Indiana Academic Standards Mathematics: Algebra II

Indiana Department of Education

Introduction

The Indiana Academic Standards for Mathematics are the result of a process designed to identify, evaluate, synthesize, and create the most high-quality, rigorous standards for Indiana students. The standards are designed to ensure that all Indiana students, upon graduation, are prepared for both college and career opportunities. In alignment with Indiana's Every Student Succeeds Act (ESSA) plan, the academic standards reflect the core belief that all students can achieve at a high level.

What are the Indiana Academic Standards?

The Indiana Academic Standards are designed to help educators, parents, students, and community members understand what students need to know and be able to do at each grade level, and within each content strand, in order to exit high school college and career ready. The academic standards should form the basis for strong Tier 1 instruction at each grade level and for each content area for all students, in alignment with Indiana's vision for Multi-Tiered Systems of Supports (MTSS). While the standards have identified the academic content or skills that Indiana students need to be prepared for both college and career, they are not an exhaustive list. Students require a wide range of physical, social, and emotional support to be successful. This leads to a second core belief outlined in Indiana's ESSA plan that learning requires an emphasis on the whole child.

While the standards may be used as the basis for curriculum, the Indiana Academic Standards are not a curriculum. Curricular tools, including textbooks, are selected by the district/school and adopted through the local school board. However, a strong standards-based approach to instruction is encouraged, as most curricula will not align perfectly with the Indiana Academic Standards. Additionally, attention should be given at the district and school-level to the instructional sequence of the standards as well as to the length of time needed to teach each standard. Every standard has a unique place in the continuum of learning omitting one will certainly create gaps - but each standard will not require the same amount of time and attention. A deep understanding of the vertical articulation of the standards will enable educators to make the best instructional decisions. The Indiana Academic Standards must also be complemented by robust, evidencebased instructional practices, geared to the development of the whole child. By utilizing well-chosen instructional practices, social-emotional competencies and employability skills can be developed in conjunction with the content standards.

Acknowledgments

The Indiana Academic Standards have been developed through the time, dedication, and expertise of Indiana's K-12 teachers, higher education professors, and other representatives. The Indiana Department of Education (IDOE) acknowledges the committee members who dedicated many hours to the review and evaluation of these standards designed to prepare Indiana students for college and careers.

PROCESS STANDARDS FOR MATHEMATICS

The Process Standards demonstrate the ways in which students should develop conceptual understanding of mathematical content, and the ways in which students should synthesize and apply mathematical skills.

PROCESS STANDARDS FOR MATHEMATICS	
PS.1: Make sense of problems and persevere in solving them.	Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway, rather than simply jumping into a solution attempt. They consider analogous problems and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" and "Is my answer reasonable?" They understand the approaches of others to solving complex problems and identify correspondences between different approaches. Mathematically proficient students understand how mathematical ideas interconnect and build on one another to produce a coherent whole.
PS.2: Reason abstractly and quantitatively.	Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to decontextualize-to abstract a given situation and represent it symbolically and manipulate the
representing symbols as if they have a life of their own, without necessarily y attending to their referents-	
and the ability to contextualize, to pause as needed during the manipulation process in order to probe into	
the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent	
representation of the problem at hand; considering the units involved; attending to the meaning of	
quantities, not just how to compute them; and knowing and flexibly using different properties of operations	
and objects.	

PS.3: Construct viable arguments and critique the reasoning of others.

PS.4: Model with mathematics.

PS.5: Use appropriate tools strategically.

Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They analyze situations by breaking them into cases and recognize and use counterexamples. They organize their mathematical thinking, justify their conclusions and communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and-if there is a flaw in an argument-explain what it is. They justify whether a given statement is true always, sometimes, or never. Mathematically proficient students participate and collaborate in a mathematics community. They listen to or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments.

Mathematically proficient students apply the mathematics they know to solve problems arising in everyday life, society, and the workplace using a variety of appropriate strategies. They create and use a variety of representations to solve problems and to organize and communicate mathematical ideas. Mathematically proficient students apply what they know and are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose.

Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Mathematically proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their

PS.6: Attend to precision.

PS.7: Look for and make use of structure.

PS.8: Look for and express regularity in repeated reasoning.
limitations. Mathematically proficient students identify relevant external mathematical resources, such as digital content, and use them to pose or solve problems. They use technological tools to explore and deepen their understanding of concepts and to support the development of learning mathematics. They use technology to contribute to concept development, simulation, representation, reasoning, communication and problem solving.

Mathematically proficient students communicate precisely to others. They use clear definitions, including correct mathematical language, in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They express solutions clearly and logically by using the appropriate mathematical terms and notation. They specify units of measure and label axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently and check the validity of their results in the context of the problem. They express numerical answers with a degree of precision appropriate for the problem context.

Mathematically proficient students look closely to discern a pattern or structure. They step back for an overview and shift perspective. They recognize and use properties of operations and equality. They organize and classify geometric shapes based on their attributes. They see expressions, equations, and geometric figures as single objects or as being composed of several objects.

Mathematically proficient students notice if calculations are repeated and look for general methods and shortcuts. They notice regularity in mathematical problems and their work to create a rule or formula. Mathematically proficient students maintain oversight of the process, while attending to the details as they solve a problem. They continually evaluate the reasonableness of their intermediate results.

Indiana Department of Education

MATHEMATICS: Algebra II

Data Analysis, Statistics, and Probability

All.DSP. $\mathbf{1}$	Distinguish between random and non-random sampling methods, identify possible sources of bias in sampling, describe how such bias can be controlled and reduced, evaluate the characteristics of a good survey and well-designed experiment, design simple experiments or investigations to collect data to answer questions of interest, and make inferences from sample results.
All.DSP. $\mathbf{2}$	Interpret and compare univariate data using measures of center (mean and median) and spread (range, inter-quartile range, standard deviation, and variance). Understand the effects of outliers on the statistical summary of the data.
All.DSP.3	Use technology to find a linear, quadratic, or exponential function that models a relationship for a bivariate data set to make predictions; Interpret the correlation coefficient for linear models.
All.DSP. $\mathbf{4}$	Using the results of a simulation, decide if a specified model is consistent to those results. Construct a theoretical model and apply the law of large numbers to show the relationship between the two models.
AII.DSP.5	Understand dependent and independent events, and conditional probability; apply these concepts to calculate probabilities.
All.DSP.6	Understand the Fundamental Counting Principle, permutations, and combinations; apply these concepts to calculate probabilities.

Indiana Department of Education

Arithmetic and Structure of Expressions

All.ASE. 1 of rational exponents (e.g. $5^{1 / 3}$) is defined to be the cube root of 5 because we want $\left(5^{1 / 3}\right)^{3}=5^{(1 / 3) 3}$ to hold, so $\left(5^{1 / 3}\right)^{3}$ must equal 5.)

AII.ASE. 2 Rewrite expressions involving radicals and rational exponents using the properties of exponents.

AII.ASE. 3
Rewrite algebraic rational expressions in equivalent forms (e.g., using properties of exponents and factoring techniques). Add, subtract, multiply, and divide algebraic rational expressions.

All.ASE. 4

Rewrite rational expressions in different forms; write $a(x) / b(x)$ in the form $q(x)+r(x) / b(x)$, where $a(x), b(x), q(x)$, and $r(x)$ are polynomials with the degree of $r(x)$ less than the degree of $b(x)$.

Indiana Department of Education

Functions

All.F. 1	Understand composition of functions and combine functions by composition.
All.F. 2	Define and find the inverse of a function. Verify functions are inverses algebraically and graphically.
All.F.3	Understand that if the graph of a function contains a point (a, b), then the graph of the inverse relation of the function contains the point (b, a); the inverse is a reflection over the line $y=x$.
All.F. 4	Explore and describe the effect on the graph of $f(x)$ by replacing $f(x)$ with $f(x)+k, k f(x), f(k x)$, and $f(x+k)$ for specific values of $k($ both positiv and negative) with and without technology. Find the value of k given the graph of $f(x)$ and the graph of $f(x)+k, k f(x), f(k x)$, or $f(x+k)$.

Indiana Department of Education

Systems of Equations and Inequalities

All.SEI. 1

Solve a system of equations consisting of a linear equation and a quadratic equation in two variables algebraically and graphically with and without technology.

All.SEI.. 2 Represent and solve real-world systems of linear equations and inequalities in two or three variables algebraically and using technology. Interpret the solution set and determine whether it is reasonable.

All.SEI. 3
Represent real-world problems using a system of linear equations in three variables. Understand that the algebraic steps to solve a two variable system can be extended to systems of equations in three variables.

Indiana Department of Education

	Quadratic Equations and Functions
All.Q.1	Represent real-world problems that can be modeled with quadratic functions using tables, graphs, and equations; translate fluently among these representations. Solve such problems with and without technology. Interpret the solutions and determine whether they are reasonable.
All.Q.2	Use completing the square to rewrite quadratic functions in vertex form and graph these functions with and without technology.
All.Q.3	Understand that different forms of a quadratic equation can provide different information. Use and translate quadratic functions between standard, vertex, and intercept form to graph and identify key features, including intercepts, vertex, line of symmetry, end behavior, and domain and range.
All.Q.4	Use the discriminant to determine the number and type of solutions of a quadratic equation. Find all solutions and write complex solutions in the form of a \pm bi for real numbers a and b.

Indiana Department of Education

Exponential and Logarithmic Equations and Functions

	Exponential and Logarithmic Equations and Functions
All.EL.1	Graph exponential and logarithmic functions with and without technology. Identify and describe key features, such as intercepts, domain and range, asymptotes and end behavior. Know that the inverse of an exponential function is a logarithmic function.
All.EL.2	Identify the percent rate of change in exponential functions. Classify them as representing exponential growth or decay.
All.EL.3	Use the properties of exponents to rewrite expressions to describe transformations of exponential functions.
All.EL.4	Use the properties of exponents to derive the properties of logarithms. Evaluate exponential and logarithmic expressions.
All.EL. 5	Solve exponential and logarithmic equations in one variable.
All.EL.6	Represent real-world problems using exponential and logarithmic functions and solve such problems with technology. Interpret the solutions and determine whether they are reasonable.

Indiana Department of Education

Polynomial, Rational, and Other Equations and Functions

AII.PR. 1 Solve real-world and other mathematical problems involving polynomial equations with and without technology. Interpret the solutions and determine whether the solutions are reasonable.

Graph mathematical functions including:
a. polynomial functions;
b. rational functions;
c. square root functions;
d. absolute value functions; and,
e. piecewise-defined functions
with technology. Identify and describe features, such as intercepts, domain and range, end behavior, and lines of symmetry.

AII.PR. 3 Solve real-world and other mathematical problems involving radical and rational equations. Give examples showing how extraneous solutions may arise.

AII.PR. 4 Solve absolute value linear equations and inequalities in one variable.

