Indiana Academic Standards Mathematics: Grade 6

Indiana Department of Education

Introduction

The Indiana Academic Standards for Mathematics are the result of a process designed to identify, evaluate, synthesize, and create the highest quality, rigorous standards for Indiana students. The standards are designed to ensure that all Indiana students, upon graduation, are prepared for both college and career opportunities. In alignment with Indiana's Every Student Succeeds Act (ESSA) plan, the academic standards reflect the core belief that all students can achieve at a high level.

What are the Indiana Academic Standards?

The Indiana Academic Standards are designed to help educators, parents, students, and community members understand what students need to know and be able to do at each grade level, and within each content strand, in order to exit high school college and career ready. The academic standards should form the basis for strong Tier 1 instruction at each grade level and for each content area for all students, in alignment with Indiana's vision for Multi-Tiered Systems of Supports (MTSS). While the standards have identified the academic content or skills that Indiana students need to be prepared for both college and career, they are not an exhaustive list. Students require a wide range of physical, social, and emotional support to be successful. This leads to a second core belief outlined in Indiana's ESSA plan that learning requires an emphasis on the whole child.

While the standards may be used as the basis for curriculum, the Indiana Academic Standards are not a curriculum. Curricular tools, including textbooks, are selected by the district/school and adopted through the local school board. However, a strong standards-based approach to instruction is encouraged, as most curricula will not align perfectly with the Indiana Academic Standards. Additionally, attention should be given at the district and school-level to the instructional sequence of the standards as well as to the length of time needed to teach each standard. Every standard has a unique place in the continuum of learning omitting one will certainly create gaps - but each standard will not require the same amount of time and attention. A deep understanding of the vertical articulation of the standards will enable educators to make the best instructional decisions. The Indiana Academic Standards must also be complemented by robust, evidencebased instructional practices, geared to the development of the whole child. By utilizing well-chosen instructional practices, social-emotional competencies and employability skills can be developed in conjunction with the content standards.

Acknowledgments

The Indiana Academic Standards have been developed through the time, dedication, and expertise of Indiana's K-12 teachers, higher education professors, and other representatives. The Indiana Department of Education (IDOE) acknowledges the committee members who dedicated many hours to the review and evaluation of these standards designed to prepare Indiana students for college and careers.

PROCESS STANDARDS FOR MATHEMATICS

The Process Standards demonstrate the ways in which students should develop conceptual understanding of mathematical content, and the ways in which students should synthesize and apply mathematical skills.

\quad PROCESS STANDARDS FOR MATHEMATICS	
PS.1: Make sense of problems and persevere in solving them.	Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathwa, rather than simply jumping into a solution attempt. They consider analogous problems and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" and "Is my answer reasonable?" They understand the approaches of others to solving complex problems and identify correspondences between different approaches. Mathematically proficient students understand how mathematical ideas interconnect and build on one another to produce a coherent whole.
PS.2: Reason abstractly and quantitatively.	Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability To decontextualize- to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents- and the ability to contextualize, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent
representation of the problem at hand; considering the units involved; attending to the meaning of	
quantities, not just how to compute them; and knowing and flexibly using different properties of operations	
and objects.	

PS.3: Construct viable arguments and critique the reasoning of others.

PS.4: Model with mathematics.

PS.5: Use appropriate tools strategically.

Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They analyze situations by breaking them into cases and recognize and use counterexamples. They organize their mathematical thinking, justify their conclusions and communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and-if there is a flaw in an argument-explain what it is. They justify whether a given statement is true always, sometimes, or never. Mathematically proficient students participate and collaborate in a mathematics community. They listen to or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

Mathematically proficient students apply the mathematics they know to solve problems arising in everyday life, society, and the workplace using a variety of appropriate strategies. They create and use a variety of representations to solve problems and to organize and communicate mathematical ideas. Mathematically proficient students apply what they know and are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Mathematically proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their

PS.6: Attend to precision.

PS.7: Look for and make use of structure.

PS.8: Look for and express regularity in repeated reasoning.
limitations. Mathematically proficient students identify relevant external mathematical resources, such as digital content, and use them to pose or solve problems. They use technological tools to explore and deepen their understanding of concepts and to support the development of learning mathematics. They use technology to contribute to concept development, simulation, representation, reasoning, communication and problem solving.

Mathematically proficient students communicate precisely to others. They use clear definitions, including correct mathematical language, in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They express solutions clearly and logically by using the appropriate mathematical terms and notation. They specify units of measure and label axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently and check the validity of their results in the context of the problem. They express numerical answers with a degree of precision appropriate for the problem context.

Mathematically proficient students look closely to discern a pattern or structure. They step back for an overview and shift perspective. They recognize and use properties of operations and equality. They organize and classify geometric shapes based on their attributes. They see expressions, equations, and geometric figures as single objects or as being composed of several objects.

Mathematically proficient students notice if calculations are repeated and look for general methods and shortcuts. They notice regularity in mathematical problems and their work to create a rule or formula. Mathematically proficient students maintain oversight of the process, while attending to the details as they solve a problem. They continually evaluate the reasonableness of their intermediate results.

Indiana Department of Education

MATHEMATICS: Grade 6

The Mathematics Standards for Grade 6 are supplemented by the Process Standards for Mathematics.
The Mathematics standards for Grade 6 are made up of five strands: Number Sense; Computation; Algebra and Functions; Geometry and Measurement; and Data Analysis and Statistics. The skills listed in each strand indicate what students in grade 6 should know and be able to do in Mathematics.

	NUMBER SENSE
6.NS. $\mathbf{1}$	Understand that positive and negative numbers are used to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge). Use positive and negative numbers to represent and compare quantities in real-world contexts, explaining the meaning of 0 in each situation.
6.NS.2	Recognize opposite signs of numbers as indicating locations on opposite sides of 0 on the number line; recognize that the opposite of the opposite of a number is the number itself (e.g., $-(-3)=3)$, and that 0 is its own opposite.
6.NS.3	Compare and order rational numbers and plot them on a number line. Write, interpret, and explain statements of order for rational numbers in real-world contexts.
6.NS.4	Understand that the absolute value of a number is the distance from zero on a number line. Find the absolute value of real numbers and know that the distance between two numbers on the number line is the absolute value of their difference. Interpret absolute value as magnitude for a positive or negative quantity in a real-world situation.
6.NS.5	Know commonly used fractions (halves, thirds, fourths, fitths, eighths, tenths) and their decimal and percent equivalents. Convert between any two representations (fractions, decimals, percents) of positive rational numbers without the use of a calculator.

Indiana Department of Education

6.NS. 6	Identify and explain prime and composite numbers.
6.NS. 7	Find the greatest common factor of two whole numbers less than or equal to 100 and the least common multiple of two whole numbers less than or equal to 12 . Use the distributive property to express a sum of two whole numbers from 1 to 100 , with a common factor as a multiple of a sum of two whole numbers with no common factor.
6.NS. 8	Interpret, model, and use ratios to show the relative sizes of two quantities. Describe how a ratio shows the relationship between two quantities. Use the following notations: $a / b, a$ to $b, a: b$.
6.NS. 9	Understand the concept of a unit rate and use terms related to rate in the context of a ratio relationship.
6.NS. 10	Use reasoning involving rates and ratios to model real-world and other mathematical problems (e.g., by reasoning about tables of equivalent ratios, tape diagrams, double number line diagrams, or equations).

Indiana Department of Education

COMPUTATION

6.C. 1 Divide multi-digit whole numbers fluently using a standard algorithmic approach.
6.C. 2 Compute with positive fractions and positive decimals fluently using a standard algorithmic approach.
6.C. 3 Solve real-world problems with positive fractions and decimals by using one or two operations.
6.C. 4 Compute quotients of positive fractions and solve real-world problems involving division of fractions by fractions. Use a visual fraction model and/or equation to represent these calculations.
6.C.5 Evaluate positive rational numbers with whole number exponents.

Apply the order of operations and properties of operations (identity, inverse, commutative properties of addition and
6.C. 6 muttiplication, associative properties of addition and multiplication, and distributive property) to evaluate numerical expressions with nonnegative rational numbers, including those using grouping symbols, such as parentheses, and involving whole number exponents.

ALGEBRA AND FUNCTIONS	
6.AF. 1	Evaluate expressions for specific values of their variables, including expressions with whole-number exponents and those that arise from formulas used in geometry and other real-world problems.
6.AF. 2	Apply the properties of operations (e.g., identity, inverse, commutative, associative, distributive properties) to create equivalent linear expressions and to justify whether two linear expressions are equivalent when the two expressions name the same number regardless of which value is substituted into them.
6.AF. 3	Define and use multiple variables when writing expressions to represent real-world and other mathematical problems, and evaluate them for given values.
6.AF. 4	Understand that solving an equation or inequality is the process of answering the following question: Which values from a specified set, if any, make the equation or inequality true? Use substitution to determine whether a given number in a specified set makes an equation or inequality true.
6.AF. 5	Solve equations of the form $\mathrm{x}+\mathrm{p}=\mathrm{q}, \mathrm{x}-\mathrm{p}=\mathrm{q}, \mathrm{px}=\mathrm{q}$, and $\mathrm{x} / \mathrm{p}=\mathrm{q}$ fluently for cases in which p, q and x are all nonnegative rational numbers. Represent real-world problems using equations of these forms and solve such problems.
6.AF. 6	Write an inequality of the form $\mathrm{x}>\mathrm{c}, \mathrm{x} \geq \mathrm{c}, \mathrm{x}<\mathrm{c}$, or $\mathrm{x} \leq \mathrm{c}$, where c is a rational number, to represent a constraint or condition in a real-world or other mathematical problem. Recognize inequalities have infinitely many solutions and represent solutions on a number line diagram.
6.AF. 7	Understand that signs of numbers in ordered pairs indicate the quadrant containing the point. Identify rules or patterns in the signs as they relate to the quadrants Graph points with rational number coordinates on a coordinate plane.

Indiana Department of Education

6.AF.8	Solve real-world and other mathematical problems by graphing points with rational number coordinates on a coordinate plane. Include the use of coordinates and absolute value to find distances between points with the same first coordinate or the same second coordinate.
6.AF.9	Make tables of equivalent ratios relating quantities with whole-number measurements, find missing values in the tables, and plot the pairs of values on the coordinate plane.
6.AF.10	Use variables to represent two quantities in a proportional relationship in a real-world problem; write an equation to express one quantity, the dependent variable, in terms of the other quantity, the independent variable. Analyze the relationship between the dependent and independent variables using graphs and tables, and relate these to the equation.

Indiana Department of Education

GEOMETRY AND MEASUREMENT

6.GM. $\mathbf{~}$	Convert between measurement systems (English to metric and metric to English) given conversion factors, and use these conversions in solving real-world problems.
6.GM.2	Know that the sum of the interior angles of any triangle is 180 o and that the sum of the interior angles of any quadrilateral is 360 . Use this information to solve real-world and mathematical problems.
6.GM.3	Draw polygons in the coordinate plane given coordinates for the vertices; use coordinates to find the length of a side joining points with the same first coordinate or the same second coordinate; apply these techniques to solve real-world and other mathematical problems.
6.GM.4	Find the area of complex shapes composed of polygons by composing or decomposing into simple shapes; apply this technique to solve real-world and other mathematical problems.
6.GM.5	Find the volume of a right rectangular prism with fractional edge lengths using unit cubes of the appropriate unit fraction edge lengths (e.g., using technology or concrete materials), and show that the volume is the same as would be found by multiplying the edge lengths of the prism. Apply the formulas $\mathrm{V}=$ lwh and $\mathrm{V}=$ Bh to find volumes of right rectangular prisms with fractional edge lengths to solve real-world and other mathematical problems.
6.GM.6	Construct right rectangular prisms from nets and use the nets to compute the surface area of prisms; apply this technique to solve real-world and other mathematical problems.

Indiana Department of Education

DATA ANALYSIS AND STATISTICS

6.DS. 1	Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for the variability in the answers. Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape.
6.DS.2	Select, create, and interpret graphical representations of numerical data, including line plots, histograms, and box plots.
6.DS.3	Formulate statistical questions; collect and organize the data (e.g., using technology); display and interpret the data with graphical representations (e.g., using technology).
6.DS.4	Summarize numerical data sets in relation to their context in multiple ways, such as: a. report the number of observations b. describe the nature of the attribute under investigation, including how it was measured and its units of measurement c. determine quantitative measures of center (mean and/or median) and spread (range and interquartile range) d. describe any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered
e. relate the choice of measures of center and spread to the shape of the data distribution and the context in which	
the data were gathered	

