4-Dichloro-2-butene ND ug/L 5.0 1 05/31/19 06:03 75-74-8 1,1-Dichloroethane ND ug/L 5.0 1 05/31/19 06:03 75-34-3 1,2-Dichloroethane ND ug/L 5.0 1 05/31/19 06:03 75-35-4 1,2-Dichloroethene ND ug/L <td>2-Chlorotoluene</td> <td>ND</td> <td>ug/L</td> <td>5.0</td> <td>1</td> <td>05/31/19 06:0</td> <td>3 95-49-8</td> <td></td>	2-Chlorotoluene	ND	ug/L	5.0	1	05/31/19 06:0	3 95-49-8		
Dibromochloromethane ND ug/L 5.0 1 05/31/19 06:03 124-48-1 1,2-Dibromoethane (EDB) ND ug/L 5.0 1 05/31/19 06:03 74-95-3 Dibromomethane ND ug/L 5.0 1 05/31/19 06:03 74-95-3 1,2-Dichlorobenzene ND ug/L 5.0 1 05/31/19 06:03 96-50-1 1,3-Dichlorobenzene ND ug/L 5.0 1 05/31/19 06:03 106-46-7 trans-1,4-Dichloro-2-butene ND ug/L 5.0 1 05/31/19 06:03 16-67-6 Dichlorodifluoromethane ND ug/L 5.0 1 05/31/19 06:03 75-76-8 Dichlorodifluoromethane ND ug/L 5.0 1 05/31/19 06:03 16-57-6 Dichlorodifluoromethane ND ug/L 5.0 1 05/31/19 06:03 16-57-6 1,1-Dichloroethane ND ug/L 5.0 1 05/31/19 06:03 16-56-52 trans-1,2-Dichloroethene ND	4-Chlorotoluene	ND	ug/L	5.0	1	05/31/19 06:0	3 106-43-4		
1,2-Dibromoethane (EDB) ND ug/L 5.0 1 05/31/19 06:03 74-95-3 1,2-Dichlorobenzene ND ug/L 5.0 1 05/31/19 06:03 95-50-1 1,3-Dichlorobenzene ND ug/L 5.0 1 05/31/19 06:03 95-50-1 1,3-Dichlorobenzene ND ug/L 5.0 1 05/31/19 06:03 160-47-7 1,4-Dichlorobenzene ND ug/L 5.0 1 05/31/19 06:03 106-47-7 trans-1,4-Dichloro-2-butene ND ug/L 5.0 1 05/31/19 06:03 170-57-6 Dichlorodifluoromethane ND ug/L 5.0 1 05/31/19 06:03 75-71-8 1,1-Dichloroethane ND ug/L 5.0 1 05/31/19 06:03 75-34-3 1,2-Dichloroethane ND ug/L 5.0 1 05/31/19 06:03 75-34-3 1,2-Dichloroethane ND ug/L 5.0 1 05/31/19 06:03 75-35-4 1,2-Dichloroethane ND ug/L 5.0 1 05/31/19 06:03 75-35-4 1,2-Dichl	Dibromochloromethane	ND	ug/L	5.0	1	05/31/19 06:0	3 124-48-1		
Dibromomethane ND ug/L 5.0 1 05/31/19 06:03 74-95-3 1,2-Dichlorobenzene ND ug/L 5.0 1 05/31/19 06:03 95-50-1 1,3-Dichlorobenzene ND ug/L 5.0 1 05/31/19 06:03 95-50-1 1,4-Dichlorobenzene ND ug/L 5.0 1 05/31/19 06:03 106-46-7 trans-1,4-Dichloro-2-butene ND ug/L 5.0 1 05/31/19 06:03 75-74-8 1,4-Dichloroethane ND ug/L 5.0 1 05/31/19 06:03 75-34-3 1,2-Dichloroethane ND ug/L 5.0 1 05/31/19 06:03 75-34-3 1,2-Dichloroethane ND ug/L 5.0 1 05/31/19 06:03 75-34-3 1,2-Dichloroethene ND ug/L 5.0 1 05/31/19 06:03 75-35-4 cis-1,2-Dichloroethene ND ug/L 5.0 1 05/31/19 06:03 78-87-5 1,3-Dichloropropane ND ug/L	1.2-Dibromoethane (EDB)	ND	ug/L	5.0	1	05/31/19 06:0	3 106-93-4		
1,2-Dichlorobenzene ND ug/L 5.0 1 05/31/19 06:03 95-50-1 1,3-Dichlorobenzene ND ug/L 5.0 1 05/31/19 06:03 106-46-7 1,4-Dichlorobenzene ND ug/L 5.0 1 05/31/19 06:03 106-46-7 trans-1,4-Dichloro-2-butene ND ug/L 5.0 1 05/31/19 06:03 106-46-7 trans-1,4-Dichloro-2-butene ND ug/L 5.0 1 05/31/19 06:03 75-74-8 1,1-Dichloroethane ND ug/L 5.0 1 05/31/19 06:03 75-34-3 1,2-Dichloroethane ND ug/L 5.0 1 05/31/19 06:03 75-35-4 cis-1,2-Dichloroethene ND ug/L 5.0 1 05/31/19 06:03 75-35-4 cis-1,2-Dichloroethene ND ug/L 5.0 1 05/31/19 06:03 75-35-4 cis-1,2-Dichloroethene ND ug/L 5.0 1 05/31/19 06:03 78-87-5 1,3-Dichloropropane ND ug/L 5.0 1 05/31/19 06:03 78-87-5 <t< td=""><td>Dibromomethane</td><td>ND</td><td>ug/L</td><td>5.0</td><td>1</td><td>05/31/19 06:0</td><td>3 74-95-3</td><td></td></t<>	Dibromomethane	ND	ug/L	5.0	1	05/31/19 06:0	3 74-95-3		
1,3-Dichlorobenzene ND ug/L 5.0 1 05/31/19 06:03 541-73-1 1,4-Dichlorobenzene ND ug/L 5.0 1 05/31/19 06:03 106-46-7 trans-1,4-Dichloro-2-butene ND ug/L 100 1 05/31/19 06:03 166-46-7 Dichlorodifluoromethane ND ug/L 5.0 1 05/31/19 06:03 75-76- J.1-Dichloroethane ND ug/L 5.0 1 05/31/19 06:03 75-34-3 1,2-Dichloroethane ND ug/L 5.0 1 05/31/19 06:03 75-35-4 1,1-Dichloroethene ND ug/L 5.0 1 05/31/19 06:03 156-59-2 1,1-Dichloroethene ND ug/L 5.0 1 05/31/19 06:03 156-59-2 1,2-Dichloroethene ND ug/L 5.0 1 05/31/19 06:03 166-65 1,2-Dichloroptopane ND ug/L 5.0 1 05/31/19 06:03 142-28-9 2,2-Dichloropropane ND ug/L 5.0 1 05/31/19 06:03 142-28-9 2,2-Dichloro	1.2-Dichlorobenzene	ND	ug/L	5.0	1	05/31/19 06:0	3 95-50-1		
1.4-Dichlorobenzene ND ug/L 5.0 1 05/31/19 06:03 106-46-7 trans-1,4-Dichloro-2-butene ND ug/L 100 1 05/31/19 06:03 110-57-6 Dichlorodifluoromethane ND ug/L 5.0 1 05/31/19 06:03 75-71-8 1,1-Dichloroethane ND ug/L 5.0 1 05/31/19 06:03 75-34-3 1,2-Dichloroethane ND ug/L 5.0 1 05/31/19 06:03 167-62 1,1-Dichloroethane ND ug/L 5.0 1 05/31/19 06:03 167-54-3 1,2-Dichloroethane ND ug/L 5.0 1 05/31/19 06:03 156-59-2 trans-1,2-Dichloroethene ND ug/L 5.0 1 05/31/19 06:03 78-87-5 1,3-Dichloropropane ND ug/L 5.0 1 05/31/19 06:03 78-87-5 1,3-Dichloropropane ND ug/L 5.0 1 05/31/19 06:03 78-87-5 1,3-Dichloropropane ND ug/L 5.0 1 05/31/19 06:03 78-42-7 1,1-Dich	1.3-Dichlorobenzene	ND	ug/L	5.0	1	05/31/19 06:0	3 541-73-1		
ND ug/L 100 1 05/31/19 06:03 110-57-6 Dichlorodifluoromethane ND ug/L 5.0 1 05/31/19 06:03 75-71-8 1,1-Dichloroethane ND ug/L 5.0 1 05/31/19 06:03 75-71-8 1,1-Dichloroethane ND ug/L 5.0 1 05/31/19 06:03 107-06-2 1,1-Dichloroethane ND ug/L 5.0 1 05/31/19 06:03 107-06-2 1,1-Dichloroethene ND ug/L 5.0 1 05/31/19 06:03 156-59-2 trans-1,2-Dichloroethene ND ug/L 5.0 1 05/31/19 06:03 166-69-5 1,2-Dichloroptopane ND ug/L 5.0 1 05/31/19 06:03 142-28-9 2,2-Dichloroptopane ND ug/L 5.0 1 05/31/19 06:03 504-20-7 1,3-Dichloroptopane ND ug/L 5.0 1 05/31/19 06:03 1061-01-5 trans-1,3-Dichloroptopene ND ug/L 5.0	1.4-Dichlorobenzene	ND	ua/L	5.0	1	05/31/19 06:0	3 106-46-7		
Dichlorodifluoromethane ND ug/L 5.0 1 05/31/19 06:03 75-71-8 1,1-Dichloroethane ND ug/L 5.0 1 05/31/19 06:03 75-71-8 1,2-Dichloroethane ND ug/L 5.0 1 05/31/19 06:03 75-34-3 1,2-Dichloroethene ND ug/L 5.0 1 05/31/19 06:03 75-35-4 cis-1,2-Dichloroethene ND ug/L 5.0 1 05/31/19 06:03 75-35-4 i,2-Dichloroethene ND ug/L 5.0 1 05/31/19 06:03 78-87-5 1,2-Dichloroptopane ND ug/L 5.0 1 05/31/19 06:03 78-87-5 1,3-Dichloroptopane ND ug/L 5.0 1 05/31/19 06:03 78-87-5 1,3-Dichloroptopane ND ug/L 5.0 1 05/31/19 06:03 594-20-7 1,1-Dichloroptopene ND ug/L 5.0 1 05/31/19 06:03 100610-1-5 trans-1,3-Dichloroptopene ND ug/	trans-1.4-Dichloro-2-butene	ND	ug/L	100	1	05/31/19 06:0	3 110-57-6		
1,1-Dickloroethane ND ug/L 5.0 1 05/31/19 06:03 75-34-3 1,2-Dickloroethane ND ug/L 5.0 1 05/31/19 06:03 75-34-3 1,1-Dickloroethane ND ug/L 5.0 1 05/31/19 06:03 75-35-4 cis-1,2-Dickloroethene ND ug/L 5.0 1 05/31/19 06:03 156-59-2 trans-1,2-Dickloroethene ND ug/L 5.0 1 05/31/19 06:03 156-60-5 1,2-Dickloropthene ND ug/L 5.0 1 05/31/19 06:03 166-05 1,2-Dickloroptopane ND ug/L 5.0 1 05/31/19 06:03 142-28-9 2,2-Dickloroptopane ND ug/L 5.0 1 05/31/19 06:03 142-28-9 2,2-Dickloroptopane ND ug/L 5.0 1 05/31/19 06:03 142-28-9 2,2-Dickloroptopene ND ug/L 5.0 1 05/31/19 06:03 10061-01-5 trans-1,3-Dickloroptopene ND ug/L 5.0 1 05/31/19 06:03 100-1-2-6 Ethyl	Dichlorodifluoromethane	ND	ug/L	5.0	1	05/31/19 06:0	3 75-71-8		
1,2-Dichloroethane ND ug/L 5.0 1 05/31/19 06:03 107-06-2 1,1-Dichloroethene ND ug/L 5.0 1 05/31/19 06:03 107-06-2 1,1-Dichloroethene ND ug/L 5.0 1 05/31/19 06:03 156-59-2 trans-1,2-Dichloroethene ND ug/L 5.0 1 05/31/19 06:03 156-60-5 1,2-Dichloropropane ND ug/L 5.0 1 05/31/19 06:03 142-28-9 2,2-Dichloropropane ND ug/L 5.0 1 05/31/19 06:03 542-20-7 1,1-Dichloropropane ND ug/L 5.0 1 05/31/19 06:03 542-20-7 1,1-Dichloropropane ND ug/L 5.0 1 05/31/19 06:03 503-58-6 cis-1,3-Dichloropropene ND ug/L 5.0 1 05/31/19 06:03 10061-01-5 trans-1,3-Dichloropropene ND ug/L 5.0 1 05/31/19 06:03 10061-02-6 Ethylbenzene ND ug/L 5.0 1 05/31/19 06:03 10061-02-6 Et	1.1-Dichloroethane	ND	ug/l	5.0	1	05/31/19 06:0	3 75-34-3		
Hardback ND ug/L 5.0 1 05/31/19 06:03 75-35-4 cis-1,2-Dichloroethene ND ug/L 5.0 1 05/31/19 06:03 156-59-2 trans-1,2-Dichloroethene ND ug/L 5.0 1 05/31/19 06:03 156-60-5 1,2-Dichloroethene ND ug/L 5.0 1 05/31/19 06:03 78-87-5 1,3-Dichloropropane ND ug/L 5.0 1 05/31/19 06:03 142-28-9 2,2-Dichloropropane ND ug/L 5.0 1 05/31/19 06:03 594-20-7 1,1-Dichloropropane ND ug/L 5.0 1 05/31/19 06:03 563-58-6 cis-1,3-Dichloropropane ND ug/L 5.0 1 05/31/19 06:03 10061-01-5 trans-1,3-Dichloropropene ND ug/L 5.0 1 05/31/19 06:03 10061-02-6 Ethylbenzene ND ug/L 5.0 1 05/31/19 06:03 100-41-4 Ethyl methacrylate ND ug/L 5.0 1 05/31/19 06:03 87-68-3 n-Hexane	1.2-Dichloroethane	ND	ug/l	5.0	1	05/31/19 06:0	3 107-06-2		
cis-1,2-Dichloroethene ND ug/L 5.0 1 05/31/19 06:03 156-59-2 trans-1,2-Dichloroethene ND ug/L 5.0 1 05/31/19 06:03 156-60-5 1,2-Dichloropropane ND ug/L 5.0 1 05/31/19 06:03 78-87-5 1,3-Dichloropropane ND ug/L 5.0 1 05/31/19 06:03 142-28-9 2,2-Dichloropropane ND ug/L 5.0 1 05/31/19 06:03 563-58-6 cis-1,3-Dichloropropane ND ug/L 5.0 1 05/31/19 06:03 10061-01-5 trans-1,3-Dichloropropene ND ug/L 5.0 1 05/31/19 06:03 10061-02-6 Ethylbenzene ND ug/L 5.0 1 05/31/19 06:03 10061-02-6 Ethyl methacrylate ND ug/L 5.0 1 05/31/19 06:03 100-41-4 Ethyl methacrylate ND ug/L 5.0 1 05/31/19 06:03 97-63-2 Hexachloro-1,3-butadiene ND ug/L 5.0 1 05/31/19 06:03 97-63-2	1.1-Dichloroethene	ND	ug/L	5.0	1	05/31/19 06:0	3 75-35-4		
trans-1,2-Dichloroethene ND ug/L 5.0 1 05/31/19 06:03 156-60-5 1,2-Dichloroppane ND ug/L 5.0 1 05/31/19 06:03 78-87-5 1,3-Dichloroppane ND ug/L 5.0 1 05/31/19 06:03 142-28-9 2,2-Dichloroppane ND ug/L 5.0 1 05/31/19 06:03 542-27 1,1-Dichloropropane ND ug/L 5.0 1 05/31/19 06:03 563-58-6 cis-1,3-Dichloropropene ND ug/L 5.0 1 05/31/19 06:03 10061-01-5 trans-1,3-Dichloropropene ND ug/L 5.0 1 05/31/19 06:03 10061-02-6 Ethylbenzene ND ug/L 5.0 1 05/31/19 06:03 100-41-4 Ethyl methacrylate ND ug/L 5.0 1 05/31/19 06:03 97-63-2 Hexachloro-1,3-butadiene ND ug/L 5.0 1 05/31/19 06:03 87-68-3 n-Hexane ND ug/L 5.0 1 05/31/19 06:03 91-78-6 lodomethane	cis-1.2-Dichloroethene	ND	ug/L	5.0	1	05/31/19 06:0	3 156-59-2		
Instruction ND ug/L 5.0 1 05/31/19 06:03 78-87-5 1,3-Dichloropropane ND ug/L 5.0 1 05/31/19 06:03 78-87-5 1,3-Dichloropropane ND ug/L 5.0 1 05/31/19 06:03 78-87-5 2,2-Dichloropropane ND ug/L 5.0 1 05/31/19 06:03 594-20-7 1,1-Dichloropropene ND ug/L 5.0 1 05/31/19 06:03 503-58-6 cis-1,3-Dichloropropene ND ug/L 5.0 1 05/31/19 06:03 10061-01-5 trans-1,3-Dichloropropene ND ug/L 5.0 1 05/31/19 06:03 10061-02-6 Ethylbenzene ND ug/L 5.0 1 05/31/19 06:03 100-41-4 Ethyl methacrylate ND ug/L 5.0 1 05/31/19 06:03 97-63-2 Hexachloro-1,3-butadiene ND ug/L 5.0 1 05/31/19 06:03 87-68-3 n-Hexane ND ug/L 5.0 1 05/31/19 06:03 591-78-6 lodomethane <td< td=""><td>trans-1.2-Dichloroethene</td><td>ND</td><td>ug/l</td><td>5.0</td><td>1</td><td>05/31/19 06:0</td><td>3 156-60-5</td><td></td></td<>	trans-1.2-Dichloroethene	ND	ug/l	5.0	1	05/31/19 06:0	3 156-60-5		
1,3-Dichloropropane ND ug/L 5.0 1 05/31/19 06:03 142-28-9 2,2-Dichloropropane ND ug/L 5.0 1 05/31/19 06:03 594-20-7 1,1-Dichloropropane ND ug/L 5.0 1 05/31/19 06:03 563-58-6 cis-1,3-Dichloropropene ND ug/L 5.0 1 05/31/19 06:03 10061-01-5 trans-1,3-Dichloropropene ND ug/L 5.0 1 05/31/19 06:03 10061-01-5 trans-1,3-Dichloropropene ND ug/L 5.0 1 05/31/19 06:03 10061-02-6 Ethylbenzene ND ug/L 5.0 1 05/31/19 06:03 100-41-4 Ethyl methacrylate ND ug/L 100 1 05/31/19 06:03 97-63-2 Hexachloro-1,3-butadiene ND ug/L 5.0 1 05/31/19 06:03 87-68-3 n-Hexane ND ug/L 5.0 1 05/31/19 06:03 591-78-6 lodomethane ND ug/L 25.0 1 05/31/19 06:03 591-78-6 lodomethane <td>1.2-Dichloropropane</td> <td>ND</td> <td>ug/l</td> <td>5.0</td> <td>1</td> <td>05/31/19 06:0</td> <td>3 78-87-5</td> <td></td>	1.2-Dichloropropane	ND	ug/l	5.0	1	05/31/19 06:0	3 78-87-5		
1,1-Dichloropropane ND ug/L 5.0 1 05/31/19 06:03 594-20-7 1,1-Dichloropropane ND ug/L 5.0 1 05/31/19 06:03 563-58-6 cis-1,3-Dichloropropene ND ug/L 5.0 1 05/31/19 06:03 10061-01-5 trans-1,3-Dichloropropene ND ug/L 5.0 1 05/31/19 06:03 10061-02-6 Ethylbenzene ND ug/L 5.0 1 05/31/19 06:03 10061-02-6 Ethyl methacrylate ND ug/L 5.0 1 05/31/19 06:03 100-41-4 Ethyl methacrylate ND ug/L 100 1 05/31/19 06:03 97-63-2 Hexachloro-1,3-butadiene ND ug/L 5.0 1 05/31/19 06:03 87-68-3 n-Hexane ND ug/L 5.0 1 05/31/19 06:03 591-78-6 lodomethane ND ug/L 25.0 1 05/31/19 06:03 591-78-6 lodomethane ND ug/L 5.0 1 05/31/19 06:03 74-88-4 loops/paperee N	1.3-Dichloropropane	ND	ug/L	5.0	1	05/31/19 06:0	3 142-28-9		
1,1-Dichloropropene ND ug/L 5.0 1 05/31/19 06:03 563-58-6 cis-1,3-Dichloropropene ND ug/L 5.0 1 05/31/19 06:03 10061-01-5 trans-1,3-Dichloropropene ND ug/L 5.0 1 05/31/19 06:03 10061-02-6 Ethylbenzene ND ug/L 5.0 1 05/31/19 06:03 10061-02-6 Ethylbenzene ND ug/L 5.0 1 05/31/19 06:03 100-41-4 Ethyl methacrylate ND ug/L 100 1 05/31/19 06:03 97-63-2 Hexachloro-1,3-butadiene ND ug/L 5.0 1 05/31/19 06:03 87-68-3 n-Hexane ND ug/L 5.0 1 05/31/19 06:03 10-54-3 2-Hexanone ND ug/L 25.0 1 05/31/19 06:03 591-78-6 lodomethane ND ug/L 10.0 1 05/31/19 06:03 74-88-4 lsopropylbenzene (Cumene) ND ug/L 5.0 1 05/31/19 06:03 98-82-8	2.2-Dichloropropane	ND	ug/L	5.0	1	05/31/19 06:0	3 594-20-7		
Instruction Instruction <thinstruction< th=""> <thinstruction< th=""></thinstruction<></thinstruction<>	1 1-Dichloropropene	ND	ug/L	5.0	1	05/31/19 06:0	3 563-58-6		
It ans-1,3-Dichloropropene ND ug/L 5.0 1 05/31/19 06:03 10061-02-6 Ethylbenzene ND ug/L 5.0 1 05/31/19 06:03 100-41-4 Ethyl methacrylate ND ug/L 100 1 05/31/19 06:03 97-63-2 Hexachloro-1,3-butadiene ND ug/L 5.0 1 05/31/19 06:03 87-68-3 n-Hexane ND ug/L 5.0 1 05/31/19 06:03 110-54-3 2-Hexanone ND ug/L 25.0 1 05/31/19 06:03 591-78-6 Iodomethane ND ug/L 10.0 1 05/31/19 06:03 74-88-4 Isopropylbenzene (Cumene) ND ug/L 5.0 1 05/31/19 06:03 74-88-4	cis-1 3-Dichloropropene	ND	ug/L	5.0	1	05/31/19 06:0	3 10061-01-5		
Item	trans-1 3-Dichloropropene	ND	ug/L	5.0	1	05/31/19 06:0	3 10061-02-6		
Ethyl methacrylate ND ug/L 100 1 05/31/19 06:03 97-63-2 Hexachloro-1,3-butadiene ND ug/L 5.0 1 05/31/19 06:03 87-68-3 n-Hexane ND ug/L 5.0 1 05/31/19 06:03 87-68-3 2-Hexanone ND ug/L 5.0 1 05/31/19 06:03 591-78-6 Iodomethane ND ug/L 10.0 1 05/31/19 06:03 74-88-4 Isopropylbenzene (Cumene) ND ug/L 5.0 1 05/31/19 06:03 98-82-8	Ethylbenzene		ug/L	5.0	1	05/31/19 06:0	3 100-41-4		
Hexachloro-1,3-butadiene ND ug/L 5.0 1 05/31/19 06:03 87-68-3 n-Hexane ND ug/L 5.0 1 05/31/19 06:03 110-54-3 2-Hexanone ND ug/L 25.0 1 05/31/19 06:03 591-78-6 Iodomethane ND ug/L 10.0 1 05/31/19 06:03 74-88-4 Isopropy/benzene (Cumene) ND ug/L 5.0 1 05/31/19 06:03 98-82-8	Ethyl methacrylate		ua/L	100	1	05/31/19 00:0	3 97-63-2		
Instantion (j) Sublation ND ug/L 5.0 1 05/31/19 06:03 01-50-3 n-Hexane ND ug/L 5.0 1 05/31/19 06:03 50-54-3 2-Hexanone ND ug/L 25.0 1 05/31/19 06:03 59-78-6 Iodomethane ND ug/L 10.0 1 05/31/19 06:03 74-88-4 Isopropylbenzene (Cumene) ND ug/L 5.0 1 05/31/19 06:03 98-82-8	Hexachloro-1 3-butadiene		ua/L	5.0	1	05/31/19 00:0	3 87-68-3		
2-Hexanone ND ug/L 25.0 1 05/31/19 06:03 591-78-6 Iodomethane ND ug/L 10.0 1 05/31/19 06:03 74-88-4 Isopropy/benzene (Cumene) ND ug/L 5.0 1 05/31/19 06:03 98-82-8	n-Hexane		ug/L	5.0	1	05/31/19 00:0	3 110-54-3		
Index ND ug/L 2.00 1 00/01/19 00:03 09/17/00 Iodomethane ND ug/L 10.0 1 05/31/19 06:03 74-88-4 Isopropylbenzene (Cumene) ND ug/L 5.0 1 05/31/19 06:03 98-82-8	2-Hexanone		ug/L	5.0 25 0	1	05/31/19 00:0	3 591-78-6		
Isopropylbenzene (Cumene) ND ug/l 5.0 1 05/31/19 00.03 74-86-4	Indomethane		ug/L	20.0	1	05/31/19 00:0	3 74-88-4		
	Isopropylbenzene (Cumene)	ND	ua/l	5.0	1	05/31/19 06:0	3 98-82-8		

Project: The Butler Co.

Pace Project No.: 50226102

Sample: BC-TB1	Lab ID: 50226102009		Collected: 05/22/1	Collected: 05/22/19 08:00		Received: 05/24/19 08:45 Matrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260/5030 MSV	Analytical Mether	nod: EPA 82	260					
p-Isopropyltoluene	ND	ug/L	5.0	1		05/31/19 06:03	99-87-6	
Methylene Chloride	ND	ug/L	5.0	1		05/31/19 06:03	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	1		05/31/19 06:03	108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	1		05/31/19 06:03	1634-04-4	
n-Propylbenzene	ND	ug/L	5.0	1		05/31/19 06:03	103-65-1	
Styrene	ND	ug/L	5.0	1		05/31/19 06:03	100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	1		05/31/19 06:03	630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	1		05/31/19 06:03	79-34-5	
Tetrachloroethene	ND	ug/L	5.0	1		05/31/19 06:03	127-18-4	
Toluene	ND	ug/L	5.0	1		05/31/19 06:03	108-88-3	
1,2,3-Trichlorobenzene	ND	ug/L	5.0	1		05/31/19 06:03	87-61-6	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	1		05/31/19 06:03	120-82-1	
1,1,1-Trichloroethane	ND	ug/L	5.0	1		05/31/19 06:03	71-55-6	
1,1,2-Trichloroethane	ND	ug/L	5.0	1		05/31/19 06:03	79-00-5	
Trichloroethene	ND	ug/L	5.0	1		05/31/19 06:03	79-01-6	
Trichlorofluoromethane	ND	ug/L	5.0	1		05/31/19 06:03	75-69-4	
1,2,3-Trichloropropane	ND	ug/L	5.0	1		05/31/19 06:03	96-18-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	1		05/31/19 06:03	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/L	5.0	1		05/31/19 06:03	108-67-8	
Vinyl acetate	ND	ug/L	50.0	1		05/31/19 06:03	108-05-4	
Vinvl chloride	ND	ua/L	2.0	1		05/31/19 06:03	75-01-4	
Xylene (Total)	ND	ug/L	10.0	1		05/31/19 06:03	1330-20-7	
Surrogates		0						
Dibromofluoromethane (S)	105	%.	80-122	1		05/31/19 06:03	1868-53-7	
4-Bromofluorobenzene (S)	99	%.	85-114	1		05/31/19 06:03	460-00-4	
Toluene-d8 (S)	99	%.	85-114	1		05/31/19 06:03	2037-26-5	

Project:	The Bu	tler Co.											
Pace Project No.:	502261	02											
QC Batch:	50262	28		Anal	ysis Meth	od:	EPA 7470						
QC Batch Method:	EPA 7	470		Anal	ysis Desc	ription:	7470 Mercu	ıry					
Associated Lab Sar	nples:	502261020 502261020	01, 5022610200 08	02, 502261	02003, 50	226102004	4, 502261020	05, 502261	02006, 50	226102007	7,		
METHOD BLANK:	232006	6			Matrix: N	Water							
Associated Lab Sar	nples:	502261020 502261020	01, 5022610200 08	2, 502261	02003, 50	226102004	4, 502261020	05, 502261	02006, 50	226102007	7,		
				Bla	nk	Reporting]						
Parar	neter		Units	Res	sult	Limit	Anal	yzed	Qualifier	S			
Mercury			ug/L		ND		2.0 05/27/1	9 23:52					
LABORATORY COI	NTROLS	SAMPLE:	2320067										
				Spike	L	CS	LCS	% R	ec				
Parar	neter		Units	Conc.	Re	esult	% Rec	Limi	ts o	Qualifiers			
Mercury			ug/L		5	5.6	11	2 8	30-120		_		
MATRIX SPIKE & M	IATRIX S	SPIKE DUPI	LICATE: 2320	068		23200	69						
			50000400000	MS	MSD	MO	MCD	MC	MOD	0/ D • -		Max	
Parameter	r	Units	Result	Spike Conc.	Spike Conc.	Result	Result	% Rec	% Rec	% Rec Limits	RPD	RPD	Qual
Mercury		ug/L	ND	5	5	5 5.	3 5.4	106	108	75-125	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	The But	ler Co.											
Pace Project No.:	5022610	02											
QC Batch:	50274	8		An	alysis Meth	od:	EPA 7470						
QC Batch Method:	EPA 7	470		An	alysis Desc	ription:	7470 Merc	ury Dissolve	ed				
Associated Lab Sar	mples:	502261020	01, 5022610200	02, 50226	102003, 50	226102004,	502261020	005, 502261	02006, 502	226102007	7		
METHOD BLANK:	232039	0			Matrix:	Water							
Associated Lab Sar	mples:	502261020	01, 5022610200	02, 50226	102003, 50	226102004,	502261020	005, 502261	02006, 502	226102007	7		
				В	ank	Reporting							
Para	meter		Units	Re	esult	Limit	Ana	lyzed	Qualifiers	S			
Mercury, Dissolved			ug/L		ND	2	.0 05/31/	19 08:31					
LABORATORY CO	NTROL S	AMPLE:	2320391										
				Spik	e L	CS	LCS	% R	ес				
Para	meter		Units	Con	c. Re	esult	% Rec	Limi	its C	Qualifiers	_		
Mercury, Dissolved			ug/L		5	5.0	1(01 8	80-120				
MATRIX SPIKE & M	MATRIX S	PIKE DUPI	_ICATE: 2320	392		232039	3						
				MS	MSD								
_			50226102006	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	- ·
Paramete	r.	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Mercury, Dissolved		ug/L	ND	5	5 5	5 4.8	4.8	94	95	75-125	0	20	
MATRIX SPIKE & M	MATRIX S	PIKE DUPI	_ICATE: 2320	841		232084	2						
				MS	MSD								
			50226182003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	<u> </u>
Paramete	r	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Mercury, Dissolved		ug/L	ND	5	5 5	5 4.0	3.9	80	78	75-125	3	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	The Bu	itler Co.											
Pace Project No .:	502262	102											
QC Batch:	5026	04		Analy	sis Metho	d: I	EPA 6010						
QC Batch Method:	EPA (3010		Analy	sis Descri	ption: 6	6010 MET						
Associated Lab Sar		502261020	01 5022610200	2 5022610	2003 502	26102004	502261020	05 502261	02006 502	226102007	,		
Associated Lab Sai	npies.	502261020)08	2,00220102	2000, 002	20102004,	502201020	00, 002201	02000, 002	220102001	,		
METHOD BLANK:	231999	93			Matrix: W	ater							
Associated Lab Sar	nples:	502261020	001, 5022610200	2, 50226102	2003, 502	26102004,	502261020	05, 502261	02006, 502	226102007	7,		
		502261020	008										
				Blan	k	Reporting							
Parar	neter		Units	Resu	.lt	Limit	Anal	yzed	Qualifiers	S			
Arsenic			ug/L		ND	10.	06/03/1	9 08:33					
Barium			ug/L		ND	10.	06/03/1	9 08:33					
Cadmium			ug/L		ND	2.	06/03/1	9 08:33					
Chromium			ug/L		ND	10.	06/03/1	9 08:33					
Copper			ug/L		ND	10.	0 06/03/1	9 08:33					
Lead			ug/L		ND	10.	0 06/03/1	9 08:33					
Selenium			ug/L		ND	10.	06/03/1	9 08:33					
Sliver			ug/L			10.	J 06/03/1	9 08:33					
ZINC			ug/∟		ND	20.	J 00/03/1	9 00.33					
			2210004										
LABORATORT CO	NIKOL,	SAIVIF LL.	2319994	Spike	LC	s	LCS	% R	ec				
Parar	neter		Units	Conc.	Res	sult	% Rec	Limi	its (Qualifiers			
Arsenic			ug/L	1000	0	966	9	7 8	80-120		_		
Barium			ug/L	1000	0	956	9	6 8	80-120				
Cadmium			ug/L	1000	0	953	9	5 8	80-120				
Chromium			ug/L	1000	0	940	9	4 8	80-120				
Copper			ug/L	1000	0	942	9	4 8	80-120				
Lead			ug/L	1000	0	913	9	1 8	80-120				
Selenium			ug/L	1000	0	961	9	6 8	80-120				
Silver			ug/L	500	0	466	9	3 8	80-120				
Zinc			ug/L	1000	0	953	9	5 8	80-120				
				005		0040000							
WAIRIN SPIKE & N		SPINE DUP	LIGATE. 2319	MC	MSD	2319990							
			50226102006	Spike	Snike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic		ua/L	ND	1000	1000	1010	995	101	99	75-125	2	20	
Barium		ug/L	150	1000	1000	1130	1110	98	96	75-125	2	20	
Cadmium		ug/L	ND	1000	1000	977	962	98	96	75-125	2	20	
Chromium		ug/L	ND	1000	1000	945	925	94	92	75-125	2	20	
Copper		ug/L	ND	1000	1000	976	950	97	95	75-125	3	20	
Lead		ug/L	ND	1000	1000	890	880	89	88	75-125	1	20	
Selenium		ug/L	ND	1000	1000	999	986	100	99	75-125	1	20	
Silver		ug/L	ND	500	500	488	481	98	96	75-125	2	20	
Zinc		ug/L	ND	1000	1000	945	935	94	93	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	The Butler	r Co.											
Pace Project No.:	50226102												
QC Batch:	502664			Analy	sis Metho	d: E	PA 6010						
QC Batch Method:	EPA 301	0		Analy	sis Descri	ption: 6	010 MET [Dissolved					
Associated Lab Sar	nples: 50	02261020	001, 5022610200	2, 5022610	2003, 5022	26102004, 5	02261020	05, 502261	02006, 502	226102007	7		
METHOD BLANK:	2320143				Matrix: W	ater							
Associated Lab Sar	nples: 50	02261020	01, 5022610200	2, 5022610	2003, 5022	26102004, 5	02261020	05, 502261	02006, 502	226102007	7		
				Blan	nk l	Reporting							
Parar	neter		Units	Resu	ult	Limit	Anal	yzed	Qualifiers	S			
Arsenic, Dissolved			ug/L		ND	10.0	05/29/1	9 02:40					
Barium, Dissolved			ug/L		ND	10.0	05/29/1	9 02:40					
Cadmium, Dissolve	d		ug/L		ND	2.0	05/29/1	9 02:40					
Chromium, Dissolve	ed		ug/L		ND	10.0	05/29/1	9 02:40					
Copper, Dissolved			ug/L		ND	10.0	05/29/1	9 02:40					
Lead, Dissolved			ug/L		ND	10.0	05/29/1	9 02:40					
Selenium, Dissolve	b		ug/L		ND	10.0	05/29/1	9 02:40					
Silver, Dissolved			ug/L		ND	10.0	05/29/1	9 02:40					
Zinc, Dissolved			ug/L		ND	20.0	05/29/1	9 02:40					
LABORATORY CO	NTROL SAI	MPLE:	2320144										
				Spike	LC	S	LCS	% R	ec				
Parar	neter		Units	Conc.	Res	sult	% Rec	Limi	ts (Qualifiers	_		
Arsenic, Dissolved			ug/L	100	0	948	9	5 8	30-120				
Barium, Dissolved			ug/L	100	0	981	9	8 8	30-120				
Cadmium, Dissolve	d		ug/L	100	0	969	9	7 8	30-120				
Chromium, Dissolve	ed		ug/L	100	0	956	9	6 8	30-120				
Copper, Dissolved			ug/L	100	0	957	9	6 8	30-120				
Lead, Dissolved			ug/L	100	0	923	9	2 8	30-120				
Selenium, Dissolve	b		ug/L	100	0	996	10	0 8	30-120				
Silver, Dissolved			ug/L	50	0	492	9	8 8	30-120				
Zinc, Dissolved			ug/L	100	0	986	9	9 8	30-120				
MATRIX SPIKE & N	IATRIX SPI	IKE DUPI	_ICATE: 2320	145		2320146							
				MS	MSD								
			50226102006	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic, Dissolved	· ·	ug/L	ND	1000	1000	996	1010	100	101	75-125	1	20	
Barium, Dissolved		ug/L	131	1000	1000	1130	1140	100	101	75-125	1	20	
Cadmium, Dissolve	d	ug/L	ND	1000	1000	1010	1020	101	102	75-125	1	20	
Chromium, Dissolve	ed	ug/L	ND	1000	1000	974	978	97	98	75-125	0	20	
Copper, Dissolved		ug/L	ND	1000	1000	999	1000	100	100	75-125	1	20	
Lead, Dissolved		ug/L	ND	1000	1000	901	912	90	91	75-125	1	20	
Selenium, Dissolved	ł	ug/L	ND	1000	1000	1030	1040	103	104	75-125	1	20	
Silver, Dissolved		ug/L	ND	500	500	514	517	103	103	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

1000

973

980

97

98

75-125

ND

ug/L

1000

REPORT OF LABORATORY ANALYSIS

Zinc, Dissolved

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

1 20

Project: The Butler Co.

Pace Project No.: 50226102

QC Batch:	503416	Analysis Method:	EPA 8260
QC Batch Method:	EPA 8260	Analysis Description:	8260 MSV
Associated Lab Sam	ples: 50226102001		

Matrix: Water

METHOD BLANK: 2322817

Associated Lab Samples: 50226102001

Associated Lab Samples. 5022610200	11				
_		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	5.0	05/30/19 13:52	
1,1,1-Trichloroethane	ug/L	ND	5.0	05/30/19 13:52	
1,1,2,2-Tetrachloroethane	ug/L	ND	5.0	05/30/19 13:52	
1,1,2-Trichloroethane	ug/L	ND	5.0	05/30/19 13:52	
1,1-Dichloroethane	ug/L	ND	5.0	05/30/19 13:52	
1,1-Dichloroethene	ug/L	ND	5.0	05/30/19 13:52	
1,1-Dichloropropene	ug/L	ND	5.0	05/30/19 13:52	
1,2,3-Trichlorobenzene	ug/L	ND	5.0	05/30/19 13:52	
1,2,3-Trichloropropane	ug/L	ND	5.0	05/30/19 13:52	
1,2,4-Trichlorobenzene	ug/L	ND	5.0	05/30/19 13:52	
1,2,4-Trimethylbenzene	ug/L	ND	5.0	05/30/19 13:52	
1,2-Dibromoethane (EDB)	ug/L	ND	5.0	05/30/19 13:52	
1,2-Dichlorobenzene	ug/L	ND	5.0	05/30/19 13:52	
1,2-Dichloroethane	ug/L	ND	5.0	05/30/19 13:52	
1,2-Dichloropropane	ug/L	ND	5.0	05/30/19 13:52	
1,3,5-Trimethylbenzene	ug/L	ND	5.0	05/30/19 13:52	
1,3-Dichlorobenzene	ug/L	ND	5.0	05/30/19 13:52	
1,3-Dichloropropane	ug/L	ND	5.0	05/30/19 13:52	
1,4-Dichlorobenzene	ug/L	ND	5.0	05/30/19 13:52	
2,2-Dichloropropane	ug/L	ND	5.0	05/30/19 13:52	
2-Butanone (MEK)	ug/L	ND	25.0	05/30/19 13:52	
2-Chlorotoluene	ug/L	ND	5.0	05/30/19 13:52	
-Hexanone	ug/L	ND	25.0	05/30/19 13:52	
I-Chlorotoluene	ug/L	ND	5.0	05/30/19 13:52	
-Methyl-2-pentanone (MIBK)	ug/L	ND	25.0	05/30/19 13:52	
Acetone	ug/L	ND	100	05/30/19 13:52	
Acrolein	ug/L	ND	50.0	05/30/19 13:52	
Acrylonitrile	ug/L	ND	100	05/30/19 13:52	
Benzene	ug/L	ND	5.0	05/30/19 13:52	
Bromobenzene	ug/L	ND	5.0	05/30/19 13:52	
Bromochloromethane	ug/L	ND	5.0	05/30/19 13:52	
Bromodichloromethane	ug/L	ND	5.0	05/30/19 13:52	
Bromoform	ug/L	ND	5.0	05/30/19 13:52	
Bromomethane	ug/L	ND	5.0	05/30/19 13:52	
Carbon disulfide	ug/L	ND	10.0	05/30/19 13:52	
Carbon tetrachloride	ug/L	ND	5.0	05/30/19 13:52	
Chlorobenzene	ug/L	ND	5.0	05/30/19 13:52	
Chloroethane	ug/L	ND	5.0	05/30/19 13:52	
Chloroform	ug/L	ND	5.0	05/30/19 13:52	
Chloromethane	ug/L	ND	5.0	05/30/19 13:52	
cis-1,2-Dichloroethene	ug/L	ND	5.0	05/30/19 13:52	
	-				

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	The Butler Co.
Pace Project No.:	50226102

METHOD BLANK: 2322817		Matrix:	Water		
Associated Lab Samples: 5	0226102001				
•		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
cis-1,3-Dichloropropene	ug/L	ND	5.0	05/30/19 13:52	
Dibromochloromethane	ug/L	ND	5.0	05/30/19 13:52	
Dibromomethane	ug/L	ND	5.0	05/30/19 13:52	
Dichlorodifluoromethane	ug/L	ND	5.0	05/30/19 13:52	
Ethyl methacrylate	ug/L	ND	100	05/30/19 13:52	
Ethylbenzene	ug/L	ND	5.0	05/30/19 13:52	
Hexachloro-1,3-butadiene	ug/L	ND	5.0	05/30/19 13:52	
lodomethane	ug/L	ND	10.0	05/30/19 13:52	
Isopropylbenzene (Cumene)	ug/L	ND	5.0	05/30/19 13:52	
Methyl-tert-butyl ether	ug/L	ND	4.0	05/30/19 13:52	
Methylene Chloride	ug/L	ND	5.0	05/30/19 13:52	
n-Butylbenzene	ug/L	ND	5.0	05/30/19 13:52	
n-Hexane	ug/L	ND	5.0	05/30/19 13:52	
n-Propylbenzene	ug/L	ND	5.0	05/30/19 13:52	
p-Isopropyltoluene	ug/L	ND	5.0	05/30/19 13:52	
sec-Butylbenzene	ug/L	ND	5.0	05/30/19 13:52	
Styrene	ug/L	ND	5.0	05/30/19 13:52	
tert-Butylbenzene	ug/L	ND	5.0	05/30/19 13:52	
Tetrachloroethene	ug/L	ND	5.0	05/30/19 13:52	
Toluene	ug/L	ND	5.0	05/30/19 13:52	
trans-1,2-Dichloroethene	ug/L	ND	5.0	05/30/19 13:52	
trans-1,3-Dichloropropene	ug/L	ND	5.0	05/30/19 13:52	
trans-1,4-Dichloro-2-butene	ug/L	ND	100	05/30/19 13:52	
Trichloroethene	ug/L	ND	5.0	05/30/19 13:52	
Trichlorofluoromethane	ug/L	ND	5.0	05/30/19 13:52	
Vinyl acetate	ug/L	ND	50.0	05/30/19 13:52	
Vinyl chloride	ug/L	ND	2.0	05/30/19 13:52	
Xylene (Total)	ug/L	ND	10.0	05/30/19 13:52	
4-Bromofluorobenzene (S)	%.	96	85-114	05/30/19 13:52	
Dibromofluoromethane (S)	%.	101	80-122	05/30/19 13:52	
Toluene-d8 (S)	%.	99	85-114	05/30/19 13:52	

LABORATORY CONTROL SAMPLE: 2322818

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	52.0	104	78-120	
1,1,1-Trichloroethane	ug/L	50	56.7	113	72-127	
1,1,2,2-Tetrachloroethane	ug/L	50	48.0	96	70-124	
1,1,2-Trichloroethane	ug/L	50	52.0	104	79-121	
1,1-Dichloroethane	ug/L	50	51.1	102	70-119	
1,1-Dichloroethene	ug/L	50	57.7	115	71-126	
1,1-Dichloropropene	ug/L	50	54.1	108	76-122	
1,2,3-Trichlorobenzene	ug/L	50	51.4	103	71-126	
1,2,3-Trichloropropane	ug/L	50	53.4	107	75-119	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:The Butler Co.Pace Project No.:50226102

LABORATORY CONTROL SAMPLE: 2322818

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,2,4-Trichlorobenzene	ug/L		55.2	110	68-130	
1,2,4-Trimethylbenzene	ug/L	50	48.7	97	79-117	
1,2-Dibromoethane (EDB)	ug/L	50	51.8	104	81-119	
1,2-Dichlorobenzene	ug/L	50	49.9	100	78-114	
1,2-Dichloroethane	ug/L	50	50.2	100	68-119	
1.2-Dichloropropane	ug/L	50	52.4	105	79-126	
1.3.5-Trimethylbenzene	ug/L	50	48.6	97	78-118	
1.3-Dichlorobenzene	ua/L	50	49.0	98	77-114	
1.3-Dichloropropane	ug/L	50	50.1	100	82-124	
1.4-Dichlorobenzene	ug/L	50	48.9	98	77-111	
2.2-Dichloropropane	ug/l	50	72.5	145	53-137 I	1
2-Butanone (MEK)	ug/l	250	258	103	62-140	
2-Chlorotoluene	ug/L	50	48.5	97	76-120	
2-Hexanone	ug/L	250	240	96	62-143	
4-Chlorotoluene	ug/L	50	49.4	99	78-114	
4-Methyl-2-pentanone (MIBK)	ug/L	250	240	96	60-143	
Acetone	ug/L	250	240	87	44-156	
Acrolein	ug/L	1000	940	94	17-180	
Activitie	ug/L	200	107	08	58-130	
Benzene	ug/L	200 50	47.0	90	78-117	
Bromobenzene	ug/L	50	47.0 55.7	111	76-117	
Bromochloromothano	ug/L	50	51.0	102	70-114	
Bromodichloromothano	ug/L	50	51.0	102	70-122	
Bromoform	ug/L	50	31.1	102	12-121 66 117	
Bromomothana	ug/L	50	49.9	100	20 176	
Corbon disulfido	ug/L	50	59.1	108	20-170	
Carbon disullide	ug/L	50	52.1	104	69 122	
	ug/L	50	04.0 47.5	110	70 112	
Chloropenzene	ug/L	50	47.5	Ce	79-113	
Chloroform	ug/L	50	56.9	114	02-140	
Chlorom	ug/L	50	49.9	100	73-118	
	ug/L	50	44.4	89	36-132	
cis-1,2-Dichloroethene	ug/L	50	53.6	107	74-122	
cis-1,3-Dichloropropene	ug/L	50	55.0	110	79-126	
Dibromocnioromethane	ug/L	50	52.0	104	75-121	
	ug/L	50	55.6	111	75-123	
Dichlorodifluoromethane	ug/L	50	79.6	159	27-172	
Ethyl methacrylate	ug/L	200	209	104	72-134	
Ethylbenzene	ug/L	50	48.8	98	80-118	
Hexachloro-1,3-butadiene	ug/L	50	57.3	115	71-141	
Iodomethane	ug/L	100	87.0	87	10-186	
Isopropylbenzene (Cumene)	ug/L	50	50.4	101	82-120	
Methyl-tert-butyl ether	ug/L	50	54.1	108	72-128	
Methylene Chloride	ug/L	50	51.0	102	70-121	
n-Butylbenzene	ug/L	50	52.7	105	76-123	
n-Hexane	ug/L	50	79.6	159	58-149 L	.1
n-Propylbenzene	ug/L	50	48.2	96	80-122	
p-Isopropyltoluene	ug/L	50	51.0	102	79-121	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:The Butler Co.Pace Project No.:50226102

LABORATORY CONTROL SAMPLE: 2322818

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
sec-Butylbenzene	ug/L	50	50.3	101	78-124	
Styrene	ug/L	50	50.9	102	80-119	
tert-Butylbenzene	ug/L	50	42.9	86	62-102	
Tetrachloroethene	ug/L	50	52.1	104	76-124	
Toluene	ug/L	50	46.4	93	78-116	
trans-1,2-Dichloroethene	ug/L	50	57.7	115	73-121	
trans-1,3-Dichloropropene	ug/L	50	53.3	107	73-126	
trans-1,4-Dichloro-2-butene	ug/L	200	243	122	42-138	
Trichloroethene	ug/L	50	51.3	103	76-120	
Trichlorofluoromethane	ug/L	50	59.7	119	60-138	
Vinyl acetate	ug/L	200	167	83	29-200	
Vinyl chloride	ug/L	50	53.8	108	70-136	
Xylene (Total)	ug/L	150	147	98	79-119	
4-Bromofluorobenzene (S)	%.			101	85-114	
Dibromofluoromethane (S)	%.			101	80-122	
Toluene-d8 (S)	%.			98	85-114	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	The Butler Co						
Pace Project No.:	50226102						
QC Batch:	503474		Analysis Meth	od: EF	PA 8260		
QC Batch Method:	EPA 8260		Analysis Desc	ription: 82	60 MSV		
Acception of Lab Com		\$102002 50226102003	50226102004 50	226102005 50	226102006 50226	102007 50226102008	
	50220	\$102002, 30220102003 \$102009	, 30220102004, 30	220102003, 30	220102000, 30220	102007, 30220102000,	
METHOD BLANK: 2	2323137		Matrix:	Water			
Associated Lab Samp	oles: 50226 50226	6102002, 50226102003 6102009	, 50226102004, 50	0226102005, 50	226102006, 50226	102007, 50226102008,	
			Blank	Reporting			
Parame	eter	Units	Result	Limit	Analyzed	Qualifiers	
1,1,1,2-Tetrachloroeth	nane	ug/L	ND	5.0	05/31/19 01:40		
1,1,1-Trichloroethane	•	ug/L	ND	5.0	05/31/19 01:40		
1,1,2,2-Tetrachloroeth	nane	ug/L	ND	5.0	05/31/19 01:40		
1,1,2-Trichloroethane	•	ug/L	ND	5.0	05/31/19 01:40		
1,1-Dichloroethane		ug/L	ND	5.0	05/31/19 01:40		
1,1-Dichloroethene		ug/L	ND	5.0	05/31/19 01:40		
1,1-Dichloropropene		ug/L	ND	5.0	05/31/19 01:40		
1,2,3-Trichlorobenzer	ne	ug/L	ND	5.0	05/31/19 01:40		
1,2,3-Trichloropropan	e	ug/L	ND	5.0	05/31/19 01:40		
1,2,4-Trichlorobenzer	ne	ug/L	ND	5.0	05/31/19 01:40		
1,2,4-Trimethylbenze	ne	ug/L	ND	5.0	05/31/19 01:40		
1,2-Dibromoethane (E	EDB)	ug/L	ND	5.0	05/31/19 01:40		
1,2-Dichlorobenzene	,	ug/L	ND	5.0	05/31/19 01:40		
1,2-Dichloroethane		ug/L	ND	5.0	05/31/19 01:40		
1,2-Dichloropropane		ug/L	ND	5.0	05/31/19 01:40		
1,3,5-Trimethylbenze	ne	ug/L	ND	5.0	05/31/19 01:40		
1,3-Dichlorobenzene		ug/L	ND	5.0	05/31/19 01:40		
1,3-Dichloropropane		ug/L	ND	5.0	05/31/19 01:40		
1,4-Dichlorobenzene		ug/L	ND	5.0	05/31/19 01:40		
2,2-Dichloropropane		ug/L	ND	5.0	05/31/19 01:40		
2-Butanone (MEK)		ug/L	ND	25.0	05/31/19 01:40		
2-Chlorotoluene		ug/L	ND	5.0	05/31/19 01:40		
2-Hexanone		ug/L	ND	25.0	05/31/19 01:40		
4-Chlorotoluene		ug/L	ND	5.0	05/31/19 01:40		
4-Methyl-2-pentanone	e (MIBK)	ug/L	ND	25.0	05/31/19 01:40		
Acetone	. ,	ug/L	ND	100	05/31/19 01:40		
Acrolein		ug/L	ND	50.0	05/31/19 01:40		
Acrylonitrile		ug/L	ND	100	05/31/19 01:40		
Benzene		ug/L	ND	5.0	05/31/19 01:40		
Bromobenzene		ug/L	ND	5.0	05/31/19 01:40		
Bromochloromethane)	ug/L	ND	5.0	05/31/19 01:40		
Bromodichloromethar	ne	ug/L	ND	5.0	05/31/19 01:40		
Bromoform		ug/L	ND	5.0	05/31/19 01:40		
Bromomethane		ug/L	ND	5.0	05/31/19 01:40		
Carbon disulfide		ug/L	ND	10.0	05/31/19 01:40		
Carbon tetrachloride		ug/L	ND	5.0	05/31/19 01:40		
Chlorobenzene		ug/L	ND	5.0	05/31/19 01:40		
Chloroethane		ug/L	ND	5.0	05/31/19 01:40		
Chloroform		ug/L	ND	5.0	05/31/19 01:40		
Chloromethane		ug/L	ND	5.0	05/31/19 01:40		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	The Butler Co.
Pace Project No.:	50226102

METHOD BLANK: 2323137		Matrix:	Water		
Associated Lab Samples: 5022610 5022610	02002, 50226102003 02009	3, 50226102004, 50	0226102005, 50	226102006, 50226	102007, 5022610
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
cis-1,2-Dichloroethene	ug/L	ND	5.0	05/31/19 01:40	
cis-1,3-Dichloropropene	ug/L	ND	5.0	05/31/19 01:40	
Dibromochloromethane	ug/L	ND	5.0	05/31/19 01:40	
Dibromomethane	ug/L	ND	5.0	05/31/19 01:40	
Dichlorodifluoromethane	ug/L	ND	5.0	05/31/19 01:40	
Ethyl methacrylate	ug/L	ND	100	05/31/19 01:40	
Ethylbenzene	ug/L	ND	5.0	05/31/19 01:40	
Hexachloro-1,3-butadiene	ug/L	ND	5.0	05/31/19 01:40	
Iodomethane	ug/L	ND	10.0	05/31/19 01:40	
Isopropylbenzene (Cumene)	ug/L	ND	5.0	05/31/19 01:40	
Methyl-tert-butyl ether	ug/L	ND	4.0	05/31/19 01:40	
Methylene Chloride	ug/L	ND	5.0	05/31/19 01:40	
n-Butylbenzene	ug/L	ND	5.0	05/31/19 01:40	
n-Hexane	ug/L	ND	5.0	05/31/19 01:40	
n-Propylbenzene	ug/L	ND	5.0	05/31/19 01:40	
p-Isopropyltoluene	ug/L	ND	5.0	05/31/19 01:40	
sec-Butylbenzene	ug/L	ND	5.0	05/31/19 01:40	
Styrene	ug/L	ND	5.0	05/31/19 01:40	
tert-Butylbenzene	ug/L	ND	5.0	05/31/19 01:40	
Tetrachloroethene	ug/L	ND	5.0	05/31/19 01:40	
Toluene	ug/L	ND	5.0	05/31/19 01:40	
trans-1,2-Dichloroethene	ug/L	ND	5.0	05/31/19 01:40	
trans-1.3-Dichloropropene	ug/L	ND	5.0	05/31/19 01:40	
trans-1,4-Dichloro-2-butene	ug/L	ND	100	05/31/19 01:40	
Trichloroethene	ug/L	ND	5.0	05/31/19 01:40	
Trichlorofluoromethane	ug/L	ND	5.0	05/31/19 01:40	
Vinvl acetate	ug/L	ND	50.0	05/31/19 01:40	
Vinvl chloride	ua/L	ND	2.0	05/31/19 01:40	
Xvlene (Total)	ua/L	ND	10.0	05/31/19 01:40	
4-Bromofluorobenzene (S)	~ <u>5</u> ,= %.	.98	85-114	05/31/19 01:40	
Dibromofluoromethane (S)	%.	104	80-122	05/31/19 01:40	
Toluene-d8 (S)	%	07	85-114	05/31/19 01:40	

LABORATORY CONTROL SAMPLE: 2323138

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L		55.7	111	78-120	
1,1,1-Trichloroethane	ug/L	50	62.1	124	72-127	
1,1,2,2-Tetrachloroethane	ug/L	50	55.3	111	70-124	
1,1,2-Trichloroethane	ug/L	50	57.1	114	79-121	
1,1-Dichloroethane	ug/L	50	53.5	107	70-119	
1,1-Dichloroethene	ug/L	50	63.0	126	71-126	
1,1-Dichloropropene	ug/L	50	57.4	115	76-122	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: The Butler Co. Pace Project No.: 50226102

LABORATORY CONTROL SAMPLE: 2323138 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers 1,2,3-Trichlorobenzene ug/L 50 58.8 118 71-126 1,2,3-Trichloropropane ug/L 50 56.7 113 75-119 1,2,4-Trichlorobenzene 50 60.0 120 68-130 ug/L 57.0 79-117 1,2,4-Trimethylbenzene ug/L 50 114 58.5 1,2-Dibromoethane (EDB) ug/L 50 117 81-119 1.2-Dichlorobenzene 50 54.4 109 78-114 ug/L 68-119 1,2-Dichloroethane 50 55.4 111 ug/L 50 57.9 116 79-126 1,2-Dichloropropane ug/L 1,3,5-Trimethylbenzene 50 54.1 108 78-118 ug/L 1,3-Dichlorobenzene ug/L 50 55.0 110 77-114 1,3-Dichloropropane ug/L 50 55.7 111 82-124 1,4-Dichlorobenzene ug/L 50 54.0 108 77-111 2,2-Dichloropropane 50 59.7 119 53-137 ug/L 2-Butanone (MEK) 250 139 ug/L 348 62-140 2-Chlorotoluene 53.9 108 ug/L 50 76-120 250 2-Hexanone ug/L 297 119 62-143 4-Chlorotoluene 50 54.8 110 78-114 ug/L 4-Methyl-2-pentanone (MIBK) 250 291 116 60-143 ug/L Acetone 250 310 124 44-156 ug/L Acrolein 1000 1010 ug/L 101 17-189 Acrylonitrile 200 238 58-139 ug/L 119 Benzene ug/L 50 52.5 105 78-117 Bromobenzene ug/L 50 63.0 126 76-114 L1 Bromochloromethane 50 51.7 103 70-122 ug/L Bromodichloromethane 50 56.3 113 72-121 ug/L Bromoform ug/L 50 55.9 112 66-117 Bromomethane ug/L 50 27.0 54 20-176 Carbon disulfide 50 56.5 113 65-124 ug/L 50 61.4 68-132 Carbon tetrachloride 123 ug/L 53.5 107 79-113 Chlorobenzene 50 ug/L Chloroethane 50 63.9 128 62-140 ug/L 50 56.3 113 73-118 Chloroform ug/L Chloromethane ug/L 50 41.7 83 36-132 cis-1,2-Dichloroethene ug/L 50 58.1 116 74-122 cis-1,3-Dichloropropene ug/L 50 56.1 112 79-126 Dibromochloromethane ug/L 50 56.3 113 75-121 Dibromomethane ug/L 50 59.5 119 75-123 Dichlorodifluoromethane ug/L 50 74.8 150 27-172 Ethyl methacrylate 200 239 72-134 ug/L 119 Ethylbenzene 50 55.2 ug/L 110 80-118 50 52.7 105 71-141 Hexachloro-1,3-butadiene ug/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

44.8

58.8

57.7

54.7

54.6

59.8

45

118

115

109

109

120

10-186

82-120

72-128

70-121

76-123

58-149

100

50

50

50

50

50

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

REPORT OF LABORATORY ANALYSIS

Isopropylbenzene (Cumene)

Methyl-tert-butyl ether

Methylene Chloride

n-Butylbenzene

n-Hexane

Iodomethane

Project:The Butler Co.Pace Project No.:50226102

LABORATORY CONTROL SAMPLE: 2323138

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
n-Propylbenzene	ug/L	50	55.3	111	80-122	
p-Isopropyltoluene	ug/L	50	55.6	111	79-121	
sec-Butylbenzene	ug/L	50	54.2	108	78-124	
Styrene	ug/L	50	56.8	114	80-119	
tert-Butylbenzene	ug/L	50	47.9	96	62-102	
Tetrachloroethene	ug/L	50	54.4	109	76-124	
Toluene	ug/L	50	50.9	102	78-116	
trans-1,2-Dichloroethene	ug/L	50	60.2	120	73-121	
trans-1,3-Dichloropropene	ug/L	50	55.0	110	73-126	
trans-1,4-Dichloro-2-butene	ug/L	200	206	103	42-138	
Trichloroethene	ug/L	50	58.4	117	76-120	
Trichlorofluoromethane	ug/L	50	61.0	122	60-138	
Vinyl acetate	ug/L	200	209	104	29-200	
Vinyl chloride	ug/L	50	53.8	108	70-136	
Xylene (Total)	ug/L	150	167	111	79-119	
4-Bromofluorobenzene (S)	%.			102	85-114	
Dibromofluoromethane (S)	%.			100	80-122	
Toluene-d8 (S)	%.			98	85-114	

MATRIX SPIKE & MATRIX SF	PIKE DUP	LICATE: 2323		2323140								
			MS	MSD								
		50226102006	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1,2-Tetrachloroethane	ug/L	ND	50	50	50.3	51.2	101	102	44-142	2	20	
1,1,1-Trichloroethane	ug/L	ND	50	50	56.8	58.9	114	118	48-145	4	20	
1,1,2,2-Tetrachloroethane	ug/L	ND	50	50	49.6	50.6	99	101	44-139	2	20	
1,1,2-Trichloroethane	ug/L	ND	50	50	52.0	53.2	104	106	49-140	2	20	
1,1-Dichloroethane	ug/L	ND	50	50	49.7	51.7	99	103	38-142	4	20	
1,1-Dichloroethene	ug/L	ND	50	50	58.0	60.5	116	121	46-148	4	20	
1,1-Dichloropropene	ug/L	ND	50	50	52.3	54.8	105	110	47-142	5	20	
1,2,3-Trichlorobenzene	ug/L	ND	50	50	47.9	49.4	96	99	34-139	3	20	
1,2,3-Trichloropropane	ug/L	ND	50	50	50.4	50.7	101	101	44-140	0	20	
1,2,4-Trichlorobenzene	ug/L	ND	50	50	48.5	50.8	97	102	31-142	5	20	
1,2,4-Trimethylbenzene	ug/L	ND	50	50	49.0	51.0	98	102	39-140	4	20	
1,2-Dibromoethane (EDB)	ug/L	ND	50	50	52.0	52.5	104	105	47-143	1	20	
1,2-Dichlorobenzene	ug/L	ND	50	50	47.4	49.3	95	99	40-135	4	20	
1,2-Dichloroethane	ug/L	ND	50	50	49.0	51.1	98	102	44-138	4	20	
1,2-Dichloropropane	ug/L	ND	50	50	51.4	52.7	103	105	53-142	2	20	
1,3,5-Trimethylbenzene	ug/L	ND	50	50	46.9	48.8	94	98	36-142	4	20	
1,3-Dichlorobenzene	ug/L	ND	50	50	46.7	48.4	93	97	37-136	4	20	
1,3-Dichloropropane	ug/L	ND	50	50	50.5	51.3	101	103	47-145	2	20	
1,4-Dichlorobenzene	ug/L	ND	50	50	46.5	48.1	93	96	38-132	3	20	
2,2-Dichloropropane	ug/L	ND	50	50	46.4	47.4	93	95	19-147	2	20	
2-Butanone (MEK)	ug/L	ND	250	250	296	303	118	121	36-153	2	20	
2-Chlorotoluene	ug/L	ND	50	50	47.4	49.4	95	99	37-143	4	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	The Butler Co.
Pace Project No.:	50226102

MATRIX SPIKE & MATRIX SP	IKE DUPI	LICATE: 2323	139		2323140							
			MS	MSD								
		50226102006	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
2-Hexanone	ug/L	ND	250	250	262	265	105	106	38-149	1	20	
4-Chlorotoluene	ug/L	ND	50	50	48.0	50.1	96	100	38-137	4	20	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	250	250	256	261	102	104	43-145	2	20	
Acetone	ua/L	ND	250	250	270	281	108	112	21-161	4	20	
Acrolein	ua/l	ND	1000	1000	707	753	71	75	17-153	6	20	
Acrylonitrile	ug/L	ND	200	200	210	212	105	106	40-141	1	20	
Benzene	ug/L	ND	50	50	47.5	48.7	95	97	49-140	2	20	
Bromobenzene	ug/L	ND	50	50	56.0	56.7	112	113	39-137	1	20	
Bromochloromethane	ua/L	ND	50	50	49.4	48.5	99	97	50-132	2	20	
Bromodichloromethane	ua/L	ND	50	50	50.3	51.7	101	103	42-139	3	20	
Bromoform	ug/L	ND	50	50	49.5	50.7	99	101	29-135	2	20	
Bromomethane	ua/L	ND	50	50	25.7	30.4	51	61	10-162	17	20	
Carbon disulfide	ua/L	ND	50	50	51.4	52.8	103	106	33-144	3	20	
Carbon tetrachloride	ua/L	ND	50	50	55.5	58.5	111	117	45-148	5	20	
Chlorobenzene	ua/l	ND	50	50	47.7	48.7	95	97	47-135	2	20	
Chloroethane	ug/L	ND	50	50	57.4	57.3	115	115	41-149	0	20	
Chloroform	ua/L	ND	50	50	50.5	52.4	101	105	49-136	4	20	
Chloromethane	ua/L	ND	50	50	36.5	40.3	73	81	17-138	10	20	
cis-1.2-Dichloroethene	ua/L	ND	50	50	52.2	53.8	104	108	46-143	3	20	
cis-1.3-Dichloropropene	ua/L	ND	50	50	48.8	49.4	98	99	44-142	1	20	
Dibromochloromethane	ua/L	ND	50	50	51.1	51.3	102	103	41-141	0	20	
Dibromomethane	ua/L	ND	50	50	53.2	54.2	106	108	46-140	2	20	
Dichlorodifluoromethane	ua/L	ND	50	50	60.8	64.0	122	128	10-193	5	20	
Ethyl methacrylate	ua/L	ND	200	200	212	214	106	107	45-145	1	20	
Ethylbenzene	ua/L	ND	50	50	48.4	50.4	97	101	44-145	4	20	
Hexachloro-1.3-butadiene	ua/L	ND	50	50	43.0	44.9	86	90	27-158	4	20	
lodomethane	ua/L	ND	100	100	22.9	46.5	23	47	10-172	68	20	R1
Isopropylbenzene	ua/L	ND	50	50	51.5	54.2	103	108	43-148	5	20	
(Cumene)	- 3, -					•=				-		
Methyl-tert-butyl ether	ug/L	ND	50	50	51.8	53.0	104	106	38-158	2	20	
Methylene Chloride	ug/L	ND	50	50	48.1	49.4	96	99	33-140	3	20	
n-Butylbenzene	ug/L	ND	50	50	44.9	48.0	90	96	35-142	7	20	
n-Hexane	ug/L	ND	50	50	49.3	51.7	99	103	32-159	5	20	
n-Propylbenzene	ug/L	ND	50	50	48.5	50.7	97	101	37-145	4	20	
p-Isopropyltoluene	ug/L	ND	50	50	47.4	50.2	95	100	37-143	6	20	
sec-Butylbenzene	ug/L	ND	50	50	47.6	49.7	95	99	40-144	4	20	
Styrene	ug/L	ND	50	50	50.0	51.0	100	102	37-143	2	20	
tert-Butylbenzene	ug/L	ND	50	50	37.6	40.3	75	81	35-114	7	20	
Tetrachloroethene	ug/L	ND	50	50	47.3	49.8	95	100	41-145	5	20	
Toluene	ug/L	ND	50	50	45.8	47.0	92	94	48-139	3	20	
trans-1,2-Dichloroethene	ug/L	ND	50	50	55.0	56.1	110	112	46-140	2	20	
trans-1,3-Dichloropropene	ug/L	ND	50	50	47.9	48.6	96	97	37-141	1	20	
trans-1,4-Dichloro-2-butene	ug/L	ND	200	200	176	181	88	91	10-166	3	20	
Trichloroethene	ug/L	ND	50	50	51.6	54.2	103	108	43-147	5	20	
Trichlorofluoromethane	ug/L	ND	50	50	56.6	58.0	113	116	39-154	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:The Butler Co.Pace Project No.:50226102

MATRIX SPIKE & MATRIX SP	IKE DUPI	LICATE: 2323	139		2323140							
		50226102006	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Vinyl acetate	ug/L	ND	200	200	92.1	97.2	46	49	10-181	5	20	
Vinyl chloride	ug/L	ND	50	50	49.8	51.6	100	103	49-153	3	20	
Xylene (Total)	ug/L	ND	150	150	147	152	98	101	44-147	4	20	
4-Bromofluorobenzene (S)	%.						101	101	85-114			
Dibromofluoromethane (S)	%.						98	100	80-122			
Toluene-d8 (S)	%.						99	99	85-114			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	The Butler Co.											
Pace Project No .:	50226102											
QC Batch:	503793		Analy	sis Metho	od: E	PA 8082						
QC Batch Method:	EPA 3510		Analy	sis Descr	iption: 8	082 GCS F	PCB Mod					
Associated Lab Sam	ples: 5022610	02001, 50226102002	2, 5022610	2003, 502	226102004, 5	02261020	05, 502261	02007, 50	226102008	3		
METHOD BLANK:	2324951			Matrix: V	Vater							
Associated Lab Sam	ples: 5022610	02001, 50226102002	2, 5022610 Blar	2003, 502 Ik	226102004, 5 Reporting	02261020	05, 502261	02007, 50	226102008	3		
Param	eter	Units	Res	ult	Limit	Analy	/zed	Qualifier	s			
PCB-1016 (Aroclor 1	016)	ug/L		ND	0.10	06/02/19	9 23:52					
PCB-1221 (Aroclor 1	221)	ug/L		ND	0.20	06/02/19	9 23:52					
PCB-1232 (Aroclor 1	232)	ug/L		ND	0.10	06/02/19	9 23:52					
PCB-1242 (Aroclor 1	242)	ug/L		ND	0.10	06/02/19	9 23:52					
PCB-1248 (Aroclor 1 PCB 1254 (Aroclor 1	248) 254)	ug/L			0.10	06/02/1	9 23:52					
PCB-1254 (Alociol 1 PCB-1260 (Aroclor 1	254)	ug/L			0.10	06/02/1	9 23.52 2 23.52					
Tetrachloro-m-xylene	e (S)	%.		31	10-148	06/02/19 06/02/19	9 23:52					
LABORATORY CON	TROL SAMPLE:	2324952					_					
-			Spike	L	CS .	LCS	% R	ec	0 117			
Param	eter		Conc.	Re	sult	% Rec	Limi	ts	Qualifiers	_		
PCB-1016 (Aroclor 1	016)	ug/L		5	2.3	40	6 4	15-157				
PCB-1260 (Aroclor 1	260)	ug/L		5	2.4	48	3 4	12-155				
Tetrachloro-m-xylene	e (S)	%.				24	4 1	10-148				
MATRIX SPIKE & M	ATRIX SPIKE DU	JPLICATE: 23249	53		2324954							
			MS	MSD								
		50225327003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Uni	its Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
PCB-1016 (Aroclor 1	016) ug	/L <0.20	5	5	2.3	2.2	46	43	27-174	5	20	
PCB-1260 (Aroclor 1	260) ug	/L <0.20	5	5	2.3	2.2	46	43	10-157	6	20	
Tetrachloro-m-xylene	e (S) %						21	22	10-148			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Pace Project No.: 50226102

QC Batch: 503850		Analysis M	lethod:	EPA 8082			
QC Batch Method: EPA 3510		Analysis D	escription:	8082 GCS PC	B Mod		
Associated Lab Samples: 50226	102006						
METHOD BLANK: 2325434		Matri	x: Water				
Associated Lab Samples: 50226	102006						
		Blank	Reporting	J			
Parameter	Units	Result	Limit	Analyze	ed Qua	lifiers	
PCB-1016 (Aroclor 1016)	ug/L	N	D 0	.10 06/02/19 2	1:43		
PCB-1221 (Aroclor 1221)	ug/L	N	O C	.20 06/02/19 2	1:43		
PCB-1232 (Aroclor 1232)	ug/L	N	O C	.10 06/02/19 2	1:43		
PCB-1242 (Aroclor 1242)	ug/L	N	O C	.10 06/02/19 2	1:43		
PCB-1248 (Aroclor 1248)	ug/L	N	O C	.10 06/02/19 2	1:43		
PCB-1254 (Aroclor 1254)	ug/L	N	O C	.10 06/02/19 2	1:43		
PCB-1260 (Aroclor 1260)	ug/L	N	D 0	.10 06/02/19 2	1:43		
Tetrachloro-m-xylene (S)	%.	5	8 10-1	148 06/02/19 2	:1:43		
LABORATORY CONTROL SAMPL	E: 2325435						
		Spike	LCS	LCS	% Rec		
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
PCB-1016 (Aroclor 1016)	ug/L	5	3.4	69	45-157	,	
PCB-1260 (Aroclor 1260)	ug/L	5	3.0	60	42-155		
Tetrachloro-m-xylene (S)	%.			44	10-148	ł	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2325436 2325437												
Parameter	Units	50226102006 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
PCB-1016 (Aroclor 1016)	ug/L	 ND	5	5	3.9	3.2	77	64	27-174	18	20	
PCB-1260 (Aroclor 1260)	ug/L	ND	5	5	2.9	2.7	57	54	10-157	6	20	
Tetrachloro-m-xylene (S)	%.						65	58	10-148			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: The Butler Co.

Pace Project No.: 50226102

QC Batch:	502738	Analysis Method:	EPA 8270 by SIM LVE
QC Batch Method:	EPA 3510	Analysis Description:	8270 Water PAH LV by SIM MSSV
Associated Lab Samp	les: 50226102001, 50226102002, 50	226102003, 50226102004	

METHOD BLANK: 232035	8	Matrix: Water
Associated Lab Samples:	50226102001, 50226102002,	50226102003, 50226102004

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/L	ND	1.0	05/28/19 13:50	
2-Methylnaphthalene	ug/L	ND	1.0	05/28/19 13:50	
Acenaphthene	ug/L	ND	1.0	05/28/19 13:50	
Acenaphthylene	ug/L	ND	1.0	05/28/19 13:50	
Anthracene	ug/L	ND	0.10	05/28/19 13:50	
Benzo(a)anthracene	ug/L	ND	0.10	05/28/19 13:50	
Benzo(a)pyrene	ug/L	ND	0.10	05/28/19 13:50	
Benzo(b)fluoranthene	ug/L	ND	0.10	05/28/19 13:50	
Benzo(g,h,i)perylene	ug/L	ND	0.10	05/28/19 13:50	
Benzo(k)fluoranthene	ug/L	ND	0.10	05/28/19 13:50	
Chrysene	ug/L	ND	0.50	05/28/19 13:50	
Dibenz(a,h)anthracene	ug/L	ND	0.10	05/28/19 13:50	
Fluoranthene	ug/L	ND	1.0	05/28/19 13:50	
Fluorene	ug/L	ND	1.0	05/28/19 13:50	
Indeno(1,2,3-cd)pyrene	ug/L	ND	0.10	05/28/19 13:50	
Naphthalene	ug/L	ND	1.0	05/28/19 13:50	
Phenanthrene	ug/L	ND	1.0	05/28/19 13:50	
Pyrene	ug/L	ND	1.0	05/28/19 13:50	
2-Fluorobiphenyl (S)	%.	71	10-105	05/28/19 13:50	
p-Terphenyl-d14 (S)	%.	63	10-142	05/28/19 13:50	

LABORATORY CONTROL SAMPLE: 2320359

	2020000					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/L		7.0	70	15-95	
2-Methylnaphthalene	ug/L	10	6.7	67	15-91	
Acenaphthene	ug/L	10	7.6	76	19-106	
Acenaphthylene	ug/L	10	8.1	81	24-117	
Anthracene	ug/L	10	8.2	82	34-113	
Benzo(a)anthracene	ug/L	10	8.5	85	41-141	
Benzo(a)pyrene	ug/L	10	8.8	88	42-148	
Benzo(b)fluoranthene	ug/L	10	10.9	109	36-157	
Benzo(g,h,i)perylene	ug/L	10	7.6	76	34-145	
Benzo(k)fluoranthene	ug/L	10	7.7	77	40-151	
Chrysene	ug/L	10	8.7	87	44-137	
Dibenz(a,h)anthracene	ug/L	10	8.4	84	34-146	
Fluoranthene	ug/L	10	9.3	93	39-146	
Fluorene	ug/L	10	8.4	84	30-116	
Indeno(1,2,3-cd)pyrene	ug/L	10	8.6	86	37-146	
Naphthalene	ug/L	10	6.9	69	15-96	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:The Butler Co.Pace Project No.:50226102

LABORATORY CONTROL SAMPLE:	2320359					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Phenanthrene	ug/L	10	8.3	83	37-124	
Pyrene	ug/L	10	9.1	91	43-131	
2-Fluorobiphenyl (S)	%.			72	10-105	
p-Terphenyl-d14 (S)	%.			80	10-142	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: The Butler Co.

Pace Project No.: 50226102

QC Batch:	50296	69	Analysis Method:	EPA 8270 by SIM LVE
QC Batch Method:	EPA 3	3510	Analysis Description:	8270 Water PAH LV by SIM MSSV
Associated Lab Samp	les:	50226102005, 50226102006, 502	226102007, 50226102008	

METHOD BLANK: 232095	8	Matrix: Water
Associated Lab Samples:	50226102005, 50226102006,	50226102007, 50226102008

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/L	ND	1.0	05/30/19 22:52	
2-Methylnaphthalene	ug/L	ND	1.0	05/30/19 22:52	
Acenaphthene	ug/L	ND	1.0	05/30/19 22:52	
Acenaphthylene	ug/L	ND	1.0	05/30/19 22:52	
Anthracene	ug/L	ND	0.10	05/30/19 22:52	
Benzo(a)anthracene	ug/L	ND	0.10	05/30/19 22:52	
Benzo(a)pyrene	ug/L	ND	0.10	05/30/19 22:52	
Benzo(b)fluoranthene	ug/L	ND	0.10	05/30/19 22:52	
Benzo(g,h,i)perylene	ug/L	ND	0.10	05/30/19 22:52	
Benzo(k)fluoranthene	ug/L	ND	0.10	05/30/19 22:52	
Chrysene	ug/L	ND	0.50	05/30/19 22:52	
Dibenz(a,h)anthracene	ug/L	ND	0.10	05/30/19 22:52	
Fluoranthene	ug/L	ND	1.0	05/30/19 22:52	
Fluorene	ug/L	ND	1.0	05/30/19 22:52	
Indeno(1,2,3-cd)pyrene	ug/L	ND	0.10	05/30/19 22:52	
Naphthalene	ug/L	ND	1.0	05/30/19 22:52	
Phenanthrene	ug/L	ND	1.0	05/30/19 22:52	
Pyrene	ug/L	ND	1.0	05/30/19 22:52	
2-Fluorobiphenyl (S)	%.	64	10-105	05/30/19 22:52	
p-Terphenyl-d14 (S)	%.	82	10-142	05/30/19 22:52	

LABORATORY CONTROL SAMPLE: 2320959

	2020000					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/L		6.5	65	15-95	
2-Methylnaphthalene	ug/L	10	6.2	62	15-91	
Acenaphthene	ug/L	10	7.1	71	19-106	
Acenaphthylene	ug/L	10	7.5	75	24-117	
Anthracene	ug/L	10	8.0	80	34-113	
Benzo(a)anthracene	ug/L	10	8.2	82	41-141	
Benzo(a)pyrene	ug/L	10	8.7	87	42-148	
Benzo(b)fluoranthene	ug/L	10	8.2	82	36-157	
Benzo(g,h,i)perylene	ug/L	10	7.0	70	34-145	
Benzo(k)fluoranthene	ug/L	10	9.0	90	40-151	
Chrysene	ug/L	10	7.8	78	44-137	
Dibenz(a,h)anthracene	ug/L	10	6.8	68	34-146	
Fluoranthene	ug/L	10	8.6	86	39-146	
Fluorene	ug/L	10	7.8	78	30-116	
Indeno(1,2,3-cd)pyrene	ug/L	10	6.9	69	37-146	
Naphthalene	ug/L	10	6.4	64	15-96	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Qual

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

20

QUALITY CONTROL DATA

Project: The Butler Co. Pace Project No .: 50226102

LABORATORY CONTROL SAMPLE: 2320959 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Phenanthrene ug/L 10 8.0 80 37-124 Pyrene ug/L 10 8.4 84 43-131 2-Fluorobiphenyl (S) %. 69 10-105 10-142 p-Terphenyl-d14 (S) %. 80

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2320960 2320961 MS MSD 50226102006 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD 1-Methylnaphthalene ug/L ND 10 10 6.1 6.5 61 65 10-90 6 2-Methylnaphthalene ug/L ND 10 10 5.7 6.3 57 63 10-117 9 Acenaphthene ug/L ND 10 10 6.8 7.0 68 70 15-82 4 Acenaphthylene ug/L ND 10 10 7.3 7.6 73 76 13-98 3 ND 7.4 7.3 74 73 Anthracene ug/L 10 10 23-113 1 ND 10 10 7.1 7.4 71 74 18-145 3 Benzo(a)anthracene ug/L ND 10 10 4.4 4.4 44 44 18-123 0 Benzo(a)pyrene ug/L ND 10 10 4.0 4.8 40 48 17 Benzo(b)fluoranthene 16-129 ug/L ND 10 2.4 24 26 6 Benzo(g,h,i)perylene 10 2.6 12-109 ug/L 49 45 ND 10 10 4.9 4.5 22-118 10 Benzo(k)fluoranthene ug/L 74 Chrysene ug/L ND 10 10 7.1 7.4 71 24-134 4 Dibenz(a,h)anthracene ug/L ND 10 10 2.4 2.5 24 25 12-118 2 82 Fluoranthene ug/L ND 10 10 8.2 8.1 81 24-149 1 Fluorene ND 10 10 7.5 7.6 75 76 15-115 2 ug/L Indeno(1,2,3-cd)pyrene ND 10 10 2.4 2.4 24 24 12-114 ug/L 1 5.9 59 Naphthalene ug/L ND 10 10 6.5 65 10-120 9 7.6 76 Phenanthrene ug/L ND 10 10 7.7 77 16-131 1 Pyrene ug/L ND 10 10 7.9 8.1 79 81 22-133 2 2-Fluorobiphenyl (S) %. 66 67 10-105 p-Terphenyl-d14 (S) %. 67 70 10-142

MATRIX SPIKE & MATRIX SP	PIKE DUPI	LICATE: 2320	962		2320963							
Parameter	Units	50226214005 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
1-Methylnaphthalene	ug/L	ND	10	10	5.4	6.4	54	64	10-90	16	20	
2-Methylnaphthalene	ug/L	ND	10	10	5.2	6.3	52	63	10-117	20	20	
Acenaphthene	ug/L	ND	10	10	6.3	7.2	63	72	15-82	13	20	
Acenaphthylene	ug/L	ND	10	10	6.8	7.7	68	77	13-98	14	20	
Anthracene	ug/L	ND	10	10	7.1	7.6	71	76	23-113	7	20	
Benzo(a)anthracene	ug/L	ND	10	10	6.5	7.3	65	73	18-145	12	20	
Benzo(a)pyrene	ug/L	ND	10	10	3.7	4.4	37	44	18-123	18	20	
Benzo(b)fluoranthene	ug/L	ND	10	10	3.3	4.1	33	41	16-129	24	20	R1
Benzo(g,h,i)perylene	ug/L	ND	10	10	1.8	1.9	18	19	12-109	3	20	
Benzo(k)fluoranthene	ug/L	ND	10	10	4.2	5.0	42	50	22-118	18	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:The Butler Co.Pace Project No.:50226102

MATRIX SPIKE & MATRIX S		CATE: 2320	962 MS	MSD	2320963							
Parameter	5 Units	0226214005 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chrysene	ug/L	ND	10	10	6.2	6.5	62	65	24-134	5	20	
Dibenz(a,h)anthracene	ug/L	ND	10	10	1.7	1.7	17	17	12-118	1	20	
Fluoranthene	ug/L	ND	10	10	7.8	8.1	78	81	24-149	4	20	
Fluorene	ug/L	ND	10	10	7.1	8.1	71	81	15-115	13	20	
Indeno(1,2,3-cd)pyrene	ug/L	ND	10	10	1.7	1.8	17	18	12-114	5	20	
Naphthalene	ug/L	ND	10	10	5.5	6.5	55	65	10-120	18	20	
Phenanthrene	ug/L	ND	10	10	7.0	7.7	70	77	16-131	9	20	
Pyrene	ug/L	ND	10	10	7.5	8.4	75	84	22-133	10	20	
2-Fluorobiphenyl (S)	%.						56	67	10-105			
p-Terphenyl-d14 (S)	%.						61	69	10-142			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: The Butler Co. Pace Project No.: 50226102

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-I Pace Analytical Services - Indianapolis

BATCH QUALIFIERS

Batch: 502738

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

ANALYTE QUALIFIERS

- 1d A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.
- L1 Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
- N2 The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.
- R1 RPD value was outside control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:	The Butler Co.
Pace Project No.:	50226102

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
50226102001	BC-GP10-GW1	 EPA 3510	503793	EPA 8082	503873
50226102002	BC-GP11-GW1	EPA 3510	503793	EPA 8082	503873
50226102003	BC-GP12-GW1	EPA 3510	503793	EPA 8082	503873
50226102004	BC-GP13-GW1	EPA 3510	503793	EPA 8082	503873
50226102005	BC-GP14-GW1	EPA 3510	503793	EPA 8082	503873
50226102006	BC-GP15-GW1	EPA 3510	503850	EPA 8082	503872
50226102007	BC-GPGW-FD1	EPA 3510	503793	EPA 8082	503873
50226102008	BC-EB-GW1	EPA 3510	503793	EPA 8082	503873
50226102001	BC-GP10-GW1	EPA 3010	502604	EPA 6010	503902
50226102002	BC-GP11-GW1	EPA 3010	502604	EPA 6010	503902
50226102003	BC-GP12-GW1	EPA 3010	502604	EPA 6010	503902
50226102004	BC-GP13-GW1	EPA 3010	502604	EPA 6010	503902
50226102005	BC-GP14-GW1	EPA 3010	502604	EPA 6010	503902
50226102006	BC-GP15-GW1	EPA 3010	502604	EPA 6010	503902
50226102007	BC-GPGW-FD1	EPA 3010	502604	EPA 6010	503902
50226102008	BC-EB-GW1	EPA 3010	502604	EPA 6010	503902
50226102001	BC-GP10-GW1	EPA 3010	502664	EPA 6010	502937
50226102002	BC-GP11-GW1	EPA 3010	502664	EPA 6010	502937
50226102003	BC-GP12-GW1	EPA 3010	502664	EPA 6010	502937
50226102004	BC-GP13-GW1	EPA 3010	502664	EPA 6010	502937
50226102005	BC-GP14-GW1	EPA 3010	502664	EPA 6010	502937
50226102006	BC-GP15-GW1	EPA 3010	502664	EPA 6010	502937
50226102007	BC-GPGW-FD1	EPA 3010	502664	EPA 6010	502937
50226102001	BC-GP10-GW1	EPA 7470	502628	EPA 7470	502700
50226102002	BC-GP11-GW1	EPA 7470	502628	EPA 7470	502700
50226102003	BC-GP12-GW1	EPA 7470	502628	EPA 7470	502700
50226102004	BC-GP13-GW1	EPA 7470	502628	EPA 7470	502700
50226102005	BC-GP14-GW1	EPA 7470	502628	EPA 7470	502700
50226102006	BC-GP15-GW1	EPA 7470	502628	EPA 7470	502700
50226102007	BC-GPGW-FD1	EPA 7470	502628	EPA 7470	502700
50226102008	BC-EB-GW1	EPA 7470	502628	EPA 7470	502700
50226102001	BC-GP10-GW1	EPA 7470	502748	EPA 7470	503555
50226102002	BC-GP11-GW1	EPA 7470	502748	EPA 7470	503555
50226102003	BC-GP12-GW1	EPA 7470	502748	EPA 7470	503555
50226102004	BC-GP13-GW1	EPA 7470	502748	EPA 7470	503555
50226102005	BC-GP14-GW1	EPA 7470	502748	EPA 7470	503555
50226102006	BC-GP15-GW1	EPA 7470	502748	EPA 7470	503555
50226102007	BC-GPGW-FD1	EPA 7470	502748	EPA 7470	503555
50226102001	BC-GP10-GW1	EPA 3510	502738	EPA 8270 by SIM LVE	502850
50226102002	BC-GP11-GW1	EPA 3510	502738	EPA 8270 by SIM LVE	502850
50226102003	BC-GP12-GW1	EPA 3510	502738	EPA 8270 by SIM LVE	502850
50226102004	BC-GP13-GW1	EPA 3510	502738	EPA 8270 by SIM LVE	502850
50226102005	BC-GP14-GW1	EPA 3510	502969	EPA 8270 by SIM LVE	503498
50226102006	BC-GP15-GW1	EPA 3510	502969	EPA 8270 by SIM LVE	503498
50226102007	BC-GPGW-FD1	EPA 3510	502969	EPA 8270 by SIM LVE	503498

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:The Butler Co.Pace Project No.:50226102

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
50226102008	BC-EB-GW1	EPA 3510	502969	EPA 8270 by SIM LVE	503498
50226102001	BC-GP10-GW1	EPA 8260	503416		
50226102002	BC-GP11-GW1	EPA 8260	503474		
50226102003	BC-GP12-GW1	EPA 8260	503474		
50226102004	BC-GP13-GW1	EPA 8260	503474		
50226102005	BC-GP14-GW1	EPA 8260	503474		
50226102006	BC-GP15-GW1	EPA 8260	503474		
50226102007	BC-GPGW-FD1	EPA 8260	503474		
50226102008	BC-EB-GW1	EPA 8260	503474		
50226102009	BC-TB1	EPA 8260	503474		
Pace Analytical

Original Coc

2 coolers

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A	lient Information:	Section B Required P	roject Infor	rmation:				\$	Section	on C ce Inf	orma	ation:														Pa	ae :	1	Of	1
Company:	IWM Consulting	Report To:	Mark /	Anderson				1	Attent	tion:	N	lark .	Ande	rsor	n			-	-								301	1		
Address	1015 Production Road	Copy To:						0	Comp	any N	lame	Sa	ame										_		-	-				
Fort Way	ne, Indiana 46808							4	Addre	SS:												_				Regula	atory a	Agency		
Email To:	manderson@iwmconsult.com	Purchase Or	der No.					F	Pace	Quote	e Ref	erenc	:e:	_								_	-	-	_	IDE	EM - R	CG		
Phone	260-442-3017 Fax	Client Project	t ID: Th	e Butler Co.	19716-1	10		F	Pace	Projec	ct Ma	anage	r.	Chr	ris Bo	yle	_			_					_	State	/ Loc	ation		1.1
Requested [Due Date/TAT:	Container Or	rder Numbe	er;			-	P	Pace	Profile	e #:	-		-		10	-		Dog	unat		alusi	Eilto	rad (V/MIX		ndian	a	-	-
T			Π		COLLEC	TED		Π	T	_	Р	rese	ervativ	ves		N/A	N		NN	Y	N		Srille					-	-	
	SAMPLE ID One Character per box. (A-Z, 0-9 /, -) Source of the unique of the optimized of the optized of the	CODE Water DW WT ater WW P SL OL	valid codes to left) GRAB C=COMP)	START/C	GRAB	E	ND	OLLECTION								st			s+Cu+Zn	letals+Cu+Zn							(N/A			
ITEM#	Sample los musi de unique Wipe Air Other Tissue	WP AR OT TS	MATRIX CODE (see SAMPLE TYPE (G=	DATE	TIME	DATE	TIME	SAMPLE TEMP AT CO	# OF CONTAINERS	Unpreserved H2SO4	HND3	HCI	NaOH	Na2S203	Methanol	Analyses Te	VOCs (8260)	PAHs (8270SIM)	Total RCRA 8Metals	Dissolved RCRA 8N	PCB's (8082)	USW/SD					Residual Chlorine (50	0226	102
1	BC-GP10-GW1		WT G	5/22/2019	16.35		100		9	4	2	2 3					x	X	×	X	x						Т		001	
2	BC-GP11-GW1		WTG	5/22/2019	14:41				9	4	2	2 3					x	X	×	×	x								007	
3	BC-GP12-GW1		WTG	5/22/2019	10.40				9	4	2	2 3					×	X	×	X	X								003	
4	BC-CP13-GW1	-	WTG	5/22/2019	13:03				9	4	2	2 3					x	X	x	x	x								004	
-	BC-OP13-GW1		WI G	5/20/2019	11.44	-			9	4	12	2 3					×	Tx	x	x	x		-	+	-				00	5
0	BC-GF14-GW1		WIG	5/22/2019	10:00				27 1	12	6			-	1		×	×	x	×	x	x	-	+	1	++			ant	
6	BC-GP15-GW1		WT G	5/22/2019	1000	-	-		0	4		3	+	-	-	1	1×			1 x	×		+	+	-	++	1	-	000	
7	BC-GPGW-FD1		WT G	5/22/2019	14.00				9	-	-	0	+	-	-	-	÷		: 	1.	1÷	+	-	+	-	+	-	-	001	2
8	BC-EB-GW1	-	WT G	5/22/2019	11:00		12		8	4	1	3		-	-	4	Ļ	-	×	^	^		-	+	-	++	-	-	007	2
9	BC-TB1		WT G	5/22/2019	-				-		-	3		_	_	4	×	-	-		-		-	-	-		-	-	00	(
10																1			_				-	-	-		_			
11		_																										_		
12																														
13																												-		
	ADDITIONAL COMMENTS	-	RELINOL	UISHED BY / A	FFILIATIO	N	DAT		TI	ME			AC	CEF	TED	BYIA	FFIL	IAT	ION		0		ATE		TIM	E		SAMPL	E CONDITI	ONS
		-	17	91-			-1-	1	-			11		14	100	a1/1	D	-1	10	41	b	C	in the		1 -	110	6			-
JSE RCG		/	23	F /1	way		05/2	3/19	_	_	-	Ve	anj	U	UN1	VUL-	14	V	40	m,	Nr-	-	V	241	1 1	22	2	-	-	-
Dissolved m	etals samples: Do Not Run, hold for further instruction	ins, C	0	11.1								M	DU	/																1
			NO	W								2	Û	2	Ye	P	V.					3/2	4/1	80	284	5	1.7	Y	12	Y
											10	D	0													b	23	1	11.00	
					SAMPLE	RNAME	AND SIG	NATUR	RE							1				-								on ice	ealed N)	ntact
					PRIN	NT Name	of SAMPL	ER:		_	_		1	e	2	An	drew	Shir	meye TE S	er igne	d:	-1	7.	2/	1,0		EMP in C	teceived (ustody S ooler (Y/)	amples I

Pace Analytical			Date/Time and Initials of	110	1.1.11	,
Project #: <u>30</u>	226102		person examining contents: <u>4512</u>	V19 1	2.94	/
Clien	t 🗆 (Commercial	Pace Other NOW	20.1		
Fracking #:						
Sustody Seal on Cooler/Box Present:	No		Seals Intact: Yes 🗆 No			
Packing Material: Bubble Wrap Bubb	e Bags	None	Other			
Thermometer: 123456ABCDEF	Ice Type:	Wet	Blue None Samples collected today and on ice:	□ Yes	No	IN/
Cooler Temperature: 1.5/1.7, 0.1/0.3			Ice Visible in Sample Containers?	☐ Yes	DNO	
Initial/Corrected) Temp should be above freezing to 6°	-		If temp. is Over 6°C or under 0°C, was the PM Notified?	□ Yes	□ No	P N/
All disc	repancies v	vill be writt	en out in the comments section below.			
	Yes	No		Yes	No	NIA
Are samples from West Virginia?		r	All containers needing acid/base pres. Have been		1	
Document any containers out of temp.		1	checked?: exceptions: VOA, coliform, LLHg, O&G, and any			
JSDA Regulated Solis? (ID, NY, WA, OR, CA, NW, TX,) X AR LA TN AL MS NC SC GA EL or Puerto		1	container with a septum cap or preserved with HCI.			
Rico)		0	with EPA recommendation (<2, >9, >12) unless otherwise noted.	1		
Chain of Custody Present:			Circle: (HNO3) H2SO4 NaOH NaOH/ZnAc			
hain of Custody Filled Out:			Dissolved Metals field filtered?:	1		
hort Hold Time Analysis (<72hr)?: Analysis:	1		Headspace Wisconsin Sulfide			1
ime 5035A TC placed in Freezer or Short Holds To L	ab:		and the second	Present	Absent	<u>N/A</u>
13:04			Residual Chlorine Check (SVOC 625 Pest/PCB 608) Residual Chlorine Check (Total/Amenable/Free Cyanide)			1
lush TAT Requested:		1	Headspace in VOA Vials (>6mm):		~	
Containers Intact?:	1		Trip Blank Present?:	/		in internet
ample Label (IDs/Dates/Times) Match COC?: xcept TCs, which only require sample ID			Trip Blank Custody Seals?:			
Company and the second s						

ч.

CLIENT:	_IENT: IWM c pageofl c id#			Sample Container						er Co	r Count			WO#	: 50226	51(02				
COC ID#								Projec	ct #	50	226	102	_				H TH	100	Vat]	
Sample Line Item	DG9H		AG1H	AG1U	AG2U	AG3S	WGFU	SP5T	BP1U	BP2N	BP2S	BP2U	BP3B	BP3N	BP3S	BP3U	R	Matrix	(Soil/V Aqueo	pH <2	pH >9 pH>12
1	31	41			a 8									2					NT.	1	- 450
2			1																	1	
3		11															¢.			1	
4																				/	
5	V	V		1										V						1	
6	9	12		1						-6.				6						1	
7	3,	ч.	1	1						5-24	٩			2						1	
8		V	1											1			1			1	
9	V	1	1	1															Ý		
10		1	i.												-					1	
11		1																			
12		}		6																1	

Container Codes

	G	lass			Plasti	c/N	lisc.
DG9B	40mL Na Bisulfate amber vial	AGOU	100mL unpreserved amber glass	BP1A	1 liter NaOH, Asc Acid plastic	BP3U	250mL unpreserved plastic
DG9H	40mL HCL amber voa vial	AG1H	1 liter HCL amber glass	BP1N	1 liter HNO3 plastic	BP3Z	250mL NaOH, Zn Ac plastic
DG9M	40mL MeOH clear vial	AG1S	1 liter H2SO4 amber glass	BP1S	1 liter H2SO4 plastic		
DG9P	40mL TSP amber vial	AG1T	1 liter Na Thiosulfate amber glass	BP1U	1 liter unpreserved plastic	AF	Air Filter
DG9S	40mL H2SO4 amber vial	AG1U	1liter unpreserved amber glass	BP1Z	1 liter NaOH, Zn, Ac	C	Air Cassettes
DG9T	40mL Na Thio amber vial	AG2N	500mL HNO3 amber glass	BP2A	500mL NaOH, Asc Acid plastic	R	Terra core kit
DG9U	40mL unpreserved amber vial	AG2S	500mL H2SO4 amber glass	BP2N	500mL HNO3 plastic	SP5T	120mL Coliform Na Thiosulfat
VG9H	40mL HCL clear vial	AG2U	500mL unpreserved amber glass	BP2O	500mL NaOH plastic	U	Summa Can
VG9T	40mL Na Thio. clear vial	AG3S	250mL H2SO4 glass amber	BP2S	500mL H2SO4 plastic	ZPLO	Ziploc Bag
VG9U	40mL unpreserved clear vial	AG3U	250mL unpreserved amber glass	BP2U	500mL unpreserved plastic		
VGFX	40mL w/hexane wipe vial	BG1H	1 liter HCL clear glass	BP2Z	500mL NaOH, Zn Ac		
VSG	Headspace septa vial & HCL	BG1S	1 liter H2SO4 clear glass	BP3B	250mL NaOH plastic		
WGKU	8oz unpreserved clear jar	BG1T	1 liter Na Thiosulfate clear glass	BP3N	250mL HNO3 plastic		
WGFU	4oz clear soil jar	BG1U	1 liter unpreserved glass	BP3S	250mL H2SO4 plastic		
JGFU	4oz unpreserved amber wide	BG3H	250mL HCI Clear Glass				Dage 50 of
		BG3U	250mL Unpreserved Clear Glass				Page 59 of

www.pacelabs.com

Report Prepared for:

Mark Anderson IWM Consulting Group, LLC. 1015 Production Road Fort Wayne IN 46808

REPORT OF LABORATORY ANALYSIS FOR PFAAs

Report Prepared Date: June 20, 2019 Pace Analytical Services, LLC. 1700 Elm Street Minneapolis, MN 55414 Phone: 612.607.1700 Fax: 612.607.6444

Report Information:

Pace Project #: 10476540 Sample Receipt Date: 05/25/2019 Client Project #: The Butler Co.19716-10 Client Sub PO #: N/A State Cert #: 2926.01

Invoicing & Reporting Options:

The report provided has been invoiced as a Level 2 PFAA Report. If an upgrade of this report package is requested, an additional charge may be applied.

Please review the attached invoice for accuracy and forward any questions to Kirsten Hogberg, your Pace Project Manager.

This report has been reviewed by:

June 20, 2019 Kirsten Hogberg, Project Manager (612) 607-6407 (612) 607-6444 (fax) kirsten.hogberg@pacelabs.com

Report of Laboratory Analysis

This report should not be reproduced, except in full, without the written consent of PaceAnalytical Services, Inc.

The results relate only to the samples included in this report.

DISCUSSION

This report presents the results from the analyses performed on seven samples submitted by a representative of IWM Consulting. The samples were analyzed for twenty-one perfluorinated compounds using a modified version of USEPA Method 537. Reporting limits were set to the quantitation limits.

Two laboratory method blanks were prepared and analyzed with the sample batches as part of our routine quality control procedures. With the exception of the surrogate d5-EtFOSAA, the results show the blanks was free of the target perfluorinated compounds at the reporting limits. Where surrogates failed, the sample results could be biased in the same direction.

Laboratory spike samples were also prepared with the sample batches using clean reference matrix that had been fortified with native standards. With the exception of the target surrogate d5-EtFOSAA and analytes N-MeFOSAA, N-EtFOSAA, PFTrDA, PFTeDA, PFHxDA, and PFODA in LCS-70815, LCS-70816, LCS-70819, LCS-70820, LCSD-70817, and LCSD-70821 (flagged "R"), the recovery results were within the method limits. LCS-70820 and LCSD-70821 also had high recoveries for the target analyte NaDONA. The RPDs (relative percent differences) between one designated spike and its duplicate were within the method limits with the exception of PFHxDA between LCS-70816 and LCSD-70817 which is due to low recoveries. N-MeFOSAA, N-EtFOSAA, PFTrDA, PFTeDA, PFTeDA, PFHxDA, and PFODA were not detected in the sample material. Low recoveries indicate a low bias in the quantitation and the potential for a false negative in N-MeFOSAA, N-EtFOSAA, PFTrDA, PFTeDA, and PFODA. The results for NaDONA were accepted as the recoveries were high and the analyte was not detected in the sample material.

Recoveries for ten of the twenty-one isotopically-labeled surrogate standards in the sample extracts were within the target ranges specified in the method. The BC-GP10-GW1, BC-GP11-GW1, BC-GP12-GW1, BC-GP13-GW1, BC-GP14-GW1, BC-GPGW-FD1, and BC-FRB3 samples had recoveries for the surrogates labeled d5-EtFOSAA, 13C2_PFHxDA, and 13C2_PFDA that were lower than the method limit (flagged "Fail") respectively. Where surrogates failed, the sample results could be biased in the same direction.

It should be noted that Pace Analytical has not yet completed the certification process for all analytes in this method. Therefore, the results have been marked "N2" as qualified. Results for the low level spikes that were below the calibration range were flagged "J".

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612- 607-6444

Minnesota Laboratory Certifications

 Authority	Certificate #	Authority	Certificate #
 A2LA	2926.01	Minnesota - Pet	1240
Alabama	40770	Mississippi	MN00064
Alaska - DW	MN00064	Missouri - DW	10100
Alaska - UST	17-009	Montana	CERT0092
Arizona	AZ0014	Nebraska	NE-OS-18-06
Arkansas - DW	MN00064	Nevada	MN00064
Arkansas - WW	88-0680	New Hampshire	2081
CNMI Saipan	MP0003	New Jersey (NE	MN002
California	2929	New York	11647
Colorado	MN00064	North Carolina	27700
Connecticut	PH-0256	North Carolina -	27700
EPA Region 8+	via MN 027-053	North Carolina -	530
Florida (NELAP	E87605	North Dakota	R-036
Georgia	959	Ohio - DW	41244
Guam	17-001r	Ohio - VAP	CL101
Hawaii	MN00064	Oklahoma	9507
Idaho	MN00064	Oregon - Primar	MN300001
Illinois	200011	Oregon - Secon	MN200001
Indiana	C-MN-01	Pennsylvania	68-00563
lowa	368	Puerto Rico	MN00064
Kansas	E-10167	South Carolina	74003
Kentucky - DW	90062	South Dakota	NA
Kentucky - WW	90062	Tennessee	TN02818
Louisiana - DE	03086	Texas	T104704192
Louisiana - DW	MN00064	Utah (NELAP)	MN00064
Maine	MN00064	Virginia	460163
Maryland	322	Washington	C486
Massachusetts	M-MN064	West Virginia -	382
Michigan	9909	West Virginia -	9952C
Minnesota	027-053-137	Wisconsin	999407970
Minnesota - De	via MN 027-053	Wyoming - UST	2926.01

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.

Appendix A

Sample Management

original coc

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section . Required	A d Client Information:	S	ection B	niont la	formation				1	Section	С												Г				
Company	/ IWM Consulting	R	eport To:	Mark	Anderson					nvoice	Inform	ation:	Amela						-					Page :	1	Of	_
ddress:	1015 Production Road	C	ору То:				· · · · · · · · · · · · · · · · · · ·		— í	Compa	v Nam	e: Sa	Ande ame	rson					4								
Fort W	ayne, Indiana 46808								-	\ddres									50	e Nei ti	و فر په رف		Dor				
mail To	manderson@iwmconsult.com	PI	urchase Or	der No.					F	Pace Q	uote Re	ferenc	æ:							and the second secon		233.4				<u>80.22.00</u>	a taka
Priorie.	260-442-3017 [Fax:		lient Projec		he Butler Co.	19716-	10		F	Pace Pi	oject N	ianage	r:	Chris	Boyl	e	-		12			alesta	ঁ্যা	ate / Lo	ation	Sector 1	19 19
1040000			ontainer Or	der Num	iber:				F	Pace Pi	ofile #:													Indian	a	A	
		MATRIX	CODE	es to left)		COLLEC	TED	_	z			Prese	ervativ	es		NX	N	Reques	ted Ar	alysis i	Filtere	d (Y/N)					
ITEM#	SAMPLE ID One Character per box. (A-Z, 0-9 /, -) Sample Ids must be unique	Writer Waste Water Product Soli/Solid Oil Wipe Air Other Tissue	WT WW P SL OL WP AR OT TS	MATRIX CODE (see valid cod SAMPLE TYPE (G=GRAB C:	DATE	GRAB	E	ND TIME	SAMPLE TEMP AT COLLECTIC	# OF CONTAINERS	H2SO4	HUUS	NEOH	Na2S2O3 Methanol	TRIZMA	Analyses Test	FAS 537M								540		
1	BC-GP10-GW1			WTG	5/22/2019	110:35				1 1		+	┼┼		-	ંદન્	A I		-		+	┢┈╶┟╸			-		
2	BC-GP11-GW1	-		wrig	5/22/2010	4141				1 1			╀╼╃		+		,	╀╴╀┈	-	┞╴┞╼	+		_			\underline{w}	<u>. </u>
3	BC-GP12-GW1			WT C	5000040	1040	_			, ,		_ _	++		+		<u>-</u>	┥┤┈	+	┝╌┠╌╸			_	<u> </u>		$-\omega_{\sigma}$	<u>k</u>
				WIG	5/22/2019	10.70				<u>. .</u>					-	┝	<u>^</u>	┼╌╄╴	_		1.					$\underline{\omega}$	5
	<u>BC-GP13-GW1</u>			WTG	5/22/2019	19:07				1 1		_					×									ີເນັ	-
5	BC-GP14-GW1			WT G	5/22/2019	11:44				1 1					1		x									EN C	5
6	BC-GPGW-FD1			WTG	5/22/2019	-				1 1							x	ТГ								2.30	<u>.</u>
7	BC-FRB3			WTG	5/22/2019	13:04				1		1-			1		x									- da?	1
8						1.40- 1				-[-		+	-[-	+ -		-	┾╼┞╴								005	<u>J</u>
9													┼╌┼					╆╾╁╴									
10					+	-						_	$\left \cdot \right $		$ \square$	⊦⊦	_	┟┈┟╴	_		+		_				
44			_						-																		
11	······································				<u> </u>					_		_	Ľ												1		
12									_					1													
13											ľ					Ē	_				11		-				
	ADDITIONAL COMMENTS			RELINO	USHED BY / AI	FILIATIO	N Star	DATE		TIME		lian de	AC	CEPTE	DBY	/ AFF	JE IATI	า้กั้งไปไป		DAT		10 - 11	i etan		SANDLE	CONDITIO	
		<u></u>		H	/	ing ang kang Ala			<u></u>) 12, a 4 4 /	7	2.2.5	1.227 H		<u> </u>	7			<u> </u>	2000 2002				SAUNT LE		ς Νι Γ
SE RCG			4	4	1.In	My_		05123	19			in		·~	_	Pl	hce			5/25	119	093	0	0.7	IY	$ \mathbf{v} $	1
C-FRB3:	analyze only if detections are present in any		L \		/			, ,																			
/22/2010		_												· .												-	+-
0220201																					-					<u> </u>	
			<u> </u>			SAMPLE	R NAME /	AND SIGN	ATUR	E (se							K		340.						80 5) aled	
						PRIN	iT Name o	of SAMPL	ER;			~	_			Andre								U L	10 10 10	λ Se	1
						SIGN	ATURE	f SAMPL	ER:	~	$\overline{}$	H	2			-nare	DAT	E Signer	d:	_7		1	_	đ	, Neeiv	atod	
	•										· _	*~					-		04	512	12	110	1	μË	1 & E	85	12

			Docu	ment Na	me:	Documer	nt Revised: 09May2	2019
	Pace Analytical"	Sample	Conditi	on Upon	Receipt Form		Page 1 of 1	
	A abor mary toai		Doci	ument No	D.: ·	lss	uing Authority:	
l	1		F-MN-	L-213-re	v.28	Pace Min	inesota Quality Of	fice
Sample Co Upon Re	eccipt			· Pr	roject #:			0
Courier:	Fed Ex UPS		SPS	 Clie	nt t ika			
Tracking I	Pace SpeeD	ee 🔲 C	ommerc	ial See E	ception			
Custody S	eal on Cooler/Box Present?	No	Se	als Intari	⊢ uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu		al Tissue Frozen?	
Packing M	laterial: 🛛 Bubble Wrap 🗌 Bubble	e Bags	None		her: PB	ino Diologico	Temp Blank?	
Thermome	eter: T1(0461) T2(1336) XT3(04	59)	Type of	lce: [Xwet □Blue	None [Dry Melte	j
Note: Each	West Virginia Sample must have temp t	taken (no te	emp blar	nks)				
Temp should l	be above freezing to 6°C Cooler Temp	Read w/tei	mp blani	k:0	. Ç	°C A1	verage Corrected	Temp See Exceptions
Correction	Factor: <u>+0-1</u> Cooler Temp Corre	cted w/ten	np blank	c:	<u> </u>	°c		iny).
USDA Regu	lated Soil: (🔀 N/A, water sample/Other:			}	Date/Initials o	of Person Examini	ing Contenter CI	- 5/25/1A
Did samples	originate in a quarantine zone within the L	Jnited State:	s: AL, AR,	, CA, FL, G	A, Did samples o	riginate from a fore	eign source (international	tionally, including
ID, LA. MS, N	IC, NM, NY, OK, OR, SC, TN, TX or VA (chec	k maps)?	Yes	No	Hawaii and Pu	uerto Rico)?	∐Yes ∐No)
	If Yes to either question, fill out	ra Regulate	d Soil Cl	hecklist (i	F-MN-Q-338) and	include with SCU	R/COC paperwor	k
						CO	MMENTS:	
Chain of Custo	ody Present and Filled Out?	XYes			1	·		
Chain of Custo	ody Relinquished?	Yes			2.			
Sampler Nam	e and/or Signature on COC?	Δ. Dives			3			
Samples Arriv	red within Hold Time?	V Yes			4	······································		
Short Hold Tir	me Analysis (<72 hr)?	Yes			5. Fecal Colife	orm HPC Total	Coliform/E coli BC	D/cBOD Hex Chrome
Rush Turn Arc	ound Time Requested?	Yes	X No		6.	Intrate Mathie		1
Sufficient Volu	ume?	Yes			7.	••••••		
Correct Conta	iners Used?	 1121ves			8			
-Pace Contr	ainers Used?				0.			
Containers Int	tact?					· · · · · · · · · · · · · · · · · · ·		
Field City and A						····		
Field Filtered	formation and the for Dissolved Lests?	Yes	No	N/A	10. Is sedimen	t visible in the diss	olved container?	_YesNo
to the COC?	formation available to reconcile the sample	es IXIves			11. If no, write ID)/ Date/Time on Con	tainer Below:	See Exception
Matrix: Walwa	ter Osoil Ooil Oother	D					· .	
All containers	needing acid/base preservation have been	1 🗌 Yes	No	XIN/A	12. Sample #			
checkeur					_	_		
All containers compliance wi	needing preservation are found to be in ith EPA recommendation? <2nH_NaOH >9 Sulfide_NaOH>12 Cyapida	Yes	□No	∭ N∕A	NaOH	H ☐ HNO₃	∐H₂SO₄	Zinc Acetate
((1103), 112004)		-)			Positive for Res	Yes		See Exception
Exceptions: VC	DA, Coliform, TOC/DOC Oil and Grease,	🗶 Yes	ΠNO	□n/a	Chlorine?	Пио рни	Paper Lot#	
DRO/8015 (wa	ater) and Dioxin (PFAS)				Res. Chlorine	0-5 Rol	0-6 Strip	0-14 Strip
		· · · · · · · · · · · · · · · · · · ·						
Headspace in \	VOA Vials (greater than 6mm)?			No market and the second se	13.			See Exception
Trip Blank Pres	sent?				14			<u>L</u>
Trip Blank Cust	tody Seals Present?	Yes	No No	XN/A	Pace Trip Bl	lank Lot # (if purch	ased): N/A	
CLIE	ENT NOTIFICATION/RESOLUTION					Field Da	ata Required?]Yes []No
Person conta					Date/Time:	· · · · · · · · · · · · · · · · · · ·		···· ··· · · · · · · · · · · · · · · ·
comments/K	esolution	1				<u> </u>		
	- //i.	HAA						
Proj	ect Manager Review:	1 <u>07p</u>	<u>M</u>		Date	: 5/28/2019		
Note: Wheneve	r there is a discrepancy affecting North Caroli	ina complian	celsample	es, a copy	of this form will be s	ent to the North Ca	rolina DEHNE Certif	ication Office (i.e. out of
nera, meatrectip	neservative, our or temp, incorrect container.	5). V	V				() +	
					Ł	abeled by:	1^{\prime}	
						-	\sim 1	

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414

> Tel: 612-607-1700 Fax: 612-607-6444

Reporting Flags

- A = Reporting Limit based on signal to noise
- B = Less than 10x higher than method blank level
- C = Result obtained from confirmation analysis
- D = Result obtained from analysis of diluted sample
- E = Exceeds calibration range
- Interferencepresent | =
- Estimated value J =
- Suppressive interference, analyte may be biased low L =
- Nn = Value obtained from additional analysis
- P = PCDEInterference
- R = Recovery outside target range
- S = Peak saturated
- U = Analyte not detected
- V = Result verified by confirmation analysis
- X =%DExceeds limits
- Y = Calculated using average of daily RFs
- * SeeDiscussion =

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. Report No.....10476540_PFAA_DFR

Report No....10462710

Appendix B

Sample Analysis Summary

1700 Elm Street, Suite 200 Minneapolis, MN 55414 (612) 607-1700

Method 537 (Modified)

Sample Analysis Summary

Client's Sample ID Lab Sample ID Filename Matrix Collected Received	BC-GP10-GW1 10476540001 B190530B_023 Ground_Water 05/22/2019 05/25/2019		Date Ex Total Ar ICAL ID Starting Ending (Method	tracted nount Extr CCal CCal Blank File	05/29/20 racted 244 mL 190529E B190530 B190530 ename B190530	019 802 0B_017 0B_026 0B_014	
Compound	Concentration (ng/L)	PQL (ng/L)	MDL (ng/L)	Dilution	Analyzed	CAS No.	Qual.
PFBA	ND	2.1	0.75	1	05/30/201918:15	375-22-4	N2
PFPeA	ND	2.1	0.40	1	05/30/201918:15	2706-90-3	N2
PFBS	ND	1.8	0.27	1	05/30/201918:15	375-73-5	N2
PFHxA	ND	2.1	0.28	1	05/30/201918:15	307-24-4	N2
PFPrOPrA	ND	4.1	0.74	1	05/30/201918:15	13252-13-6	N2
PFHpA	ND	2.1	0.64	1	05/30/201918:15	375-85-9	N2
NaDONA	ND	4.1	0.66	1	05/30/201918:15	958445-44-8	N2
PFHxS	ND	1.9	0.66	1	05/30/201918:15	355-46-4	N2
PFOA	ND	2.1	0.46	1	05/30/201918:15	335-67-1	N2
PFNA	ND	2.1	0.52	1	05/30/201918:15	375-95-1	N2
PFOS	ND	2.0	0.64	1	05/30/201918:15	1763-23-1	N2
PFDA	ND	2.1	0.50	1	05/30/201918:15	335-76-2	N2
PFUdA	ND	2.1	0.47	1	05/30/201918:15	2058-94-8	N2
N-MeFOSAA	ND	4.1	1.3	1	05/30/201918:15	2355-31-9	N2
N-EtFOSAA	ND	4.1	1.1	1	05/30/201918:15	2991-50-6	N2
PFDS	ND	2.0	0.38	1	05/30/201918:15	335-77-3	N2
PFDoA	ND	2.1	0.40	1	05/30/201918:15	307-55-1	N2
PFTrDA	ND	2.1	0.38	1	05/30/201918:15	72629-94-8	N2
PFTeDA	ND	2.1	0.36	1	05/30/201918:15	376-06-7	N2
PFHxDA	ND	2.1	0.43	1	05/30/201918:15	67905-19-5	N2
PFODA	ND	2.1	0.74	1	05/30/201918:15	16517-11-6	N2

Surrogate Standards

SS Compound	Spiked	Found	%Recovery	Limits	Pass/Fail	
13C2_PFHxA	2.0	2.2	111	70 - 130	Pass	
13C2_PFDA	2.0	1.9	94	70 - 130	Pass	
d5-EtFOSAA	8.0	4.7	59	70 - 130	Fail	

Internal Standards

IS Compound	Area	Ical Limits	CCV Limits	Pass/Fail
	040040	00,400,050,400	150705 010500	5
13C3_PFPrOPrA	210842	83480 - 250439	156765 - 313529	Pass
13C2_PFOA	463027	206779 - 620337	313232 - 626465	Pass
13C4_PFOS	596648	272812 - 818437	418594 - 837187	Pass
d3-MeFOSAA	377677	158028 - 474085	249789 - 499579	Pass

50-150% of Ical area

70-140% of the preceding CCV area

N2 = The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

1700 Elm Street, Suite 200 Minneapolis, MN 55414 (612) 607-1700

Method 537 (Modified)

Sample Analysis Summary

Client's Sample ID Lab Sample ID Filename Matrix Collected Received	BC-GP11-GW1 10476540002 B190605B_026 Ground_Water 05/22/2019 05/25/2019		Date Ex Total Ar ICAL ID Starting Ending (Method	tracted nount Extr CCal CCal Blank File	05/30/20 racted 251 mL 190605A B190605 B190605 B190605	05/30/2019 cted 251 mL 190605A02 B190605B_016 B190605B_027 ame B190605B_064					
Compound	Concentration (ng/L)	PQL (ng/L)	MDL (ng/L)	Dilution	Analyzed	CAS No.	Qual.				
PFBA	ND	2.0	0.73	1	06/05/201917:39	375-22-4	N2				
PFPeA	ND	2.0	0.39	1	06/05/201917:39	2706-90-3	N2				
PFBS	ND	1.8	0.26	1	06/05/201917:39	375-73-5	N2				
PFHxA	ND	2.0	0.27	1	06/05/201917:39	307-24-4	N2				
PFPrOPrA	ND	4.0	0.72	1	06/05/201917:39	13252-13-6	N2				
PFHpA	ND	2.0	0.62	1	06/05/201917:39	375-85-9	N2				
NaDONA	ND	4.0	0.64	1	06/05/201917:39	958445-44-8	N2				
PFHxS	ND	1.9	0.64	1	06/05/201917:39	355-46-4	N2				
PFOA	ND	2.0	0.44	1	06/05/201917:39	335-67-1	N2				
PFNA	ND	2.0	0.50	1	06/05/201917:39	375-95-1	N2				
PFOS	ND	1.9	0.62	1	06/05/201917:39	1763-23-1	N2				
PFDA	ND	2.0	0.48	1	06/05/201917:39	335-76-2	N2				
PFUdA	ND	2.0	0.46	1	06/05/201917:39	2058-94-8	N2				
N-MeFOSAA	ND	4.0	1.3	1	06/05/201917:39	2355-31-9	N2				
N-EtFOSAA	ND	4.0	1.1	1	06/05/201917:39	2991-50-6	N2				
PFDS	ND	1.9	0.37	1	06/05/201917:39	335-77-3	N2				
PFDoA	ND	2.0	0.39	1	06/05/201917:39	307-55-1	N2				
PFTrDA	ND	2.0	0.37	1	06/05/201917:39	72629-94-8	N2				
PFTeDA	ND	2.0	0.35	1	06/05/201917:39	376-06-7	N2				
PFHxDA	ND	2.0	0.42	1	06/05/201917:39	67905-19-5	N2				
PFODA	ND	2.0	0.71	1	06/05/201917:39	16517-11-6	N2				

Surrogate Standards

SS Compound	Spiked	Found	%Recovery	Limits	Pass/Fail	
13C2_PFHxA	2.0	1.6	79	70 - 130	Pass	
13C2_PFDA	2.0	1.2	59	70 - 130	Fail	
d5-EtFOSAA	8.0	3.8	48	70 - 130	Fail	

Internal Standards

IS Compound	Area	Ical Limits	CCV Limits	Pass/Fail
				_
13C3_PFPrOPrA	334826	175772 - 527315	210973 - 421945	Pass
13C2_PFOA	535569	241388 - 724164	351713 - 703427	Pass
13C4_PFOS	860042	370672 - 1112015	514556 - 1029112	Pass
d3-MeFOSAA	802850	330534 - 991601	477642 - 955284	Pass

50-150% of Ical area

70-140% of the preceding CCV area

N2 = The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

1700 Elm Street, Suite 200 Minneapolis, MN 55414 (612) 607-1700

Method 537 (Modified)

Sample Analysis Summary

Client's Sample ID Lab Sample ID Filename Matrix Collected Received	BC-GP12-GW1 10476540003 B190605B_028 Ground_Water 05/22/2019 05/25/2019		Date Ex Total Ar ICAL ID Starting Ending (Method	tracted nount Extr CCal CCal Blank File	05/30/20 racted 259 mL 190605A B190605 B190605 B190605 B190605	019 002 5B_027 5B_038 5B_064	
Compound	Concentration (ng/L)	PQL (ng/L)	MDL (ng/L)	Dilution	Analyzed	CAS No.	Qual.
PFBA	7.3	1.9	0.70	1	06/05/201918:02	375-22-4	N2
PFPeA	ND	1.9	0.38	1	06/05/201918:02	2706-90-3	N2
PFBS	ND	1.7	0.26	1	06/05/201918:02	375-73-5	N2
PFHxA	ND	1.9	0.26	1	06/05/201918:02	307-24-4	N2
PFPrOPrA	ND	3.9	0.69	1	06/05/201918:02	13252-13-6	N2
PFHpA	ND	1.9	0.60	1	06/05/201918:02	375-85-9	N2
NaDONA	ND	3.9	0.62	1	06/05/201918:02	958445-44-8	N2
PFHxS	ND	1.8	0.62	1	06/05/201918:02	355-46-4	N2
PFOA	ND	1.9	0.43	1	06/05/201918:02	335-67-1	N2
PFNA	ND	1.9	0.49	1	06/05/201918:02	375-95-1	N2
PFOS	23	1.9	0.60	1	06/05/201918:02	1763-23-1	N2
PFDA	ND	1.9	0.47	1	06/05/201918:02	335-76-2	N2
PFUdA	ND	1.9	0.45	1	06/05/201918:02	2058-94-8	N2
N-MeFOSAA	ND	3.9	1.2	1	06/05/201918:02	2355-31-9	N2
N-EtFOSAA	ND	3.9	1.1	1	06/05/201918:02	2991-50-6	N2
PFDS	ND	1.9	0.36	1	06/05/201918:02	335-77-3	N2
PFDoA	ND	1.9	0.38	1	06/05/201918:02	307-55-1	N2
PFTrDA	ND	1.9	0.36	1	06/05/201918:02	72629-94-8	N2
PFTeDA	ND	1.9	0.34	1	06/05/201918:02	376-06-7	N2
PFHxDA	ND	1.9	0.41	1	06/05/201918:02	67905-19-5	N2
PFODA	ND	1.9	0.69	1	06/05/201918:02	16517-11-6	N2

Surrogate Standards

SS Compound	Spiked	Found	%Recovery	Limits	Pass/Fail	
13C2_PFHxA	2.0	1.5	77	70 - 130	Pass	
13C2_PFDA	2.0	1.5	75	70 - 130	Pass	
d5-EtFOSAA	8.0	3.9	49	70 - 130	Fail	

Internal Standards

IS Compound	Area	Ical Limits	CCV Limits	Pass/Fail
	0 4 0 0 4 0			_
13C3_PFPrOPrA	318849	175772 - 527315	249700 - 499400	Pass
13C2_PFOA	502911	241388 - 724164	324051 - 648102	Pass
13C4_PFOS	822586	370672 - 1112015	531100 - 1062200	Pass
d3-MeFOSAA	844175	330534 - 991601	498824 - 997648	Pass

50-150% of Ical area

70-140% of the preceding CCV area

N2 = The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

1700 Elm Street, Suite 200 Minneapolis, MN 55414 (612) 607-1700

Method 537 (Modified)

Sample Analysis Summary

Client's Sample ID Lab Sample ID Filename Matrix Collected Received	BC-GP13-GW1 10476540004 B190605B_029 Ground_Water 05/22/2019 05/25/2019		Date Ex Total Ar ICAL ID Starting Ending (Method	tracted nount Extr CCal CCal Blank File	05/30/20 racted 252 mL 190605A B190605 B190605 name B190605	19 .02 5B_027 5B_038 5B_064	
Compound	Concentration (ng/L)	PQL (ng/L)	MDL (ng/L)	Dilution	Analyzed	CAS No.	Qual.
PFBA	13	2.0	0.72	1	06/05/201918:14	375-22-4	N2
PFPeA	6.0	2.0	0.39	1	06/05/201918:14	2706-90-3	N2
PFBS	3.2	1.7	0.26	1	06/05/201918:14	375-73-5	N2
PFHxA	6.8	2.0	0.27	1	06/05/201918:14	307-24-4	N2
PFPrOPrA	ND	4.0	0.71	1	06/05/201918:14	13252-13-6	N2
PFHpA	3.0	2.0	0.62	1	06/05/201918:14	375-85-9	N2
NaDONA	ND	4.0	0.63	1	06/05/201918:14	958445-44-8	N2
PFHxS	6.7	1.9	0.64	1	06/05/201918:14	355-46-4	N2
PFOA	5.3	2.0	0.44	1	06/05/201918:14	335-67-1	N2
PFNA	ND	2.0	0.50	1	06/05/201918:14	375-95-1	N2
PFOS	4.6	1.9	0.62	1	06/05/201918:14	1763-23-1	N2
PFDA	ND	2.0	0.48	1	06/05/201918:14	335-76-2	N2
PFUdA	ND	2.0	0.46	1	06/05/201918:14	2058-94-8	N2
N-MeFOSAA	ND	4.0	1.3	1	06/05/201918:14	2355-31-9	N2
N-EtFOSAA	ND	4.0	1.1	1	06/05/201918:14	2991-50-6	N2
PFDS	ND	1.9	0.36	1	06/05/201918:14	335-77-3	N2
PFDoA	ND	2.0	0.39	1	06/05/201918:14	307-55-1	N2
PFTrDA	ND	2.0	0.36	1	06/05/201918:14	72629-94-8	N2
PFTeDA	ND	2.0	0.35	1	06/05/201918:14	376-06-7	N2
PFHxDA	ND	2.0	0.42	1	06/05/201918:14	67905-19-5	N2
PFODA	ND	2.0	0.71	1	06/05/201918:14	16517-11-6	N2

Surrogate Standards

SS Compound	Spiked	Found	%Recovery	Limits	Pass/Fail	
13C2_PFHxA	2.0	1.5	73	70 - 130	Pass	
13C2_PFDA	2.0	1.4	68	70 - 130	Fail	
d5-EtFOSAA	8.0	2.5	32	70 - 130	Fail	

Internal Standards

IS Compound	Area	Ical Limits	CCV Limits	Pass/Fail
	3/1811	175772 - 527315	240700 - 400400	Pass
13C2_PFOA	560215	241388 - 724164	324051 - 648102	Pass
13C4_PFOS	820184	370672 - 1112015	531100 - 1062200	Pass
d3-MeFOSAA	796951	330534 - 991601	498824 - 997648	Pass

50-150% of Ical area

70-140% of the preceding CCV area

N2 = The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

1700 Elm Street, Suite 200 Minneapolis, MN 55414 (612) 607-1700

Method 537 (Modified)

Sample Analysis Summary

Client's Sample ID Lab Sample ID Filename Matrix Collected Received	BC-GP14-GW1 10476540005 B190605B_030 Ground_Water 05/22/2019 05/25/2019		Date Ex Total Ar ICAL ID Starting Ending (Method	tracted nount Extr CCal CCal Blank File	05/30/20 racted 246 mL 190605A B190605 B190605 name B190605	19 02 5B_027 5B_038 5B_064	
Compound	Concentration (ng/L)	PQL (ng/L)	MDL (ng/L)	Dilution	Analyzed	CAS No.	Qual.
PFBA	ND	2.0	0.74	1	06/05/201918:26	375-22-4	N2
PFPeA	ND	2.0	0.40	1	06/05/201918:26	2706-90-3	N2
PFBS	ND	1.8	0.27	1	06/05/201918:26	375-73-5	N2
PFHxA	ND	2.0	0.27	1	06/05/201918:26	307-24-4	N2
PFPrOPrA	ND	4.1	0.73	1	06/05/201918:26	13252-13-6	N2
PFHpA	ND	2.0	0.63	1	06/05/201918:26	375-85-9	N2
NaDONA	ND	4.1	0.65	1	06/05/201918:26	958445-44-8	N2
PFHxS	ND	1.9	0.66	1	06/05/201918:26	355-46-4	N2
PFOA	ND	2.0	0.45	1	06/05/201918:26	335-67-1	N2
PFNA	ND	2.0	0.51	1	06/05/201918:26	375-95-1	N2
PFOS	ND	2.0	0.63	1	06/05/201918:26	1763-23-1	N2
PFDA	ND	2.0	0.49	1	06/05/201918:26	335-76-2	N2
PFUdA	ND	2.0	0.47	1	06/05/201918:26	2058-94-8	N2
N-MeFOSAA	ND	4.1	1.3	1	06/05/201918:26	2355-31-9	N2
N-EtFOSAA	ND	4.1	1.1	1	06/05/201918:26	2991-50-6	N2
PFDS	ND	2.0	0.37	1	06/05/201918:26	335-77-3	N2
PFDoA	ND	2.0	0.40	1	06/05/201918:26	307-55-1	N2
PFTrDA	ND	2.0	0.37	1	06/05/201918:26	72629-94-8	N2
PFTeDA	ND	2.0	0.36	1	06/05/201918:26	376-06-7	N2
PFHxDA	ND	2.0	0.43	1	06/05/201918:26	67905-19-5	N2
PFODA	ND	2.0	0.73	1	06/05/201918:26	16517-11-6	N2

Surrogate Standards

SS Compound	Spiked	Found	%Recovery	Limits	Pass/Fail	
13C2_PFHxA	2.0	1.2	59	70 - 130	Fail	
13C2_PFDA	2.0	1.1	57	70 - 130	Fail	
d5-EtFOSAA	8.0	3.0	38	70 - 130	Fail	

Internal Standards

IS Compound	Area	Ical Limits	CCV Limits	Pass/Fail
				_
13C3_PFPrOPrA	267609	175772 - 527315	249700 - 499400	Pass
13C2_PFOA	551174	241388 - 724164	324051 - 648102	Pass
13C4_PFOS	792848	370672 - 1112015	531100 - 1062200	Pass
d3-MeFOSAA	776691	330534 - 991601	498824 - 997648	Pass

50-150% of Ical area

70-140% of the preceding CCV area

N2 = The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

1700 Elm Street, Suite 200 Minneapolis, MN 55414 (612) 607-1700

Method 537 (Modified)

Sample Analysis Summary

Client's Sample ID Lab Sample ID Filename Matrix Collected Received	BC-GPGW-FD1 10476540006 B190605B_031 Ground_Water 05/22/2019 05/25/2019		Date Ex Total Ar ICAL ID Starting Ending (Method	tracted nount Extr CCal CCal Blank File	05/30/20 racted 249 mL 190605A B190605 B190605 name B190605	19 02 5B_027 5B_038 5B_064	
Compound	Concentration (ng/L)	PQL (ng/L)	MDL (ng/L)	Dilution	Analyzed	CAS No.	Qual.
PFBA	ND	2.0	0.73	1	06/05/201918:37	375-22-4	N2
PFPeA	ND	2.0	0.39	1	06/05/201918:37	2706-90-3	N2
PFBS	ND	1.8	0.27	1	06/05/201918:37	375-73-5	N2
PFHxA	ND	2.0	0.27	1	06/05/201918:37	307-24-4	N2
PFPrOPrA	ND	4.0	0.72	1	06/05/201918:37	13252-13-6	N2
PFHpA	ND	2.0	0.63	1	06/05/201918:37	375-85-9	N2
NaDONA	ND	4.0	0.64	1	06/05/201918:37	958445-44-8	N2
PFHxS	ND	1.9	0.65	1	06/05/201918:37	355-46-4	N2
PFOA	ND	2.0	0.45	1	06/05/201918:37	335-67-1	N2
PFNA	ND	2.0	0.51	1	06/05/201918:37	375-95-1	N2
PFOS	ND	1.9	0.63	1	06/05/201918:37	1763-23-1	N2
PFDA	ND	2.0	0.49	1	06/05/201918:37	335-76-2	N2
PFUdA	ND	2.0	0.46	1	06/05/201918:37	2058-94-8	N2
N-MeFOSAA	ND	4.0	1.3	1	06/05/201918:37	2355-31-9	N2
N-EtFOSAA	ND	4.0	1.1	1	06/05/201918:37	2991-50-6	N2
PFDS	ND	1.9	0.37	1	06/05/201918:37	335-77-3	N2
PFDoA	ND	2.0	0.39	1	06/05/201918:37	307-55-1	N2
PFTrDA	ND	2.0	0.37	1	06/05/201918:37	72629-94-8	N2
PFTeDA	ND	2.0	0.35	1	06/05/201918:37	376-06-7	N2
PFHxDA	ND	2.0	0.42	1	06/05/201918:37	67905-19-5	N2
PFODA	ND	2.0	0.72	1	06/05/201918:37	16517-11-6	N2

Surrogate Standards

SS Compound	Spiked	Found	%Recovery	Limits	Pass/Fail	
13C2_PFHxA	2.0	1.7	86	70 - 130	Pass	
13C2_PFDA	2.0	1.5	73	70 - 130	Pass	
d5-EtFOSAA	8.0	3.3	41	70 - 130	Fail	

Internal Standards

IS Compound	Area	Ical Limits	CCV Limits	Pass/Fail
				_
13C3_PFPrOPrA	372408	175772 - 527315	249700 - 499400	Pass
13C2_PFOA	518046	241388 - 724164	324051 - 648102	Pass
13C4_PFOS	812825	370672 - 1112015	531100 - 1062200	Pass
d3-MeFOSAA	729649	330534 - 991601	498824 - 997648	Pass

50-150% of Ical area

70-140% of the preceding CCV area

N2 = The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

1700 Elm Street, Suite 200 Minneapolis, MN 55414 (612) 607-1700

Method 537 (Modified)

Sample Analysis Summary

Client's Sample ID Lab Sample ID Filename Matrix Collected Received	BC-FRB3 10476540007 B190605B_032 Water 05/22/2019 05/25/2019		Date Ex Total Ar ICAL ID Starting Ending (Method	tracted mount Extr CCal CCal Blank File	05/30/20 racted 253 mL 190605/ B190609 B190609 ename B190609	019 5B_027 5B_038 5B_064	
Compound	Concentration (ng/L)	PQL (ng/L)	MDL (ng/L)	Dilution	Analyzed	CAS No.	Qual.
PFBA	ND	2.0	0.72	1	06/05/201918:49	375-22-4	N2
PFPeA	ND	2.0	0.38	1	06/05/201918:49	2706-90-3	N2
PFBS	ND	1.7	0.26	1	06/05/201918:49	375-73-5	N2
PFHxA	ND	2.0	0.27	1	06/05/201918:49	307-24-4	N2
PFPrOPrA	ND	4.0	0.71	1	06/05/201918:49	13252-13-6	N2
PFHpA	ND	2.0	0.62	1	06/05/201918:49	375-85-9	N2
NaDONA	ND	4.0	0.63	1	06/05/201918:49	958445-44-8	N2
PFHxS	ND	1.9	0.64	1	06/05/201918:49	355-46-4	N2
PFOA	ND	2.0	0.44	1	06/05/201918:49	335-67-1	N2
PFNA	ND	2.0	0.50	1	06/05/201918:49	375-95-1	N2
PFOS	ND	1.9	0.62	1	06/05/201918:49	1763-23-1	N2
PFDA	ND	2.0	0.48	1	06/05/201918:49	335-76-2	N2
PFUdA	ND	2.0	0.46	1	06/05/201918:49	2058-94-8	N2
N-MeFOSAA	ND	4.0	1.3	1	06/05/201918:49	2355-31-9	N2
N-EtFOSAA	ND	4.0	1.1	1	06/05/201918:49	2991-50-6	N2
PFDS	ND	1.9	0.36	1	06/05/201918:49	335-77-3	N2
PFDoA	ND	2.0	0.39	1	06/05/201918:49	307-55-1	N2
PFTrDA	ND	2.0	0.36	1	06/05/201918:49	72629-94-8	N2
PFTeDA	ND	2.0	0.35	1	06/05/201918:49	376-06-7	N2
PFHxDA	ND	2.0	0.42	1	06/05/201918:49	67905-19-5	N2
PFODA	ND	2.0	0.71	1	06/05/201918:49	16517-11-6	N2

Surrogate Standards

SS Compound	Spiked	Found	%Recovery	Limits	Pass/Fail	
13C2_PFHxA	2.0	1.7	83	70 - 130	Pass	
13C2_PFDA	2.0	1.5	74	70 - 130	Pass	
d5-EtFOSAA	8.0	4.3	54	70 - 130	Fail	

Internal Standards

IS Compound	Area	Ical Limits	CCV Limits	Pass/Fail
	440005		0.40700 400.400	_
13C3_PFPrOPrA	412235	1/5//2 - 52/315	249700 - 499400	Pass
13C2_PFOA	528622	241388 - 724164	324051 - 648102	Pass
13C4_PFOS	834303	370672 - 1112015	531100 - 1062200	Pass
d3-MeFOSAA	820429	330534 - 991601	498824 - 997648	Pass

50-150% of Ical area

70-140% of the preceding CCV area

N2 = The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

1700 Elm Street, Suite 200 Minneapolis, MN 55414 (612) 607-1700

Method 537 (Modified) Blank Analysis Summary

Lab Sample ID Filename Matrix Date Extracted	BLANK-70814 B190530B_014 Water 05/29/2019		Total Ar ICAL ID Starting Ending (nount Exti CCal CCal	racted 255 mL 190530/ B190530 B190530	402 0B_004 0B_017	
Compound	Concentration (ng/L)	PQL (ng/L)	MDL (ng/L)	Dilution	Analyzed	CAS No.	Qual.
PFBA	ND	2.0	0.71	1	05/30/201916:30	375-22-4	N2
PFPeA	ND	2.0	0.38	1	05/30/201916:30	2706-90-3	N2
PFBS	ND	1.7	0.26	1	05/30/201916:30	375-73-5	N2
PFHxA	ND	2.0	0.26	1	05/30/201916:30	307-24-4	N2
PFPrOPrA	ND	3.9	0.70	1	05/30/201916:30	13252-13-6	N2
PFHpA	ND	2.0	0.61	1	05/30/201916:30	375-85-9	N2
NaDONA	ND	3.9	0.63	1	05/30/201916:30	958445-44-8	N2
PFHxS	ND	1.8	0.63	1	05/30/201916:30	355-46-4	N2
PFOA	ND	2.0	0.44	1	05/30/201916:30	335-67-1	N2
PFNA	ND	2.0	0.50	1	05/30/201916:30	375-95-1	N2
PFOS	ND	1.9	0.61	1	05/30/201916:30	1763-23-1	N2
PFDA	ND	2.0	0.47	1	05/30/201916:30	335-76-2	N2
PFUdA	ND	2.0	0.45	1	05/30/201916:30	2058-94-8	N2
N-MeFOSAA	ND	3.9	1.2	1	05/30/201916:30	2355-31-9	N2
N-EtFOSAA	ND	3.9	1.1	1	05/30/201916:30	2991-50-6	N2
PFDS	ND	1.9	0.36	1	05/30/201916:30	335-77-3	N2
PFDoA	ND	2.0	0.39	1	05/30/201916:30	307-55-1	N2
PFTrDA	ND	2.0	0.36	1	05/30/201916:30	72629-94-8	N2
PFTeDA	ND	2.0	0.34	1	05/30/201916:30	376-06-7	N2
PFHxDA	ND	2.0	0.41	1	05/30/201916:30	67905-19-5	N2
PFODA	ND	2.0	0.70	1	05/30/201916:30	16517-11-6	N2

Surrogate Standards

SS Compound	Spiked	Found	%Recovery	Limits	Pass/Fail	
13C2_PFHxA	2.0	1.7	86	70 - 130	Pass	
13C2_PFDA	2.0	1.9	93	70 - 130	Pass	
d5-EtFOSAA	8.0	3.9	49	70 - 130	Fail	

Internal Standards

IS Compound	Area	Ical Limits	CCV Limits	Pass/Fail
13C3_PFPrOPrA	219793	134260 - 402781	172867 - 345733	Pass
13C2_PFOA	475710	225330 - 675989	303311 - 606622	Pass
13C4_PFOS	593787	301397 - 904191	421516 - 843031	Pass
d3-MeFOSAA	357827	182697 - 548090	244139 - 488277	Pass

50-150% of Ical area

70-140% of the preceding CCV area

N2 = The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

1700 Elm Street, Suite 200 Minneapolis, MN 55414 (612) 607-1700

Method 537 (Modified) Blank Analysis Summary

Lab Sample ID Filename Matrix Date Extracted	BLANK-70818 B190605B_064 Water 05/30/2019		Total Ar ICAL ID Starting Ending (nount Extr CCal CCal	racted 251 mL 1906054 B190605 B190605	A02 5B_060 5B_067	
Compound	Concentration (ng/L)	PQL (ng/L)	MDL (ng/L)	Dilution	Analyzed	CAS No.	Qual.
PFBA	ND	2.0	0.73	1	06/06/201901:05	375-22-4	N2
PFPeA	ND	2.0	0.39	1	06/06/201901:05	2706-90-3	N2
PFBS	ND	1.8	0.26	1	06/06/201901:05	375-73-5	N2
PFHxA	ND	2.0	0.27	1	06/06/201901:05	307-24-4	N2
PFPrOPrA	ND	4.0	0.72	1	06/06/201901:05	13252-13-6	N2
PFHpA	ND	2.0	0.62	1	06/06/201901:05	375-85-9	N2
NaDONA	ND	4.0	0.64	1	06/06/201901:05	958445-44-8	N2
PFHxS	ND	1.9	0.64	1	06/06/201901:05	355-46-4	N2
PFOA	ND	2.0	0.44	1	06/06/201901:05	335-67-1	N2
PFNA	ND	2.0	0.50	1	06/06/201901:05	375-95-1	N2
PFOS	ND	1.9	0.62	1	06/06/201901:05	1763-23-1	N2
PFDA	ND	2.0	0.48	1	06/06/201901:05	335-76-2	N2
PFUdA	ND	2.0	0.46	1	06/06/201901:05	2058-94-8	N2
N-MeFOSAA	ND	4.0	1.3	1	06/06/201901:05	2355-31-9	N2
N-EtFOSAA	ND	4.0	1.1	1	06/06/201901:05	2991-50-6	N2
PFDS	ND	1.9	0.37	1	06/06/201901:05	335-77-3	N2
PFDoA	ND	2.0	0.39	1	06/06/201901:05	307-55-1	N2
PFTrDA	ND	2.0	0.37	1	06/06/201901:05	72629-94-8	N2
PFTeDA	ND	2.0	0.35	1	06/06/201901:05	376-06-7	N2
PFHxDA	ND	2.0	0.42	1	06/06/201901:05	67905-19-5	N2
PFODA	ND	2.0	0.71	1	06/06/201901:05	16517-11-6	N2

Surrogate Standards

SS Compound	Spiked	Found	%Recovery	Limits	Pass/Fail	
13C2_PFHxA	2.0	1.6	78	70 - 130	Pass	
13C2_PFDA	2.0	1.4	71	70 - 130	Pass	
d5-EtFOSAA	8.0	2.2	28	70 - 130	Fail	

Internal Standards

IS Compound	Area	Ical Limits	CCV Limits	Pass/Fail
13C3_PFPrOPrA	394146	175772 - 527315	238936 - 477872	Pass
13C2_PFOA	548161	241388 - 724164	331178 - 662356	Pass
13C4_PFOS	837313	370672 - 1112015	547148 - 1094296	Pass
d3-MeFOSAA	733003	330534 - 991601	494154 - 988308	Pass

50-150% of Ical area

70-140% of the preceding CCV area

N2 = The lab does not hold NELAC/TNI accreditation for this parameter but other accreditations/certifications may apply. A complete list of accreditations/certifications is available upon request.

Method 537 (Modified) Laboratory Control Sample (LCS)

LCS Lab Sample ID	LCS-70815
LCS Filename	B190530B_015
Total Amount Extracted	236mL
ICAL ID	190530A02
Start CCal Filename	B190530B_004
End CCal Filename	B190530B_017
Method Blank Filename	B190530B_014

Matrix Water Dilution 1 Extracted 05/29/2019 Analyzed 05/30/2019 16:41 Injected By WM

Compound	Spiked (ng/L)	Recovered (ng/L)	Recovery %	Limits	
PFBA	2.1	2.6	121	50.0 - 150.0	
PFPeA	2.1	2.1	101	50.0 - 150.0	
PFBS	1.9	2.0	107	50.0 - 150.0	
PFHxA	2.1	2.2	105	50.0 - 150.0	
PFPrOPrA	4.2	4.4	104	50.0 - 150.0	
PFHpA	2.1	2.1 J	98	50.0 - 150.0	
NaDÓNA	4.2	5.2	122	50.0 - 150.0	
PFHxS	2.0	2.1	107	50.0 - 150.0	
PFOA	2.1	2.4	113	50.0 - 150.0	
PFNA	2.1	2.1	100	50.0 - 150.0	
PFOS	2.0	2.3	112	50.0 - 150.0	
PFDA	2.1	1.7 J	82	50.0 - 150.0	
PFUdA	2.1	1.5 J	71	50.0 - 150.0	
N-MeFOSAA	4.2	2.6 J	61	50.0 - 150.0	
N-EtFOSAA	4.2	2.5 J	59	50.0 - 150.0	
PFDS	2.0	1.1 J	56	50.0 - 150.0	
PFDoA	2.1	1.1 J	54	50.0 - 150.0	
PFTrDA	2.1	1.2 J	55	50.0 - 150.0	
PFTeDA	2.1	0.97 JR	46	50.0 - 150.0	
PFHxDA	2.1	0.87 JR	41	50.0 - 150.0	
PFODA	2.1	0.77 JR	36	50.0 - 150.0	

Surrogate Standards

SS Compound	Spiked	Found	%Recovery	Limits	Pass/Fail	
13C2_PFHxA	2.0	1.8	92	70 - 130	Pass	
13C2_PFDA	2.0	1.9	96	70 - 130	Pass	
d5-EtFOSAA	8.0	4.1	52	70 - 130	Fail	

Internal Standards

IS Compound	Area	Ical Limits	CCV Limits	Pass/Fail
13C3_PFPrOPrA	351472	175772 - 527315	210973 - 421945	Pass
13C2_PFOA	513219	241388 - 724164	351713 - 703427	Pass
13C4_PFOS	872215	370672 - 1112015	514556 - 1029112	Pass
d3-MeFOSAA	916735	330534 - 991601	477642 - 955284	Pass

50-150% of Ical area

Method 537 (Modified) Laboratory Control Sample (LCS)

LCS Lab Sample ID	LCS-70816
LCS Filename	B190530B_019
Total Amount Extracted	251mL
ICAL ID	190530A02
Start CCal Filename	B190530B_017
End CCal Filename	B190530B_026
Method Blank Filename	B190530B_014

MatrixWaterDilution1Extracted05/29/2019Analyzed05/30/2019 17:28Injected ByWM

Compound	Spiked (ng/L)	Recovered (ng/L)	Recovery %	Limits	
PFBA	40	36	90	70.0 - 130.0	
PFPeA	40	36	90	70.0 - 130.0	
PFBS	35	35	98	70.0 - 130.0	
PFHxA	40	33	84	70.0 - 130.0	
PFPrOPrA	80	81	101	70.0 - 130.0	
PFHpA	40	33	82	70.0 - 130.0	
NaDÓNA	80	89	111	70.0 - 130.0	
PFHxS	38	37	99	70.0 - 130.0	
PFOA	40	38	95	70.0 - 130.0	
PFNA	40	40	100	70.0 - 130.0	
PFOS	38	39	102	70.0 - 130.0	
PFDA	40	38	97	70.0 - 130.0	
PFUdA	40	36	91	70.0 - 130.0	
N-MeFOSAA	80	55 R	68	70.0 - 130.0	
N-EtFOSAA	80	47 R	59	70.0 - 130.0	
PFDS	38	30	77	70.0 - 130.0	
PFDoA	40	29	73	70.0 - 130.0	
PFTrDA	40	29	72	70.0 - 130.0	
PFTeDA	40	26 R	65	70.0 - 130.0	
PFHxDA	40	24 R	60	70.0 - 130.0	
PFODA	40	24 R	61	70.0 - 130.0	

Surrogate Standards

SS Compound	Spiked	Found	%Recovery	Limits	Pass/Fail	
13C2_PFHxA	2.0	1.9	94	70 - 130	Pass	
13C2_PFDA	2.0	2.1	105	70 - 130	Pass	
d5-EtFOSAA	8.0	4.9	61	70 - 130	Fail	

Internal Standards

IS Compound	Area	Ical Limits	CCV Limits	Pass/Fail
13C3_PFPrOPrA	213660	134260 - 402781	156765 - 313529	Pass
13C2_PFOA	460016	225330 - 675989	313232 - 626465	Pass
13C4_PFOS	613807	301397 - 904191	418594 - 837187	Pass
d3-MeFOSAA	354376	182697 - 548090	249789 - 499579	Pass

50-150% of Ical area

Method 537 (Modified) Laboratory Control Sample (LCS)

LCS Lab Sample ID	LCS-70819
LCS Filename	B190604A_008
Total Amount Extracted	253mL
ICAL ID	190603A02
Start CCal Filename	B190604A_007
End CCal Filename	B190604A_018
Method Blank Filename	B190605B_064

MatrixWaterDilution1Extracted05/30/2019Analyzed06/04/2019 12:27Injected ByWM

Compound	Spiked (ng/L)	Recovered (ng/L)	Recovery %	Limits	
PFBA	2.0	1.9 J	95	50.0 - 150.0	
PFPeA	2.0	1.9 J	94	50.0 - 150.0	
PFBS	1.7	1.6 J	92	50.0 - 150.0	
PFHxA	2.0	2.4	120	50.0 - 150.0	
PFPrOPrA	4.0	5.3	133	50.0 - 150.0	
PFHpA	2.0	1.7 J	85	50.0 - 150.0	
NaDÔNA	4.0	4.6	116	50.0 - 150.0	
PFHxS	1.9	1.8 J	94	50.0 - 150.0	
PFOA	2.0	1.6 J	80	50.0 - 150.0	
PFNA	2.0	1.7 J	86	50.0 - 150.0	
PFOS	1.9	1.7 J	88	50.0 - 150.0	
PFDA	2.0	1.7 J	87	50.0 - 150.0	
PFUdA	2.0	1.5 J	75	50.0 - 150.0	
N-MeFOSAA	4.0	1.0 JR	26	50.0 - 150.0	
N-EtFOSAA	4.0	0.99 JR	25	50.0 - 150.0	
PFDS	1.9	1.2 J	63	50.0 - 150.0	
PFDoA	2.0	1.2 J	61	50.0 - 150.0	
PFTrDA	2.0	0.97 JR	49	50.0 - 150.0	
PFTeDA	2.0	1.0 J	51	50.0 - 150.0	
PFHxDA	2.0	0.90 JR	46	50.0 - 150.0	
PFODA	2.0	0.88 JR	45	50.0 - 150.0	

Surrogate Standards

SS Compound	Spiked	Found	%Recovery	Limits	Pass/Fail
13C2_PFHxA	2.0	1.5	76	70 - 130	Pass
13C2_PFDA	2.0	1.5	76	70 - 130	Pass
d5-EtFOSAA	8.0	1.8	23	70 - 130	Fail

Internal Standards

IS Compound	Area	Ical Limits	CCV Limits	Pass/Fail
13C3_PFPrOPrA	308459	215569 - 646707	221929 - 443859	Pass
13C2_PFOA	498547	255932 - 767795	343323 - 686646	Pass
13C4_PFOS	837296	445609 - 1336826	549781 - 1099561	Pass
d3-MeFOSAA	473364	259839 - 779517	326884 - 653768	Pass

50-150% of Ical area

Method 537 (Modified) Laboratory Control Sample (LCS)

LCS Lab Sample ID	LCS-70820
LCS Filename	B190604A_009
Total Amount Extracted	255mL
ICAL ID	190603A02
Start CCal Filename	B190604A_007
End CCal Filename	B190604A_018
Method Blank Filename	B190605B_064

MatrixWaterDilution1Extracted05/30/2019Analyzed06/04/2019 12:39Injected ByWM

Compound	Spiked (ng/L)	Recovered (ng/L)	Recovery %	Limits	
PFBA	20	15	78	70.0 - 130.0	
PFPeA	20	16	83	70.0 - 130.0	
PFBS	17	15	89	70.0 - 130.0	
PFHxA	20	16	80	70.0 - 130.0	
PFPrOPrA	39	50	127	70.0 - 130.0	
PFHpA	20	16	82	70.0 - 130.0	
NaDÓNA	39	52 R	132	70.0 - 130.0	
PFHxS	18	16	88	70.0 - 130.0	
PFOA	20	17	86	70.0 - 130.0	
PFNA	20	17	87	70.0 - 130.0	
PFOS	19	16	83	70.0 - 130.0	
PFDA	20	16	81	70.0 - 130.0	
PFUdA	20	16	80	70.0 - 130.0	
N-MeFOSAA	39	17 R	43	70.0 - 130.0	
N-EtFOSAA	39	14 R	37	70.0 - 130.0	
PFDS	19	14	76	70.0 - 130.0	
PFDoA	20	14	72	70.0 - 130.0	
PFTrDA	20	13 R	69	70.0 - 130.0	
PFTeDA	20	14	73	70.0 - 130.0	
PFHxDA	20	13 R	68	70.0 - 130.0	
PFODA	20	14	71	70.0 - 130.0	

Surrogate Standards

SS Compound	Spiked	Found	%Recovery	Limits	Pass/Fail	
13C2_PFHxA	2.0	1.5	76	70 - 130	Pass	
13C2_PFDA	2.0	1.5	74	70 - 130	Pass	
d5-EtFOSAA	8.0	2.7	33	70 - 130	Fail	

Internal Standards

IS Compound	Area	Ical Limits	CCV Limits	Pass/Fail
13C3_PFPrOPrA	255937	215569 - 646707	221929 - 443859	Pass
13C2_PFOA	517068	255932 - 767795	343323 - 686646	Pass
13C4_PFOS	837951	445609 - 1336826	549781 - 1099561	Pass
d3-MeFOSAA	481936	259839 - 779517	326884 - 653768	Pass

50-150% of Ical area

Method 537 (Modified) Laboratory Control Sample Duplicate (LCSD)

LCSD Lab Sample ID LCSD Filename Total Amount Extracted ICAL ID Start CCal Filename End CCal Filename Method Blank Filename	LCSD-70817 B190530B_020 241mL 190530A02 B190530B_017 B190530B_026 B190530B_014		LC Ma Dil Ex An Inje	S Filename atrix ution tracted alyzed ected By	B190530B_019 Water 1 05/29/2019 05/30/2019 17 WM	9 :40	
Compound	Spiked R (ng/L)	Recovered I (ng/L)	Recovery %	Recover Limits	у	RPD %	
PFBA PFPeA PFBS PFHxA PFPrOPrA PFHpA NaDONA PFHxS PFOA PFOA PFOS PFDA PFUdA N-MeFOSAA N-EtFOSAA PFDS PFDoA PFTDA PFTeDA PFTeDA PFTeDA PFHxDA PFODA	42 42 37 42 83 42 83 39 42 42 40 42 42 83 83 40 42 42 42 42 42 42 42	38 40 39 37 94 36 100 43 45 42 42 40 59 53 8 4 34 32 30 34 33	92 96 106 89 114 86 123 109 103 105 101 97 71 64 85 83 77 73 81 79	70.0 - 130 70.0 - 130	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	7 10 12 10 16 9 15 14 13 11 7 9 11 9 13 14 16 33 30	
Surrogate Standards							
SS Compound	Spiked	Found	%Recove	ery l	Limits	Pass/Fail	
13C2_PFHxA	2.0	1.8	90	7	70 - 130	Pass	
13C2_PFDA	2.0	2.2	108	7	70 - 130	Pass	
d5-EtFOSAA	8.0	5.0	62	7	70 - 130	Fail	
Internal Standards							
IS Compound	Area	Ical	Limits		CCV Limits	5	Pass/Fail
13C3_PFPrOPrA 13C2_PFOA 13C4_PFOS d3-MeFOSAA	194419 447404 591597 336382	134260 225330 301397 182697	- 402781 - 675989 - 904191 - 548090		156765 - 313 313232 - 626 418594 - 837 249789 - 499	529 465 187 579	Pass Pass Pass Pass
50 1500/ of loop area							

50-150% of Ical area

Method 537 (Modified) Laboratory Control Sample Duplicate (LCSD)

LCSD Lab Sample ID LCSD Filename Total Amount Extracted ICAL ID Start CCal Filename End CCal Filename Method Blank Filename	LCSD-70821 B190604A_010 251mL 190603A02 B190604A_007 B190604A_018 B190605B_064		LC Ma Dil Ex Ar Inj	CS Filename atrix lution tracted nalyzed ected By	B190604A_009 Water 1 05/30/2019 06/04/2019 12:5 WM	51	
Compound	Spiked R (ng/L)	ecovered F (ng/L)	Recovery %	Recover Limits	y	RPD %	
PFBA PFPeA PFBS PFHxA PFPrOPrA PFHpA NaDONA PFHxS PFOA PFOA PFDA PFDA PFDA PFDA PFDS PFDA PFDS PFDA PFDS PFDA PFTrDA PFTrDA PFTeDA PFHxDA PFODA	20 20 17 20 40 20 40 19 20 20 40 40 40 40 40 19 20 20 20 20 20 20 20 20 20	19 19 19 18 51 20 56 R 19 20 19 20 19 17 20 R R 15 15 14 15 13 R R	95 98 106 90 129 101 140 99 98 99 99 88 83 50 40 77 76 70 65 68	70.0 - 130 70.0 - 130	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	21 18 19 13 3 22 7 13 15 14 18 9 6 15 9 2 8 3 6 3 3	
Surrogate Standards			0 / D				
SS Compound	Spiked	Found	%Recov	ery l	Limits	Pass/Fail	
13C2_PFHxA	2.0	1.5	75	I	/0 - 130	Pass	
13C2_PFDA	2.0	1.4	70	7	70 - 130	Pass	
d5-EtFOSAA	8.0	2.7	34	7	70 - 130	Fail	
Internal Standards							
IS Compound	Area	Ical	Limits		CCV Limits		Pass/Fail
13C3_PFPrOPrA 13C2_PFOA 13C4_PFOS d3-MeFOSAA	285686 480354 787814 504693	215569 255932 445609 259839	- 646707 - 767795 - 1336826 - 779517		221929 - 4438 343323 - 68664 549781 - 10995 326884 - 65376	59 46 61 68	Pass Pass Pass Pass

50-150% of Ical area

APPENDIX M

LABORATORY ANALYTICAL REPORT – SOIL GAS

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

June 11, 2019

Mark Anderson IWM Consulting Group, LLC. 3640 New Vision Drive Fort Wayne, IN 46845

RE: Project: 19716-10 Butler Pace Project No.: 10477550

Dear Mark Anderson:

Enclosed are the analytical results for sample(s) received by the laboratory on June 04, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Carolynne Tract

Carolynne Trout carolynne.trout@pacelabs.com 1(612)607-6351 Project Manager

Enclosures

Pace Analytical www.pacelabs.com Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

CERTIFICATIONS

 Project:
 19716-10 Butler

 Pace Project No.:
 10477550

Minnesota Certification IDs

1700 Elm Street SE, Minneapolis, MN 55414-2485 A2LA Certification #: 2926.01 Alabama Certification #: 40770 Alaska Contaminated Sites Certification #: 17-009 Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014 Arkansas DW Certification #: MN00064 Arkansas WW Certification #: 88-0680 California Certification #: 2929 CNMI Saipan Certification #: MP0003 Colorado Certification #: MN00064 Connecticut Certification #: PH-0256 EPA Region 8+Wyoming DW Certification #: via MN 027-053-137 Florida Certification #: E87605 Georgia Certification #: 959 Guam EPA Certification #: MN00064 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062 Louisiana DEQ Certification #: 03086 Louisiana DW Certification #: MN00064 Maine Certification #: MN00064 Marvland Certification #: 322 Massachusetts Certification #: M-MN064 Michigan Certification #: 9909 Minnesota Certification #: 027-053-137

Minnesota Dept of Ag Certifcation #: via MN 027-053-137 Minnesota Petrofund Certification #: 1240 Mississippi Certification #: MN00064 Missouri Certification #: 10100 Montana Certification #: CERT0092 Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064 New Hampshire Certification #: 2081 New Jersey Certification #: MN002 New York Certification #: 11647 North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Primary Certification #: MN300001 Oregon Secondary Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification #: MN00064 South Carolina Certification #:74003001 Tennessee Certification #: TN02818 Texas Certification #: T104704192 Utah Certification #: MN00064 Vermont Certification #: VT-027053137 Virginia Certification #: 460163 Washington Certification #: C486 West Virginia DEP Certification #: 382 West Virginia DW Certification #: 9952 C Wisconsin Certification #: 999407970 Wyoming UST Certification #: via A2LA 2926.01

SAMPLE SUMMARY

Project: 19716-10 Butler

Pace Project No.: 10477550

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10477550001	BC-SG2	Air	05/31/19 10:35	06/04/19 11:50
10477550002	BC-SG-FD1	Air	05/31/19 00:00	06/04/19 11:50

SAMPLE ANALYTE COUNT

Project:19716-10 ButlerPace Project No.:10477550

Lab ID	Sample ID	Method	Analysts	Analytes Reported
0477550001	BC-SG2	TO-15	MJL	61
10477550002	BC-SG-FD1	TO-15	MJL	61

SUMMARY OF DETECTION

Project: 19716-10 Butler

Pace Project No.: 10477550

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
10477550001	BC-SG2					
TO-15	Acetone	24.7	ug/m3	4.6	06/09/19 21:21	
TO-15	Benzene	14.6	ug/m3	0.62	06/09/19 21:21	
TO-15	Carbon disulfide	14.8	ug/m3	1.2	06/09/19 21:21	
TO-15	Chloroform	12.6	ug/m3	0.94	06/09/19 21:21	
TO-15	1,3-Dichlorobenzene	4.2	ug/m3	2.3	06/09/19 21:21	
TO-15	Dichlorodifluoromethane	3.0	ug/m3	1.9	06/09/19 21:21	
TO-15	Ethanol	121	ug/m3	3.6	06/09/19 21:21	
TO-15	Ethylbenzene	10.3	ug/m3	1.7	06/09/19 21:21	
TO-15	n-Heptane	647	ug/m3	47.5	06/10/19 14:29	
TO-15	n-Hexane	1260	ug/m3	40.8	06/10/19 14:29	
TO-15	Methylene Chloride	17.8	ug/m3	6.7	06/09/19 21:21	
TO-15	4-Methyl-2-pentanone (MIBK)	16.4	ug/m3	7.9	06/09/19 21:21	
TO-15	2-Propanol	9.4	ug/m3	4.8	06/09/19 21:21	
TO-15	Propylene	504	ug/m3	20.0	06/10/19 14:29	
TO-15	Styrene	3.4	ug/m3	1.6	06/09/19 21:21	
TO-15	Tetrachloroethene	72.8	ug/m3	1.3	06/09/19 21:21	
TO-15	Toluene	33.5	ug/m3	1.5	06/09/19 21:21	
TO-15	Trichlorofluoromethane	2.5	ug/m3	2.2	06/09/19 21:21	
TO-15	1,2,4-Trimethylbenzene	5.6	ug/m3	1.9	06/09/19 21:21	
TO-15	m&p-Xylene	20.0	ug/m3	3.4	06/09/19 21:21	
TO-15	o-Xylene	7.3	ug/m3	1.7	06/09/19 21:21	
10477550002	BC-SG-FD1					
TO-15	Acetone	27.8	ug/m3	4.6	06/09/19 21:50	
TO-15	Benzene	14.4	ug/m3	0.62	06/09/19 21:50	
TO-15	Carbon disulfide	14.5	ug/m3	1.2	06/09/19 21:50	
TO-15	Chloroform	12.9	ug/m3	0.94	06/09/19 21:50	
TO-15	1,3-Dichlorobenzene	3.8	ug/m3	2.3	06/09/19 21:50	
TO-15	Dichlorodifluoromethane	2.7	ug/m3	1.9	06/09/19 21:50	
TO-15	Ethanol	118	ug/m3	3.6	06/09/19 21:50	
TO-15	Ethylbenzene	9.9	ug/m3	1.7	06/09/19 21:50	
TO-15	n-Heptane	629	ug/m3	47.5	06/10/19 14:54	
TO-15	n-Hexane	1230	ug/m3	40.8	06/10/19 14:54	
TO-15	Methylene Chloride	29.3	ug/m3	6.7	06/09/19 21:50	
TO-15	4-Methyl-2-pentanone (MIBK)	15.2	ug/m3	7.9	06/09/19 21:50	
TO-15	2-Propanol	9.3	ug/m3	4.8	06/09/19 21:50	
TO-15	Propylene	498	ug/m3	20.0	06/10/19 14:54	
TO-15	Styrene	3.3	ug/m3	1.6	06/09/19 21:50	
TO-15	Tetrachloroethene	70.1	ug/m3	1.3	06/09/19 21:50	
TO-15	Tetrahydrofuran	23.0	ug/m3	1.1	06/09/19 21:50	
TO-15	Toluene	41.3	ug/m3	1.5	06/09/19 21:50	
TO-15	1,1,2-Trichloroethane	2.1	ug/m3	1.1	06/09/19 21:50	
TO-15	Trichlorofluoromethane	2.3	ug/m3	2.2	06/09/19 21:50	
10-15	1,2,4-Trimethylbenzene	5.5	ug/m3	1.9	06/09/19 21:50	
10-15	m&p-Xylene	19.2	ug/m3	3.4	06/09/19 21:50	
TO-15	o-Xylene	7.3	ug/m3	1.7	06/09/19 21:50	

PROJECT NARRATIVE

Project: 19716-10 Butler

Pace Project No.: 10477550

Method: TO-15

Description:TO15 MSV AIRClient:IWM Consulting Group, LLC.Date:June 11, 2019

General Information:

2 samples were analyzed for TO-15. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

QC Batch: 611527

CH: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.

- LCS (Lab ID: 3304401)
 - Dibromochloromethane
 - trans-1,3-Dichloropropene

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

QC Batch: 611527

L3: Analyte recovery in the laboratory control sample (LCS) exceeded QC limits. Analyte presence below reporting limits in associated samples.

• LCS (Lab ID: 3304401)

Dibromochloromethane

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: 611527

- E: Analyte concentration exceeded the calibration range. The reported result is estimated.
 - DUP (Lab ID: 3305174)
 - 2-Propanol

PROJECT NARRATIVE

Project: 19716-10 Butler

Pace Project No.: 10477550

Method:TO-15Description:TO15 MSV AIRClient:IWM Consulting Group, LLC.Date:June 11, 2019

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS

Project: 19716-10 Butler

Pace Project No.: 10477550

Sample: BC-SG2	Lab ID: 104	77550001	Collected: 05/31/19 10:35		Received: 06/04/19 11:50	Matrix: Air		
Parameters	Results	Units	Report Limit	DF	Prepared Analyzed	CAS No.	Qual	
TO15 MSV AIR	Analytical Meth	nod: TO-15						
Acetone	24.7	ug/m3	4.6	1.9	06/09/19 21:	21 67-64-1		
Benzene	14.6	ug/m3	0.62	1.9	06/09/19 21:	21 71-43-2		
Benzyl chloride	ND	ug/m3	5.0	1.9	06/09/19 21:	21 100-44-7		
Bromodichloromethane	ND	ug/m3	2.6	1.9	06/09/19 21:	21 75-27-4		
Bromoform	ND	ug/m3	10	1.9	06/09/19 21:	21 75-25-2		
Bromomethane	ND	ug/m3	1.5	1.9	06/09/19 21:	21 74-83-9		
1,3-Butadiene	ND	ug/m3	0.86	1.9	06/09/19 21:	21 106-99-0		
2-Butanone (MEK)	ND	ug/m3	5.7	1.9	06/09/19 21:	21 78-93-3		
Carbon disulfide	14.8	ug/m3	1.2	1.9	06/09/19 21:	21 75-15-0		
Carbon tetrachloride	ND	ug/m3	2.4	1.9	06/09/19 21:	21 56-23-5		
Chlorobenzene	ND	ug/m3	1.8	1.9	06/09/19 21:	21 108-90-7		
Chloroethane	ND	ug/m3	1.0	1.9	06/09/19 21:	21 75-00-3		
Chloroform	12.6	ug/m3	0.94	1.9	06/09/19 21:	21 67-66-3		
Chloromethane	ND	ug/m3	0.80	1.9	06/09/19 21:	21 74-87-3		
Cyclohexane	ND	ug/m3	3.3	1.9	06/09/19 21:	21 110-82-7		
Dibromochloromethane	ND	ua/m3	3.3	1.9	06/09/19 21:	21 124-48-1		
1,2-Dibromoethane (EDB)	ND	ug/m3	1.5	1.9	06/09/19 21:	21 106-93-4		
1.2-Dichlorobenzene	ND	ua/m3	2.3	1.9	06/09/19 21:	21 95-50-1		
1.3-Dichlorobenzene	4.2	ua/m3	2.3	1.9	06/09/19 21:	21 541-73-1		
1.4-Dichlorobenzene	ND	ua/m3	5.8	1.9	06/09/19 21:	21 106-46-7		
Dichlorodifluoromethane	3.0	ua/m3	1.9	1.9	06/09/19 21:	21 75-71-8		
1.1-Dichloroethane	ND	ua/m3	1.6	1.9	06/09/19 21:	21 75-34-3		
1.2-Dichloroethane	ND	ua/m3	0.78	1.9	06/09/19 21:	21 107-06-2		
1.1-Dichloroethene	ND	ua/m3	1.5	1.9	06/09/19 21:	21 75-35-4		
cis-1.2-Dichloroethene	ND	ua/m3	1.5	1.9	06/09/19 21:	21 156-59-2		
trans-1.2-Dichloroethene	ND	ua/m3	1.5	1.9	06/09/19 21:	21 156-60-5		
1.2-Dichloropropane	ND	ug/m3	1.8	1.9	06/09/19 21:	21 78-87-5		
cis-1.3-Dichloropropene	ND	ua/m3	1.8	1.9	06/09/19 21:	21 10061-01-5		
trans-1.3-Dichloropropene	ND	ua/m3	1.8	1.9	06/09/19 21:	21 10061-02-6		
Dichlorotetrafluoroethane	ND	ug/m3	2.7	1.9	06/09/19 21:	21 76-14-2		
Ethanol	121	ug/m3	3.6	1.9	06/09/19 21	21 64-17-5		
Ethyl acetate		ug/m3	1.4	1.9	06/09/19 21:	21 141-78-6		
Ethylbenzene	10.3	ug/m3	1.7	1.9	06/09/19 21:	21 100-41-4		
4-Ethyltoluene	ND	ug/m3	4.8	1.9	06/09/19 21	21 622-96-8		
n-Heptane	647	ug/m3	47.5	57	06/10/19 14	29 142-82-5		
Hexachloro-1 3-butadiene		ug/m3	10.3	19	06/09/19 21:	21 87-68-3		
n-Hexane	1260	ug/m3	40.8	57	06/10/19 14	29 110-54-3		
2-Hexanone	ND	ug/m3	7.9	19	06/09/19 21	21 591-78-6		
Methylene Chloride	17.8	ug/m3	6.7	1.0	06/09/19 21:	21 75-09-2		
4-Methyl-2-pentanone (MIBK)	16.4	ug/m3	79	1.0	06/09/19 21:	21 108-10-1		
Methyl-tert-butyl ether		ug/m3	7.0	1.0	06/09/19 21:	21 1634-04-4		
Naphthalene	ND	ug/m3	5.1	1.9	06/09/19 21:	21 91-20-3		
2-Propanol	9.4	ug/m3	J.1 4 R	1.9	00/00/19 21. NR/NQ/1Q 21.	21 67-63-0		
Propylene	5. 4 504	ug/m3	20 O	57	06/10/10 1/	29 115-07-1		
Styrene	30 4 2 <i>1</i>	ug/m3	20.0	10	06/00/10 21-	21 100-42-5		
1 1 2 2-Tetrachloroethane	3.4 ND	ug/m3	1.0	1.0	06/00/19 21.	21 100-42-0 21 70_3/_5		
Tetrachloroethene	72.8	ug/m3	13	1.9	06/09/19 21	21 127-18-4		
		~g/110	1.0					

ANALYTICAL RESULTS

Project: 19716-10 Butler

Pace Project No.: 10477550

Sample: BC-SG2	Lab ID: 10477550001		Collected: 05/31/19 10:35		5 Received: (Received: 06/04/19 11:50 Matrix: Air		
Parameters	Results	Units	Report Limi	t DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Met	hod: TO-15						
Tetrahydrofuran	ND	ug/m3	1	1 1.9		06/09/19 21:21	109-99-9	
Toluene	33.5	ug/m3	1	5 1.9		06/09/19 21:21	108-88-3	
1,2,4-Trichlorobenzene	ND	ug/m3	14	.3 1.9		06/09/19 21:21	120-82-1	
1,1,1-Trichloroethane	ND	ug/m3	2	1 1.9		06/09/19 21:21	71-55-6	
1,1,2-Trichloroethane	ND	ug/m3	1	1 1.9		06/09/19 21:21	79-00-5	
Trichloroethene	ND	ug/m3	1	0 1.9		06/09/19 21:21	79-01-6	
Trichlorofluoromethane	2.5	ug/m3	2	2 1.9		06/09/19 21:21	75-69-4	
1,1,2-Trichlorotrifluoroethane	ND	ug/m3	3	0 1.9		06/09/19 21:21	76-13-1	
1,2,4-Trimethylbenzene	5.6	ug/m3	1	9 1.9		06/09/19 21:21	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/m3	1	9 1.9		06/09/19 21:21	108-67-8	
Vinyl acetate	ND	ug/m3	1	4 1.9		06/09/19 21:21	108-05-4	
Vinyl chloride	ND	ug/m3	0.4	9 1.9		06/09/19 21:21	75-01-4	
m&p-Xylene	20.0	ug/m3	3	4 1.9		06/09/19 21:21	179601-23-1	
o-Xylene	7.3	ug/m3	1	7 1.9		06/09/19 21:21	95-47-6	
Sample: BC-SG-FD1	Lab ID: 104	77550002	Collected: 05/3	1/19 00:0	0 Received: ()6/04/19 11:50 N	fatrix: Air	
Parameters	Results	Units	Report Limi	t DF	Prepared	Analvzed	CAS No.	Qual
		and TO 15						
		100:10-15						
Acetone	27.8	ug/m3	4	6 1.9		06/09/19 21:50	67-64-1	
Benzene	14.4	ug/m3	0.6	2 1.9		06/09/19 21:50	71-43-2	
Benzyl chloride	ND	ug/m3	5	0 1.9		06/09/19 21:50	100-44-7	
Bromodichloromethane	ND	ug/m3	2	6 1.9		06/09/19 21:50	75-27-4	
Bromotorm	ND	ug/m3	1	0 1.9		06/09/19 21:50	75-25-2	
Bromomethane	ND	ug/m3	1	5 1.9		06/09/19 21:50	74-83-9	
1,3-Butadiene	ND	ug/m3	0.8	6 1.9		06/09/19 21:50	106-99-0	
2-Butanone (MEK)		ug/m3	5	1.9		06/09/19 21:50	78-93-3	
Carbon disulfide	14.5	ug/m3	1	2 1.9		06/09/19 21:50	75-15-0	
Chlorobonzono		ug/m2	2	4 1.9 0 1.0		06/09/19 21:50	109 00 7	
Chloroothono		ug/m2	1	0 1.9		06/09/19 21:50	75 00 2	
Chloroform	12.0	ug/m2		1.9		06/09/19 21:50	73-00-3	
Chloromothana	12.9	ug/m2	0.8	4 1.9		06/09/19 21:50	74 97 2	
Cyclobexano		ug/m2	0.0	2 10		06/09/19 21:50	14-07-3	
Dibromochloromethane		ug/m3	3	3 1.0		06/09/19 21:50	124-48-1	
1 2-Dibromoethane (EDB)		ug/m3	1	5 1.0		06/09/19 21:50	124-40-1	
1.2-Dichlorobenzene		ug/m3	2	3 1.0		06/09/19 21:50	95-50-1	
1 3-Dichlorobenzene	3.8	ug/m3	2	3 10		06/09/19 21:50	541-73-1	
1 4-Dichlorobenzene	5.0 ND	ug/m3	5	8 19		06/09/19 21:50	106-46-7	
Dichlorodifluoromethane	27	ug/m3	1	9 1 9		06/09/19 21:50	75-71-8	
1.1-Dichloroethane		ua/m3	1	6 1 9		06/09/19 21:50	75-34-3	
1 2-Dichloroethane	ND	ug/m3	0.7	8 19		06/09/19 21:50	107-06-2	
1.1-Dichloroethene	ND	ua/m3	1	5 19		06/09/19 21:50	75-35-4	
cis-1.2-Dichloroethene	ND	ua/m3	1	5 1.9		06/09/19 21:50	156-59-2	
trans-1,2-Dichloroethene	ND	ug/m3	1	.5 1.9		06/09/19 21:50	156-60-5	

ANALYTICAL RESULTS

Project: 19716-10 Butler

Pace Project No.: 10477550

Sample: BC-SG-FD1	Lab ID: 104	Lab ID: 10477550002		9 00:00	Received: 00			
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Mether	nod: TO-15						
1,2-Dichloropropane	ND	ug/m3	1.8	1.9		06/09/19 21:50	78-87-5	
cis-1,3-Dichloropropene	ND	ug/m3	1.8	1.9		06/09/19 21:50	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/m3	1.8	1.9		06/09/19 21:50	10061-02-6	
Dichlorotetrafluoroethane	ND	ug/m3	2.7	1.9		06/09/19 21:50	76-14-2	
Ethanol	118	ug/m3	3.6	1.9		06/09/19 21:50	64-17-5	
Ethyl acetate	ND	ug/m3	1.4	1.9		06/09/19 21:50	141-78-6	
Ethylbenzene	9.9	ug/m3	1.7	1.9		06/09/19 21:50	100-41-4	
4-Ethyltoluene	ND	ug/m3	4.8	1.9		06/09/19 21:50	622-96-8	
n-Heptane	629	ug/m3	47.5	57		06/10/19 14:54	142-82-5	
Hexachloro-1,3-butadiene	ND	ug/m3	10.3	1.9		06/09/19 21:50	87-68-3	
n-Hexane	1230	ug/m3	40.8	57		06/10/19 14:54	110-54-3	
2-Hexanone	ND	ug/m3	7.9	1.9		06/09/19 21:50	591-78-6	
Methylene Chloride	29.3	ug/m3	6.7	1.9		06/09/19 21:50	75-09-2	
4-Methyl-2-pentanone (MIBK)	15.2	ug/m3	7.9	1.9		06/09/19 21:50	108-10-1	
Methyl-tert-butyl ether	ND	ug/m3	7.0	1.9		06/09/19 21:50	1634-04-4	
Naphthalene	ND	ug/m3	5.1	1.9		06/09/19 21:50	91-20-3	
2-Propanol	9.3	ug/m3	4.8	1.9		06/09/19 21:50	67-63-0	
Propylene	498	ug/m3	20.0	57		06/10/19 14:54	115-07-1	
Styrene	3.3	ug/m3	1.6	1.9		06/09/19 21:50	100-42-5	
1,1,2,2-Tetrachloroethane	ND	ug/m3	1.3	1.9		06/09/19 21:50	79-34-5	
Tetrachloroethene	70.1	ug/m3	1.3	1.9		06/09/19 21:50	127-18-4	
Tetrahydrofuran	23.0	ug/m3	1.1	1.9		06/09/19 21:50	109-99-9	
Toluene	41.3	ug/m3	1.5	1.9		06/09/19 21:50	108-88-3	
1,2,4-Trichlorobenzene	ND	ug/m3	14.3	1.9		06/09/19 21:50	120-82-1	
1,1,1-Trichloroethane	ND	ug/m3	2.1	1.9		06/09/19 21:50	71-55-6	
1,1,2-Trichloroethane	2.1	ug/m3	1.1	1.9		06/09/19 21:50	79-00-5	
Trichloroethene	ND	ug/m3	1.0	1.9		06/09/19 21:50	79-01-6	
Trichlorofluoromethane	2.3	ug/m3	2.2	1.9		06/09/19 21:50	75-69-4	
1,1,2-Trichlorotrifluoroethane	ND	ug/m3	3.0	1.9		06/09/19 21:50	76-13-1	
1,2,4-Trimethylbenzene	5.5	ug/m3	1.9	1.9		06/09/19 21:50	95-63-6	
1,3,5-Trimethylbenzene	ND	ug/m3	1.9	1.9		06/09/19 21:50	108-67-8	
Vinyl acetate	ND	ug/m3	1.4	1.9		06/09/19 21:50	108-05-4	
Vinyl chloride	ND	ug/m3	0.49	1.9		06/09/19 21:50	75-01-4	
m&p-Xylene	19.2	ug/m3	3.4	1.9		06/09/19 21:50	179601-23-1	
o-Xylene	7.3	ug/m3	1.7	1.9		06/09/19 21:50	95-47-6	

REPORT OF LABORATORY ANALYSIS

Project: 19716-10 Butler

Pace Project No.: 10477550

QC Batch:

QC Batch Method:

.

611527

TO-15

Analysis Method: Analysis Description:

Matrix: Air

t: TO-15 otion: TO15 MSV AIR Low Level

Associated Lab Samples: 10477550001, 10477550002

METHOD BLANK: 3304400

Associated Lab Samples: 10477550001, 10477550002

Associated Lab Samples.	10477550001, 10477550002				
_		Blank	Reporting		• •••
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND	0.56	06/09/19 10:57	
1,1,2,2-Tetrachloroethane	ug/m3	ND	0.35	06/09/19 10:57	
1,1,2-Trichloroethane	ug/m3	ND	0.28	06/09/19 10:57	
1,1,2-Trichlorotrifluoroethane	ug/m3	ND	0.78	06/09/19 10:57	
1,1-Dichloroethane	ug/m3	ND	0.41	06/09/19 10:57	
1,1-Dichloroethene	ug/m3	ND	0.40	06/09/19 10:57	
1,2,4-Trichlorobenzene	ug/m3	ND	3.8	06/09/19 10:57	
1,2,4-Trimethylbenzene	ug/m3	ND	0.50	06/09/19 10:57	
1,2-Dibromoethane (EDB)	ug/m3	ND	0.39	06/09/19 10:57	
1,2-Dichlorobenzene	ug/m3	ND	0.61	06/09/19 10:57	
1,2-Dichloroethane	ug/m3	ND	0.21	06/09/19 10:57	
1,2-Dichloropropane	ug/m3	ND	0.47	06/09/19 10:57	
1,3,5-Trimethylbenzene	ug/m3	ND	0.50	06/09/19 10:57	
1,3-Butadiene	ug/m3	ND	0.22	06/09/19 10:57	
1,3-Dichlorobenzene	ug/m3	ND	0.61	06/09/19 10:57	
1,4-Dichlorobenzene	ug/m3	ND	1.5	06/09/19 10:57	
2-Butanone (MEK)	ug/m3	ND	1.5	06/09/19 10:57	
2-Hexanone	ug/m3	ND	2.1	06/09/19 10:57	
2-Propanol	ug/m3	ND	1.2	06/09/19 10:57	
4-Ethyltoluene	ug/m3	ND	1.2	06/09/19 10:57	
4-Methyl-2-pentanone (MIBK)) ug/m3	ND	2.1	06/09/19 10:57	
Acetone	ug/m3	ND	1.2	06/09/19 10:57	
Benzene	ug/m3	ND	0.16	06/09/19 10:57	
Benzyl chloride	ug/m3	ND	1.3	06/09/19 10:57	
Bromodichloromethane	ug/m3	ND	0.68	06/09/19 10:57	
Bromoform	ug/m3	ND	2.6	06/09/19 10:57	
Bromomethane	ug/m3	ND	0.39	06/09/19 10:57	
Carbon disulfide	ug/m3	ND	0.32	06/09/19 10:57	
Carbon tetrachloride	ug/m3	ND	0.64	06/09/19 10:57	
Chlorobenzene	ug/m3	ND	0.47	06/09/19 10:57	
Chloroethane	ug/m3	ND	0.27	06/09/19 10:57	
Chloroform	ug/m3	ND	0.25	06/09/19 10:57	
Chloromethane	ug/m3	ND	0.21	06/09/19 10:57	
cis-1,2-Dichloroethene	ug/m3	ND	0.40	06/09/19 10:57	
cis-1,3-Dichloropropene	ug/m3	ND	0.46	06/09/19 10:57	
Cyclohexane	ug/m3	ND	0.88	06/09/19 10:57	
Dibromochloromethane	ug/m3	ND	0.86	06/09/19 10:57	
Dichlorodifluoromethane	ug/m3	ND	0.50	06/09/19 10:57	
Dichlorotetrafluoroethane	ug/m3	ND	0.71	06/09/19 10:57	
Ethanol	ug/m3	ND	0.96	06/09/19 10:57	
Ethyl acetate	ug/m3	ND	0.37	06/09/19 10:57	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

 Project:
 19716-10 Butler

 Pace Project No.:
 10477550

METHOD BLANK: 3304400		Matrix:	Air		
Associated Lab Samples: 104	477550001, 10477550002				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Ethylbenzene	ug/m3	ND	0.44	06/09/19 10:57	
Hexachloro-1,3-butadiene	ug/m3	ND	2.7	06/09/19 10:57	
m&p-Xylene	ug/m3	ND	0.88	06/09/19 10:57	
Methyl-tert-butyl ether	ug/m3	ND	1.8	06/09/19 10:57	
Methylene Chloride	ug/m3	ND	1.8	06/09/19 10:57	
n-Heptane	ug/m3	ND	0.42	06/09/19 10:57	
n-Hexane	ug/m3	ND	0.36	06/09/19 10:57	
Naphthalene	ug/m3	ND	1.3	06/09/19 10:57	
o-Xylene	ug/m3	ND	0.44	06/09/19 10:57	
Propylene	ug/m3	ND	0.18	06/09/19 10:57	
Styrene	ug/m3	ND	0.43	06/09/19 10:57	
Tetrachloroethene	ug/m3	ND	0.34	06/09/19 10:57	
Tetrahydrofuran	ug/m3	ND	0.30	06/09/19 10:57	
Toluene	ug/m3	ND	0.38	06/09/19 10:57	
trans-1,2-Dichloroethene	ug/m3	ND	0.40	06/09/19 10:57	
trans-1,3-Dichloropropene	ug/m3	ND	0.46	06/09/19 10:57	
Trichloroethene	ug/m3	ND	0.27	06/09/19 10:57	
Trichlorofluoromethane	ug/m3	ND	0.57	06/09/19 10:57	
Vinyl acetate	ug/m3	ND	0.36	06/09/19 10:57	
Vinyl chloride	ug/m3	ND	0.13	06/09/19 10:57	

LABORATORY CONTROL SAMPLE: 3304401

_		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/m3	55.5	64.5	116	70-130	
1,1,2,2-Tetrachloroethane	ug/m3	69.8	85.8	123	70-132	
1,1,2-Trichloroethane	ug/m3	55.5	65.8	119	70-130	
1,1,2-Trichlorotrifluoroethane	ug/m3	77.9	91.4	117	70-130	
1,1-Dichloroethane	ug/m3	41.1	49.8	121	70-130	
1,1-Dichloroethene	ug/m3	40.3	48.9	121	70-130	
1,2,4-Trichlorobenzene	ug/m3	75.4	93.7	124	56-130	
1,2,4-Trimethylbenzene	ug/m3	50	63.0	126	70-134	
1,2-Dibromoethane (EDB)	ug/m3	78.1	96.7	124	70-130	
1,2-Dichlorobenzene	ug/m3	61.1	75.2	123	70-132	
1,2-Dichloroethane	ug/m3	41.1	45.2	110	70-130	
1,2-Dichloropropane	ug/m3	47	55.9	119	70-130	
1,3,5-Trimethylbenzene	ug/m3	50	62.5	125	70-132	
1,3-Butadiene	ug/m3	22.5	28.3	126	65-130	
1,3-Dichlorobenzene	ug/m3	61.1	78.0	128	70-137	
1,4-Dichlorobenzene	ug/m3	61.1	76.9	126	70-134	
2-Butanone (MEK)	ug/m3	30	38.4	128	70-130	
2-Hexanone	ug/m3	41.6	50.0	120	70-135	
2-Propanol	ug/m3	125	156	125	68-130	
4-Ethyltoluene	ug/m3	50	61.3	123	70-138	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 19716-10 Butler

Pace Project No.: 10477550

LABORATORY CONTROL SAMPLE:	3304401					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
4-Methyl-2-pentanone (MIBK)	ug/m3	41.6	50.4	121	70-131	
Acetone	ug/m3	121	134	111	67-130	
Benzene	ug/m3	32.5	38.3	118	70-130	
Benzyl chloride	ug/m3	52.6	64.8	123	70-130	
Bromodichloromethane	ug/m3	68.1	81.1	119	70-130	
Bromoform	ug/m3	105	129	123	70-132	
Bromomethane	ug/m3	39.5	46.9	119	69-130	
Carbon disulfide	ug/m3	31.6	35.3	111	56-137	
Carbon tetrachloride	ug/m3	64	79.9	125	66-131	
Chlorobenzene	ug/m3	46.8	56.8	121	70-130	
Chloroethane	ug/m3	26.8	31.8	118	70-130	
Chloroform	ug/m3	49.6	58.6	118	70-130	
Chloromethane	ug/m3	21	24.7	117	66-130	
cis-1,2-Dichloroethene	ug/m3	40.3	47.4	118	70-130	
cis-1,3-Dichloropropene	ug/m3	46.1	59.3	128	70-133	
Cyclohexane	ug/m3	35	43.3	124	68-132	
Dibromochloromethane	ug/m3	86.6	122	141	70-130	CH,L3
Dichlorodifluoromethane	ug/m3	50.3	58.1	116	70-130	
Dichlorotetrafluoroethane	ug/m3	71	79.8	112	70-130	
Ethanol	ug/m3	95.8	112	116	68-133	
Ethyl acetate	ug/m3	36.6	43.5	119	69-130	
Ethylbenzene	ug/m3	44.1	54.5	123	67-131	
Hexachloro-1,3-butadiene	ug/m3	108	134	123	66-137	
m&p-Xylene	ug/m3	88.3	109	123	70-132	
Methyl-tert-butyl ether	ug/m3	36.6	43.2	118	70-130	
Methylene Chloride	ug/m3	177	196	111	65-130	
n-Heptane	ug/m3	41.7	47.0	113	65-130	
n-Hexane	ug/m3	35.8	41.9	117	66-130	
Naphthalene	ug/m3	53.3	63.8	120	56-130	
o-Xylene	ug/m3	44.1	53.4	121	70-130	
Propylene	ug/m3	17.5	20.6	118	67-130	
Styrene	ug/m3	43.3	54.5	126	69-136	
Tetrachloroethene	ug/m3	68.9	78.5	114	70-130	
Tetrahydrofuran	ug/m3	30	38.1	127	68-131	
Toluene	ug/m3	38.3	45.0	118	70-130	
trans-1,2-Dichloroethene	ug/m3	40.3	48.4	120	70-130	
trans-1,3-Dichloropropene	ug/m3	46.1	60.3	131	70-134	СН
Trichloroethene	ug/m3	54.6	60.4	111	70-130	
Trichlorofluoromethane	ug/m3	57.1	65.5	115	65-130	
Vinyl acetate	ug/m3	35.8	45.0	126	61-133	
Vinyl chloride	ug/m3	26	31.9	123	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 19716-10 Butler

Pace Project No.: 10477550

CAMILLE DOI LICATE. 5505174	SAMPLE	DUPLI	CATE:	3305174
-----------------------------	--------	-------	-------	---------

		10477556001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD Qualifiers	
1.1.1-Trichloroethane	 ua/m3		ND	· · · · · · · · · · · · · · · · · · ·	25	
1.1.2.2-Tetrachloroethane	ug/m3	ND	ND		25	
1.1.2-Trichloroethane	ug/m3	ND	ND		25	
1.1.2-Trichlorotrifluoroethane	ug/m3	ND	ND		25	
1.1-Dichloroethane	ug/m3	ND	ND		25	
1.1-Dichloroethene	ug/m3	ND	ND		25	
1.2.4-Trichlorobenzene	ug/m3	ND	ND		25	
1.2.4-Trimethylbenzene	ug/m3	2.4	2.5	3	25	
1 2-Dibromoethane (EDB)	ug/m3	ND		Ū.	25	
1.2-Dichlorobenzene	ug/m3	ND	ND		25	
1.2-Dichloroethane	ug/m3	ND	ND		25	
1 2-Dichloropropane	ug/m3	ND	ND		25	
1 3 5-Trimethylbenzene	ug/m3	ND	71.1		25	
1 3-Butadiene	ug/m3	ND			25	
1 3-Dichlorobenzene	ug/m3	ND	ND		25	
1 4-Dichlorobenzene	ug/m3	ND	ND		25	
2-Butanone (MEK)	ug/m3	ND	1.4.1		25	
2-Hevenone	ug/m3		ND		25	
2 Propagal	ug/m3	1550	1900	15	25	
4 Ethyltoluopo	ug/m3			15	25 L	
4 Mothyl 2 poptopopo (MIRK)	ug/m3		121		25	
	ug/m3	165	1.55	2	25	
Renzene	ug/m3	105	100	3	25	
Denzene Denzul ebleride	ug/m3	2.0	2.5	1	25	
Denzyl chionae	ug/m3				25	
Bromotorm	ug/m3				25	
	ug/m3				25	
	ug/m3		.74J		25	
Carbon disulfide	ug/m3		ND		25	
Carbon tetrachioride	ug/m3		ND		25	
Chlorobenzene	ug/m3		ND		25	
Chloroethane	ug/m3	ND	ND		25	
Chloroform	ug/m3	ND	ND		25	
Chloromethane	ug/m3	1.4	1.5	10	25	
cis-1,2-Dichloroethene	ug/m3	ND	ND		25	
cis-1,3-Dichloropropene	ug/m3	ND	ND		25	
Cyclohexane	ug/m3	24.0	23.5	2	25	
Dibromochloromethane	ug/m3	ND	ND		25	
Dichlorodifluoromethane	ug/m3	3.0	3.0	1	25	
Dichlorotetrafluoroethane	ug/m3	ND	ND	_	25	
Ethanol	ug/m3	142	156	9	25	
Ethyl acetate	ug/m3	ND	ND		25	
Ethylbenzene	ug/m3	5.8	5.8	1	25	
Hexachloro-1,3-butadiene	ug/m3	ND	ND		25	
m&p-Xylene	ug/m3	25.3	25.5	1	25	
Methyl-tert-butyl ether	ug/m3	ND	ND		25	
Methylene Chloride	ug/m3	10.0	10	0	25	
n-Heptane	ug/m3	1.4	1.6	8	25	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

 Project:
 19716-10 Butler

 Pace Project No.:
 10477550

SAMPLE DUPLICATE: 3305174

		10477556001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
n-Hexane	ug/m3	2.6	2.7	1	25	
Naphthalene	ug/m3	ND	ND		25	
o-Xylene	ug/m3	8.3	7.9	6	25	
Propylene	ug/m3	ND	ND		25	
Styrene	ug/m3	3.5	3.5	0	25	
Tetrachloroethene	ug/m3	77.4	75.2	3	25	
Tetrahydrofuran	ug/m3	1.5	1.2	21	25	
Toluene	ug/m3	14.4	14.2	1	25	
trans-1,2-Dichloroethene	ug/m3	ND	ND		25	
trans-1,3-Dichloropropene	ug/m3	ND	ND		25	
Trichloroethene	ug/m3	ND	ND		25	
Trichlorofluoromethane	ug/m3	2.0	2.2	9	25	
Vinyl acetate	ug/m3	ND	ND		25	
Vinyl chloride	ug/m3	ND	ND		25	

SAMPLE DUPLICATE: 3305175

		10477557001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,1,1-Trichloroethane	ug/m3	<0.54	ND		25	
1,1,2,2-Tetrachloroethane	ug/m3	<0.51	ND		25	
1,1,2-Trichloroethane	ug/m3	<0.44	ND		25	
1,1,2-Trichlorotrifluoroethane	ug/m3	<0.99	ND		25	
1,1-Dichloroethane	ug/m3	<0.39	ND		25	
1,1-Dichloroethene	ug/m3	<0.48	ND		25	
1,2,4-Trichlorobenzene	ug/m3	<6.5	ND		25	
1,2,4-Trimethylbenzene	ug/m3	38.4	35.7	7	25	
1,2-Dibromoethane (EDB)	ug/m3	<0.64	ND		25	
1,2-Dichlorobenzene	ug/m3	<0.87	ND		25	
1,2-Dichloroethane	ug/m3	<0.26	ND		25	
1,2-Dichloropropane	ug/m3	<0.40	ND		25	
1,3,5-Trimethylbenzene	ug/m3	10.2	9.4	9	25	
1,3-Butadiene	ug/m3	<0.22	ND		25	
1,3-Dichlorobenzene	ug/m3	<1.0	ND		25	
1,4-Dichlorobenzene	ug/m3	<1.8	ND		25	
2-Butanone (MEK)	ug/m3	16.2	14.4	12	25	
2-Hexanone	ug/m3	<1.3	ND		25	
2-Propanol	ug/m3	10.3	9.3	10	25	
4-Ethyltoluene	ug/m3	13.9	13.3	4	25	
4-Methyl-2-pentanone (MIBK)	ug/m3	2.0J	2.5J		25	
Acetone	ug/m3	639	621	3	25	
Benzene	ug/m3	12.7	12.2	4	25	
Benzyl chloride	ug/m3	<2.1	ND		25	
Bromodichloromethane	ug/m3	<0.64	ND		25	
Bromoform	ug/m3	<2.5	ND		25	
Bromomethane	ug/m3	<0.40	ND		25	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 19716-10 Butler

Pace Project No.: 10477550

SAMPLE DUPLICATE: 3305175

		10477557001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Carbon disulfide	ug/m3	5.7	5.2	8	25	
Carbon tetrachloride	ug/m3	<0.75	ND		25	
Chlorobenzene	ug/m3	2.3	2.2	9	25	
Chloroethane	ug/m3	<0.46	ND		25	
Chloroform	ug/m3	< 0.34	ND		25	
Chloromethane	ug/m3	1.2	1.1	5	25	
cis-1,2-Dichloroethene	ug/m3	<0.38	ND		25	
cis-1,3-Dichloropropene	ug/m3	<0.53	ND		25	
Cyclohexane	ug/m3	<0.62	27.5		25	
Dibromochloromethane	ug/m3	<1.3	ND		25	
Dichlorodifluoromethane	ug/m3	2.1	2.3	8	25	
Dichlorotetrafluoroethane	ug/m3	<0.76	ND		25	
Ethanol	ug/m3	32.0	30.9	3	25	
Ethyl acetate	ug/m3	<0.33	ND		25	
Ethylbenzene	ug/m3	34.7	33.6	3	25	
Hexachloro-1,3-butadiene	ug/m3	<3.4	ND		25	
m&p-Xylene	ug/m3	151	143	6	25	
Methyl-tert-butyl ether	ug/m3	<1.2	ND		25	
Methylene Chloride	ug/m3	80.8	87.6	8	25	
n-Heptane	ug/m3	47.1	42.9	9	25	
n-Hexane	ug/m3	21.3	22.3	4	25	
Naphthalene	ug/m3	6.5	6.0	7	25	
o-Xylene	ug/m3	50.8	48.6	5	25	
Propylene	ug/m3	90.5	82.4	9	25	
Styrene	ug/m3	13.0	12.4	5	25	
Tetrachloroethene	ug/m3	1.6	1.5	4	25	
Tetrahydrofuran	ug/m3	<0.46	ND		25	
Toluene	ug/m3	186	176	5	25	
trans-1,2-Dichloroethene	ug/m3	<0.50	ND		25	
trans-1,3-Dichloropropene	ug/m3	<0.77	ND		25	
Trichloroethene	ug/m3	<0.45	ND		25	
Trichlorofluoromethane	ug/m3	0.74J	1.3J		25	
Vinyl acetate	ug/m3	<0.47	ND		25	
Vinyl chloride	ug/m3	<0.22	ND		25	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

QUALIFIERS

Project: 19716-10 Butler

Pace Project No.: 10477550

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- CH The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.
- E Analyte concentration exceeded the calibration range. The reported result is estimated.
- L3 Analyte recovery in the laboratory control sample (LCS) exceeded QC limits. Analyte presence below reporting limits in associated samples.

REPORT OF LABORATORY ANALYSIS

10477550002

BC-SG-FD1

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Pace Project No.:	10477550				Americal
Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10477550001	BC-SG2	 TO-15	611527		

TO-15

611527

REPORT OF LABORATORY ANALYSIS

Pace Analytical*

AIR: CHAIN-OF-CUSTODY

The Chain-of-Custody is a LEGAL DOCUMENT. All minimum

Section A Required Client	Information:	Section B Required Project Info	rmation:		Section Invoice	n C Information	:									39	38	8	Page:	of	
Company: JwM	Consulting Grouf	Report To: Ma	rk An	Person	Attentio	n:			SA	ME						Pro	gram				
Address:	Production Rd.	Copy To:			Compar	ny Name:								f u	ат ∫ т	Superfun	ar	Emission	s 🗂 Cle	an Air Act	 t
For+L	Jane IN 41908				Address	5:								j‴ volu	intary Cl	ean Up	Гогу	Clean T	* RCRA J	• Other	
Email To:	Anderson	Purchase Order No.:			Pace Q	uote Refere	ence:					·····				an an a'r arr		/	Reporting Un	<u>ts</u>	
Phone: 20497910	an Fax:	Project Name:	iu + e		Pace Pr	oject Mana	ger/Sales Ro	ep.						Sampli	on or ing by S	itate	TΛ	<u> </u>	Ug/m ^s mg PPBV PF	/m · MV	
Requested Due	Date/TAT:	Project Number:	9716-	10	Pace Pr	ofile#;	·	3	68	24		• •		Report	Level	.	11.	IV.	Other		
"Sections and the section of the sec	ON D Required Client Information AIR SAMPLE ID Sample IDs MUST BE UNIQUE	Velid Media Codes MEDIA CODE Teclar Bag TB 1 Liter Summa Can 1LC 6 Liter Summa Can 6LC Low Volume Puff LVP High Volume Puff HVP	CODE CODE ading (Client only)		COLL	ECTED		ater Pressure il Fleld - in Hg)	ster Pressure I Field - in Hg)	Sul C Nur	mma an nber	Fi Coi Nui	ow ntrol	Method	Constant	entre le	The second second	MILINI CHICK	tile former	n an the second s	
ITEM		Olher PM10	MEDIA PID Re	DATE	TIME			Ceni: (Initia	Canis (Fina					20/20				18/38/ 18/28/	/ Par	a lah in	
1	BC-562		14			05/31/1	9 10:35	29	2	29	34	22	07			X	<u>~~~</u>	/~/ C	201	e Lab ID	
2	BC-56-FDI		JLC			05/3/	9	29	2	24	60	22	07		1	Ý		6	207.		
3																					
4			ļ		:								1								
5	1101	-					j					i									AU
ô							1											1			
- 7							1						İ				•				
8															}						
9	n in an				 												•				
10							1														
11	11 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -	· · · · · · · · · · · · · · · · · · ·			4	<u> </u>					-		- <u> </u>		_						
12	6										· · · · · · · · · · · · · · · · · · ·							<u> </u>			· _ ·
Comments :		F	ELINQUISI	HED BY / A:	FFILIAT	ION	DATE	TIM	ιE	ACCEF	: PTED BY	// AFFIL	IATION	DA	TE	TI№	E	I SAMI	PLE CON	DITIONS	3
					Tur	,	05/2/19	15	30	Fede	c#44	4599	1227	×					N. I		<u>s</u>
			62			r	924		10			Par		Oblu	4/19	115	0				R.
										7	<u> </u>	210		1	+	<u></u>			z i	<	2 z
		F												1							≻ z
		L				SAMOLE		in elou			···								× - 5	÷ គ	۲. ۲
Ų.						PRINT Name	of SAMPLER:			<u>,</u> ('n°C	ed or ody	Cook	s Inta
	ORIGI	NAL				SIGNATURE	of SAMPLER;	_A	NOIL	<u> </u>	JN:rr	IDATE Sign	ed (MM / DE	<u></u>	7 -			emp	lo Cust	aled .	elder
10								Ĺ	T				0	731	17			۳	<u>e</u>	ທັ ເ	s.
5			÷ .					_													

1700 Elm Street SE, Suite 200, Minneapolis, MN 55414 Air Technical Phone: 612.607.6386

Ľ,

P) ace Analytica	al [®]	Air San	Document Nam nple Condition Up Document No.	e: Ion Receipt :		Document Revised: 31Jan2O19 Page 1 of 1 Issuing Authority:					
Air Sample Condition	Client Name	 ;;		F-MN-A-106-rev Pro	<u>₩0</u> #)#:10477550						
Upon Receipt Courier: [[Tracking Number:]Fed Ex]Pace 4545 99/	UPS SpeeDee 7 3 7 3	USPS Comr	Client	t eption	PM: CT1 CLIENT:	IWM CON	Due Date: SULT	06/11/1	9		
Custody Seal on Coole	r/Box Present	? 🗌 Yes	No	Seals Intact?	□Yes	No						
Packing Material: 🗌	Bubble Wrap	Bubble I	Bags 📈 Foa	am 🗌 None	Tin	Can 🗌 Othe	r:	Temp	Blank rec:]Yes 🗹 No		
Temp. (TO17 and TO13 sa	mples only) (°C));	Corrected Te	mp (°C):	-		Thermor	eter Used:	☐G87A9170 ☐G87A9155	600254 100842		
Temp should be above fre	ezing to 6°C Blue □We	Correction Fac	tor:		Da	te & Initials of P	erson Examinir	ng Contents: _	061041	190		
								Comments:				
Chain of Custody Present	,		Z	Yes No		1.		eominenta.	-			
Chain of Custody Filled Ou				Yes No		2.			-			
Chain of Custody Relinqui	shed?			es 🔲 No		3.						
Sampler Name and/or Sig	nature on COC	?		es 🔲 No	□n/a	4.						
Samples Arrived within Ho	old Time?					5.						
Short Hold Time Analysis	<u>(<72 hr)?</u>			Yes 🗖 🗤 🗸		6.						
Rush Turn Around Time R	equested?	•	<u>[</u>]	Yes 🔽 No		7.						
Sufficient Volume?			Z	Yes <u>No</u>		8.						
Correct Containers Used?			Ź	Yes 🗌 No		9.						
-Pace Containers Used	9			Yes 🗌 No								
Containers Intact? Media: Air Can	Airbag	Filter	тот	Yes No Passive		10. 11. Ind	ividually Certif	ied Cans Y	N (list whic	h samples)		
Is sufficient information a	vailable to reco	oncile		6		40			-			
Do cans need to be pressu DO NOT PRESSURIZE)?	rized (3C and A	ASTM 1946	¥			12.				,		
Samplas Pasaivad: 17			/		Pressur	e Gauge # 🔲	10AIR34 E	10AIR35				
Samples Received: ///							<u>10/1110 - 1</u>					
	Can	Flow	Initial	Final	+			Flow	Initial	Final		
Sample Number	Can ID	Controller	Pressure	Pressure	Sam	ple Number	Can iD	Controller	Pressure	Pressure		
<u>SG 2</u>	2934	2207	-3.5	+10.0			1					
56-FD	2460											
							<u> </u>					
		•	···									
ha han an					+	<u>-</u>						
CLIENT NOTIFICATION/ Person Cor	RESOLUTION	<u></u>		<u> </u>	i Dat	e/Time:	Field Dat	a Required?	Yes N	0		
Comments/Res	olution:								·			
<u> </u>												
Project Manager Review	Can	True	\downarrow			Data: 6	5/4/19					
i oject manager nevier	away	me vine	v R==		<u></u>			b BRULE -				

 Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers) -

.

SDG	Sample ID	Can No.	Pre (in Hg)	Post (in Hg)	Canister size
10477550	10477550001	2934	-30	-3.5	1L
10477550	10477550002	2460	-30	-3.5	1L

APPENDIX N

WELLHEAD PROTECTION AREA AND IDNR WATER WELL DOCUMENTATION

IDEM Wellhead Proximity

Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thailand),

Indiana DNR Water Well Viewer

Record of Water Well

Indiana Department of Natural Resources

Reference Number 107360	Driving directions to W OF BUTLER ON S OLD HSE ON LOT	well SR 6 3RD HSF	E ON R SIDE NEW	LOCATION	I MOVED	Date completed Sep 03, 1962
Owner-Contractor Owner Driller Operator	Name MR LARROWE WILFRED SCHIFFLI WILFRED SCHIFFLI	Address RRT BUTI RRT 1 BO License: nu	LER X 34 WATERLOO ull	Telep	hone	
Construction Details						
Well	Use: Home Depth: 52.0	Drilling Pump so	method: Jet etting depth:		Pump typ Water qu	e: ality:
Casing Screen	Length: 48.0 Length: 2.5	Materia Materia	մ։ մ։		Diameter: Diameter:	: 2.0 : 1.0 Slot size: 40
Well Capacity Test	Type of test: Drawdown: 0.0 ft.	T S	Cest rate: 12.0 gpm Static water level: 1	for 2.0 hrs. 10.0 ft.	BailTes Bailer	st rate: gpm for hrs. Drawdown ft.
Grouting Information	Material: Installation Method:			Depth: from Number of l	to bags used:	
Well Abandonment	Sealing material: Installation Method:					
Administrative	County: DEKALB			Town	ship: 34N l	Range: 14E
	Section: SE of the SE	of the SE of S	Section 2		- ,]	Topo map: BUTLER EAST, IN-OH
	Grant Number: Field located by: KEP Courthouse location I Location accepted w/o Subdivision name:	PPEL by: o verification	by:	on: Ju on: on: Lot nu	1 01, 1965 umber:	
	Ft W of EL: 150.0	F	Ft N of SL: 50.0	Ft E a	f WL:	Ft S of NL:
	Ground elevation: 86	5.0 I	Depth to bedrock:	Bedro elevat	ck ion:	Aquifer elevation: 813.0
	UTM Easting: 677812	2.0		UTM	Northing:	4588455.0
Well Log	Тор В	ottom	Formation			
	0.0 10	0.0	YEL CLAY			
	10.0 48	8.0	GRAY CLAY	·		
	48.0 52	2.0	SAND & GR	AV & WATE	R	
Comments						

Reference Number 107415	Driving directions to v AT UTILITY BLDG S	vell Side Just W of S	R 1		Date completed		
Owner-Contractor Owner	Name BUTLER WATER W	ORKS	Address BUTLER	Telephone			
Construction Details Well Casing Screen	Use: Public Supply Depth: 147.0 Length: Length:	Drilling methoo Pump setting d Material: Material:	l: epth:	Pump ty Water qu Diameter Diameter	pe: 1ality: r: 10.0 r: 10.0 Slot size:		
Well Capacity Test	Type of test: Drawdown: ft.	Test rate Static wa	: 275.0 gpm for ater level: 24.0 f	hrs. BailTe ft. Bailer	est rate: gpm for hrs. Drawdown ft.		
Grouting Information	Material: Installation Method:		Dep Nun	Depth: from to Number of bags used:			
Well Abandonment	Sealing material: Installation Method:		Dep Nun	th: from to nber of bags used:			
Administrative	County: DEKALB Section: NE of the NE of Grant Number:	of the NE of Section	11	Township: 34N	Range: 14E Topo map: BUTLER EAST, IN-OH		
	Field located by: U KE Courthouse location b Location accepted w/o Subdivision name:	EP y: verification by:		on: Jul 09, 1965 on: on: Lot number:			
	Ft W of EL: 300.0 Ground elevation: 865 UTM Easting: 677744.	Ft N of S .0 Depth to .0	SL:) bedrock:	Ft E of WL: Bedrock elevation: UTM Northing	Ft S of NL: 100.0 Aquifer elevation: 720.0 : 4588385.0		
Well Log	Top Bo	ottom Fo	ormation				
Comments	BUTLER 1						

Record of Water Well

Reference Number 107430	Driving direct	tions to well					Date completed Dec 22, 1959
Owner-Contractor Driller Operator	Name WATSON WEL C KIMBLE	L DRILLING	G INC	Address BRYAN, OH License: null	Telepho	ne	
Construction Details Well Casing Screen	Use: Public Su Depth: 144.0 Length: 93.0 Length: 20.0	pply	Drilling metl Pump setting Material: Material:	nod: Other 5 depth:]	Pump ty Water qu Diamete Diamete	pe: uality: r: 26.0 r: 13.5 Slot size: 7
Well Capacity Test	Type of test: Drawdown: 1	7.0 ft.	Test ra Static	ate: 1000.0 gpm fo water level: 21.6	or hrs. ft.	BailTe Bailer	est rate: gpm for hrs. Drawdown ft.
Grouting Information	Material: Installation N	lethod:		Dep Nur	th: from t nber of ba	o n gs used :	:
Well Abandonment	Sealing mater Installation N	ial: lethod:		Dep Nur	th: from t nber of bរ	o igs used :	:
Administrative	County: DEKALB Section: SE of the NE of Section 11			on 11	Townsł	n ip: 34N	Range: 14E Topo map: BUTLER EAST,
	Grant Numbe Field located l Courthouse lo Location acce Subdivision n Ft W of EL: 3	r: oy: KP cation by: pted w/o ver ame: 50.0	ification by: Ft N c	of SL:	on: Jul on: on: Lot nui Ft E of	01, 1965 mber: WL:	IN-OH Ft S of NL: 1000.0
	Ground elevation: 870.0		Depth	Depth to bedrock:		k on: Jorthing	Aquifer elevation: 726.0 : 4588106.0
Well Log	Тор	Botton	n	Formation			
σ	0.0 18.0 38.0 58.0 64.0 88.0 105.0 129.0	18.0 38.0 58.0 64.0 88.0 105.0 129.0 144.0		HARD YELLOW SAND & GRAVE CLAY GRAVEL BLUE CLAY GRAVEL CLAY GRAVEL & SAN	CLAY L D		
Comments	MC WELL #3	& TEST 59/	A				

Reference Number	Driving directions to w	ell				Date completed
107441	450' W OF BROADWA	Y 200' N O	'N OF W WILLOW			Sep 18, 1970
Owner-Contractor Owner Driller	Name City Water Dept Layne Northern C	0	Address BUTLER, IN MISHAWAKA, IN	Telephon	e	
Construction Details Well Casing	Use: Public Supply Depth: 147.0 Length: 88.0	Drilling Pump s Materi	g method: Other setting depth: al:	P W D	ump t ⁄ater o iamet	ype: quality: er: 38.0
Screen	Length: 30.0	Materi	al:	D	iamet	er: 18.0 Slot size: 8
Well Capacity Test	Type of test: Drawdown: 20.0 ft.		Test rate: 1002.0 gpm Static water level: 24	for 28.0 hrs. .0 ft.	Bail Baile	Fest rate: gpm for hrs. e r Drawdown ft.
Grouting Information	Material: Installation Method:		D N	epth: from to umber of bag	gs used	1:
Well Abandonment	Sealing material: Installation Method:		D N	epth: from to umber of bag	gs usee	1:
Administrative	County: DEKALB Section: SE of the NE o	f the NE of	Section 11	Townshi	p: 341	N Range: 14E Topo map: BUTLER EAST, IN-OH
	Grant Number: Field located by: TMB Courthouse location by Location accepted w/o Subdivision name: Ft W of EL: 450.0	y: verification	n by: Ft N of SL:	on: Aug on: on: Lot num Ft E of V	01, 19 ber: VL:	773 Ft S of NL: 1100.0
	Ground elevation: 870.	0	Depth to bedrock:		1:	Aquifer elevation: 723.0
	UTM Easting: 677801.		UTM No	orthin	g: 4588080.0	
Well Log	Top Bot	ttom	Formation			
	0.0 2.0	0	FILL			
	2.0 28.0 31	0	COARSE SAN	D & GR AVFI		
	31.0 57	0	CLAY		_	
	57.0 62	0	COARSE SAN	D & GRAVEI		
	62.0 89.	0	CLAY		-	
	89.0 106	5.0	COARSE SAN	D & GRAVEI		
	106.0 129	9.0	CLAY			
	129.0 147	7.0	COARSE SAN	D & GRAVEI		
	147.0 148	3.0	CLAY			
Comments	WELL IN PUMPHOUS	E W OF W	ATER TOWER PUM	PING TEST E	DATA	ENCLOSED

Record of Water Well

Reference Number 107471	Driving directions to well 300' N OF PENN CENTR BROADWAY N OF CON	I AL RR ON BROADWAY 15 RAIL TRACKS	ST BLDG ON E	SIDE OF Date completed May 28, 1970
Owner-ContractorNameOwnerLAVGDrillerG & DOperatorMAR	e DN COLLINS L WELL DRILLING VIN GILBERT/S LALOUI	Address 248 S BROADWAY BU DE License: null	Teleph JTLER	one
Construction Details Well	Use: Industry Depth: 142.0	Drilling method: Cable To Pump setting depth:	ol Pu W	ump type: /ater quality:
Screen	Length: 15.0	Material: Material:	Di	iameter: 8.0 Slot size: 30+25
Well Capacity Test	Type of test: Drawdown: 24.0 ft.	Test rate: 350.0 gpr Static water level: 2	n for 8.0 hrs. 21.0 ft.	BailTest rate: 45.0 gpm for 5.0 hrs. Bailer Drawdown 0.0 ft.
Grouting Information	Material: Installation Method:		Depth: from to Number of bag	s used:
Well Abandonment	Sealing material: Installation Method:		Depth: from to Number of bag	s used:
Administrative County: DEKALB Section: SW of the NW of the		Tow the NW of Section 12		p: 34N Range: 14E Topo map: BUTLER EAST,
	Crant Number			IN-OH
	Field located by: BEB		on: Oct 2	28. 1987
	Courthouse location by:		on:	
	Location accepted w/o ve	rification by: HCK	on: Jun 0	1, 1970
	Subdivision name:		Lot num	ber:
	Ft W of EL:	Ft N of SL:	Ft E of V 100.0	VL: Ft S of NL: 700.0
	Ground elevation: 870.0	Depth to bedrock:	Bedrock elevation	Aquifer elevation: 728.0
	UTM Easting: 677895.0		UTM No	orthing: 4588220.0
Well Log	Top Botto	m Formation		
	0.0 0.5	BLACK TOP	•	
	0.5 5.0	FILL SAND		
	5.0 57.0	GRAY CLAY	7	
	57.0 95.0	SANDY HAI	RD PAN	
	95.0 104.0	DIRTY SAN	D & GRAV	
	104.0 120.0	GRAY CLAY	' & FINE GRAV	
	120.0 126.0	FINE SAND		
	126.0 142.0	CRS SAND &	& GRAV	
Comments	MC CONTACT MADE W LOCATED ON N SIDE O	// OWNER WELL USED FO F LAUNDRY	OR LAUNDRON	MAT AND CAR WASH WELL

Record of Water Well

Reference Number	Driving directions	to well				Date completed
232269						Nov 24, 1959
Owner-Contractor Owner Driller Operator	Name CITY OF BUTL GRO P REID & WM REID	ER SON	Address BUTLER, IN HOWE, IN License: null	Telepho	ne	
Construction Details Well	Use: Depth: 148.0	Dri Pui	illing method: Jet mp setting depth:		Pump ty Water o	ype: juality:
Casing Screen	Length: Length: 3.0	Ma Ma	terial: terial:		Diamet Diamet	er: 2.0 er: 1.0 Slot size: 60
Well Capacity Test	Type of test: Drawdown: ft.		Test rate: gpm for hrs Static water level: 21	s. .0 ft.	Bail7 Baile	F est rate: gpm for hrs. r Drawdown ft.
Grouting Information	Material: Installation Metho	1:	E N	Depth: fror Number of	n to bags used	l:
Well Abandonment	Sealing material: Installation Metho	d:	I N	Depth: fror Number of	n to bags used	l:
Administrative	County: DEKALB Section: SE of the N	IE of the N	E of Section 11	Tow	nship: 34N	Range: 14E Topo map: BUTLER EAST,
	Grant Number: Field located by: B Courthouse locatio Location accepted Subdivision name: Ft W of FL	EB n by: w/o verific:	ation by: Et N of SI ·	on: (on: on: Lot 1 Ft F	Dct 29, 198 number:	IN-OH 37 Ft S of NL ·
	Ft W of EL: Ground elevation: 875.0		Depth to bedrock:	Bedr Bedr eleva UTN	or w.L. ock ition: 1 Northing	Aquifer elevation:
Well Log	Тор	Bottom	Formation			-
	0.0 18.0 32.0 60.0 65.0 88.0 105.0 130.0	18.0 32.0 60.0 65.0 88.0 105.0 130.0 144.0	CLAY BLUE SAND & GRA CLAY BLUE GRAV & LT G CLAY BLUE GRAV LT GRA CLAY BLUE GRAV LT GRA	VEL LT G RAY AY AY	RAY	
Comments	144.0 MC USE OF WELL	148.0 . TEST	CLAY BLUE			

APPENDIX O

FIELD AUDIT REPORT AND DATA ASSESSMENT REPORT

ONSULTING GROUP) 1510 Production Road | Fort Wayne, IN 46814 | 260.497.9620 office | 260.471.7071 fax

May 29, 2019

Project FW 19-716-10

Mr. Mark Anderson IWM Consulting Group, LLC 1015 Production Road Fort Wayne, IN 46808

> QAPP Field Audit 128(a) Response Program Grant The Butler Company Property 325 South Broadway Street Butler, DeKalb County, Indiana

Dear Mr. Anderson:

On May 20st, 2019, a quality assurance field audit was performed at the above referenced site. This report summarizes the findings of the field audit.

IWM Consulting Group, LLC (IWM Consulting) developed a Quality Assurance Project Plan (QAPP) for the 128(a) Response Program Grant (RPG) dated April 11, 2019. IWM Consulting also developed a Sampling and Analysis Plan (SAP) dated April 16, 2019 for The Butler Company Property located at 325 South Broadway Street, Butler, DeKalb County, Indiana, and a Health and Safety Plan (HASP) dated April 15, 2019. The aforementioned documents were reviewed and provide the basis for the field audit.

Purpose of the Audits

To observe and oversee assessment activities to ensure that sampling methodology, sample preservation methods, and chain-of-custody (COC) procedures are being followed. The field audits are part of the quality control requirements to ensure that the environmental data collected is of the highest standard feasible as appropriate for the intended application. The audits are a means to ensure that the QAPP and the property-specific SAPs are adhered to and that all samples are properly handled and analyzed to satisfy the comparability of field data. The QAPP states that the IWM Consulting QA manager will conduct audits of field activities.

Date and Time Audit Was Performed

Date: May 20, 2019 (Soil Sampling Audit) Time: 10:30 to 12:15

Location/Project of Audit

The Butler Company Property 325 South Broadway Street Butler, DeKalb County, Indiana

IWM Consulting/Contractor Personnel Present On-site During Groundwater Sampling Audit

IWM Consulting: SCS (Drilling): City of Butler: IFA: Mark Anderson, Carolyn Pendrick, Ashley Pepple, Neal Johnson Phillip Weaver, Kameron Cox Steve Bingham (City Planner) Tracey Michael

At the time of the audit, Ms. Pendrick was collecting soil samples utilizing direct-push sampling methods. Field documentation from the aforementioned sampler was also reviewed in the field. The final COC documents were provided for review following the completion of field activities.

Audit Findings

No deficiencies or deviations from the planned sampling program were observed during the audit. No data collection activities were observed during the sampling event that would adversely affect the integrity of the samples collected. Based upon the findings of the field audit and the data derived from the sampling event, the collected data are scientifically defensible, were properly documented, of sufficient quality to meet the project objectives, and are determined to be usable without limitations (subject to QA/QC review of the laboratory results). The field audit checklist form is provided in **Attachment A**.

If you have any questions regarding this summary please feel free to contact me at your convenience.

Sincerely, <u>IWM Consulting Group, LLC</u> *Meal C. Shuson*

Neal C. Johnson

Attachments: Attachment A – QAPP Field Audit Form

Attachment A

QAPP Field Audit Form

Location/Project Audit Was Performed For:

The Butler Company Property, Butler, IN

Soil Sampling Audit

Date & Time Audit Was Performed:

May 20, 2019 from 10:30 to 12:15

IWM/Contractor Personnel Present On-Site:

IWM:Mark Anderson, Carolyn Pendrick, Ashley Pebble, and Neal JohnsonSCS (Drilling):Phillip Weaver, Kameron CoxCity of Butler:Steve Bingham (City Planner)IFA:Tracey Michael

Audit of General Field Methodology	Yes	No	Notes
Were IWM Consulting personnel on-site during sampling activities?			
Do the sampling methods utilized follow those identified in the QAPP/SAP?	\checkmark		
If sampling procedures were modified, were the changes properly documented?			1
Did equipment decontamination procedures follow those identified in the SAP?			
Did sample handling procedures follow those identified in the QAPP/SAP?			
Were appropriate containers, preservatives, and sample labeling utilized?			
Were quality control samples utilized?			
Were field QA/QC samples consistent with the SAP?			2
Was proper field documentation utilized? (Field books, field forms, COC, etc.)			2
As applicable, field instruments will be calibrated daily prior to use and the calibrat	tion wi	ll be v	verified
by a calibration standard.			
Field equipment utilized: (1) Mini-Rae 3000		1	
Was the field equipment calibrated prior to use?	\checkmark		
Was the equipment calibration documented?	\checkmark		
Was a field check of the equipment performed during the audit? (e.g., sensitivity of a PID to organic vapors and/or ambient air, or YSI field check)			
Was project field documentation adequate? (i.e., use of field books, field forms, documentation of sample locations, sampling times, types of samples collected, etc.)			
Was custody protocol observed? (i.e., were samples and/or field data maintained in a person's possession, secured vehicle or similar location, COC forms utilized ² , custody seals ² , etc.?)			
Were sample handling protocols observed? (i.e., use of nitrile gloves, proper sampling containers, proper sample labeling, prompt sealing of sampling containers, ice in cooler(s), safe sample packaging for transportation, etc.)			
Were unique sample identifications utilized?	\checkmark		
Was waterproof ink used on sample labels?			
Were custody seals utilized on sample coolers?			1,2

Notes:

- ¹ NA denotes not applicable and/or not observed during this audit.
- ² Reviewed in part via project documentation following field audit.

Audit of Soil Sampling Methodology and Quality Assurance	Yes	No	Notes
Was direct-push sampling equipment utilized?			
Was soil sampling equipment properly decontaminated between sampling locations?			
Was a new acetate sampling sleeve utilized for each sample?			
Were the samples field screened with a PID?			
Audit of Soil Sampling Methodology and Quality Assurance	Yes	No	Notes
Was the PID calibrated prior to use?	\checkmark		
Was the calibration documented?	\checkmark		
Were the soil samples logged in accordance with the USCS system?	\checkmark		
Were the soil borings properly logged/documented?	\checkmark		
Were soil samples for VOC analysis obtained in general accordance with sampling method 5035?			1
Were new disposable nitrile gloves utilized for each sample?			
Were sample containers appropriate/laboratory supplied?			
Were the containers properly preserved?			
Were the containers properly labeled?			
Was proper COC documentation utilized?			2
Were proper sampling and sample handling protocols observed?	\mathbf{k}		
Was adequate ice present in the cooler?			
Were the borings properly sealed with bentonite?			1
Was the site adequately restored after sampling activities?			1

Audit of Groundwater Sampling Methodology and Quality Assurance	Yes	No	Notes
Was low-flow GW sampling performed?			1
Was a bladder pump utilized?			1
Was a YSI 556 MPS Multi-Probe (or equivalent) utilized? (Equivalent In-Situ			1
SmarTROLL MP meter			1
Was the field equipment properly calibrated prior to use?			1
Was the calibration procedure documented?			1
Was dedicated tubing utilized for each sampling location?			1
Was disposable bladder utilized for each sampling location?			1
Was bladder pump properly decontaminated between sampling locations?			1
Were drawdown, temperature, pH, SpC, and/or ORP measurements recorded?			1
Was purge water properly managed on-site?			1
Were sample containers appropriate/laboratory supplied?			1
Were the containers properly preserved?			1
Were the containers properly labeled?			1
Was proper COC documentation utilized?			1
Were proper sampling and sample handling protocols observed?			1
Was adequate ice present in the cooler?			1
Were the borings properly sealed with bentonite?			1
Was the site adequately restored after sampling activities?			1

Notes: 1 2

- NA denotes not applicable and/or not observed during this audit. Reviewed in part via project documentation following field audit.

Audit of Asbestos Inspection Methodology and Quality Assurance	Yes	No	Notes
Was the inspector a licensed inspector?			1
Was the inspection procedure documented?			1
Were sample containers appropriate?			1
Were the containers properly preserved?			1
Were the containers properly labeled?			1
Was proper COC documentation utilized?			1
Were proper sampling and sample handling protocols observed?			1

Audit of QA/QC Sampling Methodology and Quality Assurance	Yes	No	Notes	
Were field duplicate soil samples obtained?			1, 2	
Were field duplicate groundwater samples obtained?			1, 2	
Were field duplicate asbestos samples obtained?			1	
Were the number and matrices for the field duplicates sufficient?			2	
Were MS/MSD soil samples obtained?			1, 2	
Were MS/MSD groundwater samples obtained?			1, 2	
Was a trip blank(s) utilized?			2	
Did the trip blank consist of reagent-grade water or was the blank lab prepared?				
Were sufficient trip blanks utilized? (one per cooler containing VOC samples)			2	
Was an equipment blank or field blank collected? (If only disposable or single use sampling equipment is used, then a field blank, consisting of analyte-free water poured into a laboratory provided container in the field in order to assess the potential for sample contamination due to field conditions, will be collected in lieu of an equipment blank at a rate of one per sampling event or per lot of bottles, whichever is more frequent.)	Ø		1, 2	
Describe equipment blank preparation: The soil and groundwater sampling equipment blanks were prepared in the field after the sampling equipment was field decontaminated. The soil sampling equipment blank was obtained off a decontaminated cutting shoe.				
Were equipment blanks utilized at a ratio of 1:20 per matrix or one per sampling event?			2	

Audit of Health & Safety Procedures	Yes	No	Notes
Was a site-specific HASP prepared?			
Was a site-specific HASP available?			
Was the HASP adequate for the proposed work scope?	$\mathbf{<}$		
Was the HASP signed by site personnel?	$\mathbf{\mathbf{\nabla}}$		
Were site utilities properly cleared?			
Were standard H&S protocols observed?			

- Notes: ¹ ² NA denotes not applicable and/or not observed during this audit. ² Reviewed in part via project documentation following field audit.

Audit Summary

Were any deficiencies/deviations from the planned sampling program observed during the field audit? <u>No.</u>

If deficiencies/deviations were observed during the audit, were corrective action procedures required or implemented, and was the project manager notified?

NA.

Data collection activities that occurred during sampling event that may affect the integrity of the samples are as follows:

NA.

Data Limitations and Actions. Sources of sampling and analytical error will be identified and corrected as early as possible to the onset of sample collection activities. An ongoing data assessment process will be incorporated during the project, rather than just as a final step, to facilitate the early detection and correction of problems, ensuring that project quality objectives are met.

Data that do not meet the measurement performance criteria specified in this QAPP will be identified and the impact on the project quality objectives will be assessed and discussed within the Phase II. Specific actions for data that do not meet the measurement performance criteria depend on the use of the data and may require that additional samples are collected or the use of the data to be restricted.

Based upon the findings of the audit, the data derived from the sampling event should be determined to be; (1) usable without limitations, (2) usable with limitations, or (3) of limited usability for the purpose intended.

<u>Statement of data validation/usability.</u> Based upon the field audit QA/QC activities performed to ensure that the collected data are scientifically defensible, properly documented, and of known quality, and meet project objectives, it is my professional opinion that the data is:

Useable without limitations.

Sincerely, IWM Consulting Group, LLC

Shuson Neal C. Johnson

Data Assessment Report The Butler Company 325 South Broadway Street Butler, DeKalb County, Indiana 128(a) Response Program Grant Indiana Brownfields Site ID: 4170705

Assessment of

Volatile Organic Compounds, Polyaromatic Hydrocarbons, Resource Conservation and Recovery Act Metals including Copper and Zinc, Toxicity Characteristic Leaching Procedure Lead, Poly-chlorinated Biphenyls, and/or Hexavalent Chromium in Soil and Water Samples Collected May 20 to May 22, 2019 and June 18, 2019

Laboratory Analysis performed by:

Pace Analytical Services, LLC Indianapolis, Indiana Pace Project No.: 50225929, 50226102, and 50228450

Data Assessment performed by:

Neal Johnson IWM Consulting Group, LLC 1015 Production Road Fort Wayne, Indiana 46808 (260) 497-9620

Project 19-716-10

July 22, 2019

TABLE OF CONTENTS

TABL	E OF CONTENTSi
EXEC	UTIVE SUMMARY 1
1.0	INTRODUCTION
2.0	PRESERVATION, SAMPLE INTEGRITY AND QA/QC SAMPLES4
3.0 (MDL	HOLDING TIMES, ANALYTICAL METHODS, METHOD DETECTION LIMITS S), REPORTING LIMITS (RLS), UNITS AND DATA QUALIFICATIONS UTILIZED 6
4.0	BLANKS7
5.0	SURROGATE RECOVERY
6.0	SPIKED ANALYSES
6.1 6.	Matrix Spike/Matrix Spike Duplicate (MS/MSD)91.1Laboratory Control Sample (LCS)10
6.2 6.2 6.2	Duplicates102.1Laboratory Duplicates102.2Field Duplicates11
7.0 LIMIT	COMPOUND IDENTIFICATION, QUANTITATION AND REPORTED DETECTION
8.0	DOCUMENTATION15
9.0	OTHER
10.	OVERALL ASSESSMENT

EXECUTIVE SUMMARY

IWM Consulting Group, LLC (IWM Consulting) prepared a Quality Assurance Project Plan (QAPP) for the Indiana Finance Authority (IFA), Indiana Brownfields Program (IBP) under the 128(a) Response Program Grant. In the QAPP, Neal Johnson of IWM Consulting was designated as the IWM Consulting Quality Assurance Manager. Neal Johnson completed this Data Assessment Report (DAR) for soil and water samples submitted for volatile organic compounds (VOCs), polyaromatic hydrocarbons (PAHs), Resource Conservation and Recovery Act (RCRA) 8 metals including copper and zinc, toxicity characteristic leaching procedure (TCLP) lead, poly-chlorinated biphenyls (PCBs), and/or hexavalent chromium for The Butler Company property at 325 South Broadway Street in Butler, DeKalb County, Indiana. The samples were collected between May 20 and 22, 2019 and June 18, 2019. The samples were (3) laboratory reports were generated: Pace Project Numbers 50225929, 50226102, and 50228450.

Pace Report No. 50225929 includes 24 soil samples, three (3) duplicate soil samples, one (1) soil equipment blank sample, two (2) soil matrix spike/matrix spike duplicate (MS/MSD) samples, and one (1) trip blank sample. Pace Report No. 50226102 includes six (6) groundwater samples, one (1) duplicate groundwater sample, one (1) groundwater equipment blank sample, one (1) groundwater MS/MSD sample, and one (1) trip blank sample. Pace Report No. 50228450 includes eight (8) soil samples, one (1) duplicate soil sample, and one (1) soil MS/MSD sample.

In general, the Chain-of-Custody documentation was accurately completed and included appropriate sample receiving information. The Chain-of-Custody contained a few minor deviations from protocol, which did not affect the usability of the data (see Section 2.0).

In general, the method detection limits (MDLs) and reporting limits (RLs) were acceptable and quantitation limits were found to be acceptable for the data's intended use (comparison to the Indiana Department of Environmental Management (IDEM) *Remediation Closure Guide* (RCG) Screening Levels). The hexavalent chromium soil RLs exceeded the Residential Soil Migration to Groundwater Screening Level (Res MTGSL), but were below the Residential Soil Exposure Direct Contact Screening Level (RDCSL). Chromium was not detected in the groundwater samples.

n-Hexane was qualified for the potential of being biased low in here (3) soil samples submitted for VOC analysis (BC-GP7-SB1 3-4', BC-GP8-SB1 3-4', and BC-FD3) in Pace Report No. 50225929 due to the continuing calibration of the compound being outside of its respective control limits. n-Hexane was detected in all three (3) samples at concentrations several orders of magnitude below the most stringent RCG screening level. Additionally, n-hexane was not detected in the groundwater samples.

No analytes were detected in laboratory method blanks.

Trip blanks were utilized in coolers containing samples for VOC analyses. The trip blanks associated with both the soil and groundwater samples were clean.

Soil sampling equipment blanks and a groundwater sampling equipment blank were prepared in the field after the sampling equipment was field decontaminated. Both the soil and groundwater sampling equipment blanks were clean.

Surrogates, MS/MSD samples, and Laboratory Control Samples (LCS) were prepared and analyzed as required by the referenced method(s). Multiple analytes were found to be outside of control limits in several MS/MSD samples, and multiple LCS spike recoveries were found to be outside their control limits. The data was properly qualified/annotated and referenced in the laboratory Quality Control Data summary and no additional data qualification is required. Additionally, sufficient quality assurance/quality control (QA/QC) information exists to support the conclusion that the control limit exceedances do not impact the usability of the data for its intended use.

The relative percent differences (RPDs) for the field duplicate soil and groundwater analytes were generally found to be in compliance with the QAPP objectives. Several analytes were found to be outside of the QAPP objective for soil duplicate samples. The elevated RPDs are likely due to the heterogenous nature of the materials sampled.

Based on this DAR, the results for the analyses of the samples reported in The Butler Company property data set (Pace Report Nos. 50225929, 50226102, and 50228450) were determined to be acceptable for their intended use within the limitations described above.

1.0 INTRODUCTION

Soil samples obtained for VOC analyses were collected utilizing Method 5035A. Soil and water samples were analyzed for VOCs using Analytical Method EPA 8260; PAHs using Analytical Method EPA 8270 SIM; RCRA 8 Metals including copper, and zinc using Analytical Method EPA 6010 with mercury as the exception using Analytical Method EPA 7470 (water) or 7471 (soil); TCLP lead using Analytical Method 6010; PCBs using Analytical Method EPA 8082; and/or hexavalent chromium using Analytical Method EPA 7196A (soil only). Soil samples were also analyzed for percent moisture utilizing Analytical Method SM 2540G.

To the extent applicable, this data assessment was performed in accordance with the QAPP dated April 12, 2019. The data assessment process is intended to evaluate data on a technical basis in addition to a method compliance basis, rather than on a contract compliance basis. The data package as received from the laboratory must contain sufficient raw data documentation to facilitate the assessment process and allow verification of all reported sample results. The review is based on the data provided by the laboratory and assumes that it is accurate, true, and complete. In addition, professional judgment was applied as necessary and appropriate.

Unless a specific laboratory report is indicated, comments in this DAR apply to each of the three (3) Pace Reports (i.e., No. 50225929, 50226102, and 50228450).

2.0 PRESERVATION, SAMPLE INTEGRITY AND QA/QC SAMPLES

The samples were received in good condition. The following observations were noted:

- Chain-of-Custody documentation was utilized.
- In general, the Chain-of-Custody documentation was accurately completed and followed proper protocol with the exceptions listed below, which did not affect the usability of the data.
 - Percent moisture was not indicated on the Chain-of-Custody in Pace Report Nos. 50225929 and 50228450. This oversight was noted by Pace and the soil samples were analyzed for percent moisture.
 - The laboratory comments in Pace Report Nos. 50225929 and 50228450 indicate the Chain-of-Custody is unrelinquished; however, the samples were delivered to the laboratory by the NOW Courier and custody seals were intact when the samples arrived at the lab. Therefore, this deviation does not impact the usability of the data.
- The cooler temperatures were measured and were within acceptance limits.
- Ice was present in all coolers upon receipt.
- Custody Seals were utilized on the coolers and were intact upon arrival at the laboratory.
- The samples in all coolers arrived intact and no loss or breakage was noted.
 - The QAPP field completeness goal of 90% for samples collected/analyzed was achieved.
- The samples contained in all the coolers were delivered within the respective sample holding time(s).
- The samples contained in all coolers contained sufficient sample volume.
- The samples contained in all coolers utilized the correct containers.
- No headspace was noted in the VOA vials for water samples.
- The sample labels in the coolers matched the Chain-of-Custody.
- The cooler(s) containing samples utilized in Pace Report No. 50225929 contained:
 - 24 soil samples, three (3) duplicate soil samples, one (1) soil equipment blank sample, two (2) soil MS/MSD samples, and one (1) trip blank sample.
- The cooler(s) containing samples utilized in Pace Report No. 50226102 contained:
 - Six (6) groundwater samples, one (1) duplicate groundwater sample, one (1) groundwater MS/MSD sample, one (1) groundwater equipment blank sample, and one (1) trip blank sample.
- The cooler(s) containing samples utilized in Pace Report No. 50228450 contained:
 - Eight (8) soil samples, one (1) duplicate soil sample, and one (1) soil MS/MSD sample.
- The QAPP field duplication rate (1:20) was observed.
- The QAPP equipment blank rate (1:20) was observed for the groundwater samples; however, one (1) additional equipment blank should have been obtained for the soil sample set. This deviation does not impact the usability of the data for its intended purpose.
- The QAPP MS/MSD rate (1:20) was observed.

- Trip blanks were utilized in coolers containing samples for VOC analyses.
- The sample designations were found to be appropriate and in compliance with the QAPP.

3.0 HOLDING TIMES, ANALYTICAL METHODS, METHOD DETECTION LIMITS (MDLS), REPORTING LIMITS (RLS), UNITS AND DATA QUALIFICATIONS UTILIZED

The laboratory analytical reports were acceptable for the intended use of the data. The following observations were noted:

- In general, the samples were analyzed within the established holding times.
 - Two (2) internal laboratory duplicate samples for moisture analysis indicated that the samples were analyzed beyond the recognized method holding time; however, the laboratory duplicate samples were not derived from the samples collected for this project. This appears to be an internal laboratory QC failure and does not impact the usability of the data for its intended purpose. All soil and groundwater samples submitted by IWM Consulting were received by the laboratory and analyzed within the appropriate holding times.
- The analytical methods utilized were appropriate.
- The analytical methods utilized were properly noted/cited.
- In general, the MDLs and RLs were acceptable and quantitation limits were found to be acceptable for the data's intended use (comparison to the IDEM's RCG Screening Levels).
 - The hexavalent chromium soil RLs exceeded the RCG MTGSL, but were below the RDCSL. Chromium was not detected in the groundwater samples.
- The dilution factors (DL) were properly noted.
- The units of measure were appropriate.
- Data qualifiers for individual samples and/or parameters were utilized as appropriate.
 - n-Hexane was qualified for the potential of being biased low in three (3) soil samples submitted for VOC analysis (BC-GP7-SB1 3-4', BC-GP8-SB1 3-4', and BC-FD3) due to the continuing calibration of the compound being outside of its respective control limits. n-Hexane was detected in all three (3) samples at concentrations several orders of magnitude below the most stringent RCG screening level. Additionally, n-hexane was not detected in the groundwater samples.

4.0 BLANKS

Method blanks were prepared and analyzed as required by the referenced method. No target compounds were detected above their respective RLs in any of the method blanks.

Trip blanks were utilized in coolers containing samples for VOC analyses. Trip blanks associated with the soil and groundwater samples were clean.

Soil sampling equipment blank (BC-EB-SB1) and a groundwater sampling equipment blank (BC-EB-GW1) were prepared in the field after the sampling equipment was field decontaminated. Both the soil and groundwater sampling equipment blanks were clean.

5.0 SURROGATE RECOVERY

Surrogate standards were added to the VOC, PAH, and PCB samples as required by the referenced methods. All surrogate recoveries in the soil and groundwater samples and laboratory quality control samples were within acceptance limits.

6.0 SPIKED ANALYSES

6.1 Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Matrix spike samples were prepared and analyzed as required by the referenced method.

Pace Report No. 50225929:

- For MS/MSD laboratory sample numbers 2314310/2317311, the MS and/or MSD percent recoveries for barium were found to be outside their respective control limits; however, the RPD for barium MS/MSD percent recoveries was within its respective control limit.
- For MS/MSD laboratory sample numbers 2317314/2317315, the MS and/or MSD percent recoveries for lead and zinc were found to be outside their respective control limits; however, the RPDs for the metals MS/MSD percent recoveries were within their respective control limits.
- For MS/MSD laboratory sample numbers 2317316/2317317, the MS and/or MSD percent recoveries for barium, chromium, lead, and zinc were found to be outside their respective control limits; however, the RPDs for the four (4) metals MS/MSD percent recoveries were found to be within their respective control limits.

Pace Report No. 50226102:

- For MS/MSD laboratory sample numbers 2323139/2323140, the RPD for the MS/MSD percent recoveries was found to exceed its respective control limit for iodomethane; however, the MS and MSD percent recoveries were within their respective control limits.
- For MS/MSD laboratory sample numbers 2320962/2320963, the RPD for the MS/MSD percent recoveries was found to exceed its respective control limit for benzo(b)fluoranthene; however, the MS and MSD percent recoveries were within their respective control limits.

Pace Report No. 50228450:

• For MS/MSD laboratory sample numbers 2342426/2342427, the MS and MSD percent recoveries were found to be outside of their respective control limits for lead; however, the RPD for MS/MSD percent recoveries was within its respective control limits. The control limit exceedances were attributed to matrix interference.

The data was properly qualified/annotated and referenced unless noted above.

Based on the information presented in the laboratory Quality Control Data summary, the soil and water MS/MSD results were properly annotated and no additional data qualification is required. Additionally, sufficient QA/QC information exists to support the conclusion that the soil and groundwater MS/MSD results that were outside of control limits do not impact the usability of the data for its intended use.

6.1.1 Laboratory Control Sample (LCS)

An LCS was prepared and analyzed with each analytical batch as required by the referenced method.

Pace Report No. 50225929:

- For LCS laboratory sample number 2323504, the hexachloro-1,3-butadiene and tetrachloroethene spike percent recoveries were found to exceed their respective upper control limits. The analytes in the LCS and associated samples were qualified for the potential to be biased high; however, these analytes were not detected in the associated samples. Therefore, the usability of the data for its intended purpose is not impacted.
- For LCS laboratory sample number 2323510, the vinyl acetate spike percent recovery was found to exceed its respective lower control limit. The analytes in the LCS and associated samples were qualified for the potential to be biased low; however, these analytes were not detected in the associated samples. Therefore, the usability of the data for its intended purpose is not impacted.

Pace Report No. 50226102:

- For LCS laboratory sample number 2322818, the 2,2-dichloropropane and n-hexane spike percent recoveries were found to exceed their respective upper control limits. The analyte in the LCS and associated sample was qualified for the potential to be biased high; however, theses analytes were not detected in the associated samples. Therefore, the usability of the data for its intended purpose is not impacted.
- For LCS laboratory sample number 2323138, the bromobenzene spike percent recovery was found to exceed its respective upper control limit. The analyte in the LCS and associated samples was qualified for the potential to be biased high; however, this analyte was not detected in the associated samples. Therefore, the usability of the data for its intended purpose is not impacted.

All laboratory samples in Pace Report No. 50228450 were within their respective percent recovery limits.

6.2 **Duplicates**

6.2.1 Laboratory Duplicates

Pace Report No. 50225929 Quality Control Data summary report indicated that four (4) laboratory duplicates were performed on soil samples for moisture analysis, two (2) laboratory duplicates were performed on soil samples for percent solids analysis, and one (1) laboratory duplicate was performed on soil samples for hexavalent chromium analysis. Pace Report No. 50228450 Quality Control Data summary report indicated that four (4) laboratory duplicates were performed on soil samples for moisture analysis. The duplicate sample reports are summarized below:

Laboratory QA/QC Duplicate Summary								
Sample ID	Duplicate ID	Analyte	Sample Conc.	Duplicate Conc.	RPD			
			%	%	%			
		50225929						
2320500	NA	Moisture	18.7	19.0	1.6			
2320501	BC-GP2-SB1 3-4	Moisture	19.4	18.3	5.8			
2320677	BC-GP9-SB1 3-4	Moisture	16.9	15.8	6.7			
2320678	NA	Moisture	18.0	17.2	4.5			
L1108663-01	R3421553-3	Solids	89.5	89.3	0.2			
L1108688-01	R3421550-3	Solids	79.4	82.2	3.5			
BC-GP6-SB1 3-4	R3422032-3	Hex Cr (mg/kg)	ND	ND	NA			
50228450								
2341954	NA	Moisture	8.8	8.8	0.0			
2341955	BC-GP3-W5 1-2	Moisture	8.4	6.5	26			
2343215	NA	Moisture	15.3	15.0	2.0			
2343216	NA	Moisture	32.3	32.3	0.0			

The RPDs for three (3) samples were outside of the laboratory's internal control standards for moisture (5%); however, the RPDs were found to be in compliance with the QAPP objectives.

Pace Report No. 50226102 Quality Control Data summary report indicated that no laboratory duplicates were performed on groundwater samples.

No other laboratory duplicates (other than MS/MSD discussed in section 6.1 above) were noted in the data packages.

6.2.2 Field Duplicates

Water matrix samples can be readily duplicated due to their homogeneous nature; conversely, the duplication of soil or sediment samples is much more difficult due to their non-homogeneous nature. The QAPP indicates that an RPD of \pm 35 percent and \pm 50 percent for water and soil sample field duplicates, respectively, will be used as advisory limits for analytes detected in both investigative and field duplicate samples at concentrations greater than or equal to five (5) times its quantitation limit. The field duplicates were evaluated by calculating the percent difference. The field duplicate IDs were provided to the validator as shown in the table below. Note that values near or below the RL would be expected to be wider than others.

As indicated in the following table, no water field duplicate analyses were found to be outside of the QAPP objective.

	Field Duplicate Water RPD Summary								
Sample	Duplicate ID	Analyte	Sample Conc.	RL	Duplicate Conc.	RL	RPD		
ID			μg/L	μg/L	µg/L	μg/L	%		
	50226102								
		Barium	134	10.0	133	10.0	0.7		
BC- GP11- GW1	BC- GPGW- FD1	Barium (Dissolved)	115	10.0	116	10.0	0.9		
		Copper	ND	10.0	10.2	10.0	NA ^{1,2}		
		Zinc	56.1	20.0	54.4	20.0	3.1 ¹		
		Zinc (Dissolved)	24.4	20.0	22.8	20.0	6.8 ¹		

¹ Analyte concentration is less than five (5) times its quantitation limit.

² RPD not calculable.

As indicated in the following table, several analytes were found to be outside of the QAPP objective for soil field duplicate samples. However, the calculated mean RPD for soil field duplicate analyte data at concentrations equal to, or greater than five (5) times, its quantitation limit was found to be in compliance with QAPP objective. The elevated RPDs are likely due to the heterogenous nature of the materials sampled.

	Field Duplicate Soil RPD Summary								
Sample	Duplicate	Analyte	Sample Conc.	RL	Duplicate Conc.	RL	RPD		
ID	ID		mg/kg	mg/kg	mg/kg	mg/kg	%		
	50225929								
		Arsenic	13.5	1.1	17.1	1.1	24		
		Barium	93.7	1.1	197	1.1	71		
		Cadmium	1.2	0.56	1.1	0.55	8.7^{1}		
BC-	BC-SB- FD1	Chromium	13.1	1.1	19.1	1.1	37		
GP13-		Copper	124	1.1	68.3	1.1	58		
1-2'		Lead	137	1.1	150	1.1	9.1		
		Zinc	355	1.1	339	1.1	4.6		
		Mercury	0.32	0.21	ND	0.24	NA ^{1,2}		
		Moisture (%)	13.9	0.10	16.1	0.10	15		
		Arsenic	12.0	1.3	11.5	1.2	4.3		
		Barium	269	1.3	416	1.2	43		
		Cadmium	1.9	0.63	1.5	0.59	24 ¹		
BC-		Chromium	16.6	1.3	15.2	1.2	8.8		
GP4- \$\$1	BC-SB- FD2	Copper	88.1	1.3	59.2	1.2	39		
1-2'	ГD2	Lead	395	1.3	691	1.2	55		
÷ -		Selenium	1.4	1.3	1.4	1.2	0.0^{1}		
		Zinc	837	1.3	684	1.2	20		
		Moisture (%)	21.9	0.10	24.4	0.10	11		

	Field Duplicate Soil RPD Summary (Continued)								
Sample	Duplicate	Analyte	Sample Conc.	RL	Duplicate Conc.	RL	RPD		
ID	ID		mg/kg	mg/kg	mg/kg	mg/kg	%		
		Arsenic	2.8	1.1	27.7	1.0	163 ¹		
		Barium	116	1.1	35.9	1.0	105		
		Chromium	25.6	1.1	32.5	1.0	24		
	BC-SB- FD3	Copper	15.8	1.1	35.6	1.0	77		
BC-		Lead	10.7	1.1	27.0	1.0	86		
GP8- SP1		Zinc	66.3	1.1	63.0	1.0	5.1		
3-4'		2-Methylnaphthalene	ND	0.0063	0.0071	0.0056	NA ^{1,2}		
		Naphthalene	ND	0.0063	0.019	0.0056	NA ^{1,2}		
		Phenanthrene	ND	0.0063	0.0085	0.0056	NA ^{1,2}		
		n-Hexane	0.071	0.0068	0.30	0.0059	123 ¹		
		Moisture (%)	21.6	0.10	11.1	0.10	64		
50228450									
BC-	BC-SB-	Lead	51.7	1.1	228	1.1	126		
1-2'	FD4	Moisture (%)	15.8	0.10	15.5	0.10	1.9		

¹ Analyte concentration is less than five (5) times its quantitation limit. ² RPD not calculable.

7.0 COMPOUND IDENTIFICATION, QUANTITATION AND REPORTED DETECTION LIMITS

The analytes reported were appropriate for the intended use of the data. Target compounds for the VOC, PAH, RCRA 8 metals including copper and zinc, TCLP lead, PCBs, and hexavalent chromium analyses were appropriately identified in the quality control samples and in the field samples. Sample-specific RLs were calculated and reported for the analyses. The RLs were adjusted for the dilution of the sample.

In general, the MDLs and RLs were acceptable and quantitation limits were found to be acceptable for the data's intended use (comparison to the IDEM's RCG Screening Levels).

• The hexavalent chromium soil RLs exceeded the Res MTGSL, but were below the RDCSL. Chromium was not detected in the groundwater samples.

8.0 **DOCUMENTATION**

A copy of the Chain-of-Custody record documenting all samples submitted to the laboratory in this group was included in the data package. In general, the Chain-of-Custody documentation was accurately completed and included appropriate sample receiving information. The Chain-of-Custody contained a few minor deviations from protocol, which did not affect the usability of the data (see Section 2.0).

9.0 OTHER

On May 20, 2019, a quality assurance field audit was performed at the subject site. The purpose of the audit was to observe and oversee assessment activities to ensure that sampling methodology, sample preservation methods, and Chain-of-Custody procedures are being followed. The field audit was part of the QAPP quality control requirements to ensure that the environmental data collected is of the highest standard feasible as appropriate for the intended application. The field audits are a means to ensure that the QAPP and the property-specific SAPs are adhered to and that all samples are properly handled and analyzed to satisfy the comparability of field data.

No data collection activities were observed during the sampling event that would adversely affect the integrity of the samples collected. Based upon the findings of the field audit, the data derived from the sampling event are scientifically defensible, were properly documented, of sufficient quality to meet the project objectives, and are determined to be usable without limitations (subject to QA/QC review of the laboratory results).

10. OVERALL ASSESSMENT

In general, the Chain-of-Custody documentation was accurately completed and included appropriate sample receiving information. The Chain-of-Custody contained a few minor deviations from protocol, which did not affect the usability of the data (see Section 2.0).

In general, the MDLs and RLs were acceptable and quantitation limits were found to be acceptable for the data's intended use (comparison to the IDEM's RCG Screening Levels). The hexavalent chromium soil RLs exceeded the Res MTGSL, but were below the RDCSL. Chromium was not detected in the groundwater samples.

n-Hexane was qualified for the potential of being biased low in three (3) soil samples submitted for VOC analysis (BC-GP7-SB1 3-4', BC-GP8-SB1 3-4', and BC-FD3) in Pace Report No. 50225929 due to the continuing calibration of the compound being outside of its respective control limits. n-Hexane was detected in all three (3) samples at concentrations several orders of magnitude below the most stringent RCG screening level. Additionally, n-hexane was not detected in the groundwater samples.

No analytes were detected in laboratory method blanks.

Trip blanks were utilized in coolers containing samples for VOC analyses. The trip blanks associated with both the soil and groundwater samples were clean.

Soil sampling equipment blanks and a groundwater sampling equipment blank were prepared in the field after the sampling equipment was field decontaminated. Both the soil and groundwater sampling equipment blanks were clean.

Surrogates, MS/MSD samples, and LCSs were prepared and analyzed as required by the referenced method(s). Multiple analytes were found to be outside of control limits in several MS/MSD samples, and multiple LCS spike recoveries were found to be outside their control limits. The data was properly qualified/annotated and referenced in the laboratory Quality Control Data summary and no additional data qualification is required. Additionally, sufficient QA/QC information exists to support the conclusion that the control limit exceedances do not impact the usability of the data for its intended use.

The RPDs for the field duplicate soil and groundwater analytes were generally found to be in compliance with the QAPP objectives. Several analytes were found to be outside of the QAPP objective for soil duplicate samples. The elevated RPDs are likely due to the heterogenous nature of the materials sampled.

Based on this DAR, the results for the analyses of the samples reported in The Butler Company property data set (Pace Report Nos. 50225929, 50226102, and 50228450) were determined to be acceptable for their intended use within the limitations described above.

Data Assessment Report The Butler Company 325 South Broadway Street Butler, DeKalb County, Indiana 128(a) Response Program Grant Indiana Brownfields Site ID: 4170705

Assessment of Volatile Organic Compounds in Air Samples Collected May 31, 2019

Laboratory Analysis performed by:

Pace Analytical Services, LLC Minneapolis, Minnesota Pace Project No.: 10477550

Data Assessment performed by:

Neal Johnson IWM Consulting Group, LLC 1015 Production Road Fort Wayne, Indiana 46808 (260) 497-9620

Project 19-716-10

July 22, 2019

TABLE OF CONTENTS

Page
TABLE OF CONTENTS
EXECUTIVE SUMMARY 1
1.0 INTRODUCTION
2.0 PRESERVATION, SAMPLE INTEGRITY AND QA/QC SAMPLES
3.0 HOLDING TIMES, ANALYTICAL METHODS, METHOD DETECTION LIMITS (MDLS), REPORTING LIMITS (RLS), UNITS AND DATA QUALIFICATIONS UTILIZED 4
4.0 BLANKS
5.0 SURROGATE RECOVERY
6.0 SPIKED ANALYSES
6.1 Matrix Spike/Matrix Spike Duplicate (MS/MSD)
6.1.1 Laboratory Control Sample (LCS)
6.2 Durliestes
6.2.1 Field Duplicates
7.0 COMPOUND IDENTIFICATION, QUANTITATION AND REPORTED DETECTION LIMITS
8.0 DOCUMENTATION
9.0 OTHER 12
10. OVERALL ASSESSMENT 13

EXECUTIVE SUMMARY

IWM Consulting Group, LLC (IWM Consulting) prepared a Quality Assurance Project Plan (QAPP) for the for the Indiana Finance Authority (IFA), Indiana Brownfields Program (IBP) under the 128(a) Response Program Grant. In the QAPP, Neal Johnson of IWM Consulting was designated as the IWM Consulting Quality Assurance Manager. Neal Johnson completed this Data Assessment Report (DAR) for air samples submitted for volatile organic compounds (VOCs) for The Butler Company property at 325 South Broadway Street in Butler, DeKalb County, Indiana. The samples were collected on May 31, 2019. The samples were analyzed by Pace Analytical Services, LLC (Pace) of Minneapolis, Minnesota. The following laboratory report was generated: Pace Project Number 10477550.

Pace Report No. 10477550 includes one (1) air sample and one (1) duplicate air sample.

The Chain-of-Custody documentation was accurately completed and included appropriate sample receiving information.

The method detection limits (MDLs) and reporting limits (RLs) were acceptable and quantitation limits were found to be acceptable for the data's intended use (comparison to the Indiana Department of Environmental Management (IDEM) *Remediation Closure Guide* (RCG) Screening Levels). The 1,1,2-trichloroethane air RLs exceeded the Commercial/Industrial Indoor Air Vapor Exposure Screening Level (Indus IA VESL), but were below the calculated Commercial/Industrial Sub-slab Vapor Exposure Screening Level (Indus SS VESL).

No detections occurred in the laboratory method blank. A Laboratory Control Sample (LCS) was prepared and analyzed as required by the referenced method. All LCS laboratory samples within their respective percent recovery limits, with the exception of were dibromochloromethane; however, dibromochloromethane was not detected in any sample at concentrations exceeding the most stringent IDEM RCG screening level and the usability of the its intended purpose is not impacted. Dibromochloromethane for and data trans-1,3-dichloropropene were qualified due to the continuing calibration for these compounds being outside their respective acceptance limits; however, these analytes were not detected in any of the samples. Therefore, the usability of the data for its intended purpose is not impacted.

Based on this DAR, the results for the analyses of the samples reported in The Butler Company property data set (Pace Report No. 10477550) were determined to be acceptable for their intended use within the limitations described above.

1.0 INTRODUCTION

Air samples were analyzed for VOCs using Analytical Method EPA TO-15.

To the extent applicable, this data assessment was performed in accordance with the QAPP dated April 12, 2019 and Sampling and Analysis Plan (SAP) dated April 16, 2019. The data assessment process is intended to evaluate data on a technical basis in addition to a method compliance basis, rather than on a contract compliance basis. The data package as received from the laboratory must contain sufficient raw data documentation to facilitate the assessment process and allow verification of all reported sample results. The review is based on the data provided by the laboratory and assumes that it is accurate, true, and complete. In addition, professional judgment was applied as necessary and appropriate.

2.0 PRESERVATION, SAMPLE INTEGRITY AND QA/QC SAMPLES

The samples were received in good condition. The following observations were noted:

- Chain-of-Custody documentation was utilized.
- The Chain-of-Custody documentation was accurately completed and followed proper protocol.
- The final field, post-sampling Summa vacuums were recorded and were within acceptable limits.
- Custody Seals were not utilized on the air sample shipping container(s). The aforementioned container(s) were shipped to the laboratory via FedEx. The final field vacuum pressures recorded in the field for the Summa air canisters were in conformance with the laboratory receiving vacuum pressures.
- The samples arrived intact and no loss or breakage was noted.
 - The QAPP field completeness goal of 90% for samples collected/analyzed was achieved.
- The samples were delivered within the respective sample holding time(s).
- The samples contained sufficient sample volume.
- The air sampling event utilized the correct containers.
- The sample labels in the air sampling shipping container(s) matched the Chain-of-Custody.
- The shipping container(s) containing samples utilized in Pace Report No. 10477550 contained:
 - One (1) air sample and one (1) duplicate air sample.
- The air sampling utilized batch certified Summa canisters.
- The QAPP field duplication rate (1:20) was observed.
- The sample designations were found to be appropriate and in compliance with the QAPP.

3.0 HOLDING TIMES, ANALYTICAL METHODS, METHOD DETECTION LIMITS (MDLS), REPORTING LIMITS (RLS), UNITS AND DATA QUALIFICATIONS UTILIZED

The laboratory analytical reports were acceptable for the intended use of the data. The following observations were noted:

- The samples were analyzed within the established holding times.
- The analytical methods utilized were appropriate.
- The analytical methods utilized were properly noted/cited.
- In general, the MDLs and RLs were acceptable and quantitation limits were found to be acceptable for the data's intended use (comparison to the IDEM's RCG Screening Levels).
 - The 1,1,2-trichloroethane air RLs exceeded the RCG Indus IA VESL, but were below the calculated Indus SS VESL.
- The dilution factors (DL) were properly noted.
- The units of measure were appropriate.
- Data qualifiers for individual samples and/or parameters were utilized as appropriate.
- Dibromochloromethane in the LCS was qualified due to the analyte exceeding the control limits; however, dibromochloromethane was not detected at concentrations exceeding the most stringent IDEM RCG screening level. Therefore, the usability of the data for its intended purpose is not impacted.
- Dibromochloromethane and trans-1,3-dichloropropene were qualified in the LCS due to the continuing calibration for these compounds being outside their respective acceptance limits; however, these analytes were not detected in any of the samples. Therefore, the usability of the data for its intended purpose is not impacted.

4.0 BLANKS

A method blank was prepared and analyzed as required by the referenced method. No target compounds were detected in the method blank.

5.0 SURROGATE RECOVERY

Not applicable.

6.0 SPIKED ANALYSES

6.1 Matrix Spike/Matrix Spike Duplicate (MS/MSD)

Not applicable.

6.1.1 Laboratory Control Sample (LCS)

An LCS was prepared and analyzed with each analytical batch as required by the referenced method. All LCS laboratory samples were within their respective percent recovery limits, with the exception of dibromochloromethane; however, dibromochloromethane was not detected in any sample at concentrations exceeding the most stringent IDEM RCG screening level and the usability of the data for its intended purpose is not impacted. Dibromochloromethane and trans-1,3-dichloropropene were qualified due to the continuing calibration for these compounds being outside their respective acceptance limits; however, these analytes were not detected in any of the samples. Therefore, the usability of the data for its intended purpose is not impacted.

6.2 **Duplicates**

Pace Report No. 10477550 Quality Control Data summary report indicated that two (2) laboratory duplicates were performed on air samples. The duplicate samples report is summarized below:

	Laboratory QA/QC Duplicate Summary								
Sample ID	Duplicate	Analyte	Sample Conc.	Duplicate Conc.	RPD				
	ш		$\mu g/m^3$	$\mu g/m^3$	%				
		10477550							
		1,2,4-Trimethylbenzene	2.4	2.5	4.1 ¹				
		1,3,5-Trimethylbenzene	ND	0.71 J	NA ^{1,2}				
	NA	2-Butanone (MEK)	ND	1.4 J	NA ^{1,2}				
		2-Propanol	1,550	1,800	15				
		4-Methyl-2-pentanone (MIBK)	ND	1.3 J	NA ^{1,2}				
		Acetone	165	160	3.1				
2205174		Benzene	2.6	2.5	3.9 ¹				
5505174		Bromomethane	ND	0.74 J	NA ^{1,2}				
		Chloromethane	1.4	1.5	6.9 ¹				
		Cyclohexane	24.0	23.5	2.1				
		Dichlorodifluoromethane	3.0	3.0	0.0^{1}				
		Ethanol	142	156	9.4				
		Ethylbenzene	5.8	5.8	0.0				
		m&p-Xylene	25.3	25.5	0.8				

	Laboratory QA/QC Duplicate Summary (Continued)								
Sample ID	Duplicate	Analyte	Sample Conc.	Duplicate Conc.	RPD				
_	ID		µg/m ³	μg/m ³	%				
		Methylene chloride	10.0	10	0.0				
		n-Heptane	1.4	1.6	13 ¹				
		n-Hexane	2.6	2.7	3.81				
		o-Xylene	8.3	7.9	4.9				
3305174	NA	Styrene	3.5	3.5	0.01				
		Tetrachloroethene	77.4	75.2	2.9				
		Tetrahydrofuran	1.5	1.2	22 ¹				
		Toluene	14.4	14.2	1.4				
		Trichlorofluoromethane	2.0	2.2	9.5 ¹				
		1,2,4-Trimethylbenzene	38.4	35.7	7.3				
		1,3,5-Trimethylbenzene	10.2	9.4	8.2				
		2-Butanone (MEK)	16.2	14.4	12				
	NA	2-Propanol	10.3	9.3	10				
		4-Ethyltoluene	13.9	13.3	4.4				
		4-Methyl-2-pentanone (MIBK)	2.0 J	2.5 J	22 ¹				
		Acetone	639	621	2.9				
		Benzene	12.7	12.2	4.0				
		Carbon disulfide	5.7	5.2	9.2				
		Chlorobenzene	2.3	2.2	4.4 ¹				
		Chloromethane	1.2	1.1	8.7^{1}				
		Cyclohexane	ND	27.5	NA ^{1,2}				
2205175		Dichlorodifluoromethane	2.1	2.3	9.1 ¹				
3305175		Ethanol	32.0	30.9	3.5				
		Ethylbenzene	34.7	33.6	3.2				
		m&p-Xylene	151	143	5.4				
		Methylene chloride	80.8	87.6	8.1				
		n-Heptane	47.1	42.9	9.3				
		n-Hexane	21.3	22.3	4.6				
		Naphthalene	6.5	6.0	8.0				
		o-Xylene	50.8	48.6	4.4				
		Propylene	90.5	82.4	9.4				
		Styrene	13.0	12.4	4.7				
		Tetrachloroethene	1.6	1.5	6.5 ¹				
		Toluene	186	176	5.5				
		Trichlorofluoromethane	0.74 J	1.3 J	551				

Analyte concentration is less than five (5) times its quantitation limit.
² RPD not calculable.

The RPDs for the laboratory duplicates were generally found to be in compliance with laboratory control limits.

6.2.1 Field Duplicates

Air samples can be readily duplicated due to their homogeneous nature. The field duplicates were evaluated by calculating the percent difference (RPD). The field duplicate IDs were provided to the validator as shown in the table below. Note that values near or below the RL would be expected to be wider than others.

As indicated in the following table, the air duplicate sample generally displayed good conformance to the associated sample.

	Field Duplicate Air RPD Summary								
Sample	Duplicate	Analyte	Sample Conc.	RL	Duplicate Conc.	RL	RPD		
ID	ID		$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	$\mu g/m^3$	%		
		104775	50						
		Acetone	24.7	4.6	27.8	4.6	12		
		Benzene	14.6	0.62	14.4	0.62	1.4		
		Carbon disulfide	14.8	1.2	14.5	1.2	2.0		
		Chloroform	12.6	0.94	12.9	0.94	2.4		
		1,3-Dichlorobenzene	4.2	2.3	3.8	2.3	10 ¹		
		Dichlorodifluoromethane	3.0	1.9	2.7	1.9	11 ¹		
	BC-SG- FD1	Ethanol	121	3.6	118	3.6	2.5		
		Ethylbenzene	10.3	1.7	9.9	1.7	4.0		
		n-Heptane	647	47.5	629	47.5	2.8		
		n-Hexane	1,260	40.8	1,230	40.8	2.4		
DC		Methylene chloride	17.8	6.7	29.3	6.7	49 ¹		
BC- SG2		4-Methyl-2-pentanone (MIBK)	16.4	7.9	15.2	7.9	7.6 ¹		
502		2-Propanol	9.4	4.8	9.3	4.8	1.1 ¹		
		Propylene	504	20.0	498	20.0	1.2		
		Styrene	3.4	1.6	3.3	1.6	3.01		
		Tetrachloroethene	72.8	1.3	70.1	1.3	3.8		
		Tetrahydrofuran	ND	1.1	23.0	1.1	NA ^{1,2}		
		Toluene	33.5	1.5	41.3	1.5	21		
		1,1,2-Trichloroethane	ND	1.1	2.1	1.1	NA ^{1,2}		
		Trichlorofluoromethane	2.5	2.2	2.3	2.2	8.3 ¹		
		1,2,4-Trimethylbenzene	5.6	1.9	5.5	1.9	1.8 ¹		
		m&p-Xylene	20.0	3.4	19.2	3.4	4.1		
		o-Xylene	7.3	1.7	7.3	1.7	0.0^{1}		

¹ Analyte concentration is less than five (5) times its quantitation limit.

² RPD not calculable.

7.0 COMPOUND IDENTIFICATION, QUANTITATION AND REPORTED DETECTION LIMITS

The analytes reported were appropriate for the intended use of the data. Target compounds for the VOC analysis were appropriately identified in the quality control samples and in the field samples. Sample-specific RLs were calculated and reported for the analyses. The RLs were adjusted for the dilution of the sample.

The MDLs and RLs were acceptable and quantitation limits were found to be acceptable for the data's intended use (comparison to the IDEM's RCG Screening Levels).

8.0 **DOCUMENTATION**

A copy of the Chain-of-Custody record documenting all samples submitted to the laboratory in this group was included in the data package. The Chain-of-Custody documentation was accurately completed and included appropriate sample receiving information.

9.0 OTHER

Based on a review of field documentation, no data collection activities were noted during the sampling event that would adversely affect the integrity of the samples collected. The data derived from the sampling event are scientifically defensible, were properly documented, of sufficient quality to meet the project objectives, and are determined to be usable without limitations (subject to QA/QC review of the laboratory results).

10. OVERALL ASSESSMENT

The Chain-of-Custody documentation was accurately completed and included appropriate sample receiving information.

The MDLs and RLs were acceptable and quantitation limits were found to be acceptable for the data's intended use (comparison to the IDEM RCG Screening Levels. The 1,1,2-trichloroethane air RLs exceeded the RCG Indus IA VESL, but were below the calculated Indus SS VESL.

No detections occurred in the laboratory method blank. An LCS was prepared and analyzed as required by the referenced method. All LCS laboratory samples were within their respective percent recovery limits, with the exception of dibromochloromethane; however, dibromochloromethane was not detected in any sample at concentrations exceeding the most stringent IDEM RCG screening level and the usability of the data for its intended purpose is not impacted. Dibromochloromethane and trans-1,3-dichloropropene were qualified due to the continuing calibration for these compounds being outside their respective acceptance limits; however, these analytes were not detected in any of the samples. Therefore, the usability of the data for its intended purpose is not impacted.

Based on this DAR, the results for the analyses of the samples reported in The Butler Company property data set (Pace Report No. 10477550) were determined to be acceptable for their intended use within the limitations described above.

