Indiana Academic Standards Mathematics: Probability and Statistics

Indiana Department of Education

Introduction

The Indiana Academic Standards for Mathematics are the result of a process designed to identify, evaluate, synthesize, and create the most high-quality, rigorous standards for Indiana students. The standards are designed to ensure that all Indiana students, upon graduation, are prepared for both college and career opportunities. In alignment with Indiana's Every Student Succeeds Act (ESSA) plan, the academic standards reflect the core belief that all students can achieve at a high level.

What are the Indiana Academic Standards?

The Indiana Academic Standards are designed to help educators, parents, students, and community members understand what students need to know and be able to do at each grade level, and within each content strand, in order to exit high school college and career ready. The academic standards should form the basis for strong Tier 1 instruction at each grade level and for each content area for all students, in alignment with Indiana's vision for Multi-Tiered Systems of Supports (MTSS). While the standards have identified the academic content or skills that Indiana students need to be prepared for both college and career, they are not an exhaustive list. Students require a wide range of physical, social, and emotional support to be successful. This leads to a second core belief outlined in Indiana's ESSA plan that learning requires an emphasis on the whole child.

While the standards may be used as the basis for curriculum, the Indiana Academic Standards are not a curriculum. Curricular tools, including textbooks, are selected by the district/school and adopted through the local school board. However, a strong standards-based approach to instruction is encouraged, as most curricula will not align perfectly with the Indiana Academic Standards. Additionally, attention should be given at the district and school-level to the instructional sequence of the standards as well as to the length of time needed to teach each standard. Every standard has a unique place in the continuum of learning omitting one will certainly create gaps - but each standard will not require the same amount of time and attention. A deep understanding of the vertical articulation of the standards will enable educators to make the best instructional decisions. The Indiana Academic Standards must also be complemented by robust, evidence-based instructional practices, geared to the development of the whole child. By utilizing well-chosen instructional practices, social-emotional competencies and employability skills can be developed in conjunction with the content standards.

Acknowledgments

The Indiana Academic Standards have been developed through the time, dedication, and expertise of Indiana's K-12 teachers, higher education professors, and other representatives. The Indiana Department of Education (IDOE) acknowledges the committee members who dedicated many hours to the review and evaluation of these standards designed to prepare Indiana students for college and careers.

PROCESS STANDARDS FOR MATHEMATICS

The Process Standards demonstrate the ways in which students should develop conceptual understanding of mathematical content, and the ways in which students should synthesize and apply mathematical skills.

PROCESS STANDARDS FOR MATHEMATICS	
PS.1: Make sense of problems and persevere in solving them.	Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway, rather than simply jumping into a solution attempt. They consider analogous problems and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" and "Is my answer reasonable?" They understand the approaches of others to solving complex problems and identify correspondences between different approaches. Mathematically proficient students understand how mathematical ideas interconnect and build on one another to produce a coherent whole.
PS.2: Reason abstractly and quantitatively.	Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents-and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning

Indiana Department of Education

	of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.
PS.3: Construct viable arguments and critique the reasoning of others.	Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They analyze situations by breaking them into cases and recognize and use counterexamples. They organize their mathematical thinking, justify their conclusions and communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and-if there is a flaw in an argument-explain what it is. They justify whether a given statement is true always, sometimes, or never. Mathematically proficient students participate and collaborate in a mathematics community. They listen to or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.
PS.4: Model with mathematics.	Mathematically proficient students apply the mathematics they know to solve problems arising in everyday life, society, and the workplace using a variety of appropriate strategies. They create and use a variety of representations to solve problems and to organize and communicate mathematical ideas. Mathematically proficient students apply what they know and are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They analyze those relationships
mathematically to draw conclusions. They routinely interpret their mathematical results in the context of	
the situation and reflect on whether the results make sense, possibly improving the model if it has not	
served its purpose.	

PS.5: Use appropriate	
tools strategically.	Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Mathematically proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. Mathematically proficient students identify relevant external mathematical resources, such as digital content, and use them to pose or solve problems. They use technological tools to explore and deepen their understanding of concepts and to support the development of learning mathematics. They use technology to contribute to concept development, simulation, representation, reasoning, communication and problem solving.
PS.6: Attend to precision.	Mathematically proficient students communicate precisely to others. They use clear definitions, including correct mathematical language, in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They express solutions clearly and logically by using the appropriate mathematical terms and notation. They specify units of measure and label axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently and check the validity of their results in the context of the problem. They express numerical answers with a degree of precision appropriate for the problem context.
PS.7: Look for and make use of structure.	Mathematically proficient students look closely to discern a pattern or structure. They step back for an overview and shift perspective. They recognize and use properties of operations and equality. They organize and classify geometric shapes based on their attributes. They see expressions, equations, and geometric figures as single objects or as being composed of several objects.
PS.8: Look for and	
express regularity in	
repeated reasoning.	Mathematically proficient students notice if calculations are repeated and look for general methods and shortcuts. They notice regularity in mathematical problems and their work to create a rule or formula. Mathematically proficient students maintain oversight of the process, while attending to the details as they solve a problem. They continually evaluate the reasonableness of their intermediate results.

Indiana Department of Education

MATHEMATICS: Probability and Statistics

Data Analysis	
PS.DA. 1	Create, compare, and evaluate different graphic displays of the same data, using histograms, frequency polygons, cumulative frequency distribution functions, pie charts, scatterplots, stem-and-leaf plots, and box-and-whisker plots. Draw these with and without technology.
PS.DA.2	Compute and use mean, median, mode, weighted mean, geometric mean, harmonic mean, range, quartiles, variance, and standard deviation. Use tables and technology to estimate areas under the normal curve. Fit a data set to a normal distribution and estimate population percentages. Recognize that there are data sets not normally distributed for which such procedures are inappropriate.
PS.DA.3	Understand the central limit theorem and use it to solve problems.
PS.DA.4	Understand hypothesis tests of means and differences between means and use them to reach conclusions. Compute and use confidence intervals to make estimates. Construct and interpret margin of error and confidence intervals for population proportions.

Indiana Department of Education

PS.DA. 5	Recognize how linear transformations of univariate data affect shape, center, and spread.
PS.DA. 6	Construct and interpret two-way frequency tables of data when two categories are associated with each object being classified. Use the two-way table as a sample space to decide if events are independent and to approximate conditional probabilities.
PS.DA. 7	Decide if a specified model is consistent with results from a given data-generating process, e.g., using simulation.
PS.DA. 8	Understand the meaning of measurement data and categorical data, of univariate and bivariate data, and of the term variable.
PS.DA. 9	Understand statistics and use sampling distributions as a process for making inferences about population parameters based on a random sample from that population.
PS.DA.10	Use data from a sample survey to estimate a population mean or proportion; develop a margin of error through the use of simulation models for random sampling.
PS.DA.11	Find linear models by using median fit and least squares regression methods to make predictions. Decide which among several linear models gives a better fit. Interpret the slope and intercept in terms of the original context. Informally assess the fit of a function by plotting and analyzing residuals.
PS.DA.12	Evaluate reports based on data by considering the source of the data, the design of the study, the way the data are analyzed and displayed, and whether the report confuses correlation with causation. Distinguish between correlation and causation.

Indiana Department of Education

\quad Experimental Design	
PS.ED. 1	Formulate questions that can be addressed with data. Collect, organize, and display relevant data to answer the questions formulated.
PS.ED. 2	Use election theory techniques to analyze election data. Use weighted voting techniques to decide voting power within a group.
PS.ED. 3	Construct simulated sampling distributions of sample proportions and use sampling distributions to identify which proportions are likely to be found in a sample of a given size.
PS.ED.4	Use simulations to explore the variability of sample statistics from a known population and to construct sampling distributions.
PS.ED.5	Model and solve real-world problems using the geometric distribution or waiting-time distribution, with or without technology.
PS.ED.6	Model and solve real-world problems involving patterns using recursion and iteration, growth and decay, and compound interest.

Indiana Department of Education

PS.ED.7	Understand and apply basic ideas related to the design, analysis, and interpretation of surveys and sampling, such as background information, random sampling, causality and bias.
PS.ED.8	Understand how basic statistical techniques are used to monitor process characteristics in the workplace.
PS.ED. 9	Understand the differences among various kinds of studies and which types of inferences can legitimately be drawn from each.

Indiana Department of Education

Probability	
PS.P. 1	Understand and use the addition rule to calculate probabilities for mutually exclusive and nonmutually exclusive events.
PS.P. 2	Understand and use the multiplication rule to calculate probabilities for independent and dependent events. Understand that two events A and B are independent if the probability of A and B occurring together is the product of their probabilities, and use this characterization to determine if they are independent.
PS.P. 3	Understand the multiplication counting principle, permutations, and combinations; use them to solve real-world problems. Use simulations with and without technology to solve counting and probability problems.
PS.P. 4	Calculate the probabilities of complementary events.
PS.P.5	Calculate the expected value of a random variable; interpret it as the mean of the probability distribution.
PS.P. 6	Analyze decisions and strategies using probability concepts. Analyze probabilities to interpret odds and risk of events.
PS.P. 7	Define a random variable for a quantity of interest by assigning a numerical value to each event in a sample space; graph the corresponding probability distribution using the same graphical displays as for data distributions.
PS.P.8	Develop a probability distribution for a random variable defined for a sample space in which theoretical probabilities can be calculated; Compute and interpret the expected value of random variables.

