Indiana Academic Standards Mathematics: Grade 4

Indiana Department of Education

Introduction

The Indiana Academic Standards for Mathematics are the result of a process designed to identify, evaluate, synthesize, and create the highest-quality, rigorous standards for Indiana students. The standards are designed to ensure that all Indiana students, upon graduation, are prepared for both college and career opportunities. In alignment with Indiana's Every Student Succeeds Act (ESSA) plan, the academic standards reflect the core belief that all students can achieve at a high level.

What are the Indiana Academic Standards?

The Indiana Academic Standards are designed to help educators, parents, students, and community members understand what students need to know and be able to do at each grade level, and within each content strand, in order to exit high school college and career ready. The academic standards should form the basis for strong Tier 1 instruction at each grade level and for each content area for all students, in alignment with Indiana's vision for Multi-Tiered Systems of Supports (MTSS). While the standards have identified the academic content or skills that Indiana students need to be prepared for both college and career, they are not an exhaustive list. Students require a wide range of physical, social, and emotional support to be successful. This leads to a second core belief outlined in Indiana's ESSA plan that learning requires an emphasis on the whole child.

While the standards may be used as the basis for curriculum, the Indiana Academic Standards are not a curriculum. Curricular tools, including textbooks, are selected by the district/school and adopted through the local school board. However, a strong standards-based approach to instruction is encouraged, as most curricula will not align perfectly with the Indiana Academic Standards. Additionally, attention should be given at the district and school-level to the instructional sequence of the standards as well as to the length of time needed to teach each standard. Every standard has a unique place in the continuum of learning omitting one will certainly create gaps - but each standard will not require the same amount of time and attention. A deep understanding of the vertical articulation of the standards will enable educators to make the best instructional decisions. The Indiana Academic Standards must also be complemented by robust, evidencebased instructional practices, geared to the development of the whole child. By utilizing well-chosen instructional practices, social-emotional competencies and employability skills can be developed in conjunction with the content standards.

Acknowledgments

The Indiana Academic Standards could not have been developed without the time, dedication, and expertise of Indiana's K-12 teachers, higher education professors, and other representatives. The Indiana Department of Education (IDOE) acknowledges the committee members who dedicated many hours to the review and evaluation of these standards designed to prepare Indiana students for college and careers.

PROCESS STANDARDS FOR MATHEMATICS

The Process Standards demonstrate the ways in which students should develop conceptual understanding of mathematical content, and the ways in which students should synthesize and apply mathematical skills.

\quad PROCESS STANDARDS FOR MATHEMATICS	
PS.1: Make sense of problems and persevere in solving them.	Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution ppathway, rather than simply jumping into a solution attempt. They consider analogous problems and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" and "Is my answer reasonable?" They understand the approaches of others to solving complex problems and identify correspondences between different approaches. Mathematically proficient students understand how mathematical ideas interconnect and build on one another to produce a coherent whole.
PS.2: Reason abstractly and quantitatively.	Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize- to abstract a given situation and represent it symbolically and manipulate the
representing symbols as if they have a life of their own, without necessarily y attending to their referents-	
and the ability to contextualize, to pause as needed during the manipulation process in order to probe into	
the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent	
representation of the problem at hand; considering the units involved; attending to the meaning of	
quantities, not just how to compute them; and knowing and flexibly using different properties of operations	
and objects.	

PS.3: Construct viable arguments and critique the reasoning of others.

PS.4: Model with mathematics.

PS.5: Use appropriate tools strategically.

Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They analyze situations by breaking them into cases and recognize and use counterexamples. They organize their mathematical thinking, justify their conclusions and communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and-if there is a flaw in an argument-explain what it is. They justify whether a given statement is true always, sometimes, or never. Mathematically proficient students participate and collaborate in a mathematics community. They listen to or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

Mathematically proficient students apply the mathematics they know to solve problems arising in everyday life, society, and the workplace using a variety of appropriate strategies. They create and use a variety of representations to solve problems and to organize and communicate mathematical ideas. Mathematically proficient students apply what they know and are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Mathematically proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their

PS.6: Attend to precision.

PS.7: Look for and make use of structure.

PS.8: Look for and express regularity in repeated reasoning.
limitations. Mathematically proficient students identify relevant external mathematical resources, such as digital content, and use them to pose or solve problems. They use technological tools to explore and deepen their understanding of concepts and to support the development of learning mathematics. They use technology to contribute to concept development, simulation, representation, reasoning, communication and problem solving.

Mathematically proficient students communicate precisely to others. They use clear definitions, including correct mathematical language, in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They express solutions clearly and logically by using the appropriate mathematical terms and notation. They specify units of measure and label axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently and check the validity of their results in the context of the problem. They express numerical answers with a degree of precision appropriate for the problem context.

Mathematically proficient students look closely to discern a pattern or structure. They step back for an overview and shift perspective. They recognize and use properties of operations and equality. They organize and classify geometric shapes based on their attributes. They see expressions, equations, and geometric figures as single objects or as being composed of several objects.

Mathematically proficient students notice if calculations are repeated and look for general methods and shortcuts. They notice regularity in mathematical problems and their work to create a rule or formula. Mathematically proficient students maintain oversight of the process, while attending to the details as they solve a problem. They continually evaluate the reasonableness of their intermediate results.

Indiana Department of Education

MATHEMATICS: Grade 4

The Mathematics standards for Grade 4 are supplemented by the Process Standards for Mathematics.
The Mathematics standards for Grade 4 are made up of six strands: Number Sense, Computation, Algebraic Thinking, Geometry, Measurement, and Data Analysis. The skills listed in each strand indicate what students in Grade 4 should know and be able to do in Mathematics.

	NUMBER SENSE
4.NS.1	Read and write whole numbers up to $1,000,000$. Use words, models, standard form and expanded form to represent and show equivalent forms of whole numbers up to $1,000,000$.
4.NS.2	Compare two whole numbers up to 1,000,000 using $>,=$, and < symbols.
4.NS.3	Express whole numbers as fractions and recognize fractions that are equivalent to whole numbers. Name and write mixed numbers using objects or pictures. Name and write mixed numbers as improper fractions using objects or pictures.
4.NS.4	Explain why a fraction, a/b, is equivalent to a fraction, ($n \times$ a)/(n \times b), by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principle to recognize and generate equivalent fractions. [In grade 4, limit denominators of fractions to 2, 3, 4, 5, 6,8, 10, 25, 100.]
4.NS.5	Compare two fractions with different numerators and different denominators (e.g., by creating common denominators or numerators, or by comparing to a benchmark, such as $0,1 / 2$, and 1). Recognize comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols $>=,=$, or $<$, and justify the conclusions (e.g., by using a visual fraction model).

Indiana Department of Education

4.NS.6	Write tenths and hundredths in decimal and fraction notations. Use words, models, standard form and expanded form to represent decimal numbers to hundredths. Know the fraction and decimal equivalents for halves and fourths (e.g., $1 / 2=0.5=0.50,7 / 4=13 / 4=1.75)$.
4.NS. 7	Compare two decimals to hundredths by reasoning about their size based on the same whole. Record the results of comparisons with the symbols $>,=$, or $<$, and justify the conclusions (e.g., by using a visual model).
4.NS.8	Find all factor pairs for a whole number in the range $1-100$. Recognize that a whole number is a multiple of each of its factors. Determine whether a given whole number in the range 1-100 is a multiple of a given one-digit number.
4.NS.9	Use place value understanding to round multi-digit whole numbers to any given place value.

Indiana Department of Education

COMPUTATION

4.C.	Add and subtract multi-digit whole numbers fluently using a standard algorithmic approach.
4.C.2	Multiply a whole number of up to four digits by a one-digit whole number and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Describe the strategy and explain the reasoning.
4.C.3	Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Describe the strategy and explain the reasoning.
4.C.4	Multiply fluently within 100.
4.C.5	Add and subtract fractions with common denominators. Decompose a fraction into a sum of fractions with common denominators. Understand addition and subtraction of fractions as combining and separating parts referring to the same whole.
4.C.6	Add and subtract mixed numbers with common denominators (e.g. by replacing each mixed number with an equivalent fraction and/or by using properties of operations and the relationship between addition and subtraction).
4.C.	Show how the order in which two numbers are multiplied (commutative property) and how numbers are grouped in multiplication (associative property) will not change the product. Use these properties to show that numbers can be multiplied in any order. Understand and use the distributive property.

Indiana Department of Education

	ALGEBRAIC THINKING
4.AT.1	Solve real-world problems involving addition and subtraction of multi-digit whole numbers (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem).
4.AT.2	Recognize and apply the relationships between addition and multiplication, between subtraction and division, and the inverse relationship between multiplication and division to solve real-world and other mathematical problems.
4.AT.3	Interpret a multiplication equation as a comparison (e.g., interpret $35=5 \times 7$ as a statement that 35 is 5 times as many as 7, and 7 times as many as 5). Represent verbal statements of multiplicative comparisons as multiplication equations.
4.AT.4	Solve real-world problems with whole numbers involving multiplicative comparison (e.g., by using drawings and equations with a symbol for the unknown number to represent the problem), distinguishing multiplicative comparison from additive comparison. [In grade 4, division problems should not include a remainder.]
4.AT.5	Solve real-world problems involving addition and subtraction of fractions referring to the same whole and having common denominators (e.g., by using visual fraction models and equations to represent the problem).
4.AT.6	Describe a relationship between two variables and use to find a second number when a first number is given. Generate a number pattern that follows a given rule.

Indiana Department of Education

	GEOMETRY
4.G.1	Identify, describe, and draw parallelograms, rhombuses, and trapezoids using appropriate tools (e.g., ruler, straightedge and technology).
4.G.2	Recognize and draw lines of symmetry in two-dimensional figures. Identify figures that have lines of symmetry.
4.G.3	Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint.
4.G.4	Identify, describe, and draw rays, angles (right, acute, obtuse), and perpendicular and parallel lines using appropriate tools (e.g., ruler, straightedge and technology). Identify these in two-dimensional figures.
4.G.5	Classify triangles and quadrilaterals based on the presence or absence of parallel or perpendicular lines, or the presence or absence of angles (right, acute, obtuse).

Indiana Department of Education

MEASUREMENT

4.M.1	Measure length to the nearest quarter-inch, eighth-inch, and millimeter.
4.M.2	Know relative sizes of measurement units within one system of units, including $\mathrm{km}, \mathrm{m}, \mathrm{cm} ; \mathrm{kg}, \mathrm{g} ; \mathrm{lb}$, oz; $\mathrm{I}, \mathrm{ml} ; \mathrm{hr}$, min, sec. Express measurements in a larger unit in terms of a smaller unit within a single system of measurement. Record measurement equivalents in a two-column table.
4.M.3	Use the four operations to solve real-world problems involving distances, intervals of time, volumes, masses of objects, and money. Include addition and subtraction problems involving simple fractions and problems that require expressing measurements given in a larger unit in terms of a smaller unit.
4.M.4	Apply the area and perimeter formulas for rectangles to solve real-world problems and other mathematical problems. Recognize area as additive and find the area of complex shapes composed of rectangles by decomposing them into non-overlapping rectangles and adding the areas of the non-overlapping parts; apply this technique to solve real-world problems and other mathematical problems.
4.M.5	Understand that an angle is measured with reference to a circle, with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle. Understand an angle that turns through 1/360 of a circle is called a "one-degree angle," and can be used to measure other angles. Understand an angle that turns through n one-degree angles is said to have an angle measure of n degrees.
4.M.6	Measure angles in whole-number degrees using appropriate tools. Sketch angles of specified measure.

Indiana Department of Education

DATA ANALYSIS

4.DA.1	Formulate questions that can be addressed with data. Use observations, surveys, and experiments to collect, represent, and interpret the data using tables (including frequency tables), line plots, and bar graphs.
4.DA.2	Make a line plot to display a data set of measurements in fractions of a unit $(1 / 2,1 / 4,1 / 8)$. Solve problems involving addition and subtraction of fractions by using data displayed in line plots.
4.DA.3	Interpret data displayed in a circle graph.

